JP2024046605A - シリカ粒子、静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置及び画像形成方法 - Google Patents

シリカ粒子、静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置及び画像形成方法 Download PDF

Info

Publication number
JP2024046605A
JP2024046605A JP2023132177A JP2023132177A JP2024046605A JP 2024046605 A JP2024046605 A JP 2024046605A JP 2023132177 A JP2023132177 A JP 2023132177A JP 2023132177 A JP2023132177 A JP 2023132177A JP 2024046605 A JP2024046605 A JP 2024046605A
Authority
JP
Japan
Prior art keywords
less
silica particles
image
toner
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023132177A
Other languages
English (en)
Inventor
麻衣 持田
栄 竹内
優香 銭谷
啓 菅原
三枝子 関
晃太 野原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to CN202311203762.7A priority Critical patent/CN117742103A/zh
Priority to US18/469,027 priority patent/US20240118645A1/en
Priority to EP23198500.3A priority patent/EP4371938A2/en
Publication of JP2024046605A publication Critical patent/JP2024046605A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Silicon Compounds (AREA)

Abstract

【課題】帯電の立ち上がり性を向上させることができるシリカ粒子を提供すること。【解決手段】窒素元素含有化合物を含み、350℃焼成後における窒素ガス吸着法の細孔分布曲線において、細孔直径2nm以下の範囲及び2nm超え50nm以下の範囲で、各々少なくとも1つのピークを有し、350℃焼成後における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以下の範囲及び2nm以上25nm以下の範囲の細孔体積をそれぞれD及びBとしたとき、D/Bが0.50以上2.50以下であるシリカ粒子。【選択図】なし

Description

本開示は、シリカ粒子、静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置及び画像形成方法に関する。
特許文献1には、「第四級アンモニウム塩を含有し、洗浄前のシリカ粒子における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以下の頻度の最大値FBEFOREと、洗浄後のシリカ粒子における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以下の頻度の最大値FAFTERとの比FBEFORE/FAFTERが0.90以上1.10以下であり、且つ、最大値FBEFOREと、洗浄前のシリカ粒子を600℃で焼成後のシリカ粒子における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以下の頻度の最大値FSINTERINGとの比FSINTERING/FBEFOREが5以上20以下である、シリカ粒子」が開示されている。
特許文献2には、「疎水化度が50%以上、飽和水分量が4%以下、窒素含有量が0.05%以上であり、沸点が100℃以上のアミンを0.1%以上含むことを特徴とする、疎水性シリカ粉末。」が開示されている。
特開2021-151944号公報 特許6968632号明細書
本開示は、350℃焼成後における窒素ガス吸着法の細孔分布曲線において、細孔直径2nm以下の範囲及び2nm超え50nm以下の範囲で、各々少なくとも1つのピークを有するシリカ粒子において、350℃焼成後における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以下の範囲及び2nm以上25nm以下の範囲の細孔体積をそれぞれD及びBとしたとき、D/Bが0.50未満であるシリカ粒子である場合に比べ、帯電の立ち上がり性を向上させることができるシリカ粒子を提供することを課題とする。
上記課題を解決するための手段は、下記態様を含む。
<1>
350℃焼成後における窒素ガス吸着法の細孔分布曲線において、細孔直径2nm以下の範囲及び2nm超え50nm以下の範囲で、各々少なくとも1つのピークを有し、
350℃焼成後における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以下の範囲及び2nm以上25nm以下の範囲の細孔体積をそれぞれD及びBとしたとき、D/Bが0.50以上2.50以下であるシリカ粒子。
<2>
前記D/Bが、0.55以上2.00以下である<1>に記載のシリカ粒子。
<3>
前記Dが、0.10cm/g以上1.10cm/g以下である<1>又は<2>に記載のシリカ粒子。
<4>
窒素元素含有化合物を含む<1>~<3>のいずれか1項に記載のシリカ粒子。
<5>
前記窒素元素含有化合物の含有量が、前記シリカ粒子に対する窒素含有量で0.02質量%以上1.20質量%以下である<4>に記載のシリカ粒子。
<6>
350℃焼成前における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以下の細孔体積をCとしたとき、前記Dとの比C/Dが0.05以上0.82以下である<4
>又は<5>に記載のシリカ粒子。
<7>
前記C/Dが、0.05以上0.70以下である<6>に記載のシリカ粒子。
<8>
350℃焼成前における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以上25nm以下の細孔体積をAとしたとき、前記Bとの比A/Bが0以上0.92以下である<4>~<7>のいずれか1項に記載のシリカ粒子。
<9>
個数平均粒径が、40nm以上200nm以下である<4>~<8>のいずれか1項に記載のシリカ粒子。
<10>
前記窒素元素含有化合物が、四級アンモニウム塩、第一級アミン化合物、第二級アミン化合物、第三級アミン化合物、アミド化合物、イミン化合物、及びニトリル化合物よりなる群から選択される少なくとも1種である<4>~<9>のいずれか1項に記載のシリカ粒子。
<11>
トナー粒子と、
前記トナー粒子に外添された<4>~<10>のいずれか1項に記載のシリカ粒子と、
を含む、静電荷像現像用トナー。
<12>
<11>に記載の静電荷像現像用トナーを含む静電荷像現像剤。
<13>
<11>に記載の静電荷像現像用トナーを収容し、
画像形成装置に着脱されるトナーカートリッジ。
<14>
<12>に記載の静電荷像現像剤を収容し、前記静電荷像現像剤により、像保持体の表面に形成された静電荷像をトナー画像として現像する現像手段を備え、
画像形成装置に着脱されるプロセスカートリッジ。
<15>
像保持体と、
前記像保持体の表面を帯電する帯電手段と、
帯電した前記像保持体の表面に静電荷像を形成する静電荷像形成手段と、
<12>に記載の静電荷像現像剤を収容し、前記静電荷像現像剤により、前記像保持体の表面に形成された静電荷像をトナー画像として現像する現像手段と、
前記像保持体の表面に形成されたトナー画像を記録媒体の表面に転写する転写手段と、
前記記録媒体の表面に転写されたトナー画像を定着する定着手段と、
を備える画像形成装置。
<16>
像保持体の表面を帯電する帯電工程と、
帯電した前記像保持体の表面に静電荷像を形成する静電荷像形成工程と、
<12>に記載の静電荷像現像剤により、前記像保持体の表面に形成された静電荷像を
トナー画像として現像する現像工程と、
前記像保持体の表面に形成されたトナー画像を記録媒体の表面に転写する転写工程と、
前記記録媒体の表面に転写されたトナー画像を定着する定着工程と、
を有する画像形成方法
<1>に係る発明によれば、350℃焼成後における窒素ガス吸着法の細孔分布曲線において、細孔直径2nm以下の範囲及び2nm超え50nm以下の範囲で、各々少なくとも1つのピークを有するシリカ粒子において、350℃焼成後における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以下の範囲及び2nm以上25nm以下の範囲の細孔体積をそれぞれD及びBとしたとき、D/Bが0.50未満である場合に比べ、帯電の立ち上がり性を向上させることができるシリカ粒子が提供される。
<2>に係る発明によれば、D/Bが、0.55未満である場合に比べ、帯電の立ち上がり性を向上させることができるシリカ粒子が提供される。
<3>に係る発明によれば、Dが0.10cm/g未満である場合に比べ、帯電の立ち上がり性を向上させることができるシリカ粒子が提供される。
<4>に係る発明によれば、窒素元素含有化合物を含まない場合に比べ、帯電の立ち上がり性に優れたシリカ粒子が提供される。
<5>に係る発明によれば、窒素元素含有化合物の含有量が、シリカ粒子に対する窒素含有量で0.02質量%未満である場合に比べ、帯電の立ち上がり性に優れるシリカ粒子が提供される。
<6>に係る発明によれば、窒素元素含有化合物を含み、350℃焼成前における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以下の細孔体積をCとしたとき、Dとの比C/Dが0.82超えである場合に比べ、帯電の立ち上がり性に優れるシリカ粒子が提供される。
<7>に係る発明によれば、C/Dが、0.70超えである場合に比べ、帯電の立ち上がり性に優れるシリカ粒子が提供される。
<8>に係る発明によれば、窒素元素含有化合物を含み、350℃焼成前における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以上25nm以下の細孔体積をAとしたとき、Bとの比A/Bが0.92超えである場合に比べ、帯電の立ち上がり性に優れるシリカ粒子が提供される。
<9>に係る発明によれば、350℃焼成後における窒素ガス吸着法の細孔分布曲線において、細孔直径2nm以下の範囲及び2nm超え50nm以下の範囲で、各々少なくとも1つのピークを有するシリカ粒子において、350℃焼成後における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以下の範囲及び2nm以上25nm以下の範囲の細孔体積をそれぞれD及びBとしたとき、D/Bが0.50未満である場合に比べ、個数平均粒径が40nm以上200nm以下であっても、帯電の立ち上がり性に優れるシリカ粒子が提供される。
<10>に係る発明によれば、350℃焼成後における窒素ガス吸着法の細孔分布曲線において、細孔直径2nm以下の範囲及び2nm超え50nm以下の範囲で、各々少なくとも1つのピークを有するシリカ粒子において、350℃焼成後における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以下の範囲及び2nm以上25nm以下の範囲の細孔体積をそれぞれD及びBとしたとき、D/Bが0.50未満である場合に比べ、四級アンモニウム塩、第一級アミン化合物、第二級アミン化合物、第三級アミン化合物、アミド化合物、イミン化合物、及びニトリル化合物よりなる群から選択される少なくとも1種を含み、帯電の立ち上がり性に優れるシリカ粒子が提供される。
<11>、<12>、<13>、<14>、<15>、及び<16>に係る発明によれば、350℃焼成後における窒素ガス吸着法の細孔分布曲線において、細孔直径2nm以下の範囲及び2nm超え50nm以下の範囲で、各々少なくとも1つのピークを有するシリカ粒子において、350℃焼成後における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以下の範囲及び2nm以上25nm以下の範囲の細孔体積をそれぞれD及びBとしたとき、D/Bが0.50未満であるシリカ粒子を外添剤として静電荷像現像用トナーに適用した場合に比べ、帯電の立ち上がり性に優れる静電荷像現像用トナー、及び、それを用いた静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置及び画像形成方法が提供される。
本実施形態に係る画像形成装置の一例を示す概略構成図である。 本実施形態に係る画像形成装置に着脱されるプロセスカートリッジの一例を示す概略構成図である。
以下に、本開示の一例である実施形態について説明する。これらの説明及び実施例は実施形態を例示するものであり、実施形態の範囲を制限するものではない。
本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本開示において「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、本用語に含まれる。
本開示において実施形態を、図面を参照して説明する場合、当該実施形態の構成は図面に示された構成に限定されない。また、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
本開示において各成分は該当する物質を複数種含んでいてもよい。本開示において組成物中の各成分の量について言及する場合、組成物中に各成分に該当する物質が複数種存在する場合には、特に断らない限り、組成物中に存在する当該複数種の物質の合計量を意味する。
本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
本開示において、「(メタ)アクリル」はアクリル及びメタクリルのいずれをも含む表現であり、「(メタ)アクリレート」はアクリレート及びメタクリレートのいずれをも含む表現である。
本開示において、「静電荷像現像用トナー」を「トナー」ともいい、「静電荷像現像剤」を「現像剤」ともいい、「静電荷像現像用キャリア」を「キャリア」ともいう。
<シリカ粒子>
本実施形態のシリカ粒子は、窒素元素含有化合物を含み、350℃焼成後における窒素ガス吸着法の細孔分布曲線において、細孔直径2nm以下の範囲及び2nm超え50nm以下の範囲で、各々少なくとも1つのピークを有し、350℃焼成後における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以下の範囲及び2nm以上25nm以下の範囲の細孔体積をそれぞれD及びBとしたとき、D/Bが0.50以上2.50以下である。
以下、2nm以下の範囲の細孔直径を持つ細孔をマイクロ孔、2nm超え50nm以下の範囲又は2nm以上25nm以下の範囲の細孔直径を持つ細孔をメソ孔とも称する。
本実施形態のシリカ粒子は、帯電の立ち上がり性を向上させることができる。その理由は次の通り推測される。
シリカ粒子は、粉体塗料、化粧品、ゴム、研磨剤等の添加成分または主成分として用いられ、例えば、樹脂の強度向上、粉体の流動性向上、パッキング抑制などの役割を担っている。
シリカ粒子は、過剰な負帯電性により静電気が経時で溜まるため、経時による流動性等の低下が生じる。それに対して、シリカ粒子の表面に窒素元素含有化合物を吸着又は反応させることにより、過剰な負帯電を抑制する技術がある。
しかし、シリカ粒子の表面に窒素元素含有化合物を吸着又は反応させると、窒素元素含有化合物は正帯電性が強いため、帯電分布が広がり、帯電の立ち上がり性が低下する。
そこで、本実施形態のシリカ粒子では、350℃焼成後における窒素ガス吸着法の細孔分布曲線において、細孔直径2nm以下の範囲及び2nm超え50nm以下の範囲で、各々少なくとも1つのピークを持たせる。つまり、メソ孔と共にマイクロ孔も有する構成とする。
そして、350℃焼成後における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以下の範囲の細孔体積D及び2nm以上25nm以下の範囲の細孔体積Bの比D/Bを上記範囲とし、メソ孔に対してマイクロ孔を十分に存在させ、シリカ粒子の比表面積を増大させる。
そのため、シリカ粒子のメソ孔と共にマイクロ孔の内部に窒素元素含有化合物を存在させることができる。それにより、シリカ粒子中に、電荷の異なる窒素元素含有化合物が存在することで、粒子の誘電率が低下すると考えられる。
加えて、窒素元素含有化合物が、シリカ粒子の表面ではなく、シリカ粒子のメソ孔と共にマイクロ孔の内部に十分な量の窒素元素含有化合物を存在させることができるので、過剰な正帯電化と窒素元素含有化合物の脱離が抑制される。それにより、帯電分布の広がりも抑制される。
以上から、本実施形態のシリカ粒子は、帯電の立ち上がり性を向上させることができると推測される。
以下、本実施形態のシリカ粒子の詳細について説明する。
(細孔分布)
本実施形態のシリカ粒子において、350℃焼成後における窒素ガス吸着法の細孔分布曲線において、細孔直径2nm以下の範囲及び2nm超え50nm以下の範囲で、各々少なくとも1つのピークを有する。言い換えれば、細孔直径2nm以下の範囲に第一ピークを有し、2nm超え50nm以下の範囲に第二ピークを少なくとも有する。
つまり、本実施形態のシリカ粒子は、メソ孔と共にマイクロ孔も有するシリカ粒子である。
ここで、上記細孔直径の範囲に少なくとも一つのピークを有するとは、窒素ガス吸着法の縦軸が体積頻度、横軸が細孔直径の細孔分布曲線から求める最大値が0.005cm/g・nm以上のピークトップ(極大値)が少なくとも一つ現れる場合を意味する。ただし、2nm以下の範囲については、窒素吸着測定の測定可能範囲が1nm以上であることより、細孔が小さくなるほど体積頻度が増大する場合は1nmをピークトップととらえることとする。
(細孔体積)
350℃焼成後における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以下の範囲及び2nm以上25nm以下の範囲の細孔体積をそれぞれD及びBとしたとき、D/Bは0.50以上2.50以下であり、帯電の立ち上がり性向上の観点から、0.55以上2.00以下が好ましく、0.60以上1.80以下がより好ましい。
350℃焼成後の細孔直径2nm以下の範囲及び2nm以上25nm以下の範囲の細孔体積D及びBは、焼成して、シリカ粒子の細孔に吸着している吸着物を除去後の、シリカ粒子本来の細孔体積である。例えば、シリカ粒子の細孔に窒素元素含有化合物が吸着している場合、シリカ粒子の細孔に吸着して細孔の一部を塞いでいた窒素元素含有化合物が揮発した後の細孔体積である。D/Bは、大きいほどメソ孔に対してマイクロ孔が増加していることを示している。つまり、シリカ粒子の少なくとも一部のメソ孔とともに少なくとも一部のマイクロ孔内部に窒素元素含有化合物が吸着できることを示している。そのため、帯電の立ち上がり性を向上させることができる。
つまり、350℃焼成後における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以下範囲及び2nm以上25nm以下の範囲の細孔体積をそれぞれD及びBとしたとき、D/Bが0.50以上2.50以下であるシリカ粒子において、窒素元素含有化合物を含むことで、帯電の立ち上がり性に優れたシリカ粒子となる。
ここで、窒素元素含有化合物の含有量は、帯電の立ち上がり性向上の観点から、シリカ粒子に対する窒素含有量で0.02質量%以上1.45質量%以下が好ましく、0.1質量%以上1.1質量%以下がより好ましく、0.2質量%以上1.1質量%以下がさらに好ましい。
窒素元素含有化合物の含有量(つまり、シリカ粒子に対する窒素含有量)は、元素分析装置(例えば、住化分析センター製のNCH-22F)を用いて、下記条件で測定する。

反応温度:830℃
還元温度:600℃
標準試料:元素定量標準試料アセトアニリド。
なお、測定対象のシリカ粒子に対する測定前処理として、真空乾燥機で100℃24時間以上乾燥することで、アンモニア等の不純物をシリカ粒子から除去する処理を実施する。
350℃焼成後の細孔直径2nm以下の範囲の細孔体積をDとしたとき、Dは、0.10cm/g以上1.10cm/g以下が好ましく、0.16cm/g以上0.80cm/g以下がより好ましく、0.18cm/g以上0.70cm/g以下がさらに好ましい。
350℃焼成後の細孔直径2nm以下の細孔体積Dは、焼成して、シリカ粒子のマイクロ孔に吸着している吸着物を除去後の、シリカ粒子本来のマイクロ孔の細孔体積である。シリカ粒子のマイクロ孔に窒素元素含有化合物が吸着している場合、マイクロ孔の一部を塞いでいた窒素元素含有化合物が揮発後の細孔体積である。つまり、シリカ粒子の少なくとも一部のマイクロ孔内部に窒素元素含有化合物が吸着できることを示している。そのため、帯電の立ち上がり性が向上する。
350℃焼成前における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以下の細孔体積をCとしたとき、Dとの比C/Dは、0.05以上0.82以下が好ましく、0.05以上0.70以下がより好ましく、0.05以上0.50以下がさらに好ましい。
350℃焼成前の細孔体積Cは、マイクロ孔に窒素元素含有化合物が吸着した状態(つまり、窒素元素含有化合物がマイクロ孔の一部を塞いた状態)の細孔体積である。
そして、特に、350℃焼成後の細孔直径2nm以下の細孔体積Dを上記範囲とし、かつ350℃焼成前の細孔直径2nm以下の細孔体積Cと、350℃焼成後の細孔直径2nm以下の細孔体積Dと、の比C/Dを上記範囲にすることは、窒素元素含有化合物がシリカ粒子の少なくとも一部のマイクロ孔に十分量の窒素元素含有化合物が吸着されていることを示している。そのため、C/Dを上記範囲にすると、さらに、帯電の立ち上がり性が向上する。
350℃焼成前における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以上25nm以下の細孔体積をAとしたとき、前記Bとの比A/Bが0以上0.92以下であることが好ましく、0以上0.75以下がより好ましく、0以上0.60以下がさらに好ましい。
ここで、A/Bが0とは、Aが0のときである。
350℃焼成後の細孔体積Bは、焼成することでシリカ粒子のメソ孔に吸着している吸着物が除去された、シリカ粒子本来のメソ孔の細孔体積である。シリカ粒子のメソ孔に窒素元素含有化合物が吸着している場合、メソ孔の一部を塞いでいた窒素元素含有化合物が揮発除去されたメソ孔の細孔体積である。
そして、350℃焼成前の細孔体積Aは、メソ孔に窒素元素含有化合物が吸着した状態(つまり、窒素元素含有化合物がメソ孔の一部を塞いた状態)の細孔体積である。
そして、A/Bを上記範囲にすることは、窒素元素含有化合物がシリカ粒子の少なくとも一部のメソ孔に十分量の窒素元素含有化合物が吸着されていることを示している。そのため、A/Bを上記範囲にすると、さらに、帯電の立ち上がり性が向上する。
ここで、350℃焼成は、窒素環境下、昇温速度10℃/分で350℃まで昇温し、350℃で3時間保持し、降温速度10℃/分で室温(25℃)まで冷却する。
(窒素ガス吸着法の細孔分布曲線、及び細孔体積の測定)
窒素ガス吸着法の細孔分布曲線の測定方法は、下記のとおりである。
シリカ粒子を、液体窒素温度(-196℃)に冷却して、窒素ガスを導入し、窒素ガスの吸着量を定容量法又は重量法で求める。導入する窒素ガスの圧力を徐々に増加させ、各平衡圧に対する窒素ガスの吸着量をプロットすることにより吸着等温線を作成する。シリカ粒子の窒素ガス吸着測定は、日本ベル社製のベルソープを使用した。吸着等温線から、BJH法、SF法、DA法等の計算式により、縦軸が頻度、横軸が細孔直径で表される細孔径分布曲線を求める。得られた細孔径分布曲線から、縦軸が体積、横軸が細孔直径で表される積算細孔容積分布を求める。
得られた積算細孔容積分布から、各細孔直径の範囲におけるピークの位置を確認する。
得られた積算細孔容積分布から、各細孔直径の範囲における細孔容積を積算し、それを「各細孔直径の範囲における細孔体積」とする。
(シリカ粒子の構造)
以下、シリカ粒子の好ましい構造と共に、窒素元素含有化合物について説明する。
シリカ粒子は、シリカ母粒子と、シリカ母粒子表面の少なくとも一部を被覆し、シランカップリング剤の反応生成物からなる被覆構造と、を有するシリカ粒子であることが好ましい。シリカ粒子において、シリカ母粒子の表面にマイクロ孔を有し、被覆構造にメソ孔を有することが好ましい。
そして、マイクロ孔及びメソ孔の双方に、窒素元素含有化合物が付着していることが好ましい。
なお、シランカップリング剤は、1官能シランカップリング剤、2官能シランカップリング剤及び3官能シランカップリング剤からなる群から選択される少なくとも1種が好ましく、3官能シランカップリング剤がより好ましい。
ここで、シランカップリング剤の反応生成物からなる被覆構造は、シリカ母粒子よりも低密度であり、マイクロ孔で構成される細孔構造を有する。また、シランカップリング剤(特に、3官能シランカップリング剤)の反応生成物からなる被覆構造は、窒素元素含有化合物と親和性が高い。したがって、被覆構造の内部(つまり細孔構造の細孔内)に窒素元素含有化合物が入り込む。
加えて、シリカ母粒子のマイクロ孔の内部(つまり細孔構造の細孔内)にも、窒素元素含有化合物が入り込む。
そのため、シリカ粒子に含まれる窒素元素含有化合物の含有量が比較的多くなるものと推測される。加えて、窒素元素含有化合物が離脱し難くい。
シリカ母粒子の表面が負帯電性であるところ、正帯電性の窒素元素含有化合物が付着することで、シリカ母粒子の過剰な負帯電を打ち消す効果が発生する。窒素元素含有化合物はシリカ粒子表面において被覆構造の内部(好ましくは細孔構造の細孔内)に付着しているので、シリカ粒子の帯電分布が正帯電側に広がることはなく、シリカ母粒子の過剰な負帯電を打ち消すことでシリカ粒子の帯電分布の狭化が実現される。
その結果、さらに帯電の立ち上がり性が向上する。
-シリカ母粒子-
シリカ母粒子は、乾式シリカでもよく、湿式シリカでもよい。
乾式シリカとしては、シラン化合物を燃焼させて得られる燃焼法シリカ(ヒュームドシリカ);金属ケイ素粉を爆発的に燃焼させて得られる爆燃法シリカ;が挙げられる。
湿式シリカとしては、珪酸ナトリウムと鉱酸との中和反応によって得られる湿式シリカ(アルカリ条件で合成・凝集した沈降法シリカ、酸性条件で合成・凝集したゲル法シリカ);酸性珪酸をアルカリ性にして重合することで得られるコロイダルシリカ;有機シラン化合物(例えばアルコキシシラン)の加水分解によって得られるゾルゲルシリカ;が挙げられる。シリカ母粒子としては、帯電の立ち上がり性向上の観点から、ゾルゲルシリカが好ましい。
-シランカップリング剤の反応生成物-
シランカップリング剤は、N(窒素元素)を含有しない化合物であることが好ましい。シランカップリング剤としては、下記の式(TA)で表されるシランカップリング剤が挙げられる。
式(TA) R -Si(OR4-n
式(TA)中、Rは炭素数1以上20以下の飽和若しくは不飽和の脂肪族炭化水素基又は炭素数6以上20以下の芳香族炭化水素基であり、Rはハロゲン原子又はアルキル基であり、nは1、2又は3である。nが2又は3のとき、複数個のRは同じ基でもよく異なる基でもよい。nが1又は2のとき、複数個のRは同じ基でもよく異なる基でもよい。
シランカップリング剤の反応生成物とは、例えば、式(TA)において、ORのすべて又は一部がOH基に置換した反応生成物;ORがOH基に置換した基のすべて又は一部の基どうしが重縮合した反応生成物;ORがOH基に置換した基のすべて又は一部とシリカ母粒子のSiOH基とが重縮合した反応生成物;が挙げられる。
式(TA)中のRで表される脂肪族炭化水素基は、直鎖状、分岐状及び環状のいずれでもよく、直鎖状又は分岐状が好ましい。脂肪族炭化水素基は、炭素数1以上20以下が好ましく、炭素数1以上18以下がより好ましく、炭素数1以上12以下が更に好ましく、炭素数1以上10以下が更に好ましい。脂肪族炭化水素基は、飽和及び不飽和のいずれでもよいが、飽和脂肪族炭化水素基が好ましく、アルキル基がより好ましい。脂肪族炭化水素基の水素原子は、ハロゲン原子で置換されていてもよい。
飽和脂肪族炭化水素基としては、直鎖状アルキル基(メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、ヘキサデシル基、イコシル基等)、分岐状アルキル基(イソプロピル基、イソブチル基、イソペンチル基、ネオペンチル基、2-エチルヘキシル基、ターシャリーブチル基、ターシャリーペンチル基、イソペンタデシル基等)、環状アルキル基(シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、トリシクロデシル基、ノルボルニル基、アダマンチル基等)などが挙げられる。
不飽和脂肪族炭化水素基としては、アルケニル基(ビニル基(エテニル基)、1-プロペニル基、2-プロペニル基、2-ブテニル基、1-ブテニル基、1-ヘキセニル基、2-ドデセニル基、ペンテニル基等)、アルキニル基(エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、3-ヘキシニル基、2-ドデシニル基等)などが挙げられる。
式(TA)中のRで表される芳香族炭化水素基は、炭素数6以上20以下が好ましく、炭素数6以上18以下がより好ましく、炭素数6以上12以下が更に好ましく、炭素数6以上10以下が更に好ましい。芳香族炭化水素基としては、フェニレン基、ビフェニレン基、ターフェニレン基、ナフタレン基、アントラセン基などが挙げられる。芳香族炭化水素基の水素原子は、ハロゲン原子で置換されていてもよい。
式(TA)中のRで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられ、塩素原子、臭素原子又はヨウ素原子が好ましい。
式(TA)中のRで表されるアルキル基としては、炭素数1以上10以下のアルキル基が好ましく、1以上8以下のアルキル基がより好ましく、1以上4以下のアルキル基が更に好ましい。炭素数1以上10以下の直鎖アルキル基としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基が挙げられる。炭素数3以上10以下の分岐アルキル基としては、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、イソヘキシル基、sec-ヘキシル基、tert-ヘキシル基、イソヘプチル基、sec-ヘプチル基、tert-ヘプチル基、イソオクチル基、sec-オクチル基、tert-オクチル基、イソノニル基、sec-ノニル基、tert-ノニル基、イソデシル基、sec-デシル基、tert-デシル基等が挙げられる。炭素数3以上10以下の環状アルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、及びこれら単環のアルキル基が連結した多環(例えば、二環、三環、スピロ環)のアルキル基が挙げられる。アル
キル基の水素原子は、ハロゲン原子で置換されていてもよい。
式(TA)中のnは、1、2又は3であり、1又は2が好ましく、1がより好ましい。
式(TA)で表されるシランカップリング剤は、Rが炭素数1以上20以下の飽和脂肪族炭化水素基であり、Rがハロゲン原子又は炭素数1以上10以下のアルキル基であり且つnが1である3官能シランカップリング剤が好ましい。
3官能シランカップリング剤としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、ブチルトリメトキシシラン、ヘキシルトリメトキシシラン、n-オクチルトリメトキシシラン、デシルトリメトキシシラン、ドデシルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、ブチルトリエトキシシラン、ヘキシルトリエトキシシラン、デシルトリエトキシシラン、ドデシルトリエトキシシラン、フェニルトリメトキシシラン、o-メチルフェニルトリメトキシシラン、p-メチルフェニルトリメトキシシラン、フェニルトリエトキシシラン、ベンジルトリエトキシシラン、デシルトリクロロシラン、フェニルトリクロロシラン(以上、式(TA)中のRが、無置換の脂肪族炭化水素基又は無置換の芳香族炭化水素基である化合物);3-グリシドキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-グリシジルオキシプロピルメチルジメトキシシラン(以上、式(TA)中のRが、置換された脂肪族炭化水素基又は置換された芳香族炭化水素基である化合物);などが挙げられる。3官能シランカップリング剤は、1種単独で用いてもよいし、2種以上を併用してもよい。
3官能シランカップリング剤としては、アルキルトリアルコキシシランが好ましく、式(TA)においてRが炭素数1以上20以下(好ましくは炭素数1以上15以下、より好ましくは炭素数1以上8以下、更に好ましくは炭素数1以上4以下、特に好ましくは炭素数1又は2)のアルキル基であり且つRが炭素数1以上2以下のアルキル基であるアルキルトリアルコキシシランがより好ましい。
シリカ母粒子表面の被覆構造を構成するシランカップリング剤としては、より具体的には、アルキル基の炭素数が1以上20以下である、アルキルトリメトキシシラン及びアルキルトリエトキシシランからなる群から選ばれる少なくとも1種の3官能シランカップリング剤が好ましく;
アルキル基の炭素数が1以上15以下である、アルキルトリメトキシシラン及びアルキルトリエトキシシランからなる群から選ばれる少なくとも1種の3官能シランカップリング剤がより好ましく;
アルキル基の炭素数が1以上8以下である、アルキルトリメトキシシラン及びアルキルトリエトキシシランからなる群から選ばれる少なくとも1種の3官能シランカップリング剤が更に好ましく;
アルキル基の炭素数が1以上4以下である、アルキルトリメトキシシラン及びアルキルトリエトキシシランからなる群から選ばれる少なくとも1種の3官能シランカップリング剤が更に好ましく;
メチルトリメトキシシラン、エチルトリメトキシシラン、メチルトリエトキシシラン及びエチルトリエトキシシランからなる群から選ばれる少なくとも1種の3官能シランカップリング剤が特に好ましい。
シランカップリング剤の反応生成物で構成された被覆構造は、シリカ粒子全体に対して、5質量%以上100質量%以下が好ましく、7質量%以上25質量%以下がより好まし
い。
-窒素元素含有化合物-
窒素元素含有化合物は、アンモニア及び温度25℃以下で気体状態の化合物を除く、窒素元素含有化合物である。
窒素元素含有化合物は、シリカ母粒子表面のマイクロ孔と共に、シランカップリング剤の反応生成物からなる被覆構造のメソ孔内部(つまり細孔構造のメソ孔内部)に付着していることが好ましい。窒素元素含有化合物は、1種でもよく2種以上でもよい。
窒素元素含有化合物は、例えば、第四級アンモニウム塩、第一級アミン化合物、第二級アミン化合物、第三級アミン化合物、アミド化合物、イミン化合物、及びニトリル化合物からなる群から選択される少なくとも1種が挙げられる。窒素元素含有化合物は、好ましくは第四級アンモニウム塩である。
第一級アミン化合物の具体例としては、フェネチルアミン、トルイジン、カテコールアミン、2,4,6-トリメチルアニリンが挙げられる。
第二級アミン化合物の具体例としては、ジベンジルアミン、2-ニトロジフェニルアミン、4-(2-オクチルアミノ)ジフェニルアミンが挙げられる。
第三級アミン化合物の具体例としては、1,8-ビス(ジメチルアミノ)ナフタレン、N,N-ジベンジル-2-アミノエタノール、N-ベンジル-N-メチルエタノールアミンが挙げられる。
アミド化合物の具体例としては、N-シクロヘキシル-p-トルエンスルホンアミド、4-アセトアミド-1-ベンジルピペリジン、N-ヒドロキシ-3-[1-(フェニルチオ)メチル-1H-1,2,3-トリアゾール-4-イル]ベンズアミドが挙げられる。
イミン化合物の具体例としては、ジフェニルメタンイミン、2,3-ビス(2,6-ジイソプロピルフェニルイミノ)ブタン、N,N’-(エタン-1,2-ジイリデン)ビス(2,4,6-トリメチルアニリン)が挙げられる。
ニトリル化合物の具体例としては、3-インドールアセトニトリル、4-[(4-クロロ-2-ピリミジニル)アミノ]ベンゾニトリル、4-ブロモ-2,2-ジフェニルブチロニトリルが挙げられる。
第四級アンモニウム塩としては、下記の式(1)で表される化合物が好ましい。
式(1)中、R、R、R及びRはそれぞれ独立に、水素原子、アルキル基、アラルキル基又はアリール基を表し、Xは陰イオンを表す。ただし、R、R、R及びRの少なくとも1つはアルキル基、アラルキル基又はアリール基を表す。R、R、R及びRのうち2つ以上が連結して、脂肪族環、芳香環又はヘテロ環を形成してもよい。ここで、アルキル基、アラルキル基及びアリール基は置換基を有していてもよい。
~Rで表されるアルキル基としては、炭素数1以上20以下の直鎖状のアルキル基、炭素数3以上20以下の分岐状のアルキル基が挙げられる。炭素数1以上20以下の直鎖状のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル
基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基等が挙げられる。炭素数3以上20以下の分岐状のアルキル基としては、例えば、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、イソヘキシル基、sec-ヘキシル基、tert-ヘキシル基、イソヘプチル基、sec-ヘプチル基、tert-ヘプチル基、イソオクチル基、sec-オクチル基、tert-オクチル基、イソノニル基、sec-ノニル基、tert-ノニル基、イソデシル基、sec-デシル基、tert-デシル基等が挙げられる。
~Rで表されるアルキル基としては、メチル基、エチル基、ブチル基、テトラデシル基等の炭素数1以上15以下のアルキル基が好ましい。
~Rで表されるアラルキル基としては、炭素数7以上30以下のアラルキル基が挙げられる。炭素数7以上30以下のアラルキル基としては、例えば、ベンジル基、フェニルエチル基、フェニルプロピル基、4-フェニルブチル基、フェニルペンチル基、フェニルヘキシル基、フェニルヘプチル 基、フェニルオクチル基、フェニルノニル基、ナフ
チルメチル基、ナフチルエチル基、アントラセニルメチル基、フェニル-シクロペンチルメチル基等が挙げられる。
~Rで表されるアラルキル基としては、ベンジル基、フェニルエチル基、フェニルプロピル基、4-フェニルブチル基等の炭素数7以上15以下のアラルキル基が好ましい。
~Rで表されるアリール基としては、炭素数6以上20以下のアリール基が挙げられる。炭素数6~20のアリール基としては、例えば、フェニル基、ピリジル基、ナフチル基等が挙げられる。
~Rで表されるアリール基としては、フェニル基等の炭素数6以上10以下のアリール基が好ましい。
、R、R及びRの2つ以上が互いに連結して形成される環としては、炭素数2以上20以下の脂環、炭素数2以上20以下の複素環式アミン等が挙げられる。
、R、R及びRはそれぞれ独立に、置換基を有していてもよい。置換基としては、例えば、ニトリル基、カルボニル基、エーテル基、アミド基、シロキサン基、シリル基、アルコキシシラン基等が挙げられる。
、R、R及びRは各々独立に、炭素数1以上16以下のアルキル基、炭素数7以上10以下のアラルキル基、又は炭素数6以上20以下のアリール基を表すことが好ましい。
で表される陰イオンは、有機陰イオン及び無機陰イオンのいずれでもよい。
有機陰イオンとしては、ポリフルオロアルキルスルホン酸イオン、ポリフルオロアルキルカルボン酸イオン、テトラフェニルホウ酸イオン、芳香族カルボン酸イオン、芳香族スルホン酸イオン(1-ナフトール-4-スルホン酸イオン等)などが挙げられる。
無機陰イオンとしては、OH、F、Fe(CN) 3-、Cl、Br、NO 、NO 、CO 2-、PO 3-、SO 2-等が挙げられる。
無機陰イオンとしては、モリブデン酸イオン等のモリブデン元素を含む陰イオンも挙げられる。モリブデン酸イオン
モリブデン元素を含む陰イオンは、モリブデン酸イオンが好ましく、モリブデンが4価又は6価であるモリブデン酸イオンがより好ましく、モリブデンが6価であるモリブデン酸イオンが更に好ましい。モリブデン酸イオンとしては、具体的には、MoO 2-、Mo
2-、Mo10 2-、Mo13 2-、Mo24 2-、Mo26 4-が好ましい。
式(1)で表される化合物は、帯電の立ち上がり性向上の観点から、総炭素数18以上35以下が好ましく、総炭素数20以上32以下がより好ましい。
式(1)で表される化合物を以下に例示する。本実施形態はこれに限定されない。
特に、窒素元素含有化合物は、帯電の立ち上がり性向上の観点から、モリブデン元素を含有する窒素元素含有化合物(以下モリブデン窒素元素含有化合物とも称する)が好ましい。具体的には、モリブデン窒素元素含有化合物は、モリブデン元素を含む第四級アンモニウム塩、及び、第四級アンモニウム塩とモリブデン元素を含む金属酸化物との混合物からなる群から選択される少なくとも1種が好ましく、モリブデン元素を含む第四級アンモニウム塩がより好ましい。
モリブデン元素を含む第四級アンモニウム塩は、モリブデン元素を含むアニオンと第四級アンモニウムカチオンとの結合が強いので、帯電分布維持性が高く、さらに帯電の立ち上がり性が向上する。
モリブデン元素を含む第四級アンモニウム塩としては、[N(CH)(C1429Mo28 4-、[N(C(CMo 2-、[N(CH(CH)(CH17CHMoO 2-、[N(CH(CH)(CH15CHMoO 2-等のモリブデン酸第四級アンモニウム塩が挙げられる。
特に、モリブデン元素を含む第四級アンモニウム塩としては、CAS登録番号117342-25-3の化合物が特に好ましい。CAS登録番号117342-25-3の化合物は、別名、TP-415、及び、1-Tetradecanaminium,N,N-dimethyl-N-tetradecyl-,hexa-μ-oxotetra-μ3-oxodi-μ5-oxotetradecaoxooctamolybdate(4-)(4:1)である。
モリブデン元素を含む金属酸化物として、モリブデン酸化物(三酸化モリブデン、二酸化モリブデン、Mo26)、モリブデン酸アルカリ金属塩(モリブデン酸リチウム、モリブデン酸ナトリウム、モリブデン酸カリウム等)、モリブデンアルカリ土類金属塩(モリブデン酸マグネシウム、モリブデン酸カルシウム等)、その他複合酸化物(Bi・2MoO、γ-CeMo13等)が挙げられる。
シリカ粒子は、300℃以上600℃以下の範囲の温度帯で加熱した際に、窒素元素含有化合物が検出される。窒素元素含有化合物は、不活性ガス中での300℃以上600℃以下の加熱で検出することができ、例えば、Heをキャリアガスに用いた加熱炉式の落下型熱分解ガスクロマトグラフ質量分析計を用いて検出する。具体的には、0.1mg以上10mg以下のシリカ粒子を熱分解ガスクロマトグラフ質量分析計に導入し、検出されるピークのMSスペクトルから窒素元素含有化合物の含有有無を確認する。窒素元素含有化合物を含有するシリカ粒子から熱分解で生成する成分としては、例えば、下記の式(2)で示される第一級、第二級若しくは第三級のアミン又は芳香族窒素化合物が挙げられる。式(2)のR、R及びRはそれぞれ式(1)のR、R及びRと同義である。窒素元素含有化合物が第四級アンモニウム塩である場合、600℃の熱分解により側鎖の一部が脱離し、第三級アミンが検出される。
ここで、窒素元素含有化合物として、モリブデン元素含有化合物を適用する場合、帯電の立ち上がり性向上の観点から、蛍光X線分析により測定される、モリブデン元素のNet強度とシリコン元素のNet強度との比率(Mo/Si)は、0.014以上1.20以下が好ましく、0.10以上1.10以下がより好ましく、0.20以上1.10以下がさらに好ましい。
帯電の立ち上がり性向上の観点から、モリブデン元素のNet強度は、5kcps以上150kcps以下、10kcps以上135kcps以下、25kcps以上135kcps以下が好ましい。
モリブデン元素及びシリコン元素のNet強度は、次の通り測定する。
シリカ粒子約0.5gを、圧縮成形機を用いて荷重6t且つ60秒の加圧で圧縮し、直径50mm且つ厚さ2mmのディスクを作製する。このディスクを試料にして、走査型蛍光X線分析装置(XRF-1500、(株)島津製作所製)を用いて、下記の条件で定性定量元素分析を行い、モリブデン元素及びシリコン元素それぞれのNet強度(単位:kilo counts per second,kcps)を求める。
・管電圧:40kV
・管電流:90mA
・測定面積(分析径):直径10mmφ
・測定時間:30分
・対陰極:ロジウム
アンモニア/メタノール混合溶液によってシリカ粒子から抽出される、窒素元素含有化合物の抽出量Xは、シリカ粒子に対して0.1質量%以上であることが好ましい。且つ、アンモニア/メタノール混合溶液によってシリカ粒子から抽出される、窒素元素含有化合物の抽出量Xと、水によってシリカ粒子から抽出される、窒素元素含有化合物の抽出量Yとは、Y/X<0.3を満たすことが好ましい。
上記の関係は、シリカ粒子に含まれる窒素元素含有化合物が水に溶けにくい性質であること、すなわち空気中の水分を吸着しにくい性質であることを示す。したがって、上記の関係であると、シリカ粒子は帯電分布狭化及び帯電分布維持性に優れる。
抽出量Xは、シリカ粒子に対して0.25質量%以上が好ましい。抽出量Xの上限は、
例えば、6.5質量%以下である。抽出量Xと抽出量Yとの比Y/Xは、理想的には0である。
抽出量Xと抽出量Yとは、下記の方法で測定する。
シリカ粒子を、熱重量・質量分析装置(例えばネッチ・ジャパン株式会社製のガスクロマトグラフ質量分析計)により400℃で分析し、炭素数1以上の炭化水素が窒素原子と共有結合した化合物のシリカ粒子に対する質量分率を測定し、積算しW1とする。
液温25℃のアンモニア/メタノール溶液(Sigma-Aldrich社製、アンモ
ニア/メタノールの質量比=1/5.2)30質量部に、シリカ粒子1質量部を添加し、30分間超音波処理を行った後、シリカ粉体と抽出液を分離する。分離したシリカ粒子を真空乾燥機で100℃24時間乾燥し、熱重量・質量分析装置により400℃で、炭素数1以上の炭化水素が窒素原子と共有結合した化合物のシリカ粒子に対する質量分率を測定し、積算しW2とする。
液温25℃の水30質量部に、シリカ粒子1質量部を添加し、30分間超音波処理を行った後、シリカ粒子と抽出液を分離する。分離したシリカ粒子を真空乾燥機で100℃24時間乾燥し、熱重量・質量分析装置により400℃で、炭素数1以上の炭化水素が窒素原子と共有結合した化合物のシリカ粒子に対する質量分率を測定し、積算しW3とする。
W1とW2とから、抽出量X=W1-W2を算出する。
W1とW3とから、抽出量Y=W1-W3を算出する。
-疎水化処理構造-
本実施形態のシリカ粒子において、シランカップリング剤の反応生成物の被覆構造に、疎水化処理構造(シリカ粒子を疎水化処理剤で処理してなる構造)が付着していてもよい。
疎水化処理剤としては、例えば、有機ケイ素化合物が適用される。有機ケイ素化合物としては、例えば、下記が挙げられる。
メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルクロロシラン、トリメチルメトキシシラン等の低級アルキル基を有するアルコキシシラン化合物又はハロシラン化合物。
ビニルトリメトキシシラン、ビニルトリエトキシシラン等のビニル基を有するアルコキシシラン化合物。
2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等のエポキシ基を有するアルコキシシラン化合物。
p-スチリルトリメトキシシラン、p-スチリルトリエトキシシラン等のスチリル基を有するアルコキシシラン化合物。
N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン等のアミノアルキル基を有するアルコキシシラン化合物。
3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等のイソシアネートアルキル基を有するアルコキシシラン化合物。
ヘキサメチルジシラザン、テトラメチルジシラザン等のシラザン化合物。
シリカ粒子は、帯電分布狭化及び帯電分布維持性の観点から、下記の特性を有することが好ましい。
-平均円形度、平均一次粒径、個数粒度分布指標-
本実施形態のシリカ粒子の平均円形度は、0.80以上1.00以下が好ましく、0.85以上1.00以下がより好ましく、0.88以上1.00以下が更に好ましい。
本実施形態のシリカ粒子の個数平均粒径は、20nm以上200nm以下が好ましく、20nm以上80nm以下がより好ましく、20nm以上60nm以下がより好ましい。
本実施形態のシリカ粒子の個数粒度分布指標は、1.1以上2.0以下が好ましく、1.15以上1.6以下がより好ましい。
シリカ粒子の個数平均粒径及び個数粒度分布指標が上記範囲であると、比表面積が大きく、過剰な帯電が生じやすいが、本実施形態のシリカ粒子は、個数平均粒径及び個数粒度分布指標が上記範囲でも、帯電分布の狭化し、帯電の立ち上がり性が向上する。
シリカ粒子の平均円形度、個数平均粒径、個数粒度分布指標の測定方法は、下記の通りである。
エネルギー分散型X線分析装置(EDX装置)(堀場製作所製、EMAX Evolution X-Max80mm2)を取り付けた走査型電子顕微鏡(SEM)(日立ハイテクノロジーズ製、S-4
800)を用いて、倍率4万倍でトナーを撮影する。EDX分析によってN元素及びSi元素の存在に基づきシリカ粒子を一視野内から200個特定する。シリカ粒子200個の画像を画像処理解析ソフトWinRoof(三谷商事株式会社)で解析する。
一次粒子像それぞれの円相当径と面積と周囲長とを求め、さらに、円形度=4π×(粒子像の面積)÷(粒子像の周囲長)を求める。
円形度の分布において小さい側から累積50%となる円形度を平均円形度とする。
円相当径の分布において、個数について小径側から累積50%となる円相当径を個数平均粒径とする。
円相当径の分布において、個数について小径側から累積16%となる粒径をD16とし、累積84%となる粒径をD84とし、個数粒度分布指標=(D84/D16)0.5を求める。
-疎水化度-
本実施形態のシリカ粒子の疎水化度は、10%以上60%以下が好ましく、20%以上55%以下がより好ましく、28%以上53%以下が更に好ましい。
シリカ粒子の疎水化度の測定方法は、下記のとおりである。
イオン交換水50mlに、シリカ粒子を0.2質量%入れ、マグネティックスターラーで攪拌しながらビュレットからメタノールを滴下し、試料全量が沈んだ終点におけるメタノール-水混合溶液中のメタノール質量分率を疎水化度として求める。
-体積抵抗率-
本実施形態のシリカ粒子の体積抵抗率Rは、1.0×10Ω・cm以上1.0×1012.5Ω・cm以下が好ましく、1.0×107.5Ω・cm以上1.0×1012Ω・cm以下がより好ましく、1.0×10Ω・cm以上1.0×1011.5Ω・cm以下がより好ましく、1.0×10Ω・cm以上1.0×1011Ω・cm以下が更に好ましい。シリカ粒子の体積抵抗率Rは、窒素元素含有化合物の含有量により調整できる。
本実施形態のシリカ粒子は、350℃焼成前後における体積抵抗率を各々Ra及びRbとしたとき、比Ra/Rbが0.01以上0.8以下であることが好ましく、0.015以上0.6以下であることがより好ましい。
本実施形態のシリカ粒子の350℃焼成前の体積抵抗率Ra(前記体積抵抗率Rと同義)は、1.0×10Ω・cm以上1.0×1012.5Ω・cm以下が好ましく、1.0×107.5Ω・cm以上1.0×1012Ω・cm以下がより好ましく、1.0×10Ω・cm以上1.0×1011.5Ω・cm以下がより好ましく、1.0×10Ω・cm以上1.0×1011Ω・cm以下が更に好ましい。
350℃焼成は、窒素環境下、昇温速度10℃/分で350℃まで昇温し、350℃で3時間保持し、降温速度10℃/分で室温(25℃)まで冷却する。
シリカ粒子の体積抵抗率は、温度20℃且つ相対湿度50%の環境で下記のとおり測定する。
20cmの電極板を配した円形の治具の表面に、シリカ粒子を1mm以上3mm以下程度の厚さに載せ、シリカ粒子層を形成する。シリカ粒子層の上に20cmの電極板を載せシリカ粒子層を挟み込み、シリカ粒子間の空隙をなくすため電極板の上に0.4MPaの圧力をかける。シリカ粒子層の厚さL(cm)を測定する。シリカ粒子層上下の両電極に接続したインピーダンスアナライザ(Solartron Analytical社製)にて、周波数10-3Hz以上10Hz以下の範囲のナイキストプロットを得る。これを、バルク抵抗、粒子界面抵抗及び電極接触抵抗の3種類の抵抗成分が存在すると仮定して、等価回路にフィッティングし、バルク抵抗R(Ω)を求める。バルク抵抗R(Ω)とシリカ粒子層の厚さL(cm)とから、式ρ=R/Lによりシリカ粒子の体積抵抗率ρ(Ω・cm)を算出する。
-固体核磁気共鳴(NMR)スペクトル-
本実施形態のシリカ粒子は、帯電立ち上がり性向上の観点から、下記の態様(A)を満たすことが好ましい。
・態様(A):交差分極/マジック角回転(CP/MAS)法による29Si固体核磁気共鳴(NMR)スペクトル(以下「Si-CP/MAS NMRスペクトル」という。)における化学シフト-50ppm以上-75ppm以下の範囲に観測されるシグナルの積分値Ccと、化学シフト-90ppm以上-120ppm以下の範囲に観測されるシグナルの積分値Ddとの比Cc/Ddが0.10以上0.75以下である態様。
Si-CP/MAS NMRスペクトルは、核磁気共鳴分光分析を下記条件で実施することで得られる。
・分光器:AVANCE300(Bruker社製)
・共鳴周波数:59.6MHz
・測定核:29Si
・測定法:CPMAS法(Bruker社標準パルスシークエンスcp.av使用)
・待ち時間:4秒
・接触時間:8ミリ秒
・積算回数:2048回
・測定温度:室温(実測値25℃)
・観測中心周波数:-3975.72Hz
・MAS回転数:7.0mm-6kHz
・基準物質:ヘキサメチルシクロトリシロキサン
比Cc/Ddは、0.10以上0.75以下が好ましく、0.12以上0.45以下がより好ましく、0.15以上0.40以下が更に好ましい。
Si-CP/MAS NMRスペクトルの全シグナルの積分値を100%としたとき、化学シフト-50ppm以上-75ppm以下の範囲に観測されるシグナルの積分値Ccの割合(Signal ratio)は、5%以上が好ましく、7%以上がより好ましい。シグナルの積分値Ccの割合の上限は、例えば、60%以下である。
態様(A)は、シリカ粒子表面の少なくとも一部に、十分量の窒素元素含有化合物が吸着しうる低密度な被覆構造を有する態様である。この低密度な被覆構造は、例えば、3官能シラン化合物の反応生成物からなる細孔構造であり、例えばSiO2/3CH層である。
-OH基量-
本実施形態のシリカ粒子のOH基量は、0.05個/nm以上6個/nm以下が好ましく、0.1個/nm以上5.5個/nm以下がより好ましく、0.15個/nm以上5個/nm以下がより好ましく、0.2個/nm以上4個/nm以下が更に好ましく、0.2個/nm以上3個/nm以下が特に好ましい。
シリカ粒子のOH基量は、シアーズ法により下記のとおり測定する。
シリカ粒子1.5gを水50g/エタノール50g混合液に加えて、超音波ホモジナイザーで2分間攪拌し、分散液を作製する。25℃の環境下で攪拌しながら、0.1mol/Lの塩酸水溶液を1.0g滴下し、試験液を得る。試験液を自動滴定装置に入れ、0.01mol/Lの水酸化ナトリウム水溶液による電位差滴定を実施し、滴定曲線の微分曲線を作成する。滴定曲線の微分値が1.8以上となる変曲点のうち、0.01mol/L水酸化ナトリウム水溶液の滴定量が最も多くなる滴定量をEとする。
下記の式から、シリカ粒子の表面シラノール基密度ρ(個/nm)を算出し、これをシリカ粒子のOH基量とする。
式:ρ=((0.01×E-0.1)×NA/1000)/(M×SBET×1018
E:滴定曲線の微分値が1.8以上となる変曲点のうち、0.01mol/L水酸化ナトリウム水溶液の滴定量が最も多くなる滴定量、NA:アボガドロ数、M:シリカ粒子量(1.5g)、SBET:窒素吸着3点法により測定したシリカ粒子のBET比表面積(m/g)(平衡相対圧は0.3とする)。
(シリカ粒子の製造方法)
シリカ粒子の製造方法の一例は、シリカ母粒子の表面の少なくとも一部に、シランカップリング剤の反応生成物からなる被覆構造を形成する第一工程と、前記被覆構造に窒素元素含有化合物を付着させる第二工程と、を有する。本製造方法は、第二工程後又は第二工程中に、前記被覆構造を有するシリカ母粒子に疎水化処理を行う第三工程をさらに有してもよい。以下に、上記の工程を詳細に説明する。
-シリカ母粒子-
シリカ母粒子は、例えば、下記の工程(i)によって準備する。
工程(i)シリカ母粒子をゾルゲル法により造粒してシリカ母粒子懸濁液を得る工程。
工程(i)は、アルコールを含む溶媒中にアルカリ触媒が含まれるアルカリ触媒溶液を準備するアルカリ触媒溶液準備工程と、アルカリ触媒溶液中にテトラアルコキシシラン及びアルカリ触媒を供給して、シリカ母粒子を生成させるシリカ母粒子生成工程と、を含むゾルゲル法であることが好ましい。
アルカリ触媒溶液準備工程は、アルコールを含む溶媒を準備し、この溶媒とアルカリ触媒とを混合して、アルカリ触媒溶液を得る工程であることが好ましい。
アルコールを含む溶媒は、アルコール単独の溶媒であってもよいし、アルコールとその他の溶媒との混合溶媒であってもよい。アルコールとしては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、ブタノール等の低級アルコールが挙げられる。その他の溶媒としては、水;アセトン、メチルエチルケトン、メチルイソブチルケ
トン等のケトン類;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、酢酸セロソルブ等のセロソルブ類;ジオキサン、テトラヒドロフラン等のエーテル類;などが挙げられる。混合溶媒の場合、アルコールの割合は80質量%以上が好ましく、85質量%以上がより好ましい。
アルカリ触媒は、テトラアルコキシシランの反応(加水分解反応と縮合反応)を促進させるための触媒であり、例えば、アンモニア、尿素、モノアミン等の塩基性触媒が挙げられ、特にアンモニアが好ましい。
アルカリ触媒溶液におけるアルカリ触媒の濃度は、0.5mol/L以上1.5mol/L以下が好ましく、0.6mol/L以上1.2mol/L以下がより好ましく、0.65mol/L以上1.1mol/L以下が更に好ましい。
シリカ母粒子生成工程は、アルカリ触媒溶液中にテトラアルコキシシランとアルカリ触媒とをそれぞれ供給し、アルカリ触媒溶液中でテトラアルコキシシランを反応(加水分解反応と縮合反応)させて、シリカ母粒子を生成する工程である。
シリカ母粒子生成工程では、テトラアルコキシシランの供給初期にテトラアルコキシシランの反応により核粒子が生成した後(核粒子生成段階)、この核粒子の成長を経て(核粒子成長段階)、シリカ母粒子が生成する。
テトラアルコキシシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等が挙げられる。反応速度の制御性又は生成するシリカ母粒子の形状の均一性の観点から、テトラメトキシシラン又はテトラエトキシシランが好ましい。
アルカリ触媒溶液中に供給するアルカリ触媒としては、例えば、アンモニア、尿素、モノアミン等の塩基性触媒が挙げられ、特にアンモニアが好ましい。テトラアルコキシシランと共に供給されるアルカリ触媒は、アルカリ触媒溶液中に予め含まれるアルカリ触媒と同じ種類のものであってもよいし、異なる種類のものであってもよいが、同じ種類のものであることが好ましい。
アルカリ触媒溶液中にテトラアルコキシシランとアルカリ触媒とをそれぞれ供給する供給方式は、連続的に供給する方式であってもよいし、間欠的に供給する方式であってもよい。
シリカ母粒子生成工程において、アルカリ触媒溶液の温度(供給時の温度)は、5℃以上50℃以下が好ましく、15℃以上45℃以下がより好ましい。
以上の工程を経て、シリカ母粒子が得られる。
ここで、350℃焼成後の細孔直径2nm以下の範囲にピークを有するシリカ粒子(具体的には、表面にマイクロ孔を有するシリカ母粒子)を得るには、造粒後のアルカリ触媒溶液中の水の量を減少させる操作を実施することがよい。シリカ母粒子生成工程において、アルカリ触媒溶液中へのテトラアルコキシシランとアルカリ触媒との供給を完了した時点で、アルカリ触媒溶液中の水の量は1質量%以上16%質量以下とすることがよい。テトラアルコキシシランとアルカリ触媒との供給を完了した時点でのアルカリ触媒溶液中の水の量は、1質量%以上10%質量以下とすることが好ましく、より好ましくは1質量%以上6%質量以下である。
シリカ母粒子生成工程では、アルカリ触媒溶液中でのテトラアルコキシシランの反応(加水分解反応と縮合反応)によってシリカ母粒子が生成するが、アルカリ触媒溶液中の水
の量を、テトラアルコキシシランの加水分解反応を抑制する水の量とすることで表面にマイクロ孔を有するシリカ母粒子を得ることができる。
具体的には、テトラアルコキシシラン供給前のアルカリ触媒溶液中の水の量や供給するアルカリ触媒の量やアルカリ触媒に含まれる水の量を調整することで、テトラアルコキシシランの加水分解反応を制御する。
また、例えば、アルカリ触媒溶液中にテトラアルコキシシランとアルカリ触媒を供給している途中で、供給するアルカリ触媒水溶液のアルカリ触媒濃度を上げたり、供給量を減らしたりしてもよい。これにより、テトラアルコキシシランの反応後半においてテトラアルコキシシランの加水分解反応が抑制されて、シリカ母粒子のより表面のみにマイクロ孔を形成することもできる。
-第一工程-
第一工程は、例えば、シリカ母粒子懸濁液にシランカップリング剤を添加し、シリカ母粒子の表面においてシランカップリング剤を反応させ、シランカップリング剤の反応生成物からなる被覆構造を形成する工程である。
シランカップリング剤の反応は、例えば、シランカップリング剤をシリカ母粒子懸濁液に添加後、懸濁液を攪拌しながら加熱することで実施する。具体的には、例えば、懸濁液を40℃以上70℃に加熱し、シランカップリング剤を添加して攪拌する。攪拌を持続する時間は、10分間以上24時間以下が好ましく、60分間以上420分間以下がより好ましく、80分間以上300分間以下が更に好ましい。
-第二工程-
第二工程は、シランカップリング剤の反応生成物からなる被覆構造の細孔(メソ孔)に、窒素元素含有化合物を付着させる工程である。
第二工程により、被覆構造の細孔(メソ孔)と共に、シリカ母粒子に形成されたマイクロ孔にも、窒素元素含有化合物を付着させる。
第二工程は、例えば、シランカップリング剤を反応させた後のシリカ母粒子懸濁液に、窒素元素含有化合物を添加し、液温を20℃以上50℃以下の温度範囲に保ちながら攪拌する。ここで窒素元素含有化合物は、窒素元素含有化合物を含むアルコール液としてシリカ粒子懸濁液に添加してもよい。アルコールは、シリカ母粒子懸濁液に含まれるアルコールと同じ種類であってもよいし、異なる種類であってもよいが、同じ種類であることがより好ましい。窒素元素含有化合物を含むアルコール液において、窒素元素含有化合物の濃度は0.05質量%以上10質量%以下が好ましく、0.1質量%以上6質量%以下がより好ましい。
-第三工程-
第三工程は、シランカップリング剤の反応生成物からなる被覆構造にさらに疎水化処理構造を付着させる工程である。第三工程は、第二工程後又は第二工程中に行う疎水化処理工程である。疎水化処理剤は、疎水化処理剤の官能基どうしが反応し、及び/又は、疎水化処理剤の官能基とシリカ母粒子のOH基とが反応し、疎水化処理層を形成する。
第三工程は、例えば、シランカップリング剤を反応させた後のシリカ母粒子懸濁液に、窒素元素含有化合物を添加し、次いで、疎水化処理剤を添加する。この際、懸濁液を攪拌及び加熱することが好ましい。例えば、懸濁液を40℃以上70℃以下に加熱し、疎水化処理剤を添加し攪拌する。攪拌を持続する時間は、10分間以上24時間以下が好ましく、20分間以上120分間以下がより好ましく、20分間以上90分間以下が更に好ましい。
-乾燥工程-
第二工程又は第三工程を実施後、又は、第二工程又は第三工程の実施中に、懸濁液から溶媒を除去する乾燥工程を実施することが好ましい。乾燥方法としては、例えば、熱乾燥、噴霧乾燥、超臨界乾燥が挙げられる。
噴霧乾燥は、スプレイドライヤー(ディスク回転式、ノズル式等)を用いた公知の方法で行うことができる。例えば、熱風気流中に0.2リットル/時間以上1リットル/時間以下の速度でシリカ粒子懸濁液を噴霧する。熱風の温度は、スプレイドライヤーの入口温度70℃以上400℃以下、出口温度40℃以上120℃以下の範囲にあることが好ましい。より好ましい入口温度は100℃以上300℃以下の範囲である。シリカ粒子懸濁液のシリカ粒子濃度は、10質量%以上30質量%以下が好ましい。
超臨界乾燥の超臨界流体として用いる物質としては、二酸化炭素、水、メタノール、エタノール、アセトン等が挙げられる。超臨界流体としては、処理効率の観点と、粗大粒子の発生を抑制する観点とから、超臨界二酸化炭素が好ましい。超臨界二酸化炭素を用いる工程は、具体的には、例えば以下の操作によって行う。
密閉反応器に懸濁液を収容し、次いで液化二酸化炭素を導入した後、密閉反応器を加熱すると共に高圧ポンプにより密閉反応器内を昇圧させ、密閉反応器内の二酸化炭素を超臨界状態とする。そして、密閉反応器に液化二酸化炭素を流入させ、密閉反応器から超臨界二酸化炭素を流出させることで、密閉反応器内において懸濁液に超臨界二酸化炭素を流通させる。懸濁液に超臨界二酸化炭素が流通する間に、溶媒が超臨界二酸化炭素に溶解し、密閉反応器外へ流出する超臨界二酸化炭素に同伴して溶媒が除去される。密閉反応器内の温度及び圧力は、二酸化炭素を超臨界状態にする温度及び圧力とする。二酸化炭素の臨界点が31.1℃/7.38MPaであるところ、例えば、温度40℃以上200℃以下/圧力10MPa以上30MPa以下の温度及び圧力とする。密閉反応器への超臨界流体の流量は、80mL/秒以上240mL/秒以下であることが好ましい。
得られたシリカ粒子に対しては、解砕又は篩分を行って、粗大粒子や凝集物の除去を行うことが好ましい。解砕は、例えば、ジェットミル、振動ミル、ボールミル、ピンミル等の乾式粉砕装置により行う。篩分は、例えば、振動篩、風力篩分機等により行う。
<静電荷像現像用トナー>
本実施形態に係るトナーは、トナー粒子と、トナー粒子に外添されたシリカ粒子とを含む。シリカ粒子は、本実施形態のシリカ粒子を適用する。
[トナー粒子]
トナー粒子は、例えば、結着樹脂と、必要に応じて、着色剤と、離型剤と、その他添加剤と、を含んで構成される。
-結着樹脂-
結着樹脂としては、例えば、スチレン類(例えばスチレン、パラクロロスチレン、α-メチルスチレン等)、(メタ)アクリル酸エステル類(例えばアクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸n-ブチル、アクリル酸ラウリル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸ラウリル、メタクリル酸2-エチルヘキシル等)、エチレン性不飽和ニトリル類(例えばアクリロニトリル、メタクリロニトリル等)、ビニルエーテル類(例えばビニルメチルエーテル、ビニルイソブチルエーテル等)、ビニルケトン類(例えばビニルメチルケトン、ビニルエチルケトン、ビニルイソプロペニルケトン等)、オレフィン類(例えばエチレン、プロピレン、ブタジエン等)等の単量体の単独重合体、又はこれら単量体を2種以上組み合せた共重合体からなるビニル系樹脂が挙げられる。
結着樹脂としては、例えば、エポキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、セルロース樹脂、ポリエーテル樹脂、変性ロジン等の非ビニル系樹脂、これらと前記ビニル系樹脂との混合物、又は、これらの共存下でビニル系単量体を重合して得られるグラフト重合体等も挙げられる。
これらの結着樹脂は、1種類単独で用いてもよいし、2種以上を併用してもよい。
結着樹脂としては、ポリエステル樹脂が好適である。
ポリエステル樹脂としては、例えば、公知のポリエステル樹脂が挙げられる。
ポリエステル樹脂としては、例えば、多価カルボン酸と多価アルコールとの縮重合体が挙げられる。ポリエステル樹脂としては、市販品を使用してもよいし、合成したものを使用してもよい。
多価カルボン酸としては、例えば、脂肪族ジカルボン酸(例えばシュウ酸、マロン酸、マレイン酸、フマル酸、シトラコン酸、イタコン酸、グルタコン酸、コハク酸、アルケニルコハク酸、アジピン酸、セバシン酸等)、脂環式ジカルボン酸(例えばシクロヘキサンジカルボン酸等)、芳香族ジカルボン酸(例えばテレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸等)、これらの無水物、又はこれらの低級(例えば炭素数1以上5以下)アルキルエステルが挙げられる。これらの中でも、多価カルボン酸としては、例えば、芳香族ジカルボン酸が好ましい。
多価カルボン酸としては、ジカルボン酸と共に、架橋構造又は分岐構造をとる3価以上のカルボン酸を併用してもよい。3価以上のカルボン酸としては、例えば、トリメリット酸、ピロメリット酸、これらの無水物、又はこれらの低級(例えば炭素数1以上5以下)アルキルエステル等が挙げられる。
多価カルボン酸は、1種単独で使用してもよいし、2種以上を併用してもよい。
多価アルコールとしては、例えば、脂肪族ジオール(例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、ネオペンチルグリコール等)、脂環式ジオール(例えばシクロヘキサンジオール、シクロヘキサンジメタノール、水添ビスフェノールA等)、芳香族ジオール(例えばビスフェノールAのエチレンオキサイド付加物、ビスフェノールAのプロピレンオキサイド付加物等)が挙げられる。これらの中でも、多価アルコールとしては、例えば、芳香族ジオール、脂環式ジオールが好ましく、より好ましくは芳香族ジオールである。
多価アルコールとしては、ジオールと共に、架橋構造又は分岐構造をとる3価以上の多価アルコールを併用してもよい。3価以上の多価アルコールとしては、例えば、グリセリン、トリメチロールプロパン、ペンタエリスリトールが挙げられる。
多価アルコールは、1種単独で使用してもよいし、2種以上を併用してもよい。
ポリエステル樹脂のガラス転移温度(Tg)は、50℃以上80℃以下が好ましく、50℃以上65℃以下がより好ましい。
ガラス転移温度は、示差走査熱量測定(DSC)により得られたDSC曲線より求め、より具体的にはJIS K7121-1987「プラスチックの転移温度測定方法」のガラス転移温度の求め方に記載の「補外ガラス転移開始温度」により求められる。
ポリエステル樹脂の重量平均分子量(Mw)は、5000以上1000000以下が好ましく、7000以上500000以下がより好ましい。
ポリエステル樹脂の数平均分子量(Mn)は、2000以上100000以下が好ましい。
ポリエステル樹脂の分子量分布Mw/Mnは、1.5以上100以下が好ましく、2以上60以下がより好ましい。
重量平均分子量及び数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により測定する。GPCによる分子量測定は、測定装置として東ソー製GPC・HLC-8120GPCを用い、東ソー製カラム・TSKgel SuperHM-M(15cm)を使用し、THF溶媒で行う。重量平均分子量及び数平均分子量は、この測定結果から単分散ポリスチレン標準試料により作成した分子量校正曲線を使用して算出する。
ポリエステル樹脂は、公知の製造方法により得られる。具体的には、例えば、重合温度を180℃以上230℃以下とし、必要に応じて反応系内を減圧し、縮合の際に発生する水やアルコールを除去しながら反応させる方法により得られる。
原料の単量体が、反応温度下で溶解又は相溶しない場合は、高沸点の溶剤を溶解補助剤として加え溶解させてもよい。この場合、重縮合反応は溶解補助剤を留去しながら行う。相溶性の悪い単量体が存在する場合は、あらかじめ相溶性の悪い単量体とその単量体と重縮合予定の酸又はアルコールとを縮合させておいてから主成分と重縮合させるとよい。
結着樹脂の含有量は、トナー粒子全体に対して、40質量%以上95質量%以下が好ましく、50質量%以上90質量%以下がより好ましく、60質量%以上85質量%以下が更に好ましい。
-着色剤-
着色剤としては、例えば、カーボンブラック、クロムイエロー、ハンザイエロー、ベンジジンイエロー、スレンイエロー、キノリンイエロー、ピグメントイエロー、パーマネントオレンジGTR、ピラゾロンオレンジ、バルカンオレンジ、ウオッチヤングレッド、パーマネントレッド、ブリリアントカーミン3B、ブリリアントカーミン6B、デュポンオイルレッド、ピラゾロンレッド、リソールレッド、ローダミンBレーキ、レーキレッドC、ピグメントレッド、ローズベンガル、アニリンブルー、ウルトラマリンブルー、カルコオイルブルー、メチレンブルークロライド、フタロシアニンブルー、ピグメントブルー、フタロシアニングリーン、マラカイトグリーンオキサレート等の顔料;アクリジン系、キサンテン系、アゾ系、ベンゾキノン系、アジン系、アントラキノン系、チオインジゴ系、ジオキサジン系、チアジン系、アゾメチン系、インジゴ系、フタロシアニン系、アニリンブラック系、ポリメチン系、トリフェニルメタン系、ジフェニルメタン系、チアゾール系等の染料;が挙げられる。
着色剤は、1種を単独で用いてもよいし、2種以上を併用してもよい。
着色剤は、必要に応じて表面処理された着色剤を用いてもよく、分散剤と併用してもよい。また、着色剤は、複数種を併用してもよい。
着色剤の含有量は、トナー粒子全体に対して、1質量%以上30質量%以下が好ましく、3質量%以上15質量%以下がより好ましい。
-離型剤-
離型剤としては、例えば、炭化水素系ワックス;カルナバワックス、ライスワックス、キャンデリラワックス等の天然ワックス;モンタンワックス等の合成又は鉱物・石油系ワックス;脂肪酸エステル、モンタン酸エステル等のエステル系ワックス;などが挙げられる。離型剤は、これに限定されるものではない。
離型剤の融解温度は、50℃以上110℃以下が好ましく、60℃以上100℃以下がより好ましい。
融解温度は、示差走査熱量測定(DSC)により得られたDSC曲線から、JIS K7121-1987「プラスチックの転移温度測定方法」の融解温度の求め方に記載の「融解ピーク温度」により求める。
離型剤の含有量は、トナー粒子全体に対して、1質量%以上20質量%以下が好ましく、5質量%以上15質量%以下がより好ましい。
-その他の添加剤-
その他の添加剤としては、例えば、磁性体、帯電制御剤、無機粉体等の公知の添加剤が挙げられる。これらの添加剤は、内添剤としてトナー粒子に含まれる。
-トナー粒子の特性等-
トナー粒子は、単層構造のトナー粒子であってもよいし、芯部(コア粒子)と芯部を被覆する被覆層(シェル層)とで構成された所謂コア・シェル構造のトナー粒子であってもよい。
コア・シェル構造のトナー粒子は、例えば、結着樹脂と必要に応じて着色剤及び離型剤等のその他添加剤とを含んで構成された芯部と、結着樹脂を含んで構成された被覆層と、で構成されていることがよい。
トナー粒子の体積平均粒径(D50v)は、2μm以上10μm以下が好ましく、4μm以上8μm以下がより好ましい。
トナー粒子の各種平均粒径、及び各種粒度分布指標は、コールターマルチサイザーII(ベックマン・コールター社製)を用い、電解液はISOTON-II(ベックマン・コールター社製)を使用して測定される。
測定に際しては、分散剤として、界面活性剤(アルキルベンゼンスルホン酸ナトリウムが好ましい)の5質量%水溶液2ml中に測定試料を0.5mg以上50mg以下加える。これを電解液100ml以上150ml以下中に添加する。
試料を懸濁した電解液は超音波分散器で1分間分散処理を行い、コールターマルチサイザーIIにより、アパーチャー径100μmのアパーチャーを用いて2μm以上60μm以下の範囲の粒径の粒子の粒度分布を測定する。サンプリングする粒子数は50000個である。
測定される粒度分布を基にして分割された粒度範囲(チャネル)に対して体積、数をそれぞれ小径側から累積分布を描いて、累積16%となる粒径を体積粒径D16v、数粒径D16p、累積50%となる粒径を体積平均粒径D50v、累積数平均粒径D50p、累積84%となる粒径を体積粒径D84v、数粒径D84pと定義する。
これらを用いて、体積粒度分布指標(GSDv)は(D84v/D16v)1/2、数粒度分布指標(GSDp)は(D84p/D16p)1/2として算出される。
トナー粒子の平均円形度は、0.94以上1.00以下が好ましく、0.95以上0.98以下がより好ましい。
トナー粒子の平均円形度は、(円相当周囲長)/(周囲長)[(粒子像と同じ投影面積をもつ円の周囲長)/(粒子投影像の周囲長)]により求められる。具体的には、次の方法で測定される値である。
まず、測定対象となるトナー粒子を吸引採取し、扁平な流れを形成させ、瞬時にストロボ発光させることにより静止画像として粒子像を取り込み、その粒子像を画像解析するフロー式粒子像解析装置(シスメックス社製のFPIA-3000)によって求める。そして、平均円形度を求める際のサンプリング数は3500個とする。
トナーが外添剤を有する場合、界面活性剤を含む水中に、測定対象となるトナー(現像剤)を分散させた後、超音波処理を行って外添剤を除去したトナー粒子を得る。
[外添剤]
本実施形態に係るトナーは、外添剤として本実施形態のシリカ粒子を含む。本実施形態のシリカ粒子の外添量は、トナー粒子100質量部に対して、0.1質量部以上3.0質量部以下が好ましく、0.2質量部以上2.0質量部以下がより好ましく、0.3質量部以上1.5質量部以下が更に好ましい。
本実施形態に係るトナーは、外添剤として本実施形態のシリカ粒子以外のシリカ粒子を含んでいてもよい。当該シリカ粒子としては、ゾルゲルシリカ、水性コロイダルシリカ、アルコール性シリカ、ヒュームドシリカ、溶融シリカ等のシリカ粒子表面を、疎水化処理剤(例えば、シラン系カップリング剤、シリコーンオイル、チタネート系カップリング剤、アルミニウム系カップリング剤、シラザン化合物)で表面処理した疎水性シリカ粒子が好ましい。
本実施形態に係るトナーが本実施形態のシリカ粒子以外のシリカ粒子を含む場合、当該シリカ粒子の外添量は、トナー粒子100質量部に対して、0.1質量部以上3.0質量部以下が好ましく、0.2質量部以上2.0質量部以下がより好ましく、0.3質量部以上1.5質量部以下が更に好ましい。
本実施形態に係るトナーは、本実施形態のシリカ粒子以外の外添剤を含んでいてもよい。シリカ粒子以外の外添剤としては、例えば、TiO、Al、CuO、ZnO、SnO、CeO、Fe、MgO、BaO、CaO、KO、NaO、ZrO、CaO・SiO、KO・(TiO、Al・2SiO、CaCO、MgCO、BaSO、MgSO、SrTiO等の無機粒子;これら無機粒子を疎水化処理剤(例えば、シラン系カップリング剤、シリコーンオイル、チタネート系カップリング剤、アルミニウム系カップリング剤、シラザン化合物)で表面処理した疎水性無機粒子;ポリスチレン、ポリメチルメタクリレート、メラミン樹脂等の樹脂粒子;ステアリン酸亜鉛に代表される高級脂肪酸金属塩、フッ素系高分子量体等のクリーニング活剤;などが挙げられる。
[トナーの製造方法]
本実施形態に係るトナーは、トナー粒子を製造後、トナー粒子に対して、外添剤を外添することで得られる。
トナー粒子は、乾式製法(例えば、混練粉砕法等)、湿式製法(例えば、凝集合一法、懸濁重合法、溶解懸濁法等)のいずれにより製造してもよい。これらの製法に特に制限はなく、公知の製法が採用される。これらの中でも、凝集合一法により、トナー粒子を得ることがよい。
具体的には、例えば、トナー粒子を凝集合一法により製造する場合、
結着樹脂となる樹脂粒子が分散された樹脂粒子分散液を準備する工程(樹脂粒子分散液準備工程)と、樹脂粒子分散液中で(必要に応じて他の粒子分散液を混合した後の分散液中で)、樹脂粒子(必要に応じて他の粒子)を凝集させ、凝集粒子を形成する工程(凝集粒子形成工程)と、凝集粒子が分散された凝集粒子分散液を加熱し、凝集粒子を融合・合一して、トナー粒子を形成する工程(融合・合一工程)と、を経て、トナー粒子を製造する。
以下、各工程の詳細について説明する。
以下の説明では、着色剤、及び離型剤を含むトナー粒子を得る方法について説明するが、着色剤、離型剤は、必要に応じて用いられるものである。無論、着色剤、離型剤以外のその他添加剤を用いてもよい。
-樹脂粒子分散液準備工程-
結着樹脂となる樹脂粒子が分散された樹脂粒子分散液と共に、例えば、着色剤粒子が分散された着色剤粒子分散液、離型剤粒子が分散された離型剤粒子分散液を準備する。
樹脂粒子分散液は、例えば、樹脂粒子を界面活性剤により分散媒中に分散させることにより調製する。
樹脂粒子分散液に用いる分散媒としては、例えば水系媒体が挙げられる。
水系媒体としては、例えば、蒸留水、イオン交換水等の水、アルコール類等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
界面活性剤としては、例えば、硫酸エステル塩系、スルホン酸塩系、リン酸エステル系、せっけん系等のアニオン界面活性剤;アミン塩型、4級アンモニウム塩型等のカチオン界面活性剤;ポリエチレングリコール系、アルキルフェノールエチレンオキサイド付加物系、多価アルコール系等の非イオン系界面活性剤等が挙げられる。これらの中でも特に、アニオン界面活性剤、カチオン界面活性剤が挙げられる。非イオン系界面活性剤は、アニオン界面活性剤又はカチオン界面活性剤と併用してもよい。
界面活性剤は、1種単独で使用してもよいし、2種以上を併用してもよい。
樹脂粒子分散液において、樹脂粒子を分散媒に分散する方法としては、例えば回転せん断型ホモジナイザーや、メディアを有するボールミル、サンドミル、ダイノミル等の一般的な分散方法が挙げられる。また、樹脂粒子の種類によっては、転相乳化法によって分散媒に樹脂粒子を分散させてもよい。転相乳化法とは、分散すべき樹脂を、その樹脂が可溶な疎水性有機溶剤中に溶解せしめ、有機連続相(O相)に塩基を加えて中和したのち、水系媒体(W相)を投入することによって、W/OからO/Wへ転相を行い、樹脂を水系媒体中に粒子状に分散する方法である。
樹脂粒子分散液中に分散する樹脂粒子の体積平均粒径としては、例えば0.01μm以上1μm以下が好ましく、0.08μm以上0.8μm以下がより好ましく、0.1μm以上0.6μm以下が更に好ましい。
樹脂粒子の体積平均粒径は、レーザ回折式粒度分布測定装置(例えば、堀場製作所製LA-700)の測定によって得られた粒度分布を用い、分割された粒度範囲(チャンネル)に対し、体積について小粒径側から累積分布を引き、全粒子に対して累積50%となる粒径を体積平均粒径D50vとして測定される。他の分散液中の粒子の体積平均粒径も同様に測定される。
樹脂粒子分散液に含まれる樹脂粒子の含有量は、5質量%以上50質量%以下が好ましく、10質量%以上40質量%以下がより好ましい。
樹脂粒子分散液と同様にして、例えば、着色剤粒子分散液、離型剤粒子分散液も調製される。つまり、樹脂粒子分散液における粒子の体積平均粒径、分散媒、分散方法、及び粒子の含有量に関しては、着色剤粒子分散液中に分散する着色剤粒子、及び離型剤粒子分散液中に分散する離型剤粒子についても同様である。
-凝集粒子形成工程-
次に、樹脂粒子分散液と、着色剤粒子分散液と、離型剤粒子分散液と、を混合する。
そして、混合分散液中で、樹脂粒子と着色剤粒子と離型剤粒子とをヘテロ凝集させ目的とするトナー粒子の径に近い径を持つ、樹脂粒子と着色剤粒子と離型剤粒子とを含む凝集粒子を形成する。
具体的には、例えば、混合分散液に凝集剤を添加すると共に、混合分散液のpHを酸性(例えばpH2以上5以下)に調整し、必要に応じて分散安定剤を添加した後、樹脂粒子のガラス転移温度に近い温度(具体的には、例えば、樹脂粒子のガラス転移温度-30℃以上ガラス転移温度-10℃以下)に加熱し、混合分散液に分散された粒子を凝集させて、凝集粒子を形成する。凝集粒子形成工程においては、例えば、混合分散液を回転せん断型ホモジナイザーで攪拌下、室温(例えば25℃)で凝集剤を添加し、混合分散液のpHを酸性(例えばpH2以上5以下)に調整し、必要に応じて分散安定剤を添加した後に、加熱を行ってもよい。
凝集剤としては、例えば、混合分散液に含まれる界面活性剤と逆極性の界面活性剤、無機金属塩、2価以上の金属錯体が挙げられる。凝集剤として金属錯体を用いた場合には、界面活性剤の使用量が低減され、帯電特性が向上する。
凝集剤と共に、該凝集剤の金属イオンと錯体もしくは類似の結合を形成する添加剤を必要に応じて用いてもよい。この添加剤としては、キレート剤が好適に用いられる。
無機金属塩としては、例えば、塩化カルシウム、硝酸カルシウム、塩化バリウム、塩化マグネシウム、塩化亜鉛、塩化アルミニウム、硫酸アルミニウム等の金属塩;ポリ塩化アルミニウム、ポリ水酸化アルミニウム、多硫化カルシウム等の無機金属塩重合体;などが挙げられる。
キレート剤としては、水溶性のキレート剤を用いてもよい。キレート剤としては、例えば、酒石酸、クエン酸、グルコン酸等のオキシカルボン酸;イミノ二酢酸(IDA)、ニトリロ三酢酸(NTA)、エチレンジアミン四酢酸(EDTA)等のアミノカルボン酸;などが挙げられる。
キレート剤の添加量は、樹脂粒子100質量部に対して0.01質量部以上5.0質量部以下が好ましく、0.1質量部以上3.0質量部未満がより好ましい。
-融合・合一工程-
次に、凝集粒子が分散された凝集粒子分散液を、例えば、樹脂粒子のガラス転移温度以上(例えば樹脂粒子のガラス転移温度より10℃から30℃高い温度)に加熱して、凝集粒子を融合・合一し、トナー粒子を形成する。
以上の工程を経て、トナー粒子が得られる。
凝集粒子が分散された凝集粒子分散液を得た後、当該凝集粒子分散液と、樹脂粒子が分散された樹脂粒子分散液と、をさらに混合し、凝集粒子の表面にさらに樹脂粒子を付着するように凝集して、第2凝集粒子を形成する工程と、第2凝集粒子が分散された第2凝集粒子分散液に対して加熱をし、第2凝集粒子を融合・合一して、コア・シェル構造のトナー粒子を形成する工程と、を経て、トナー粒子を製造してもよい。
融合・合一工程終了後、分散液中のトナー粒子に、公知の洗浄工程、固液分離工程、及び乾燥工程を施して乾燥した状態のトナー粒子を得る。洗浄工程は、帯電性の観点から、イオン交換水による置換洗浄を充分に施すことがよい。固液分離工程は、生産性の観点から、吸引濾過、加圧濾過等を施すことがよい。乾燥工程は、生産性の観点から、凍結乾燥、気流乾燥、流動乾燥、振動型流動乾燥等を施すことがよい。
そして、本実施形態に係るトナーは、例えば、得られた乾燥状態のトナー粒子に、外添剤を添加し、混合することにより製造される。混合は、例えばVブレンダー、ヘンシェルミキサー、レーディゲミキサー等によって行うことがよい。必要に応じて、振動篩分機、風力篩分機等を使ってトナーの粗大粒子を取り除いてもよい。
<静電荷像現像剤>
本実施形態に係る静電荷像現像剤は、本実施形態に係るトナーを少なくとも含むものである。
本実施形態に係る静電荷像現像剤は、本実施形態に係るトナーのみを含む一成分現像剤であってもよいし、当該トナーとキャリアとを混合した二成分現像剤であってもよい。
キャリアとしては、特に制限はなく、公知のキャリアが挙げられる。キャリアとしては、例えば、磁性粉からなる芯材の表面に樹脂を被覆した被覆キャリア;マトリックス樹脂中に磁性粉が分散して配合された磁性粉分散型キャリア;多孔質の磁性粉に樹脂を含浸させた樹脂含浸型キャリア;などが挙げられる。
磁性粉分散型キャリア及び樹脂含浸型キャリアは、当該キャリアの構成粒子を芯材とし、この表面を樹脂で被覆したキャリアであってもよい。
磁性粉としては、例えば、鉄、ニッケル、コバルト等の磁性金属;フェライト、マグネタイト等の磁性酸化物;などが挙げられる。
被覆用の樹脂及びマトリックス樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリビニルアセテート、ポリビニルアルコール、ポリビニルブチラール、ポリ塩化ビニル、ポリビニルエーテル、ポリビニルケトン、塩化ビニル-酢酸ビニル共重合体、スチレンアクリル酸エステル共重合体、オルガノシロキサン結合を含んで構成されるストレートシリコーン樹脂又はその変性品、フッ素樹脂、ポリエステル、ポリカーボネート、フェノール樹脂、エポキシ樹脂等が挙げられる。被覆用の樹脂及びマトリックス樹脂には、導電性粒子等、その他添加剤を含ませてもよい。導電性粒子としては、金、銀、銅等の金属、カーボンブラック、酸化チタン、酸化亜鉛、酸化スズ、硫酸バリウム、ホウ酸アルミニウム、チタン酸カリウム等の粒子が挙げられる。
芯材の表面を樹脂で被覆するには、被覆用の樹脂、及び各種添加剤(必要に応じて使用する)を適当な溶媒に溶解した被覆層形成用溶液により被覆する方法等が挙げられる。溶媒としては、特に限定されるものではなく、使用する樹脂の種類や、塗布適性等を勘案して選択すればよい。
具体的な樹脂被覆方法としては、芯材を被覆層形成用溶液中に浸漬する浸漬法;被覆層形成用溶液を芯材表面に噴霧するスプレー法;芯材を流動エアーにより浮遊させた状態で被覆層形成用溶液を噴霧する流動床法;ニーダーコーター中でキャリアの芯材と被覆層形成用溶液とを混合し、その後に溶剤を除去するニーダーコーター法;等が挙げられる。
二成分現像剤におけるトナーとキャリアとの混合比(質量比)は、トナー:キャリア=1:100乃至30:100が好ましく、3:100乃至20:100がより好ましい。
<画像形成装置、画像形成方法>
本実施形態に係る画像形成装置及び画像形成方法について説明する。
本実施形態に係る画像形成装置は、像保持体と、像保持体の表面を帯電する帯電手段と、帯電した像保持体の表面に静電荷像を形成する静電荷像形成手段と、静電荷像現像剤を収容し、静電荷像現像剤により、像保持体の表面に形成された静電荷像をトナー画像として現像する現像手段と、像保持体の表面に形成されたトナー画像を記録媒体の表面に転写する転写手段と、記録媒体の表面に転写されたトナー画像を定着する定着手段と、を備える。そして、静電荷像現像剤として、本実施形態に係る静電荷像現像剤が適用される。
本実施形態に係る画像形成装置では、像保持体の表面を帯電する帯電工程と、帯電した像保持体の表面に静電荷像を形成する静電荷像形成工程と、本実施形態に係る静電荷像現像剤により、像保持体の表面に形成された静電荷像をトナー画像として現像する現像工程と、像保持体の表面に形成されたトナー画像を記録媒体の表面に転写する転写工程と、記
録媒体の表面に転写されたトナー画像を定着する定着工程と、を有する画像形成方法(本実施形態に係る画像形成方法)が実施される。
本実施形態に係る画像形成装置は、像保持体の表面に形成されたトナー画像を直接記録媒体に転写する直接転写方式の装置;像保持体の表面に形成されたトナー画像を中間転写体の表面に一次転写し、中間転写体の表面に転写されたトナー画像を記録媒体の表面に二次転写する中間転写方式の装置;トナー画像の転写後、帯電前の像保持体の表面をクリーニングするクリーニング手段を備えた装置;トナー画像の転写後、帯電前に像保持体の表面に除電光を照射して除電する除電手段を備える装置;等の公知の画像形成装置が適用される。
本実施形態に係る画像形成装置が中間転写方式の装置の場合、転写手段は、例えば、表面にトナー画像が転写される中間転写体と、像保持体の表面に形成されたトナー画像を中間転写体の表面に一次転写する一次転写手段と、中間転写体の表面に転写されたトナー画像を記録媒体の表面に二次転写する二次転写手段と、を有する構成が適用される。
本実施形態に係る画像形成装置において、例えば、現像手段を含む部分が、画像形成装置に着脱するカートリッジ構造(プロセスカートリッジ)であってもよい。プロセスカートリッジとしては、例えば、本実施形態に係る静電荷像現像剤を収容する、現像手段を備えるプロセスカートリッジが好適に用いられる。
以下、本実施形態に係る画像形成装置の一例を示すが、これに限定されるわけではない。以下の説明においては、図に示す主要部を説明し、その他はその説明を省略する。
図1は、本実施形態に係る画像形成装置を示す概略構成図である。
図1示す画像形成装置は、色分解された画像データに基づく、イエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(K)の各色の画像を出力する電子写真方式の第1乃至第4の画像形成ユニット10Y、10M、10C、10K(画像形成手段)を備えている。これらの画像形成ユニット(以下、単に「ユニット」と称する場合がある)10Y、10M、10C、10Kは、水平方向に互いに予め定められた距離離間して並設されている。これらユニット10Y、10M、10C、10Kは、画像形成装置に着脱するプロセスカートリッジであってもよい。
各ユニット10Y、10M、10C、10Kの上方には、各ユニットを通して中間転写ベルト(中間転写体の一例)20が延設されている。中間転写ベルト20は、駆動ロール22及び支持ロール24に巻きつけて設けられ、第1のユニット10Yから第4のユニット10Kに向う方向に走行するようになっている。支持ロール24は、図示しないバネ等により駆動ロール22から離れる方向に力が加えられており、両者に巻きつけられた中間転写ベルト20に張力が与えられている。中間転写ベルト20の像保持面側には、駆動ロール22と対向して中間転写体クリーニング装置30が備えられている。
各ユニット10Y、10M、10C、10Kの現像装置(現像手段の一例)4Y、4M、4C、4Kのそれぞれには、トナーカートリッジ8Y、8M、8C、8Kに収められたイエロー、マゼンタ、シアン、ブラックの各トナーの供給がなされる。
第1乃至第4のユニット10Y、10M、10C、10Kは、同等の構成及び動作を有しているため、ここでは中間転写ベルト走行方向の上流側に配設されたイエロー画像を形成する第1のユニット10Yについて代表して説明する。
第1のユニット10Yは、像保持体として作用する感光体1Yを有している。感光体1Yの周囲には、感光体1Yの表面を予め定められた電位に帯電させる帯電ロール(帯電手段の一例)2Y、帯電された表面を色分解された画像信号に基づくレーザ光線3Yによっ
て露光して静電荷像を形成する露光装置(静電荷像形成手段の一例)3、静電荷像に帯電したトナーを供給して静電荷像を現像する現像装置(現像手段の一例)4Y、現像したトナー画像を中間転写ベルト20上に転写する一次転写ロール(一次転写手段の一例)5Y、及び一次転写後に感光体1Yの表面に残存するトナーを除去する感光体クリーニング装置(クリーニング手段の一例)6Yが順に配置されている。
一次転写ロール5Yは、中間転写ベルト20の内側に配置され、感光体1Yに対向した位置に設けられている。各ユニットの一次転写ロール5Y、5M、5C、5Kには、一次転写バイアスを印加するバイアス電源(図示せず)がそれぞれ接続されている。各バイアス電源は、図示しない制御部による制御によって、各一次転写ロールに印加する転写バイアスの値を変える。
以下、第1のユニット10Yにおいてイエロー画像を形成する動作について説明する。
まず、動作に先立って、帯電ロール2Yによって感光体1Yの表面が-600V乃至-800Vの電位に帯電される。
感光体1Yは、導電性(例えば20℃における体積抵抗率1×10-6Ωcm以下)の基体上に感光層を積層して形成されている。この感光層は、通常は高抵抗(一般の樹脂の抵抗)であるが、レーザ光線が照射されると、レーザ光線が照射された部分の比抵抗が変化する性質を持っている。そこで、帯電した感光体1Yの表面に、図示しない制御部から送られてくるイエロー用の画像データに従って、露光装置3からレーザ光線3Yを照射する。それにより、イエローの画像パターンの静電荷像が感光体1Yの表面に形成される。
静電荷像とは、帯電によって感光体1Yの表面に形成される像であり、レーザ光線3Yによって、感光層の被照射部分の比抵抗が低下し、感光体1Yの表面の帯電した電荷が流れ、一方、レーザ光線3Yが照射されなかった部分の電荷が残留することによって形成される、いわゆるネガ潜像である。
感光体1Y上に形成された静電荷像は、感光体1Yの走行に従って予め定められた現像位置まで回転する。そして、この現像位置で、感光体1Y上の静電荷像が、現像装置4Yによってトナー画像として現像され可視化される。
現像装置4Y内には、例えば、少なくともイエロートナーとキャリアとを含む静電荷像現像剤が収容されている。イエロートナーは、現像装置4Yの内部で攪拌されることで摩擦帯電し、感光体1Y上に帯電した帯電荷と同極性(負極性)の電荷を有して現像剤ロール(現像剤保持体の一例)上に保持されている。感光体1Yの表面が現像装置4Yを通過していくことにより、感光体1Y表面上の除電された潜像部にイエロートナーが静電的に付着し、潜像がイエロートナーによって現像される。イエローのトナー画像が形成された感光体1Yは、引続き予め定められた速度で走行され、感光体1Y上に現像されたトナー画像が予め定められた一次転写位置へ搬送される。
感光体1Y上のイエロートナー画像が一次転写位置へ搬送されると、一次転写ロール5Yに一次転写バイアスが印加され、感光体1Yから一次転写ロール5Yに向う静電気力がトナー画像に作用し、感光体1Y上のトナー画像が中間転写ベルト20上に転写される。このとき印加される転写バイアスは、トナーの極性(-)と逆極性の(+)極性であり、第1のユニット10Yでは制御部(図示せず)によって例えば+10μAに制御されている。
感光体1Y上に残留したトナーは感光体クリーニング装置6Yで除去されて回収される。
第2のユニット10M以降の一次転写ロール5M、5C、5Kに印加される一次転写バイアスも、第1のユニットに準じて制御されている。
こうして、第1のユニット10Yにてイエローのトナー画像が転写された中間転写ベル
ト20は、第2乃至第4のユニット10M、10C、10Kを通して順次搬送され、各色のトナー画像が重ねられて多重転写される。
第1乃至第4のユニットを通して4色のトナー画像が多重転写された中間転写ベルト20は、中間転写ベルト20と、中間転写ベルトの内面に接する支持ロール24と、中間転写ベルト20の像保持面側に配置された二次転写ロール(二次転写手段の一例)26とから構成された二次転写部へと至る。一方、記録紙(記録媒体の一例)Pが供給機構を介して二次転写ロール26と中間転写ベルト20とが接触した隙間に予め定められたタイミングで給紙され、二次転写バイアスが支持ロール24に印加される。このとき印加される転写バイアスは、トナーの極性(-)と同極性の(-)極性であり、中間転写ベルト20から記録紙Pに向う静電気力がトナー画像に作用し、中間転写ベルト20上のトナー画像が記録紙P上に転写される。この際の二次転写バイアスは二次転写部の抵抗を検出する抵抗検出手段(図示せず)により検出された抵抗に応じて決定されるものであり、電圧制御されている。
この後、記録紙Pは定着装置(定着手段の一例)28における一対の定着ロールの圧接部(ニップ部)へと送り込まれ、トナー画像が記録紙P上へ定着され、定着画像が形成される。
トナー画像を転写する記録紙Pとしては、例えば、電子写真方式の複写機、プリンター等に使用される普通紙が挙げられる。記録媒体としては、記録紙P以外にも、OHPシート等も挙げられる。
定着後における画像表面の平滑性をさらに向上させるには、記録紙Pの表面も平滑であることが好ましく、例えば、普通紙の表面を樹脂等でコーティングしたコート紙、印刷用のアート紙等が好適に使用される。
カラー画像の定着が完了した記録紙Pは、排出部へ向けて搬出され、一連のカラー画像形成動作が終了される。
<プロセスカートリッジ、トナーカートリッジ>
本実施形態に係るプロセスカートリッジについて説明する。
本実施形態に係るプロセスカートリッジは、本実施形態に係る静電荷像現像剤を収容し、静電荷像現像剤により、像保持体の表面に形成された静電荷像をトナー画像として現像する現像手段を備え、画像形成装置に着脱されるプロセスカートリッジである。
本実施形態に係るプロセスカートリッジは、上記構成に限られず、現像手段と、その他、必要に応じて、例えば、像保持体、帯電手段、静電荷像形成手段、及び転写手段等のその他手段から選択される少なくとも一つと、を備える構成であってもよい。
以下、本実施形態に係るプロセスカートリッジの一例を示すが、これに限定されるわけではない。以下の説明においては、図に示す主要部を説明し、その他はその説明を省略する。
図2は、本実施形態に係るプロセスカートリッジを示す概略構成図である。
図2に示すプロセスカートリッジ200は、例えば、取り付けレール116及び露光のための開口部118が備えられた筐体117により、感光体107(像保持体の一例)と、感光体107の周囲に備えられた帯電ロール108(帯電手段の一例)、現像装置111(現像手段の一例)、及び感光体クリーニング装置113(クリーニング手段の一例)を一体的に組み合わせて保持して構成し、カートリッジ化されている。
図2中、109は露光装置(静電荷像形成手段の一例)、112は転写装置(転写手段
の一例)、115は定着装置(定着手段の一例)、300は記録紙(記録媒体の一例)を示している。
次に、本実施形態に係るトナーカートリッジについて説明する。
本実施形態に係るトナーカートリッジは、本実施形態に係るトナーを収容し、画像形成装置に着脱されるトナーカートリッジである。トナーカートリッジは、画像形成装置内に設けられた現像手段に供給するための補給用のトナーを収容するものである。
図1に示す画像形成装置は、トナーカートリッジ8Y、8M、8C、8Kが着脱される構成を有する画像形成装置であり、現像装置4Y、4M、4C、4Kは、各々の現像装置(色)に対応したトナーカートリッジと、図示しないトナー供給管で接続されている。トナーカートリッジ内に収容されているトナーが少なくなった場合には、このトナーカートリッジが交換される。
以下、実施例により発明の実施形態を詳細に説明するが、発明の実施形態は、これら実施例に限定されるものではない。
以下の説明において、特に断りのない限り、「部」及び「%」は質量基準である。
合成、処理、製造などは、特に断りのない限り、室温(25℃±3℃)で行った。
<実施例1~29、比較例1~2、参考例1~2>
-造粒工程-
表1に示す条件に従って、金属製攪拌棒、滴下ノズル及び温度計を備えたガラス製反応容器に、メタノール(MeOH)、イオン交換水、及びアンモニア水(NHOH水)を入れ、攪拌混合して、アルカリ触媒溶液を得た。
次に、アルカリ触媒溶液の温度を40℃に調整し、アルカリ触媒溶液を窒素置換した。次いで、表1に示す条件に従って、アルカリ触媒溶液を攪拌しながら、テトラメトキシシラン(TMOS)と、アンモニア水(NHOH水)とを、同時に滴下し、シリカ母粒子懸濁液を得た。
なお、造粒後(すなわち、テトラアルコキシシランとアルカリ触媒との供給を完了した時点)のシリカ母粒子懸濁液の水濃度(表中、単に「造粒後、水濃度」と示す)を示す。
-被覆工程-
シリカ母粒子懸濁液を40℃に加熱して撹拌しながら、懸濁液に、表1に示す種類のシランカップリング剤を、添加した。その後、120分撹拌を続けて、シランカップリング剤を反応させた。それにより、被覆構造を形成した。
シランカップリング剤は、シリカ母粒子懸濁液の固形分100質量部に対する、表1に示す部数添加した。
-付着工程-
表1に示す種類の窒素元素含有化合物(表中N化合物と表記)をブタノールで希釈したアルコール液を作製した。
次に、窒素元素含有化合物をブタノールで希釈したアルコール液を懸濁液に添加した。この際、アルコール液の添加は、シリカ母粒子懸濁液の固形分100質量部に対して窒素元素含有化合物の部数が表1に示す量となるように行った。次いで、30℃で100分間攪拌し、窒素元素含有化合物を含む懸濁液を得た。
-乾燥工程-
続いて、反応槽に、懸濁液を収容し、攪拌しながらCOを入れ、反応槽内を温度150℃及び圧力15Mpaまで昇温昇圧した。温度と圧力を維持した状態で攪拌しながら、
COを流量5L/minにて流入及び流出させた。その後、120分間かけて溶媒を除去し、各例のシリカ粒子を得た。
<シリカ粒子の特性の測定>
既述の測定方法によって、得られたシリカ粒子の下記特性を測定した。
・350℃焼成前における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以下の細孔体積C(表中、「350℃焼成前 細孔体積C」と表記)。
・350℃焼成後における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以下の細孔体積D(表中、「350℃焼成後 細孔体積D」と表記)
・350℃焼成前における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以上25nm以下の細孔体積A(表中、「350℃焼成前 細孔体積A」と表記)。
・350℃焼成後における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以上25nm以下の細孔体積B(表中、「350℃焼成後 細孔体積B」と表記)
・シリカ粒子に対する窒素含有量(表中、N化合物量と表記)
・個数平均粒径(表中「粒径」と表記)
なお、実施例、及び参考例のシリカ粒子は、350℃焼成後における窒素ガス吸着法の細孔分布曲線において、細孔直径2nm以下の範囲及び2nm超え50nm以下の範囲で、各々少なくとも1つのピークを有していた。
<帯電の立ち上がり性評価>
各例のシリカ粒子と樹脂粒子(例えば、架橋アクリル樹脂粒子、日本触媒製、MA1010)を混合し、樹脂粒子表面にシリカ粒子が被覆率25%で付着した混合物を得た。そして、混合物10質量部とフェライト粉(例えば、JFEケミカル社製KNI106GSM)100質量部とを60mlガラス瓶に15g秤量し、ガラス瓶を、高温高湿下(温度27℃且つ相対湿度85%)に1日放置した。
次に、瓶に入った混合物とフェライト粉を、ターブラシェーカー・ミキサー(例えば、株式会社シンマルエンタープライゼス社製のT2F)を用いて、混合速度49rpmで撹
拌した。撹拌を、5秒、10秒、30秒、60秒、120秒、300秒の間実施した試料をそれぞれ得て、各試料の帯電値を測定した。帯電値の測定は、攪拌した混合物を、20μmメッシュステンレス製金網を張った金属容器に入れ、ブローオフ帯電量測定装置(東芝ケミカル社、TB-200)を使用して測定した。
そして、帯電値が飽和した時間を、帯電の立ち上がりに掛かった時間とし、評価した。例えば、5秒撹拌の試料と10秒撹拌した試料との帯電量の変化が±2μC/gの範囲のとき、帯電の立ち上がりに掛かった時間は5秒と評価した。
なお、表1中の略称の詳細は、次の通りである。
・MTMS:メチルトリメトキシシラン
・TP-415:[N(CH)(C14292 Mo28 4-(保土
谷化学工業社製、N,N-Dimethyl-N-tetradecyl-1-tetradecanaminium, hexa-μ-oxotetra-μ3-oxodi -μ5-oxotetradecaoxooctamolybdate(4-) (4:1)(アンモニア/メタノール混合溶液による抽出量X=61~89質量%、抽出量Xと水による抽出量Yとの比X/Y=0.03~0.26)
・P-51:塩化ベンジルトリメチルアンモニウム
・TMBAC:塩化ベンジルトリブチルアンモニウム
上記結果から、本実施例では、比較例に比べ、帯電の立ち上がり性に優れることがわかる。
なお、参考例1は、D/Bが本実施形態に該当するシリカ粒子であるが、窒素元素含有化合物を含まない例である。
参考例2は、D/Bが本実施形態に該当するシリカ粒子であるが、窒素元素含有化合物を過剰に含む例である。
本実施形態は、下記態様を含む。
(((1)))
350℃焼成後における窒素ガス吸着法の細孔分布曲線において、細孔直径2nm以下の範囲及び2nm超え50nm以下の範囲で、各々少なくとも1つのピークを有し、
350℃焼成後における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以下の範囲及び2nm以上25nm以下の範囲の細孔体積をそれぞれD及びBとしたとき、D/Bが0.50以上2.50以下であるシリカ粒子。
(((2)))
前記D/Bが、0.55以上2.00以下である(((1)))に記載のシリカ粒子。(((3)))
前記Dが、0.10cm/g以上1.10cm/g以下である(((1)))又は(((2)))に記載のシリカ粒子。
(((4)))
窒素元素含有化合物を含む(((1)))~(((3)))のいずれか1項に記載のシリカ粒子。
(((5)))
前記窒素元素含有化合物の含有量が、前記シリカ粒子に対する窒素含有量で0.02質量%以上1.20質量%以下である(((4)))に記載のシリカ粒子。
(((6)))
350℃焼成前における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以下の細孔体積をCとしたとき、前記Dとの比C/Dが0.05以上0.82以下である((
(4)))又は(((5)))に記載のシリカ粒子。
(((7)))
前記C/Dが、0.05以上0.70以下である(((6)))に記載のシリカ粒子。
(((8)))
350℃焼成前における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以上25nm以下の細孔体積をAとしたとき、前記Bとの比A/Bが0以上0.92以下である(((4)))~(((7)))のいずれか1項に記載のシリカ粒子。
(((9)))
個数平均粒径が、40nm以上200nm以下である(((4)))~(((8)))のいずれか1項に記載のシリカ粒子。
(((10)))
前記窒素元素含有化合物が、四級アンモニウム塩、第一級アミン化合物、第二級アミン化合物、第三級アミン化合物、アミド化合物、イミン化合物、及びニトリル化合物よりなる群から選択される少なくとも1種である(((4)))~(((9)))のいずれか1項に記載のシリカ粒子。
(((11)))
トナー粒子と、
前記トナー粒子に外添された(((4)))~(((10)))のいずれか1項に記載のシリカ粒子と、
を含む、静電荷像現像用トナー。
(((12)))
(((11)))に記載の静電荷像現像用トナーを含む静電荷像現像剤。
(((13)))
(((11)))に記載の静電荷像現像用トナーを収容し、
画像形成装置に着脱されるトナーカートリッジ。
(((14)))
(((12)))に記載の静電荷像現像剤を収容し、前記静電荷像現像剤により、像保持体の表面に形成された静電荷像をトナー画像として現像する現像手段を備え、
画像形成装置に着脱されるプロセスカートリッジ。
(((15)))
像保持体と、
前記像保持体の表面を帯電する帯電手段と、
帯電した前記像保持体の表面に静電荷像を形成する静電荷像形成手段と、
(((12)))に記載の静電荷像現像剤を収容し、前記静電荷像現像剤により、前記像保持体の表面に形成された静電荷像をトナー画像として現像する現像手段と、
前記像保持体の表面に形成されたトナー画像を記録媒体の表面に転写する転写手段と、
前記記録媒体の表面に転写されたトナー画像を定着する定着手段と、
を備える画像形成装置。
(((16)))
像保持体の表面を帯電する帯電工程と、
帯電した前記像保持体の表面に静電荷像を形成する静電荷像形成工程と、
(((12)))に記載の静電荷像現像剤により、前記像保持体の表面に形成された静
電荷像をトナー画像として現像する現像工程と、
前記像保持体の表面に形成されたトナー画像を記録媒体の表面に転写する転写工程と、
前記記録媒体の表面に転写されたトナー画像を定着する定着工程と、
を有する画像形成方法
上記態様の効果は、次の通りである。
(((1)))に係る発明によれば、350℃焼成後における窒素ガス吸着法の細孔分布曲線において、細孔直径2nm以下の範囲及び2nm超え50nm以下の範囲で、各々少なくとも1つのピークを有するシリカ粒子において、350℃焼成後における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以下の範囲及び2nm以上25nm以下の範囲の細孔体積をそれぞれD及びBとしたとき、D/Bが0.50未満である場合に比べ、帯電の立ち上がり性を向上させることができるシリカ粒子が提供される。
(((2)))に係る発明によれば、D/Bが、0.55未満である場合に比べ、帯電の立ち上がり性を向上させることができるシリカ粒子が提供される。
(((3)))に係る発明によれば、Dが0.10cm/g未満である場合に比べ、帯電の立ち上がり性を向上させることができるシリカ粒子が提供される。
(((4)))に係る発明によれば、窒素元素含有化合物を含まない場合に比べ、帯電の立ち上がり性に優れたシリカ粒子が提供される。
(((5)))に係る発明によれば、窒素元素含有化合物の含有量が、シリカ粒子に対する窒素含有量で0.02質量%未満である場合に比べ、帯電の立ち上がり性に優れるシリカ粒子が提供される。
(((6)))に係る発明によれば、窒素元素含有化合物を含み、350℃焼成前における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以下の細孔体積をCとしたとき、Dとの比C/Dが0.82超えである場合に比べ、帯電の立ち上がり性に優れるシリカ粒子が提供される。
(((7)))に係る発明によれば、C/Dが、0.70超えである場合に比べ、帯電の立ち上がり性に優れるシリカ粒子が提供される。
(((8)))に係る発明によれば、窒素元素含有化合物を含み、350℃焼成前における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以上25nm以下の細孔体積をAとしたとき、Bとの比A/Bが0.92超えである場合に比べ、帯電の立ち上がり性に優れるシリカ粒子が提供される。
(((9)))に係る発明によれば、窒素元素含有化合物を含み、350℃焼成後における窒素ガス吸着法の細孔分布曲線において、細孔直径2nm以下の範囲及び2nm超え50nm以下の範囲で、各々少なくとも1つのピークを有するシリカ粒子において、350℃焼成後における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以下の範囲及び2nm以上25nm以下の範囲の細孔体積をそれぞれD及びBとしたとき、D/Bが0.50未満である場合に比べ、個数平均粒径が40nm以上200nm以下であっても、帯電の立ち上がり性に優れるシリカ粒子が提供される。
(((10)))に係る発明によれば、窒素元素含有化合物を含み、350℃焼成後における窒素ガス吸着法の細孔分布曲線において、細孔直径2nm以下の範囲及び2nm超え50nm以下の範囲で、各々少なくとも1つのピークを有するシリカ粒子において、350℃焼成後における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以下の範囲及び2nm以上25nm以下の範囲の細孔体積をそれぞれD及びBとしたとき、D/Bが0.50未満である場合に比べ、四級アンモニウム塩、第一級アミン化合物、第二級アミン化合物、第三級アミン化合物、アミド化合物、イミン化合物、及びニトリル化合物よりなる群から選択される少なくとも1種を含み、帯電の立ち上がり性に優れるシリカ粒子が提供される。
(((11)))、(((12>、(((13)))、(((14)))、(((15)))、及び(((16)))に係る発明によれば、窒素元素含有化合物を含み、350℃焼成後における窒素ガス吸着法の細孔分布曲線において、細孔直径2nm以下の範囲及び2nm超え50nm以下の範囲で、各々少なくとも1つのピークを有するシリカ粒子において、350℃焼成後における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以下の範囲及び2nm以上25nm以下の範囲の細孔体積をそれぞれD及びBとしたとき、D/Bが0.50未満であるシリカ粒子を外添剤として静電荷像現像用トナーに適用した場合に比べ、帯電の立ち上がり性に優れる静電荷像現像用トナー、及び、それを用いた静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置及び画像形成方法が提供される。
1Y、1M、1C、1K 感光体(像保持体の一例)
2Y、2M、2C、2K 帯電ロール(帯電手段の一例)
3 露光装置(静電荷像形成手段の一例)
3Y、3M、3C、3K レーザ光線
4Y、4M、4C、4K 現像装置(現像手段の一例)
5Y、5M、5C、5K 一次転写ロール(一次転写手段の一例)
6Y、6M、6C、6K 感光体クリーニング装置(クリーニング手段の一例)
8Y、8M、8C、8K トナーカートリッジ
10Y、10M、10C、10K 画像形成ユニット
20 中間転写ベルト(中間転写体の一例)
22 駆動ロール
24 支持ロール
26 二次転写ロール(二次転写手段の一例)
28 定着装置(定着手段の一例)
30 中間転写体クリーニング装置
P 記録紙(記録媒体の一例)
107 感光体(像保持体の一例)
108 帯電ロール(帯電手段の一例)
109 露光装置(静電荷像形成手段の一例)
111 現像装置(現像手段の一例)
112 転写装置(転写手段の一例)
113 感光体クリーニング装置(クリーニング手段の一例)
115 定着装置(定着手段の一例)
116 取り付けレール
117 筐体
118 露光のための開口部
200 プロセスカートリッジ
300 記録紙(記録媒体の一例)

Claims (16)

  1. 350℃焼成後における窒素ガス吸着法の細孔分布曲線において、細孔直径2nm以下の範囲及び2nm超え50nm以下の範囲で、各々少なくとも1つのピークを有し、
    350℃焼成後における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以下の範囲及び2nm以上25nm以下の範囲の細孔体積をそれぞれD及びBとしたとき、D/Bが0.50以上2.50以下であるシリカ粒子。
  2. 前記D/Bが、0.55以上2.00以下である請求項1に記載のシリカ粒子。
  3. 前記Dが、0.10cm/g以上1.10cm/g以下である請求項1に記載のシリカ粒子。
  4. 窒素元素含有化合物を含む請求項1に記載のシリカ粒子。
  5. 前記窒素元素含有化合物の含有量が、前記シリカ粒子に対する窒素含有量で0.02質量%以上1.20質量%以下である請求項4に記載のシリカ粒子。
  6. 350℃焼成前における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以下の細孔体積をCとしたとき、前記Dとの比C/Dが0.05以上0.82以下である請求
    項4に記載のシリカ粒子。
  7. 前記C/Dが、0.05以上0.70以下である請求項6に記載のシリカ粒子。
  8. 350℃焼成前における窒素ガス吸着法の細孔分布曲線から求める細孔直径2nm以上25nm以下の細孔体積をAとしたとき、前記Bとの比A/Bが0以上0.92以下である請求項4に記載のシリカ粒子。
  9. 個数平均粒径が、40nm以上200nm以下である請求項4に記載のシリカ粒子。
  10. 前記窒素元素含有化合物が、四級アンモニウム塩、第一級アミン化合物、第二級アミン化合物、第三級アミン化合物、アミド化合物、イミン化合物、及びニトリル化合物よりなる群から選択される少なくとも1種である請求項4に記載のシリカ粒子。
  11. トナー粒子と、
    前記トナー粒子に外添された請求項4~請求項10のいずれか1項に記載のシリカ粒子と、
    を含む、静電荷像現像用トナー。
  12. 請求項11に記載の静電荷像現像用トナーを含む静電荷像現像剤。
  13. 請求項11に記載の静電荷像現像用トナーを収容し、
    画像形成装置に着脱されるトナーカートリッジ。
  14. 請求項12に記載の静電荷像現像剤を収容し、前記静電荷像現像剤により、像保持体の表面に形成された静電荷像をトナー画像として現像する現像手段を備え、
    画像形成装置に着脱されるプロセスカートリッジ。
  15. 像保持体と、
    前記像保持体の表面を帯電する帯電手段と、
    帯電した前記像保持体の表面に静電荷像を形成する静電荷像形成手段と、
    請求項12に記載の静電荷像現像剤を収容し、前記静電荷像現像剤により、前記像保持体の表面に形成された静電荷像をトナー画像として現像する現像手段と、
    前記像保持体の表面に形成されたトナー画像を記録媒体の表面に転写する転写手段と、
    前記記録媒体の表面に転写されたトナー画像を定着する定着手段と、
    を備える画像形成装置。
  16. 像保持体の表面を帯電する帯電工程と、
    帯電した前記像保持体の表面に静電荷像を形成する静電荷像形成工程と、
    請求項12に記載の静電荷像現像剤により、前記像保持体の表面に形成された静電荷像をトナー画像として現像する現像工程と、
    前記像保持体の表面に形成されたトナー画像を記録媒体の表面に転写する転写工程と、
    前記記録媒体の表面に転写されたトナー画像を定着する定着工程と、
    を有する画像形成方法。
JP2023132177A 2022-09-22 2023-08-14 シリカ粒子、静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置及び画像形成方法 Pending JP2024046605A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202311203762.7A CN117742103A (zh) 2022-09-22 2023-09-18 二氧化硅粒子、调色剂、显影剂、盒、成像装置及成像方法
US18/469,027 US20240118645A1 (en) 2022-09-22 2023-09-18 Silica particle, toner for developing electrostatic charge image, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
EP23198500.3A EP4371938A2 (en) 2022-09-22 2023-09-20 Silica particle, toner for developing electrostatic charge image, electrostatic charge image developer, toner cartridge, image forming apparatus, and image forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022151977 2022-09-22
JP2022151977 2022-09-22

Publications (1)

Publication Number Publication Date
JP2024046605A true JP2024046605A (ja) 2024-04-03

Family

ID=90481571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023132177A Pending JP2024046605A (ja) 2022-09-22 2023-08-14 シリカ粒子、静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置及び画像形成方法

Country Status (1)

Country Link
JP (1) JP2024046605A (ja)

Similar Documents

Publication Publication Date Title
JP6988236B2 (ja) 静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置、及び画像形成方法
JP2024046605A (ja) シリカ粒子、静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置及び画像形成方法
JP2024046606A (ja) シリカ粒子、静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置及び画像形成方法
US20240118645A1 (en) Silica particle, toner for developing electrostatic charge image, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
US20240126186A1 (en) Silica particle, toner for developing electrostatic charge image, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
EP4343440A1 (en) Electrostatic image developer, process cartridge, image forming apparatus, and image forming method
US20240103391A1 (en) Electrostatic image developer, process cartridge, image forming apparatus, and image forming method
JP2024044916A (ja) シリカ粒子、静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置及び画像形成方法
EP4343442A1 (en) Toner for electrostatic image development, electrostatic image developer, toner cartridge, image forming apparatus, and image forming method
JP2024046533A (ja) 静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置及び画像形成方法
JP2024046535A (ja) 静電荷像現像剤、プロセスカートリッジ、画像形成装置及び画像形成方法
US20230108365A1 (en) Electrostatic charge image developing toner, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
US20230107000A1 (en) Electrostatic charge image developing toner, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP2024046537A (ja) 静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置及び画像形成方法
JP2023147155A (ja) 静電荷像現像剤、プロセスカートリッジ、画像形成装置及び画像形成方法
US20230314975A1 (en) Electrostatic charge image developer, process cartridge, image forming apparatus, and image forming method
JP2024046534A (ja) 静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置及び画像形成方法
CN117742103A (zh) 二氧化硅粒子、调色剂、显影剂、盒、成像装置及成像方法
JP2023143610A (ja) 静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置及び画像形成方法
CN117742104A (zh) 二氧化硅粒子、调色剂、显影剂、盒、成像装置及方法
EP4250015A1 (en) Electrostatic charge image developing toner, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
US20230095411A1 (en) Electrostatic charge image developing toner, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP2024046536A (ja) 静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置及び画像形成方法
CN116893586A (zh) 静电潜像显影剂、处理盒、图像形成装置及图像形成方法