JP2024049757A - Wire rod bending evaluation method - Google Patents

Wire rod bending evaluation method Download PDF

Info

Publication number
JP2024049757A
JP2024049757A JP2022156183A JP2022156183A JP2024049757A JP 2024049757 A JP2024049757 A JP 2024049757A JP 2022156183 A JP2022156183 A JP 2022156183A JP 2022156183 A JP2022156183 A JP 2022156183A JP 2024049757 A JP2024049757 A JP 2024049757A
Authority
JP
Japan
Prior art keywords
wire
simulated
bending
evaluation method
surface plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022156183A
Other languages
Japanese (ja)
Inventor
敦 杉野
正人 出崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2022156183A priority Critical patent/JP2024049757A/en
Publication of JP2024049757A publication Critical patent/JP2024049757A/en
Pending legal-status Critical Current

Links

Images

Abstract

【課題】曲がり抑制や曲がり矯正のための工程等の要否を判断するための線材の冷却中における曲がりを、模擬線材を用いて評価する方法の提供。【解決手段】線材の冷却中における曲がりを模擬的に評価する方法である。線材を模擬した模擬線材を定盤の上面に沿って配置し模擬線材及び定盤を同一の温度に加熱した後、模擬線材の一端部から所定長さ位置までを定盤の上方から衝風冷却し一端部の近傍のみに曲がりを生じさせ、模擬線材の頂面及び底面の温度差と、一端部の曲がりとの関係を測定することを特徴とする。【選択図】 図1[Problem] To provide a method for evaluating bending of a wire during cooling using a simulated wire in order to determine the necessity of processes for suppressing or straightening bending. [Solution] A method for simulating the bending of a wire during cooling. The method is characterized in that a simulated wire simulating a wire is placed along the upper surface of a surface plate, the simulated wire and the surface plate are heated to the same temperature, and then the simulated wire is cooled from above the surface plate to a predetermined length from one end thereof, causing bending only in the vicinity of the one end, and the relationship between the temperature difference between the top and bottom surfaces of the simulated wire and the bending of the one end is measured. [Selected Figure] Figure 1

Description

本発明は、線材の冷却中における曲がりを評価する方法に関し、特に、模擬線材を用いた線材曲がり評価方法に関する。 The present invention relates to a method for evaluating bending of wire during cooling, and in particular to a method for evaluating bending of wire using a simulated wire.

鋼を線材に加工後、特に冷却工程において曲がり(反り)を生じ易い。そのため、生産ラインに線材の曲がりを検出する装置を設け、必要に応じて曲がり抑制や曲げ矯正工程を与えることが提案されている。 After steel is processed into wire, it is prone to bending (warping), especially during the cooling process. For this reason, it has been proposed to provide a device on the production line that detects bending of the wire and to provide a process for suppressing bending or straightening the bending as necessary.

例えば、特許文献1では、生産ラインにおける搬送中の線材の曲り(反り)を光学的に測定する方法を開示している。線材の一方の面側から光を照射するとともに、他方の面側で線材の長手方向に所定距離だけ隔てた2ケ所の光センサにて線材のエッジを通過した光の明暗部を受光しエッジ位置を検出する。この視差から曲り量が測定できるとしている。また、曲がりは、線材の水平方向と上下方向とに生じるため、それぞれの方向で前記した測定を行うとしている。 For example, Patent Document 1 discloses a method for optically measuring the curvature (warping) of a wire being transported on a production line. Light is irradiated from one side of the wire, while two optical sensors on the other side, spaced a specified distance apart in the longitudinal direction of the wire, receive the light and dark areas of the light that passes through the edge of the wire and detect the edge position. It is said that the amount of curvature can be measured from this parallax. In addition, because bending occurs in both the horizontal and vertical directions of the wire, the above-mentioned measurements are carried out in each direction.

特開昭57-211003号公報Japanese Patent Application Laid-Open No. 57-211003

ところで、特許文献1のように、線材の上面側及び下面側、又は、両側面の温度差によって熱膨張差による曲がりを生じることになるが、かかる熱膨張差による曲がりを生じている場合であっても、弾性変形域内であれば線材全体が均一となる温度まで冷却されれば曲がりが解消されることになる。つまり、曲がり抑制や曲がり矯正のための工程、これに用いられる装置の要否については、線材の弾性変形域内の曲がりであるかを判断することが求められる。これにはあらかじめ模擬的に線材を評価しておくことが考慮された。 As in Patent Document 1, the temperature difference between the top and bottom sides of the wire, or between both sides, will cause bending due to differences in thermal expansion. However, even when bending due to such differences in thermal expansion occurs, if the wire is cooled to a temperature where the entire wire becomes uniform, the bending will be eliminated as long as it is within the elastic deformation range. In other words, when determining whether or not a process for suppressing or straightening bending, and the equipment used for this, it is necessary to determine whether the bending is within the elastic deformation range of the wire. For this purpose, it was considered to evaluate the wire in a simulated manner in advance.

本発明は、以上のような状況に鑑みてなされたものであって、その目的とするところは、曲がり抑制や曲がり矯正のための工程等の要否を判断するための線材の冷却中における曲がりを評価する方法として、模擬線材を用いる方法を提供することにある。 The present invention was made in consideration of the above circumstances, and its purpose is to provide a method that uses a simulated wire as a method for evaluating the bending of wire during cooling in order to determine the need for processes such as bending suppression and bending straightening.

本発明による線材の冷却中における曲がりを模擬的に評価する方法は、前記線材を模擬した模擬線材を定盤の上面に沿って配置し前記模擬線材及び前記定盤を同一の温度に加熱した後、前記模擬線材の一端部から所定長さ位置までを前記定盤の上方から衝風冷却し前記一端部の近傍のみに曲がりを生じさせ、前記模擬線材の頂面及び底面の温度差と、前記一端部の曲がりとの関係を測定することを特徴とする。 The method of the present invention for simulating and evaluating the bending of a wire during cooling is characterized in that a simulated wire simulating the wire is placed along the upper surface of a surface plate, the simulated wire and the surface plate are heated to the same temperature, and then the simulated wire is cooled from above the surface plate from one end to a predetermined length position by air blast cooling, causing bending only in the vicinity of the one end, and the relationship between the temperature difference between the top and bottom surfaces of the simulated wire and the bending of the one end is measured.

かかる特徴によれば、模擬線材を用いた測定により、実操業における曲がり抑制や曲がり矯正のための工程等の要否を判断することができるようになるのである。 This feature makes it possible to determine the need for processes to prevent or straighten bending during actual operation by measuring with a dummy wire.

上記した発明において、前記一端部から前記所定長さ位置まで前記模擬線材に沿って平行に配置させたガス配管に設けたスリット穴からガスを前記模擬線材の前記頂面に向けて送出して衝風冷却することを特徴としてもよい。また、前記ガスが前記模擬線材の他端部へ向けて前記所定長さ位置から流れることを抑制する仕切り板を設けておくことを特徴としてもよい。かかる特徴によれば、模擬線材の一端部近傍を均一に冷却できて安定した測定ができるのである。 In the above-mentioned invention, the gas may be directed toward the top surface of the simulated wire from a slit provided in a gas pipe arranged parallel to the simulated wire from the one end to the predetermined length position, thereby cooling the wire through a blast of air. It may also be characterized by providing a partition plate that prevents the gas from flowing from the predetermined length position toward the other end of the simulated wire. With this feature, the vicinity of one end of the simulated wire can be uniformly cooled, allowing for stable measurements.

上記した発明において、前記模擬線材の前記頂面及び前記底面の前記温度差は、前記模擬線材の前記頂面と、前記定盤の前記上面と、の温度差を測定して求めることを特徴としてもよい。かかる特徴によれば、熱容量の大きい定盤の上面の温度を模擬線材の底面の温度と換算できて、サーモビューワーの如き非接触の光学温度計測手段により温度測定をできるから、簡便且つ安定した測定が可能となるのである。 In the above-mentioned invention, the temperature difference between the top surface and the bottom surface of the simulated wire may be determined by measuring the temperature difference between the top surface of the simulated wire and the upper surface of the surface plate. With this feature, the temperature of the upper surface of the surface plate, which has a large heat capacity, can be converted into the temperature of the bottom surface of the simulated wire, and the temperature can be measured by a non-contact optical temperature measuring means such as a thermoviewer, making it possible to perform simple and stable measurement.

上記した発明において、前記模擬線材及び前記定盤を炉内で加熱し、炉外で衝風冷却することを特徴としてもよい。また、前記定盤の前記上面にはV溝が与えられており、前記V溝に沿って内部に前記模擬線材を配置させることを特徴としてもよい。かかる特徴によれば、特に熱容量の大きい定盤を容易に加熱できるとともに、炉内外の移動による模擬線材の転動を抑制できて、簡便且つ安定した測定が可能となるのである。 In the above-mentioned invention, the simulated wire and the surface plate may be heated in a furnace and cooled by air blast outside the furnace. Also, the surface plate may have a V-groove on the top surface thereof, and the simulated wire is placed inside along the V-groove. With this feature, the surface plate, which has a particularly large heat capacity, can be easily heated, and the rolling of the simulated wire due to movement inside and outside the furnace can be suppressed, enabling simple and stable measurement.

上記した発明において、前記一端部の曲がりは、前記定盤の側面からビデオ撮影し前記定盤の前記上面からの前記一端部の浮き上がり量を測定して求めることを特徴としてもよい。かかる特徴によれば、非接触で曲がり測定ができて、簡便且つ安定した測定が可能となるのである。 In the above-mentioned invention, the bending of the one end may be determined by taking a video of the side of the base plate and measuring the amount of lift of the one end from the top surface of the base plate. This feature allows the bending to be measured without contact, making it possible to perform simple and stable measurements.

上記した発明において、前記浮き上がり量に対する弾性変形限界に対応した前記温度差を求めることを特徴としてもよい。かかる特徴によれば、模擬線材を用いた測定により、実操業における曲がり抑制や曲がり矯正のための工程等の要否を具体的に判断することができるようになるのである。 In the above-mentioned invention, the temperature difference corresponding to the elastic deformation limit for the amount of lift may be obtained. With this feature, it is possible to specifically determine the necessity of processes for suppressing bending or straightening bending in actual operation by measuring using a simulated wire.

模擬線材の冷却中の曲がりを測定する様子を示す写真である。13 is a photograph showing how the bending of a simulated wire is measured during cooling. スリットガスノズルの正面写真である。This is a front view of a slit gas nozzle. 定盤と模擬線材の正面図である。FIG. 3種の合金による模擬線材の曲がりの測定結果を示すグラフである。1 is a graph showing the measurement results of bending of simulated wires made of three types of alloys. 模擬線材の頂面及び定盤上面の温度変化を示すグラフである。13 is a graph showing temperature changes on the top surface of the dummy wire and the upper surface of the surface plate.

本発明の例による線材の冷却中における曲がりを模擬的に評価する線材曲がり評価方法について、図1乃至図3を参照して説明する。 A wire bending evaluation method for simulating and evaluating bending of a wire during cooling according to an embodiment of the present invention will be described with reference to Figs. 1 to 3.

図1に示すように、本実施例における方法では、定盤1と、その上面に配置した模擬線材2を用いる。模擬線材2は、評価しようとする実際の線材を模擬するため、かかる線材と同一の成分組成を有するとともに同様の熱履歴や加工履歴を与えたものであることが好ましく、実験室での評価に用いるために太さや長さなどの寸法を実際の線材よりも小さくしたものとしてもよい。 As shown in Figure 1, the method in this embodiment uses a surface plate 1 and a simulated wire 2 placed on its upper surface. In order to simulate the actual wire to be evaluated, the simulated wire 2 preferably has the same component composition as the actual wire and has been given a similar thermal history and processing history. For use in laboratory evaluation, the dimensions of the actual wire, such as thickness and length, may be smaller than those of the actual wire.

模擬線材2は定盤1の上面に載置されたまま、共にマッフル炉などの加熱炉の炉内で所定温度まで加熱され、炉外に取り出される。そして、一端部から所定長さ位置までを定盤1の上から冷却用のガス(同図中の矢印参照)を当てられて衝風冷却とされる。これによって、一端部の近傍のみに曲がりを生じさることができる。他端部については急冷されないように仕切り板4を設けておくことが好ましい。つまり、ガスが一端部の所定長さ位置から他端部へ向けて流れることを抑制するのである。そのため、仕切り板4は、その法線を模擬線材2の長手方向と略平行となるようにして所定長さ位置の直上に設置される。 The simulated wire 2 is placed on the top surface of the platen 1 and heated to a predetermined temperature in a heating furnace such as a muffle furnace, and then removed from the furnace. Then, cooling gas (see arrow in the figure) is applied from above the platen 1 from one end to a predetermined length position, for air blast cooling. This allows bending to occur only near one end. It is preferable to provide a partition plate 4 for the other end to prevent it from being rapidly cooled. In other words, the gas is prevented from flowing from the predetermined length position at one end to the other end. For this reason, the partition plate 4 is installed directly above the predetermined length position with its normal line approximately parallel to the longitudinal direction of the simulated wire 2.

図2を併せて参照すると、衝風冷却にはスリットガスノズル3を用いることも好ましい。スリットガスノズル3は、ガス配管の先端を閉塞させるとともに、側面にガス配管に沿って延びるスリット穴3aを設けて、スリット穴3aからガスを送出させるものである。そして、スリット穴3aを下に向けてスリットガスノズル3を模擬線材2に沿って平行に配置させ、上からガスを送出させて模擬線材2を衝風冷却する。スリット穴3aから冷却用のガスを送出させるため、一端部の長さ方向に均一な冷却を可能とし、その結果、安定した測定を可能とする。 Referring also to Figure 2, it is also preferable to use a slit gas nozzle 3 for air blast cooling. The slit gas nozzle 3 closes the tip of the gas pipe and has a slit hole 3a on the side that extends along the gas pipe, from which gas is discharged. The slit gas nozzle 3 is then placed parallel to the simulated wire 2 with the slit hole 3a facing downward, and the simulated wire 2 is cooled by discharging gas from above. As the cooling gas is discharged from the slit hole 3a, uniform cooling is possible in the length direction of one end, which results in stable measurement.

図3を参照すると、このとき、模擬線材2の底面2bは載置された定盤1の上面1aに接触している。定盤1の熱容量は大きいため、底面2bの温度を上面1aとほぼ同じ温度にさせるものと考えられる。一方、頂面2aは衝風冷却によって温度を低下させており、底面2bとは大きな温度差を有する。そのため、模擬線材2の頂面2aと底面2bとでは熱膨張率が異なる。その結果、模擬線材2は、熱膨張率の大きい底面2b側を伸ばす方向に曲がりを生じる。つまり、一端部は定盤1から浮き上がるように離間する(図中点線参照)。なお、このとき、他端部に曲がりの影響が及ばないよう、模擬線材2の重心は冷却される所定位置よりも他端部側にあるようにされる。また、定盤1にはV溝11を設けて、かかるV溝11の内部に模擬線材2を載置することで、定盤1の加熱炉からの移動などによる模擬線材2の転動を抑制し、その位置及び向きを安定させることが好ましい。 Referring to FIG. 3, at this time, the bottom surface 2b of the simulated wire 2 is in contact with the top surface 1a of the platen 1 on which it is placed. Since the platen 1 has a large heat capacity, it is thought that the temperature of the bottom surface 2b is made to be almost the same as that of the top surface 1a. On the other hand, the temperature of the top surface 2a is lowered by air blast cooling, and there is a large temperature difference between the top surface 2a and the bottom surface 2b. Therefore, the thermal expansion coefficients of the top surface 2a and the bottom surface 2b of the simulated wire 2 are different. As a result, the simulated wire 2 bends in a direction that stretches the bottom surface 2b side, which has a larger thermal expansion coefficient. In other words, one end is separated so as to float up from the platen 1 (see dotted line in the figure). At this time, in order to prevent the bending from affecting the other end, the center of gravity of the simulated wire 2 is made to be on the other end side of the specified position to be cooled. In addition, it is preferable to provide a V-groove 11 in the base plate 1 and place the dummy wire 2 inside the V-groove 11 to prevent the dummy wire 2 from rolling when the base plate 1 is moved from the heating furnace, and to stabilize its position and orientation.

そして、頂面2aと底面2bとの温度差、及び、生じた曲がりを測定することで、温度差と曲がりとの関係を得ることができる。底面2bの温度については、直接測定しづらいので、定盤1の上面1aの温度とほぼ同じとみなして上面1aの温度を測定するとよい。温度差の測定には、例えば、サーモビューワーなどの非接触型の光学温度計を用いることができる。また、曲がりとしては、これに直接的に対応する量として、一端部の初期位置からの上方向へ移動した距離である浮き上がり量Xを用いる。浮き上がり量は、例えば、定盤1の側面からビデオ撮影するなどして、得られた画像から測定することができる。これらのように、非接触の測定装置を用いることで簡便な測定とすることができる。そして、模擬線材2について測定した温度差や浮き上り量によって線材の曲がりを模擬的に評価する。 Then, by measuring the temperature difference between the top surface 2a and the bottom surface 2b and the bending that occurs, the relationship between the temperature difference and the bending can be obtained. Since it is difficult to directly measure the temperature of the bottom surface 2b, it is advisable to measure the temperature of the top surface 1a by assuming that it is approximately the same as the temperature of the top surface 1a of the base plate 1. For measuring the temperature difference, for example, a non-contact optical thermometer such as a thermo viewer can be used. In addition, as a quantity that directly corresponds to the bending, the amount of lift X, which is the distance moved upward from the initial position of one end, is used. The amount of lift can be measured from an image obtained, for example, by videotaping the side of the base plate 1. In this way, the measurement can be simplified by using a non-contact measuring device. Then, the bending of the wire is simulated and evaluated based on the temperature difference and amount of lift measured for the simulated wire 2.

例えば、模擬線材2の温度が充分に低下した後に浮き上がり量がゼロであった場合、測定した温度差においては弾性変形限界内での曲がりを生じたのみであったことが判る。一方、温度を低下させた後に浮き上がり量をゼロとしなかった場合、曲がりを残留させており、塑性歪みを生じていたことが判る。このようにして、弾性変形限界での曲がりに対する浮き上り量と、これに対応した温度差を求めることができる。これに基づき、例えば、合金種毎に同様の温度差を与えて塑性歪みの発生のし易さを相対的に比較した上で、実操業における線材の曲がり抑制や矯正のための工程等の要否を合金種に応じて判断することができる。また、模擬線材を用いた測定結果に基づいて、実際の線材の寸法の場合の塑性歪みの発生の有無を数値解析等の手段により推定することもできる。 For example, if the amount of lift is zero after the temperature of the simulated wire 2 has been sufficiently lowered, it is understood that the measured temperature difference only caused bending within the elastic deformation limit. On the other hand, if the amount of lift is not zero after the temperature is lowered, it is understood that the bending remains and plastic strain has occurred. In this way, the amount of lift for bending at the elastic deformation limit and the corresponding temperature difference can be obtained. Based on this, for example, the ease of occurrence of plastic strain can be relatively compared by applying a similar temperature difference to each alloy type, and then the necessity of processes for suppressing or correcting bending of the wire in actual operation can be determined according to the alloy type. In addition, based on the measurement results using the simulated wire, the presence or absence of plastic strain in the case of actual wire dimensions can be estimated by means of numerical analysis, etc.

[実施例]
上記した模擬線材による頂面及び底面(定盤上面)の温度差と、歪み量との測定を行った結果について図4及び図5を用いて説明する。ここでは、3種類の合金(A合金、B合金、C合金)による模擬線材2を用意し測定を行った。
[Example]
The results of measuring the temperature difference between the top and bottom surfaces (top surface of the surface plate) and the amount of distortion of the above-mentioned simulated wire will be described with reference to Figures 4 and 5. Here, the measurements were performed using simulated wires 2 made of three types of alloys (Alloy A, Alloy B, and Alloy C).

手順としては、まず、定盤1のV溝11に模擬線材2を載置し、マッフル炉で所定の温度まで加熱した。次いで、定盤1を加熱炉から取り出し、作業台に固定されたスリットガスノズル3の位置に対応した所定の位置に配置し、仕切り板4を模擬線材2の長手方向の略中央の所定位置に配置した(図1参照)。スリットガスノズル3から冷却ガスとして空気を送出させ、模擬線材2の一端部を衝風冷却した。また、浮き上り量を測定できるよう一端部を定盤1の側面からビデオカメラで撮影しながら、衝風冷却の開始から所定時間間隔で頂面2aと上面1aの温度をサーモビューワーで測定し、記録した。ビデオカメラによる画像を用い、ガスの流出開始から30秒毎(240秒以降は60秒毎)の各時刻における浮き上がり量を測定し、時間と浮き上がり量との関係をグラフにした。 The procedure was as follows: first, the simulated wire 2 was placed in the V-groove 11 of the platen 1, and heated to a specified temperature in a muffle furnace. Next, the platen 1 was removed from the heating furnace and placed in a specified position corresponding to the position of the slit gas nozzle 3 fixed to the workbench, and the partition plate 4 was placed in a specified position approximately at the center of the longitudinal direction of the simulated wire 2 (see Figure 1). Air was blown out as cooling gas from the slit gas nozzle 3, and one end of the simulated wire 2 was cooled by air blast. In addition, while the one end was photographed from the side of the platen 1 with a video camera so that the amount of lifting could be measured, the temperatures of the top surface 2a and the upper surface 1a were measured and recorded with a thermoviewer at specified time intervals from the start of air blast cooling. Using the images from the video camera, the amount of lifting was measured every 30 seconds (every 60 seconds after 240 seconds) from the start of the gas outflow, and the relationship between the time and the amount of lifting was graphed.

図4には、A合金~C合金のそれぞれの測定結果のグラフを示した。いずれも、衝風冷却の開始から30秒又は60秒において最大の浮き上がり量を記録し、時間の経過とともに浮き上がり量が小さくなった。同図(a)によると、A合金では、最大の浮き上がり量を約2.2mmとし、冷却後に約1.2mmの浮き上がり量を残存させた。同図(b)によると、B合金では、最大の浮き上がり量を約4.0mmとし、冷却後に約1.8mmの浮き上がり量を残存させた。C合金では、最大の浮き上がり量を約1.7mmとし、冷却後の浮き上がり量は約0mmであった。つまり、C合金では冷却中に塑性歪みをほとんど生じなかった。 Figure 4 shows graphs of the measurement results for alloys A to C. In all cases, the maximum amount of lift was recorded 30 or 60 seconds after the start of air blast cooling, and the amount of lift decreased over time. According to Figure 4 (a), alloy A had a maximum amount of lift of about 2.2 mm, and after cooling, about 1.2 mm of lift remained. According to Figure 4 (b), alloy B had a maximum amount of lift of about 4.0 mm, and after cooling, about 1.8 mm of lift remained. For alloy C, the maximum amount of lift was about 1.7 mm, and after cooling, the amount of lift remained was about 0 mm. In other words, alloy C hardly experienced any plastic strain during cooling.

図5には、上記した測定結果のうち、頂面2aと上面1aとの温度を冷却開始後の時刻で記録した。その結果、最大の浮き上がり量の測定された30~60秒後の間の45秒程度においての頂面2aと上面1aとの温度差(図中、試験片温度差と表記)は約240℃であった。なお、この温度差は、実際の線材の製造において、線材をパレット上で冷却したときの頂面及び底面(パレット上面)の温度差と同等であった。 Figure 5 shows the temperatures of the top surface 2a and upper surface 1a, which were measured at the time after cooling began. As a result, the temperature difference between the top surface 2a and upper surface 1a (referred to as the test piece temperature difference in the figure) at about 45 seconds between 30 and 60 seconds after the maximum amount of lift was measured was approximately 240°C. This temperature difference was equivalent to the temperature difference between the top surface and the bottom surface (the upper surface of the pallet) when the wire rod was cooled on a pallet in the actual production of wire rod.

以上、本発明の代表的な実施例を説明したが、本発明は必ずしもこれらに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、種々の代替実施例及び改変例を見出すことができるであろう。 Although the representative embodiments of the present invention have been described above, the present invention is not necessarily limited to these, and a person skilled in the art will be able to find various alternative embodiments and modifications without departing from the spirit of the present invention or the scope of the appended claims.

1 定盤
2 模擬線材
3 スリットガスノズル
4 仕切り板

1 Surface plate 2 Simulation wire 3 Slit gas nozzle 4 Partition plate

Claims (8)

線材の冷却中における曲がりを模擬的に評価する方法であって、
前記線材を模擬した模擬線材を定盤の上面に沿って配置し前記模擬線材及び前記定盤を同一の温度に加熱した後、前記模擬線材の一端部から所定長さ位置までを前記定盤の上方から衝風冷却し前記一端部の近傍のみに曲がりを生じさせ、前記模擬線材の頂面及び底面の温度差と、前記一端部の曲がりとの関係を測定することを特徴とする線材曲がり評価方法。
A method for simulating and evaluating bending of a wire during cooling, comprising the steps of:
A wire bending evaluation method comprising the steps of: placing a simulated wire simulating the wire along the upper surface of a surface plate; heating the simulated wire and the surface plate to the same temperature; cooling the simulated wire from above the surface plate from one end to a predetermined length position by air blast cooling, causing bending only in the vicinity of the one end; and measuring the relationship between the temperature difference between the top and bottom surfaces of the simulated wire and the bending of the one end.
前記一端部から前記所定長さ位置まで前記模擬線材に沿って平行に配置させたガス配管に設けたスリット穴からガスを前記模擬線材の前記頂面に向けて送出して衝風冷却することを特徴とする請求項1記載の線材曲がり評価方法。 The wire bending evaluation method according to claim 1, characterized in that gas is directed toward the top surface of the simulated wire from a slit hole provided in a gas pipe arranged parallel to the simulated wire from the one end to the specified length position, thereby cooling the wire by air jet. 前記ガスが前記模擬線材の他端部へ向けて前記所定長さ位置から流れることを抑制する仕切り板を設けておくことを特徴とする請求項2記載の線材曲がり評価方法。 The wire bending evaluation method according to claim 2, characterized in that a partition plate is provided to prevent the gas from flowing from the predetermined length position toward the other end of the simulated wire. 前記模擬線材の前記頂面及び前記底面の前記温度差は、前記模擬線材の前記頂面と、前記定盤の前記上面と、の温度差を測定して求めることを特徴とする請求項1記載の線材曲がり評価方法。 The wire bending evaluation method according to claim 1, characterized in that the temperature difference between the top surface and the bottom surface of the simulated wire is determined by measuring the temperature difference between the top surface of the simulated wire and the upper surface of the surface plate. 前記模擬線材及び前記定盤を炉内で加熱し、炉外で衝風冷却することを特徴とする請求項1記載の線材曲がり評価方法。 The wire bending evaluation method according to claim 1, characterized in that the simulated wire and the surface plate are heated in a furnace and cooled by air blast outside the furnace. 前記定盤の前記上面にはV溝が与えられており、前記V溝に沿って内部に前記模擬線材を配置させることを特徴とする請求項1乃至5のうちの1つに記載の線材曲がり評価方法。 A wire bending evaluation method according to any one of claims 1 to 5, characterized in that a V-groove is provided on the top surface of the surface plate, and the simulated wire is placed inside along the V-groove. 前記一端部の曲がりは、前記定盤の側面からビデオ撮影し前記定盤の前記上面からの前記一端部の浮き上がり量を測定して求めることを特徴とする請求項1記載の線材曲がり評価方法。 The wire bend evaluation method according to claim 1, characterized in that the bend of the one end is obtained by taking a video of the side of the surface plate and measuring the amount of lift of the one end from the top surface of the surface plate. 前記浮き上がり量に対する弾性変形限界に対応した前記温度差を求めることを特徴とする請求項7記載の線材曲がり評価方法。

8. The wire bending evaluation method according to claim 7, further comprising the step of: determining the temperature difference corresponding to an elastic deformation limit for the amount of lift.

JP2022156183A 2022-09-29 2022-09-29 Wire rod bending evaluation method Pending JP2024049757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022156183A JP2024049757A (en) 2022-09-29 2022-09-29 Wire rod bending evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022156183A JP2024049757A (en) 2022-09-29 2022-09-29 Wire rod bending evaluation method

Publications (1)

Publication Number Publication Date
JP2024049757A true JP2024049757A (en) 2024-04-10

Family

ID=90622140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022156183A Pending JP2024049757A (en) 2022-09-29 2022-09-29 Wire rod bending evaluation method

Country Status (1)

Country Link
JP (1) JP2024049757A (en)

Similar Documents

Publication Publication Date Title
US8506159B2 (en) Method for detecting defect in material and system for the method
TWI543858B (en) Annealing method, annealing jig, and annealing device
CN111879628A (en) System and method for detecting PLC effect of alloy
JP2020190516A (en) Tensile test method and device for metal material
JP2015016481A (en) Method and device for measuring molding limit
Vu et al. Experimental investigation of contact heat transfer coefficients in nonisothermal glass molding by infrared thermography
Delpueyo et al. A specific device for enhanced measurement of mechanical dissipation in specimens subjected to long‐term tensile tests in fatigue
KR19990062945A (en) Method and apparatus for manufacturing hot-rolled steel sheet
JP2024049757A (en) Wire rod bending evaluation method
JP2006224177A (en) Method for predicting shape of metallic strip, method for judging shape on the basis of predicted shape and method for straightening shape
KR102164075B1 (en) Warm test apparatus
JP6717090B2 (en) Test equipment and test method
CN108698879B (en) Float glass production unit comprising a continuous glass temperature measuring device and method for adjusting the measuring device
JP6925041B2 (en) Molding equipment and methods for glass plates
US7473032B2 (en) System and method for enabling temperature measurement using a pyrometer and pyrometer target for use with same
KR102492065B1 (en) Apparatus and method for optical measuring
JP4269394B2 (en) Steel plate shape prediction method
JP6788338B2 (en) Spolling resistance test equipment and spalling resistance evaluation method
JP4539917B2 (en) Hot blow moldability evaluation apparatus and evaluation method
JP2007101326A (en) Method and instrument for measuring ductility value of metal material
JP2010281719A (en) Transformation plastic coefficient testing device and transformation plastic coefficient identification method
JP6870640B2 (en) How to modify the slab temperature model in the heating furnace, as well as the slab extraction temperature control method and control device
JP2000042631A (en) Predicting method of steel plate shape and its device
JP6836162B2 (en) Cooling treatment method
JP2006250713A (en) Method and apparatus for detecting necking of molded object after press molding