JP4539917B2 - Hot blow moldability evaluation apparatus and evaluation method - Google Patents

Hot blow moldability evaluation apparatus and evaluation method Download PDF

Info

Publication number
JP4539917B2
JP4539917B2 JP2005096940A JP2005096940A JP4539917B2 JP 4539917 B2 JP4539917 B2 JP 4539917B2 JP 2005096940 A JP2005096940 A JP 2005096940A JP 2005096940 A JP2005096940 A JP 2005096940A JP 4539917 B2 JP4539917 B2 JP 4539917B2
Authority
JP
Japan
Prior art keywords
molding
molded
molded body
blow
molded object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005096940A
Other languages
Japanese (ja)
Other versions
JP2006272415A (en
Inventor
峰生 浅野
和久 渋江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2005096940A priority Critical patent/JP4539917B2/en
Publication of JP2006272415A publication Critical patent/JP2006272415A/en
Application granted granted Critical
Publication of JP4539917B2 publication Critical patent/JP4539917B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、熱間ブロー成形性評価装置、とくにアルミニウム合金超塑性薄板材料について350〜600℃で行われるガス圧によるバルジ成形(ブロー成形)におけるブロー成形性を評価するために好適な熱間ブロー成形性評価装置、および評価方法に関する。   The present invention relates to a hot blow moldability evaluation apparatus, particularly a hot blow suitable for evaluating blow moldability in bulge molding (blow molding) by gas pressure performed on an aluminum alloy superplastic sheet material at 350 to 600 ° C. The present invention relates to a formability evaluation apparatus and an evaluation method.

アルミニウム合金超塑性材料など、金属系超塑性材料のバルジ試験によるブロー成形性試験・評価方法についてはJIS H 7504に規定されている。この規格は板厚3mm以下の板状の金属系超塑性材料を超塑性状態で超塑性バルジ成形を行う場合のブロー成形性試験・評価方法を規定したものである。   A blow formability test / evaluation method based on a bulge test of a metallic superplastic material such as an aluminum alloy superplastic material is defined in JIS H7504. This standard stipulates a blow-formability test and evaluation method when superplastic bulge forming is performed on a plate-like metallic superplastic material with a thickness of 3 mm or less in a superplastic state.

試験装置の条件としては、成形型および試験片(被成形体)を加熱し,均一な成形温度を得ることができる加熱装置、成形中一定のガス圧を保持できるガス加圧装置を有するものとされている。ここで,成形温度とは成形するときの成形型温度であり,600℃以下での許容温度範囲は±3℃とされ、温度測定は熱電対で行うとされている。ガス圧とは成形圧力のことであり,許容圧力範囲は成形圧力の1%または9.8kPaのいずれか小さい値を取るとされている。成形型は上型および下型からなり、試験片を成形する円筒形状部分および試験片を固定してガス圧が低下しないようにするビード部とから構成される。   Test equipment conditions include a heating device that can heat a mold and a test piece (molded object) to obtain a uniform molding temperature, and a gas pressurization device that can maintain a constant gas pressure during molding. Has been. Here, the molding temperature is the mold temperature at the time of molding, the allowable temperature range below 600 ° C. is ± 3 ° C., and the temperature measurement is performed by a thermocouple. The gas pressure is a molding pressure, and the allowable pressure range is assumed to be 1% of the molding pressure or 9.8 kPa, whichever is smaller. The mold is composed of an upper mold and a lower mold, and is composed of a cylindrical portion for molding the test piece and a bead portion for fixing the test piece so that the gas pressure does not decrease.

ブロー成形性の評価方法は、板厚均一性と成形時間によって行うと規定されている。板厚均一性は、半球まで成形したバルジ成形体頂点部の板厚減少率の大小で評価し,頂点部板厚減少率が小さいほど板厚均一性は良い評価になる。半球の成形体は、成形型半径Rに相当する高さHまで成形した成形体のことである。成形時間は、成形型半径Rに相当する高さHに達するまでの時間であり、成形時間が短いほど実使用上有利となる。成形高さは、バルジ試験終了後成形体を取出し,常温で薄板材料表面から成形体頂点部までの高さをハイトゲージ等を使用して測定するとしている。   The blow moldability evaluation method is defined to be performed according to the plate thickness uniformity and the molding time. The plate thickness uniformity is evaluated based on the thickness reduction rate of the apex portion of the bulge molded body molded up to the hemisphere. The smaller the apex plate thickness reduction rate, the better the plate thickness uniformity. The hemispherical molded body is a molded body molded to a height H corresponding to the mold radius R. The molding time is the time until the height H corresponding to the mold radius R is reached, and the shorter the molding time, the more advantageous in practical use. Regarding the molding height, the molded body is taken out after the bulge test, and the height from the surface of the thin plate material to the apex of the molded body is measured using a height gauge or the like at room temperature.

JIS H 7504におけるブロー成形性の評価は半球まで成形することを必要としているが,ブロー成形性に影響を及ぼす成形温度,成形ガス圧によっては半球まで成形できない条件も出てくる可能性が有り,この試験方法を適用できない場合がある。また,実使用上では半球までの成形を必要としない場合もある。このような場合におけるブロー成形性の評価としては、被成形体が破断しない限界の成形高さ、板厚が評価項目として妥当と考えられるが、本規格には規定されていない。   Evaluation of blow moldability in JIS H 7504 requires molding to hemisphere, but depending on the molding temperature and molding gas pressure that affect blow moldability, conditions that cannot be molded up to hemisphere may come out. This test method may not be applicable. In actual use, it may not be necessary to form a hemisphere. As an evaluation of blow moldability in such a case, the limit of molding height and plate thickness at which the molded body does not break is considered to be appropriate as evaluation items, but is not defined in this standard.

半球までの成形は、ガス圧を変化させた成形試験を繰り返し,成形体の高さと成形時間の関係を求め,そこから半球までの成形時間を推測する必要があるため,各種材料および各成形温度毎にその試験を行う必要があり,膨大な試験時間が必要となる。また,成形温度および成形ガス圧のばらつきにより,正確な半球を成形することは非常に難しく、ブロー成形性向上を目的として、ブロー成形性に及ぼす成形ガス注入量、成形ガス圧などの影響を調査する場合、成形条件が増えるため、JIS H 7504によるブロー成形性の評価方法ではさらに膨大な試験時間を要するという難点がある。   Molding up to the hemisphere requires repeated molding tests with varying gas pressures to determine the relationship between the height of the molded body and the molding time, and then to estimate the molding time up to the hemisphere. The test needs to be performed every time, and enormous test time is required. In addition, due to variations in molding temperature and molding gas pressure, it is very difficult to mold an accurate hemisphere. For the purpose of improving blow moldability, the effects of molding gas injection amount and molding gas pressure on blow moldability are investigated. In this case, since the molding conditions increase, the blow moldability evaluation method according to JIS H 7504 has a drawback that it requires a much longer test time.

ブロー成形中の成形高さをリアルタイムで測定する方法(特許文献1参照)も提案されているが、この手法においては、成形高さを被成形体の表面に検出棒の一端を形成する面板を当接し、検出棒の他端を梃を介して変位計に当接する接触式変位計を用いるものであるため、ブロー成形中の被成形体とくにアルミニウム系超塑性材料の場合には強度が低いことに起因して、成形体の頂点部が凹状に変形した状態で成形が進む可能性があり、正確な成形高さを測定できないことがある。   A method for measuring the molding height during blow molding in real time (see Patent Document 1) has also been proposed. In this method, a face plate that forms one end of the detection rod on the surface of the molding body is measured. Because it uses a contact-type displacement meter that abuts and the other end of the detection rod contacts the displacement meter via a flange, the strength is low in the case of an object to be molded, especially aluminum-based superplastic materials, during blow molding Due to the above, there is a possibility that molding may proceed in a state where the apex portion of the molded body is deformed into a concave shape, and an accurate molding height may not be measured.

また、ブロー成形のシュミレーションを行うために、シュミレーションモデルを考察する場合、ブロー成形中の被成形体の温度変化、ひずみ速度変化、板厚変化に関するデータが必要となるが、上記の手法ではこれらのデータを採取することができないという問題もある。
特開平1−197021号公報
In addition, when considering a simulation model in order to perform blow molding simulation, data on temperature change, strain rate change, and plate thickness change of the molded object during blow molding is required. There is also a problem that data cannot be collected.
Japanese Unexamined Patent Publication No. 1-197021

本発明は、上記従来の問題点を解消するために、JIS H 7504に基くブロー成形性評価方式を改善するために、その構成について検討を加えた結果としてなされたものであり、その目的は、ブロー成形中、被成形体の成形温度、成形高さ、板厚、ひずみ速度を非破壊、非接触で精度良く測定することができ、容易にブロー成形性の評価を行うことを可能とする熱間ブロー成形性評価装置および評価方法を提供することにある。   The present invention has been made as a result of studying the configuration in order to improve the blow moldability evaluation method based on JIS H 7504 in order to eliminate the above-mentioned conventional problems, During blow molding, the molding temperature, molding height, plate thickness, and strain rate of the workpiece can be measured with high accuracy in a non-destructive and non-contact manner, making it easy to evaluate blow moldability. An object of the present invention is to provide an intermediate blow moldability evaluation apparatus and evaluation method.

上記の目的を達成するための請求項1による熱間ブロー成形性評価装置は、断熱材で内張りされヒータを配設した上部容器および下部容器に、それぞれ上金型および下金型を装着し、上部容器と下部容器の開放端を合わせ、上金型と下金型との間に被成形体を挟持し、前記ヒータにより被成形体を加熱し、加圧ガスを導入して被成形体をバルジ成形したとき、均一な成形温度、一定のガス圧が得られるよう構成された熱間ブロー成形性評価装置であって、被成形体をブロー成形するための加圧ガス注入管、被成形体の近傍に配置された金型温度測定用熱電対、被成形体の温度を測定するための放射温度計、上部容器の上面および下部容器の下面に配置され、耐熱ガラスを通して被成形体の成形高さを測定するためのレーザ変位計、耐熱ガラスを通して被成形体を撮影するための撮影装置をそなえ、被成形体の成形高さをレーザ変位計で測定し、ブロー成形により突出した被成形体の頂点部の厚さを、上部容器の上面および下部容器の下面に配置されたレーザ変位計で測定した被成形体の成形高さの変化量から算出するとともに、撮影装置により被成形体の表面に画かれた画線の変化を撮影して被成形体のひずみ速度を求めることを可能としたことを特徴とする。   The hot blow moldability evaluation apparatus according to claim 1 for achieving the above object includes attaching an upper mold and a lower mold to an upper container and a lower container lined with a heat insulating material and provided with a heater, respectively. The open ends of the upper and lower containers are aligned, the object to be molded is sandwiched between the upper mold and the lower mold, the object to be molded is heated by the heater, and pressurized gas is introduced to form the object to be molded. A hot blow moldability evaluation apparatus configured to obtain a uniform molding temperature and a constant gas pressure when bulge molding is performed, a pressurized gas injection tube for blow molding a molded body, and a molded body The thermocouple for measuring the mold temperature, the thermometer for measuring the temperature of the molded object, the upper surface of the upper container and the lower surface of the lower container, and the molding height of the molded object through the heat-resistant glass Laser displacement meter, heat-resistant glass for measuring thickness An imaging device is provided for photographing the molded object through, the molding height of the molded object is measured with a laser displacement meter, and the thickness of the apex of the molded object protruding by blow molding is measured on the upper surface of the upper container. And calculating from the amount of change in the molding height of the molded object measured by the laser displacement meter placed on the lower surface of the lower container, and photographing the change in the image line drawn on the surface of the molded object with an imaging device. It is possible to obtain the strain rate of the molded body.

請求項2による熱間ブロー成形性評価装置は、断熱材で内張りされヒータを配設した上部容器および下部容器に、それぞれ上金型および下金型を装着し、上部容器と下部容器の開放端を合わせ、上金型と下金型との間に被成形体を挟持し、前記ヒータにより被成形体を加熱し、加圧ガスを導入して被成形体をバルジ成形したとき、均一な成形温度、一定のガス圧が得られるよう構成された熱間ブロー成形性評価装置であって、下部容器に装着された被成形体を上向きブロー成形するための加圧ガス注入管、被成形体の近傍に配置された金型温度測定用熱電対、被成形体の温度を測定するための放射温度計、上部容器の上面および下部容器の下面に配置され、耐熱ガラスを通して被成形体の成形高さを測定するためのレーザ変位計、耐熱ガラスを通して被成形体を撮影するための撮影装置をそなえ、被成形体の成形高さを上部容器の上面に配置されたレーザ変位計で測定し、上向きブロー成形により上方へ突出した被成形体の頂点部の厚さを、上部容器の上面および下部容器の下面に配置されたレーザ変位計で測定した被成形体の成形高さの変化量から算出するとともに、撮影装置により被成形体の表面に画かれた画線の変化を撮影して被成形体のひずみ速度を求めることを可能としたことを特徴とする。   The hot blow moldability evaluation apparatus according to claim 2 is provided with an upper die and a lower die attached to an upper container and a lower container, which are lined with a heat insulating material and provided with a heater, respectively, and open ends of the upper container and the lower container. When the object to be molded is sandwiched between the upper mold and the lower mold, the object to be molded is heated by the heater, and pressurized gas is introduced to bulge the object to be molded. A hot blow moldability evaluation apparatus configured to obtain a temperature and a constant gas pressure, wherein a pressurized gas injection tube for upwardly molding a molded object mounted on a lower container, Mold thermometer for measuring mold temperature, radiation thermometer for measuring the temperature of the molded object, the upper surface of the upper container and the lower surface of the lower container, and the molding height of the molded object through heat-resistant glass Laser displacement meter for measuring the heat resistance glass An imaging device is provided for photographing the molded object through, the molding height of the molded object is measured with a laser displacement meter disposed on the upper surface of the upper container, and the molded object protruding upward by upward blow molding The thickness of the apex portion is calculated from the amount of change in the molding height of the molded object measured by the laser displacement meter disposed on the upper surface of the upper container and the lower surface of the lower container, and is applied to the surface of the molded object by the photographing device. It is characterized in that it is possible to determine the strain rate of the molding by photographing the change of the drawn line.

請求項3による熱間ブロー成形性評価装置は、請求項1または2において、撮影装置がCCDカメラであることを特徴とする。   A hot blow moldability evaluation apparatus according to claim 3 is characterized in that, in claim 1 or 2, the photographing apparatus is a CCD camera.

請求項4による熱間ブロー成形性評価方法は、ブロー成形されて突出する被成形体の頂点部となる個所に、成形前に円形の画線を画いておき、請求項1または2記載の装置を用いて、ブロー成形時、撮影装置により円形の画線を撮影して、円形の画線の寸法を測定し、成形前後の寸法から算出したひずみを成形時間で徐すことにより被成形体のひずみ速度を求めることを特徴とする。   The apparatus according to claim 1 or 2, wherein the hot blow moldability evaluation method according to claim 4 draws a circular image line before molding at a position that becomes a top portion of a molded object that is blow molded and protrudes. , During blow molding, photograph a circular image line with a photographing device, measure the size of the circular image line, and slow down the strain calculated from the dimensions before and after molding by the molding time. The strain rate is obtained.

請求項5による熱間ブロー成形性評価方法は、ブロー成形されて上方または下方へ突出する被成形体の頂点部となる個所に、成形前に円形の画線を画いておき、請求項3記載の装置を用いて、ブロー成形時、CCDカメラにより円形の画線を撮影して、モニター画面上で円形の画線の寸法を測定し、成形前後の寸法から算出したひずみを成形時間で徐すことにより被成形体のひずみ速度を求めることを特徴とする。   The hot blow moldability evaluation method according to claim 5 is a method in which a circular image is drawn before molding at a position that becomes a top portion of a molded body that is blow molded and protrudes upward or downward. When using blow molding, take a circular image with a CCD camera, measure the size of the circular image on the monitor screen, and gradually slow down the strain calculated from the dimensions before and after molding. Thus, the strain rate of the molded body is obtained.

請求項6による熱間ブロー成形性の評価方法は、請求項1〜3のいずれかに記載の装置を用いて、被成形体が破断しない限界の成形高さおよび/または被成形体の頂点部の厚さを測定することを特徴とする   The hot blow moldability evaluation method according to claim 6 uses the apparatus according to any one of claims 1 to 3 to limit the molding height at which the molded body does not break and / or the apex of the molded body. Measuring the thickness of

本発明によれば、JIS H 7504に規定されるブロー成形性の評価を精度良く行うことができる。本発明においては、ブロー成形中において、被成形体の成形温度、成形高さ、板厚、ひずみ速度を非接触、非破壊で同時に測定することができ、また、これらの測定をリアルタイムで測定することも可能となる。   According to the present invention, it is possible to accurately evaluate the blow moldability defined in JIS H7504. In the present invention, during blow molding, the molding temperature, molding height, plate thickness, and strain rate of the molding can be measured simultaneously in a non-contact and non-destructive manner, and these measurements are measured in real time. It is also possible.

JIS H 7504で要求される半球までの成形を必要としない場合においても、破断しない限度の成形高さ、板厚を精度良く測定することが可能となる。   Even when molding up to the hemisphere required by JIS H 7504 is not required, it is possible to accurately measure the molding height and the plate thickness as long as they do not break.

被成形体の成形高さ、板厚、ひずみ速度のうちの1つ以上と成形温度を同時に測定することができるから、ブロー成形性の評価を容易に行うことができるとともに、最適なブロー成形条件(成形温度、成形ガス注入量、成形ガス圧)を容易に抽出することができ、シュミレーションを行うために必要なブロー成形中の被成形体の温度変化、ひずみ速度変化、板厚変化に関するデータの採取も可能となる。   Since it is possible to simultaneously measure one or more of the molding height, plate thickness, and strain rate of the workpiece and the molding temperature, it is possible to easily evaluate the blow moldability and the optimum blow molding conditions. (Molding temperature, molding gas injection amount, molding gas pressure) can be easily extracted, and data related to temperature change, strain rate change, and plate thickness change during blow molding required for simulation Collection is also possible.

本発明による熱間ブロー成形性評価装置の概略を図1に示す。装置構成としては、例えば加圧ガス注入管の配置を変えることにより、被成形体のブロー成形の向きを上向きまたは下向きに変えることができるが、図1は、被成形体を上向きにブロー成形する装置例を示すものである。装置は、断熱材3で内張りされヒータ4を配設した上部容器Aおよび下部容器Bに、それぞれ上金型5および下金型6を装着し、上部容器5と下部容器6の開放端を図1に示すように合わせ、上金型5と下金型6との間に被成形体8を挟持し、ヒータ4により被成形体8を加熱し、加圧ガスを導入して被成形体8をバルジ成形したとき、均一な成形温度、一定のガス圧が得られるよう構成された熱間ブロー成形性評価装置であり、金型5、6は、JIS H 7504に規定されるように、被成形体8を成形する円筒形状部分、および被成形体を固定してガス圧が低下しないようにビード部9から構成され(図1の拡大部参照)、被成形体8は上金型5と下金型6との間に気密に挟持されている。装置の外郭は、例えば鋼板で構成される。   An outline of a hot blow moldability evaluation apparatus according to the present invention is shown in FIG. As an apparatus configuration, for example, by changing the arrangement of the pressurized gas injection tube, the direction of blow molding of the molded body can be changed upward or downward, but FIG. 1 shows that the molded body is blown upward. An example of an apparatus is shown. In the apparatus, an upper mold 5 and a lower mold 6 are mounted on an upper container A and a lower container B lined with a heat insulating material 3 and provided with a heater 4, respectively, and the open ends of the upper container 5 and the lower container 6 are illustrated. 1, the molded object 8 is sandwiched between the upper mold 5 and the lower mold 6, the molded object 8 is heated by the heater 4, and pressurized gas is introduced to introduce the molded object 8. Is a hot blow moldability evaluation apparatus configured so that a uniform molding temperature and a constant gas pressure can be obtained when bulge molding is performed, and the molds 5 and 6 are coated as defined in JIS H7504. A cylindrical portion for molding the molded body 8 and a bead portion 9 (refer to the enlarged portion in FIG. 1) so that the molded body is fixed and the gas pressure does not decrease. It is airtightly sandwiched between the lower mold 6. The outer shell of the device is made of, for example, a steel plate.

下部容器Bには、加圧ガス注入管7が下部容器Bを貫通して装着され、加圧ガス注入管7から導入される加圧ガスによって被成形体8は上向きブロー成形される。被成形体8の近傍には、金型温度(ビード部付近)測定用熱電対13,13が配置され、熱電対13は温度調節装置(図示せず)に接続されて、金型5,6の温度を制御する。なお、加圧ガスとしては、空気、窒素ガス、アルゴンガスなどが適用される。   A pressurized gas injection pipe 7 is attached to the lower container B so as to penetrate the lower container B, and the molded object 8 is blown upward by the pressurized gas introduced from the pressurized gas injection pipe 7. In the vicinity of the object 8 to be molded, thermocouples 13 and 13 for measuring the mold temperature (near the bead portion) are arranged, and the thermocouple 13 is connected to a temperature adjusting device (not shown), and the molds 5 and 6 are connected. To control the temperature. Note that air, nitrogen gas, argon gas, or the like is applied as the pressurized gas.

上部容器Aには赤外線透過型ガラス(例えばゲルマニアを主成分とするガラス)2が装入され、被成形体8の温度を赤外線透過型ガラス2を通して測定するための放射温度計11が配置されている。また、上部容器Aの上面および下部容器Bの下面には耐熱ガラス1、1が取り付けられ、耐熱ガラス1、1を通して被成形体8の成形高さを測定するためのレーザ変位計12、12が配置されるとともに、上部容器Aの耐熱ガラス1を通して被成形体8を撮影できる撮影装置10が配置される。撮影装置としては、CCDカメラ、デジタルカメラなどが適用される。   The upper container A is loaded with an infrared transmissive glass (for example, glass containing germania as a main component) 2, and a radiation thermometer 11 for measuring the temperature of the article 8 through the infrared transmissive glass 2 is disposed. Yes. Further, heat-resistant glasses 1, 1 are attached to the upper surface of the upper container A and the lower surface of the lower container B, and laser displacement meters 12, 12 for measuring the forming height of the object 8 through the heat-resistant glasses 1, 1 are provided. In addition to the arrangement, an imaging device 10 that can image the molding 8 through the heat-resistant glass 1 of the upper container A is arranged. As the photographing device, a CCD camera, a digital camera, or the like is applied.

上記のように構成された装置において、被成形体8の成形高さは上部容器Aの上面に配置されたレーザ変位計12で測定され、上向きブロー成形により上方へ突出した被成形体8の頂点部の厚さを、上部容器Aの上面および下部容器Bの下面に配置されたレーザ変位計12、12で測定した被成形体の成形高さの変化量から算出(頂点部の厚さ=上部容器Aの上面に配置されたレーザ変位計で測定した成形高さの変化量−下部容器Bの下面に配置されたレーザ変位計で測定した成形高さの変化量+被成形体の初期の厚さ)するとともに、撮影装置10により被成形体8の表面に画かれた画線の変化を撮影して被成形体8のひずみ速度を求める。   In the apparatus configured as described above, the molding height of the molded body 8 is measured by the laser displacement meter 12 disposed on the upper surface of the upper container A, and the apex of the molded body 8 protruding upward by upward blow molding. The thickness of the part is calculated from the amount of change in the molding height of the molded body measured by the laser displacement meters 12 and 12 arranged on the upper surface of the upper container A and the lower surface of the lower container B (the thickness of the apex part = the upper part) Change in molding height measured with a laser displacement meter placed on the upper surface of container A-Change in molding height measured with a laser displacement meter placed on the lower surface of lower container B + initial thickness of workpiece In addition, a change in the image line drawn on the surface of the molding object 8 is photographed by the photographing apparatus 10 to obtain the strain rate of the molding object 8.

被成形体8のひずみ速度の測定としては、例えば、上向きブロー成形されて上方へ突出する被成形体8の頂点部となる個所に、成形前に円形の画線(スクライブドサークル)をスタンプ法、焼付け法(レジスト)、電解腐食法(例えば、酸によるエッチング)、その他の方法で画いておき、前記請求項1または2記載の装置により、撮影装置10としてCCDカメラを用いて、ブロー成形時、CCDカメラ10により円形の画線(スクライブドサークル)をビデオ撮影し、成形後にモニター画面上で円形の画線(スクライブドサークル)の寸法を測定し、成形前後の寸法から算出したひずみを成形時間で徐すことにより被成形体のひずみ速度を求める方法がある。撮影装置10としてデジタルカメラを使用し、デジタルカメラ10により円形の画線を撮影し、写真上で寸法を測定してひずみ速度を求めることもできる。   As the measurement of the strain rate of the molded object 8, for example, a circular image line (scribed circle) is formed by stamping before forming at a position that becomes the apex of the molded object 8 that is blown upward and protrudes upward. In the blow molding process, the image is imaged by a baking method (resist), an electrolytic corrosion method (for example, etching with an acid), or other methods, and a CCD camera is used as the photographing device 10 by the apparatus according to claim 1 or 2. The CCD camera 10 takes a video of a circular image line (scribed circle), measures the size of the circular image line (scribed circle) on the monitor screen after forming, and forms the strain calculated from the dimensions before and after forming. There is a method for obtaining the strain rate of the molded body by slowing down with time. It is also possible to use a digital camera as the photographing device 10, photograph a circular image line with the digital camera 10, measure the dimensions on the photograph, and obtain the strain rate.

上記円形の画線(スクライブドサークル)の寸法測定は、CCDカメラ10を通して、CPU(パソコン)(図示せず)に入力し、CPU上でリアルタイムで測定することもできる。レーザ変位計12、放射温度計11、熱電対13からの出力、ガス流量などをCPUに入力し、ブロー成形条件を自動制御することも可能である。また、本発明による熱間ブロー成形性評価装置を用いれば、被成形体が破断しない限界の成形高さおよび/または被成形体の頂点部の厚さを測定することも可能である。   The dimension measurement of the circular image line (scribed circle) can be input to a CPU (personal computer) (not shown) through the CCD camera 10 and measured in real time on the CPU. It is also possible to automatically control the blow molding conditions by inputting the output from the laser displacement meter 12, the radiation thermometer 11, the thermocouple 13, the gas flow rate, etc. to the CPU. Moreover, if the hot blow moldability evaluation apparatus according to the present invention is used, it is possible to measure the limit molding height at which the molded body does not break and / or the thickness of the apex portion of the molded body.

以下、本発明の実施例を説明する。この実施例は本発明の一実施態様を示すものであり、本発明はこれに限定されるものではない。   Examples of the present invention will be described below. This example shows one embodiment of the present invention, and the present invention is not limited to this example.

実施例1
図1に示す装置を使用し、アルミニウム合金板(AA5083−O材、厚さ1.5mm)の熱間ブロー成形性を評価した。上金型および下金型の内径は150mm、成形温度は500℃に制御し、加圧ガスとして窒素ガスを使用し、ガス注入量は0.01m/min、ガス圧は0.3MPaとした。
Example 1
Using the apparatus shown in FIG. 1, the hot blow moldability of an aluminum alloy plate (AA5083-O material, thickness 1.5 mm) was evaluated. The inner diameter of the upper mold and the lower mold was controlled to 150 mm, the molding temperature was controlled to 500 ° C., nitrogen gas was used as the pressurized gas, the gas injection amount was 0.01 m 3 / min, and the gas pressure was 0.3 MPa. .

得られたデータから、成形時間を横軸として金型温度、被成形体の温度、ガス圧、成形高さ、頂点部の板厚および頂点部のひずみ速度の変化を求めた。ブロー成形中の金型温度、被成形体の温度、ガス圧の変化を図2に示す。また、成形中の成形高さの変化、頂点部の板厚変化、頂点部のひずみ速度の変化を、それぞれ図3、図4、図5に示す。図3〜4において、ポイントAは、被成形体が破断しない限界(破断直前)の成形高さ、板厚を示す。   From the obtained data, changes in the mold temperature, the temperature of the object to be molded, the gas pressure, the molding height, the plate thickness at the apex and the strain rate at the apex were obtained with the molding time as the horizontal axis. FIG. 2 shows changes in the mold temperature, the temperature of the molded body, and the gas pressure during blow molding. Moreover, the change of the shaping | molding height during shaping | molding, the plate | board thickness change of a vertex part, and the change of the strain rate of a vertex part are shown in FIG.3, FIG.4, FIG.5, respectively. 3 to 4, a point A indicates a forming height and a plate thickness at a limit (immediately before the break) at which the molded body does not break.

本発明による熱間ブロー成形性評価装置の一例を示す概略図である。It is the schematic which shows an example of the hot blow moldability evaluation apparatus by this invention. 実施例で得られた被成形体(バルジ成形体)(頂点部)の温度変化、金型温度の変化、ガス圧の変化を示すグラフである。It is a graph which shows the temperature change of the to-be-molded body (bulge molded object) (apex part) obtained in the Example, the change of mold temperature, and the change of gas pressure. 実施例で得られた被成形体の成形高さ(バルジ成形高さ)の変化を示すグラフである。It is a graph which shows the change of the molding height (bulge molding height) of the to-be-molded body obtained in the Example. 実施例で得られた被成形体の頂点部(バルジ頂点部)の板厚の変化を示すグラフである。It is a graph which shows the board | plate thickness change of the vertex part (bulge vertex part) of the to-be-molded body obtained in the Example. 実施例で得られた被成形体の頂点部(バルジ頂点部)のひずみ速度の変化を示すグラフである。It is a graph which shows the change of the strain rate of the vertex part (bulge vertex part) of the to-be-molded body obtained in the Example.

符号の説明Explanation of symbols

1 耐熱ガラス(石英ガラス)
2 赤外線透過型ガラス
3 断熱材
4 ヒータ
5 上金型
6 下金型
7 ガス注入管
8 被成形体
9 ビード部
10 撮影装置
11 放射温度計
12 レーザ変位計
13 金型温度測定用熱電対
A 上部容器
B 下部容器
1 Heat-resistant glass (quartz glass)
2 Infrared transmission type glass 3 Heat insulating material 4 Heater 5 Upper mold 6 Lower mold 7 Gas injection pipe 8 Molded object 9 Bead part
10 Shooting device
11 Radiation thermometer
12 Laser displacement meter
13 Thermocouple for mold temperature measurement A Upper container B Lower container

Claims (6)

断熱材で内張りされヒータを配設した上部容器および下部容器に、それぞれ上金型および下金型を装着し、上部容器と下部容器の開放端を合わせ、上金型と下金型との間に被成形体を挟持し、前記ヒータにより被成形体を加熱し、加圧ガスを導入して被成形体をバルジ成形したとき、均一な成形温度、一定のガス圧が得られるよう構成された熱間ブロー成形性評価装置であって、被成形体をブロー成形するための加圧ガス注入管、被成形体の近傍に配置された金型温度測定用熱電対、被成形体の温度を測定するための放射温度計、上部容器の上面および下部容器の下面に配置され、耐熱ガラスを通して被成形体の成形高さを測定するためのレーザ変位計、耐熱ガラスを通して被成形体を撮影するための撮影装置をそなえ、被成形体の成形高さをレーザ変位計で測定し、ブロー成形により突出した被成形体の頂点部の厚さを、上部容器の上面および下部容器の下面に配置されたレーザ変位計で測定した被成形体の成形高さの変化量から算出するとともに、撮影装置により被成形体の表面に画かれた画線の変化を撮影して被成形体のひずみ速度を求めるよう構成したことを特徴とする熱間ブロー成形性評価装置。 Attach the upper and lower molds to the upper and lower containers lined with heat insulating material and have heaters, align the open ends of the upper and lower containers, and place between the upper and lower molds. When the molded body is sandwiched between, heated by the heater and pressurized gas is introduced to bulge the molded body, a uniform molding temperature and a constant gas pressure can be obtained. This is a hot blow moldability evaluation device, which is a pressurized gas injection tube for blow molding a molded object, a thermocouple for measuring mold temperature placed near the molded object, and measures the temperature of the molded object A radiation thermometer, a laser displacement meter for measuring the molding height of the molded object through the heat-resistant glass, placed on the upper surface of the upper container and the lower surface of the lower container, for photographing the molded object through the heat-resistant glass Equipped with a photographing device, the molding height of the molded object Measured with a laser displacement meter, the thickness of the top of the molded body protruding by blow molding was measured with a laser displacement meter placed on the upper surface of the upper container and the lower surface of the lower container. A hot blow moldability evaluation apparatus characterized in that it is calculated from the amount of change, and is configured to obtain a strain rate of the molded object by photographing a change in an image drawn on the surface of the molded object by an imaging apparatus. . 断熱材で内張りされヒータを配設した上部容器および下部容器に、それぞれ上金型および下金型を装着し、上部容器と下部容器の開放端を合わせ、上金型と下金型との間に被成形体を挟持し、前記ヒータにより被成形体を加熱し、加圧ガスを導入して被成形体をバルジ成形したとき、均一な成形温度、一定のガス圧が得られるよう構成された熱間ブロー成形性評価装置であって、下部容器に装着された被成形体を上向きブロー成形するための加圧ガス注入管、被成形体の近傍に配置された金型温度測定用熱電対、被成形体の温度を測定するための放射温度計、上部容器の上面および下部容器の下面に配置され、耐熱ガラスを通して被成形体の成形高さを測定するためのレーザ変位計、耐熱ガラスを通して被成形体を撮影するための撮影装置をそなえ、被成形体の成形高さを上部容器の上面に配置されたレーザ変位計で測定し、上向きブロー成形により上方へ突出した被成形体の頂点部の厚さを、上部容器の上面および下部容器の下面に配置されたレーザ変位計で測定した被成形体の成形高さの変化量から算出するとともに、撮影装置により被成形体の表面に画かれた画線の変化を撮影して被成形体のひずみ速度を求めるよう構成したことを特徴とする熱間ブロー成形性評価装置。 Attach the upper and lower molds to the upper and lower containers lined with heat insulating material and have heaters, align the open ends of the upper and lower containers, and place between the upper and lower molds. When the molded body is sandwiched between, heated by the heater and pressurized gas is introduced to bulge the molded body, a uniform molding temperature and a constant gas pressure can be obtained. A hot blow moldability evaluation apparatus, which is a pressurized gas injection pipe for upward blow molding of a molded body mounted on a lower container, a mold temperature measurement thermocouple disposed in the vicinity of the molded body, A radiation thermometer for measuring the temperature of the molded object, placed on the upper surface of the upper container and the lower surface of the lower container, a laser displacement meter for measuring the molding height of the molded object through the heat-resistant glass, A photographing device for photographing the molded body The molding height of the molded body is measured with a laser displacement meter disposed on the upper surface of the upper container, and the thickness of the apex portion of the molded body protruding upward by upward blow molding is determined as the upper surface of the upper container and It is calculated from the amount of change in the molding height of the molded object measured by the laser displacement meter placed on the lower surface of the lower container, and the image line changes drawn on the surface of the molded object are photographed by the photographing device. An apparatus for evaluating hot blow moldability, which is configured to obtain a strain rate of a molded body. 前記撮影装置がCCDカメラであることを特徴とする請求項1または2記載の熱間ブロー成形性評価装置。 3. The hot blow moldability evaluation apparatus according to claim 1, wherein the photographing apparatus is a CCD camera. ブロー成形されて上方または下方へ突出する被成形体の頂点部となる個所に、成形前に円形の画線を画いておき、請求項1または2記載の装置を用いて、ブロー成形時、円形の画線を撮影して、該円形の画線の寸法を測定し、成形前後の寸法から算出したひずみを成形時間で徐すことにより被成形体のひずみ速度を求めることを特徴とする熱間ブロー成形性評価方法。 A circular image line is drawn before molding at a portion that becomes the apex portion of the molded body that is blow-molded and protrudes upward or downward, and is circular when blow-molding using the apparatus according to claim 1 or 2. The dimension of the circular object is measured, and the strain rate of the molded object is obtained by slowing the strain calculated from the dimensions before and after molding with the molding time. Blow moldability evaluation method. ブロー成形されて上方または下方へ突出する被成形体の頂点部となる個所に、成形前に円形の画線を画いておき、請求項3記載の装置を用いて、ブロー成形時、CCDカメラにより円形の画線を撮影して、モニター画面上で円形の画線の寸法を測定し、成形前後の寸法から算出したひずみを成形時間で徐すことにより被成形体のひずみ速度を求めることを特徴とする熱間ブロー成形性評価方法。 A circular image line is drawn before molding at a position that becomes the apex portion of the molded object that is blow-molded and protrudes upward or downward. Take a circular image, measure the size of the circular image on the monitor screen, and calculate the strain rate of the workpiece by slowing the strain calculated from the dimensions before and after molding with the molding time. A hot blow moldability evaluation method. 請求項1〜3のいずれかに記載の装置を用いて、被成形体が破断しない限界の成形高さおよび/または被成形体の頂点部の厚さを測定することを特徴とする熱間ブロー成形性評価方法。 A hot blow using the apparatus according to any one of claims 1 to 3 to measure a limit molding height at which the molded body does not break and / or a thickness of an apex portion of the molded body. Formability evaluation method.
JP2005096940A 2005-03-30 2005-03-30 Hot blow moldability evaluation apparatus and evaluation method Expired - Fee Related JP4539917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005096940A JP4539917B2 (en) 2005-03-30 2005-03-30 Hot blow moldability evaluation apparatus and evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005096940A JP4539917B2 (en) 2005-03-30 2005-03-30 Hot blow moldability evaluation apparatus and evaluation method

Publications (2)

Publication Number Publication Date
JP2006272415A JP2006272415A (en) 2006-10-12
JP4539917B2 true JP4539917B2 (en) 2010-09-08

Family

ID=37207649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005096940A Expired - Fee Related JP4539917B2 (en) 2005-03-30 2005-03-30 Hot blow moldability evaluation apparatus and evaluation method

Country Status (1)

Country Link
JP (1) JP4539917B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101189407B1 (en) 2010-07-30 2012-10-10 엘지이노텍 주식회사 Hot press sintering apparatus
JP6970163B2 (en) * 2015-03-31 2021-11-24 住友重機械工業株式会社 Molding equipment
JP6757553B2 (en) * 2015-03-31 2020-09-23 住友重機械工業株式会社 Molding equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58173031A (en) * 1982-03-17 1983-10-11 ソシエテ・ナシオナル・デテユ−ド・エ・ドウ・コンストリユクシオン・ドウ・モト−ル・ダヴイアシオン゛エス・エヌ・ウ・セ・エム・ア−゛ Control apparatus and method in super- plastic molding process of metal member
JPH01197021A (en) * 1988-02-02 1989-08-08 Komatsu Ltd Superplastic blow forming machine and method for controlling blow speed in superplastic blow forming machine
JPH01210130A (en) * 1988-02-17 1989-08-23 Komatsu Ltd Superplastic blow molding method
JP2001289627A (en) * 2000-04-11 2001-10-19 Sumitomo Metal Ind Ltd Thickness measuring instrument
JP2003053451A (en) * 2001-08-22 2003-02-26 Toshiba Corp Formed pipe positioning device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58173031A (en) * 1982-03-17 1983-10-11 ソシエテ・ナシオナル・デテユ−ド・エ・ドウ・コンストリユクシオン・ドウ・モト−ル・ダヴイアシオン゛エス・エヌ・ウ・セ・エム・ア−゛ Control apparatus and method in super- plastic molding process of metal member
JPH01197021A (en) * 1988-02-02 1989-08-08 Komatsu Ltd Superplastic blow forming machine and method for controlling blow speed in superplastic blow forming machine
JPH01210130A (en) * 1988-02-17 1989-08-23 Komatsu Ltd Superplastic blow molding method
JP2001289627A (en) * 2000-04-11 2001-10-19 Sumitomo Metal Ind Ltd Thickness measuring instrument
JP2003053451A (en) * 2001-08-22 2003-02-26 Toshiba Corp Formed pipe positioning device

Also Published As

Publication number Publication date
JP2006272415A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
De Strycker et al. Measuring the thermal expansion coefficient of tubular steel specimens with digital image correlation techniques
Zheng et al. Evaluation of large plastic deformation for metals by a non-contacting technique using digital image correlation with laser speckles
CN104181191B (en) The test of expanded rubber bulk modulus and sample preparation device and method
CN107709969B (en) Method and instrument for testing residual stress of coating
Palumbo et al. A numerical and experimental investigation of AZ31 formability at elevated temperatures using a constant strain rate test
CN102159940A (en) Method for detecting defect in material and system for same
Sebastian et al. Calibration of a digital image correlation system
JP4539917B2 (en) Hot blow moldability evaluation apparatus and evaluation method
CN110411837B (en) Test and calculation method for measuring material gauge length effect curve
CN109997032B (en) Thermal conductivity measuring device, thermal conductivity measuring method, and vacuum degree evaluating device
RU2015104030A (en) METHOD AND DEVICE FOR MEASURING LEVELS OF IRON AND SLAG IN A BLAST FURNACE
Ji et al. Incremental forming of free surface with magnesium alloy AZ31 sheet at warm temperatures
Van Mieghem et al. Improvements in thermoforming simulation by use of 3D digital image correlation
JP6339969B2 (en) Deformation resistance identification method for thin inspection materials
CN105606255B (en) The prediction technique of metal blank simple tension process temperature variation
CN109916735A (en) A kind of test device and test method of sheet metal thermal transient forming limit
Ayadi et al. Bubble assisted vacuum thermoforming: considerations to extend the use of in-situ stereo-DIC measurements to stretching of sagged thermoplastic sheets
CN108444967A (en) A kind of modified pitch effect evaluation method based on image processing techniques
Felling et al. A New Video Extensometer System for Testing Materials Undergoing Severe Plastic Deformation
JP4993505B2 (en) Validity verification device for body parts design
JP2018008299A (en) Method for identifying coefficient of heat transfer of base material and mold
Şükür et al. Comparison of flow curves of AA 5457-O sheet material determined by hydraulic bulge and tensile tests at warm forming temperatures
Wang et al. Identification of 7B04 aluminum alloy anisotropy yield criteria with conventional test and Pottier test at elevated temperature
CN101788281A (en) Measuring method of amorphous alloy free volume
CN112504149A (en) DIC technology-based method for obtaining sheet material hole expansion rate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100616

R150 Certificate of patent or registration of utility model

Ref document number: 4539917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees