JP2024044843A - Water-disintegratable adhesive and temporary bonding method using the same - Google Patents
Water-disintegratable adhesive and temporary bonding method using the same Download PDFInfo
- Publication number
- JP2024044843A JP2024044843A JP2022150614A JP2022150614A JP2024044843A JP 2024044843 A JP2024044843 A JP 2024044843A JP 2022150614 A JP2022150614 A JP 2022150614A JP 2022150614 A JP2022150614 A JP 2022150614A JP 2024044843 A JP2024044843 A JP 2024044843A
- Authority
- JP
- Japan
- Prior art keywords
- water
- adhesive
- adhesive layer
- coordination polymer
- melting point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000853 adhesive Substances 0.000 title claims abstract description 65
- 230000001070 adhesive effect Effects 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 title claims description 32
- 239000012790 adhesive layer Substances 0.000 claims abstract description 63
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 58
- 239000013256 coordination polymer Substances 0.000 claims abstract description 45
- 229920001795 coordination polymer Polymers 0.000 claims abstract description 45
- 238000002844 melting Methods 0.000 claims abstract description 42
- 230000008018 melting Effects 0.000 claims abstract description 42
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 10
- 150000003624 transition metals Chemical class 0.000 claims abstract description 10
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 20
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 12
- 238000009210 therapy by ultrasound Methods 0.000 claims description 11
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 10
- 238000000354 decomposition reaction Methods 0.000 claims description 8
- 150000003851 azoles Chemical class 0.000 abstract description 3
- 229910019142 PO4 Inorganic materials 0.000 abstract 1
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- 235000021317 phosphate Nutrition 0.000 abstract 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 abstract 1
- 238000007654 immersion Methods 0.000 description 15
- 239000000843 powder Substances 0.000 description 11
- 239000010949 copper Substances 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- MFLKDEMTKSVIBK-UHFFFAOYSA-N zinc;2-methylimidazol-3-ide Chemical compound [Zn+2].CC1=NC=C[N-]1.CC1=NC=C[N-]1 MFLKDEMTKSVIBK-UHFFFAOYSA-N 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 6
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000002411 thermogravimetry Methods 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- 239000012621 metal-organic framework Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 239000013154 zeolitic imidazolate framework-8 Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000012669 compression test Methods 0.000 description 4
- 150000002460 imidazoles Chemical class 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000004064 recycling Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000005411 Van der Waals force Methods 0.000 description 3
- 230000001464 adherent effect Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 150000003852 triazoles Chemical class 0.000 description 3
- 238000001291 vacuum drying Methods 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- -1 2-cyanoacrylate compound Chemical class 0.000 description 2
- 101100283604 Caenorhabditis elegans pigk-1 gene Proteins 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 125000005647 linker group Chemical group 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000010309 melting process Methods 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000013110 organic ligand Substances 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 150000003217 pyrazoles Chemical class 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- KJUGUADJHNHALS-UHFFFAOYSA-N 1H-tetrazole Substances C=1N=NNN=1 KJUGUADJHNHALS-UHFFFAOYSA-N 0.000 description 1
- NSPMIYGKQJPBQR-UHFFFAOYSA-N 4H-1,2,4-triazole Chemical compound C=1N=CNN=1 NSPMIYGKQJPBQR-UHFFFAOYSA-N 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical class C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910001849 group 12 element Inorganic materials 0.000 description 1
- 229910021476 group 6 element Inorganic materials 0.000 description 1
- 229910021474 group 7 element Inorganic materials 0.000 description 1
- 229910021472 group 8 element Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002060 nanoflake Substances 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- FNIQKHXZAHAFCZ-UHFFFAOYSA-N phosphoric acid;1h-pyrrole Chemical group C=1C=CNC=1.OP(O)(O)=O FNIQKHXZAHAFCZ-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000642 polymer Chemical group 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 150000003233 pyrroles Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 150000003536 tetrazoles Chemical class 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
Landscapes
- Adhesives Or Adhesive Processes (AREA)
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
Abstract
Description
本発明は、水で容易に解体することが可能な接着剤及びそれを用いた仮接着方法に関する。 The present invention relates to an adhesive that can be easily dismantled with water and a temporary bonding method using the same.
従来の接着剤は、その接着強度を向上させるという観点から、有機高分子同士を共有結合により架橋させるため、被着材の仮接着という点では、接着剤層を容易に除去できないという問題があった。また、有機高分子同士のファンデルワールス力を利用した接着剤は、仮接着という用途であっても、その接着強度が十分ではないという問題があった。 Conventional adhesives crosslink organic polymers with covalent bonds to improve their adhesive strength, but when used for temporary bonding of adherends, they have the problem that the adhesive layer cannot be easily removed. In addition, adhesives that utilize the van der Waals forces between organic polymers have the problem that their adhesive strength is insufficient even for temporary bonding applications.
そこで、比較的高い接着強度を有し、かつ、水により容易に剥離又は除去することが可能な接着剤として、2-シアノアクリレート化合物と水溶性化合物とを含有する水易解体性接着剤組成物(特開2019-137858号公報(特許文献1))や、3個~6個の1,2-アルキレンオキシ構造を有する2-シアノアクリレート化合物を含む仮固定用接着剤組成物(特開2021-25014号公報(特許文献2))が提案されている。しかしながら、これらの接着剤組成物においては、水による接着剤層の解体性が十分ではなかった。 In response to this, a water-easily dismantlable adhesive composition containing a 2-cyanoacrylate compound and a water-soluble compound (JP Patent Publication No. 2019-137858 (Patent Document 1)) and a temporary fixing adhesive composition containing a 2-cyanoacrylate compound having 3 to 6 1,2-alkyleneoxy structures (JP Patent Publication No. 2021-25014 (Patent Document 2)) have been proposed as adhesives that have a relatively high adhesive strength and can be easily peeled off or removed with water. However, these adhesive compositions did not provide sufficient dismantling of the adhesive layer with water.
また、Yanyi Zhaoら、ACS Nano、2017年、第11巻、3662~3670頁(非特許文献1)においては、ホフマン型シアノブリッジ配位高分子であるNi(H2O)2[Ni(CN)4]・4H2Oを用いた接着について検討されており、前記Ni(H2O)2[Ni(CN)4]・4H2Oの板状結晶のナノフレークをペースト化して用いることによって、ガラスやプラスチック、金属等の被着材を接合できることが開示されている。しかしながら、固体粉末を含有するペースト状の接着剤は、乾燥等により溶媒を除去した後、接着剤層に空隙が形成されやすいため、接合強度が十分ではないという問題があった。 In addition, Yanyi Zhao et al., ACS Nano, 2017, Vol. 11, pp. 3662-3670 (Non-Patent Document 1), have investigated adhesion using Ni(H 2 O) 2 [Ni(CN) 4 ].4H 2 O, which is a Hoffman-type cyano-bridge coordination polymer, and have disclosed that nanoflakes of plate-like crystals of the Ni(H 2 O) 2 [Ni(CN) 4 ].4H 2 O can be used in the form of a paste to bond adherends such as glass, plastics, and metals. However, a paste-like adhesive containing a solid powder has a problem in that voids are easily formed in the adhesive layer after the solvent is removed by drying or the like, resulting in insufficient bonding strength.
本発明は、上記従来技術の有する課題に鑑みてなされたものであり、比較的高い接合強度を有し、かつ、常温の水により容易に解体できる接着剤層を形成することが可能な接着剤及びそれを用いた仮接着方法を提供することを目的とする。 The present invention has been made in view of the problems of the prior art described above, and provides an adhesive that has relatively high bonding strength and is capable of forming an adhesive layer that can be easily dismantled with water at room temperature. The object of the present invention is to provide a temporary adhesion method using the same.
本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、遷移金属とアゾール類とリン酸とを含み、融点が特定の範囲内にある金属有機構造体(MOF)等の配位性高分子(CP)を接着剤として用いることによって、比較的高い接合強度を有し、かつ、常温の水により容易に解体することが可能な接着剤層を形成できることを見出し、本発明を完成するに至った。 As a result of intensive research conducted by the inventors to achieve the above object, they discovered that by using as an adhesive a coordination polymer (CP) such as a metal-organic framework (MOF) that contains a transition metal, an azole, and phosphoric acid and has a melting point within a specific range, it is possible to form an adhesive layer that has a relatively high bonding strength and can be easily disassembled with water at room temperature, and thus completed the present invention.
すなわち、本発明は以下の態様を提供する。 That is, the present invention provides the following aspects:
[1]遷移金属とアゾール類とリン酸とを含み、融点が80~700℃である配位性高分子からなる、水易解体性接着剤。 [1] A water-disintegrable adhesive comprising a coordination polymer containing a transition metal, an azole, and phosphoric acid and having a melting point of 80 to 700°C.
[2][1]に記載の水易解体性接着剤を前記配位性高分子の融点以上分解点未満の温度で加熱して溶融させる工程と、被着材の間に溶融状態の前記水易解体性接着剤からなる接着剤層を形成する工程と、溶融状態の前記接着剤層を前記配位性高分子の融点未満に降温して硬化させる工程と、硬化した前記接着剤層を水に接触させて解体する工程とを含む、仮接着方法。 [2] A step of heating and melting the water easily disassembling adhesive according to [1] at a temperature higher than or equal to the melting point of the coordination polymer and lower than the decomposition point, and a step of melting the water in a molten state between the adherends. a step of forming an adhesive layer made of an easily disassembleable adhesive; a step of lowering the temperature of the molten adhesive layer to below the melting point of the coordination polymer to cure it; and a step of heating the cured adhesive layer with water. A temporary adhesion method including a step of bringing it into contact with and disassembling it.
[3]硬化した前記接着剤層を解体する工程において、前記接着剤層に超音波処理を施す、[2]に記載の仮接着方法。 [3] The temporary adhesion method according to [2], wherein the adhesive layer is subjected to ultrasonic treatment in the step of disassembling the cured adhesive layer.
なお、本発明における「水易解体性」とは、水に接触した場合に容易に解体される性質を意味する。 In this invention, "easily disintegratable with water" means the property of being easily disintegrated when it comes into contact with water.
また、本発明の水易解体性接着剤を用いることによって、比較的高い接合強度を有し、かつ、常温の水により容易に解体することが可能な接着剤層を形成できる理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、本発明の水易解体性接着剤は配位性高分子を含有するものである。この配位性高分子は、配位性高分子バルク体を構成する結合が、ファンデルワールス力よりも強い配位結合により結合しているため、比較的高い接合強度を有する接着剤層を形成することが可能となると推察される。また、前記配位性高分子は水と接触すると、配位性高分子内の金属ノードと有機リンカとの結合が金属ノードと水との結合に置き換えられるため、前記配位性高分子によって形成された接着剤層は、常温の水により容易に解体することが可能となると推察される。なお、「配位性高分子(CP)」とは多座配位子と金属イオンとからなる連続構造を有する錯体であり、「金属有機構造体(MOF)」とは、前記配位性高分子(CP)のうち、細孔を有するものである。また、「金属ノード」とは金属または金属を含むクラスタからなる被配位体であり、「有機リンカ」とは有機化合物を含む配位子のことである。 In addition, the reason why the water-dismantlable adhesive of the present invention can form an adhesive layer that has a relatively high bonding strength and can be easily dismantled with water at room temperature is not necessarily clear, but the inventors speculate as follows. That is, the water-dismantlable adhesive of the present invention contains a coordination polymer. It is speculated that this coordination polymer is capable of forming an adhesive layer with a relatively high bonding strength because the bonds that constitute the coordination polymer bulk are bonded by coordination bonds stronger than van der Waals forces. In addition, when the coordination polymer comes into contact with water, the bonds between the metal nodes and the organic linkers in the coordination polymer are replaced by bonds between the metal nodes and water, so it is speculated that the adhesive layer formed by the coordination polymer can be easily dismantled with water at room temperature. Note that a "coordination polymer (CP)" is a complex having a continuous structure consisting of a multidentate ligand and a metal ion, and a "metal-organic framework (MOF)" is a coordination polymer (CP) that has pores. Additionally, a "metal node" is a coordinated entity consisting of a metal or a cluster containing a metal, and an "organic linker" is a ligand containing an organic compound.
本発明によれば、比較的高い接合強度を有し、かつ、常温の水により容易に解体できる接着剤層を形成することが可能となる。 The present invention makes it possible to form an adhesive layer that has a relatively high bonding strength and can be easily dismantled with water at room temperature.
以下、本発明をその好適な実施形態に即して詳細に説明する。 Hereinafter, the present invention will be explained in detail based on its preferred embodiments.
〔水易解体性接着剤〕
先ず、本発明の水易解体性接着剤について説明する。本発明の水易解体性接着剤は、遷移金属とアゾール類とリン酸とを含み、融点が80~700℃である配位性高分子(CP:Coordination Polymer)からなるものである。このような配位性高分子においては、遷移金属にアゾール類等の有機配位子が配位した構造を有しており、ファンデルワールス力と配位結合によって高分子構造が形成される。前記配位結合は水によって容易に乖離されるため、本発明の水易解体性接着剤からなる接着材層は常温の水により容易に解体することができる。
[Water-Easy Dismantling Adhesive]
First, the water-dismantlable adhesive of the present invention will be described. The water-dismantlable adhesive of the present invention is made of a coordination polymer (CP) containing a transition metal, an azole, and phosphoric acid, and having a melting point of 80 to 700°C. In such a coordination polymer, an organic ligand such as an azole is coordinated to a transition metal, and a polymer structure is formed by van der Waals forces and coordination bonds. The coordination bonds are easily dissociated by water, so that an adhesive layer made of the water-dismantlable adhesive of the present invention can be easily dismantled by water at room temperature.
前記遷移金属としては、アゾール類等の有機配位子が配位し、所定の融点を有する配位性高分子を形成できるものであれば特に制限はないが、対環境性や希少性という観点から、Cr等の第6族元素、Mn等の第7族元素、Feなどの第8族元素、Co等の第9族元素、Niなどの第10族元素、Cu等の第11族元素、Zn、Cd等の第12族元素が好ましく、Cr、Mn、Fe、Co、Ni、Cu、Zn、Cdがより好ましく、Zn、Co、Mn、Ni、Cuが更に好ましい。 There are no particular limitations on the transition metal, so long as it can be coordinated with an organic ligand such as an azole to form a coordination polymer having a predetermined melting point. From the viewpoints of environmental friendliness and rarity, however, Group 6 elements such as Cr, Group 7 elements such as Mn, Group 8 elements such as Fe, Group 9 elements such as Co, Group 10 elements such as Ni, Group 11 elements such as Cu, and Group 12 elements such as Zn and Cd are preferred, with Cr, Mn, Fe, Co, Ni, Cu, Zn, and Cd being more preferred, and Zn, Co, Mn, Ni, and Cu being even more preferred.
前記アゾール類としては、前記遷移金属に配位し、所定の融点を有する配位性高分子を形成できるものであれば特に制限はなく、例えば、ピロール類、ジアゾール類(例えば、イミダゾール類、ピラゾール類)、トリアゾール類、テトラゾール類が挙げられる。これらのアゾール類のうち、配位という観点から、イミダゾール類、ピラゾール類、トリアゾール類が好ましく、イミダゾール類、トリアゾール類がより好ましい。また、前記イミダゾール類としては、イミダゾール、ベンズイミダゾール等が挙げられる。 The azoles are not particularly limited as long as they can be coordinated to the transition metal to form a coordination polymer having a predetermined melting point, and examples thereof include pyrroles, diazoles (e.g., imidazoles, pyrazoles), triazoles, and tetrazoles. Among these azoles, imidazoles, pyrazoles, and triazoles are preferred from the viewpoint of coordination, and imidazoles and triazoles are more preferred. Examples of the imidazoles include imidazole and benzimidazole.
また、前記配位性高分子には、リン酸が含まれている。リン酸を含む配位性高分子を接着剤として用いることによって、配位性高分子を溶融させる際の加熱温度を低下させることが可能となる。 The coordination polymer also contains phosphoric acid. By using a coordination polymer containing phosphoric acid as an adhesive, it is possible to reduce the heating temperature when melting the coordination polymer.
前記配位性高分子は、80~700℃の融点を有するものである。このような範囲内の融点を有する配位性高分子を接着剤として用いることによって、加熱によって前記配位性高分子を溶融することができるため、溶融状態の接着剤層を形成することができ、この溶融状態の接着剤層を冷却して硬化させることによって被着材を接合することが可能となる。また、溶媒を用いずに接着剤層を形成できるため、溶媒除去に起因する空隙(ボイド)の生成を防ぐことができ、比較的高い接合強度で被着材を接合することが可能となる。一方、加熱しても溶融しない配位性高分子は、加熱により有機成分が分解するため、溶融状態の接着剤層を形成することが困難である。他方、前記配位性高分子の融点が前記下限未満になると、実用上の室温でも融解し、接合強度の維持が困難となる。また、前記配位性高分子の融点としては、接合形成の容易さと被着材の熱からの保護という観点から、80~300℃がより好ましい。 The coordination polymer has a melting point of 80 to 700°C. By using a coordination polymer having a melting point within this range as an adhesive, the coordination polymer can be melted by heating, so that a molten adhesive layer can be formed, and the molten adhesive layer can be cooled and hardened to bond the adherend. In addition, since the adhesive layer can be formed without using a solvent, it is possible to prevent the generation of voids caused by solvent removal, and it is possible to bond the adherend with a relatively high bonding strength. On the other hand, it is difficult to form a molten adhesive layer with a coordination polymer that does not melt even when heated, because the organic components decompose when heated. On the other hand, if the melting point of the coordination polymer is below the lower limit, it will melt even at practical room temperature, making it difficult to maintain the bonding strength. In addition, the melting point of the coordination polymer is more preferably 80 to 300°C from the viewpoints of ease of bonding and protection of the adherend from heat.
このような遷移金属とアゾール類とリン酸とを含み、前記範囲内の融点を有する配位性高分子として、具体的には、表1に示すものが挙げられる。 Specific examples of the coordination polymer containing such a transition metal, an azole, and phosphoric acid and having a melting point within the above range include those shown in Table 1.
これらの配位性高分子のうち、原料の毒性の低さや合成の容易さという観点から、リン酸アゾール構造体(例えば、[Zn(HPO4)(H2PO4)2](ImH2)2、[Zn3(H2PO4)6(H2O)3](BImH)、[Zn3(H2PO4)6(H2O)3](2-MeBImH)、[Zn2(HPO4)2(H2PO4)(5-ClBImH)2](H2PO4)(MeOH))が好ましい。 Among these coordination polymers, from the viewpoints of low toxicity of the raw materials and ease of synthesis, azole phosphate structures (e.g., [Zn( HPO4 )( H2PO4 ) 2 ] ( ImH2 ) 2 , [ Zn3 ( H2PO4 ) 6 ( H2O ) 3 ](BImH), [ Zn3 ( H2PO4 ) 6 ( H2O ) 3 ](2-MeBImH), [Zn2( HPO4 ) 2 ( H2PO4 )(5-ClBImH) 2 ]( H2PO4 ) ( MeOH )) are preferred.
本発明の水易解体性接着剤の製造方法としては、前記配位性高分子を形成できる方法であれば特に制限はなく、例えば、前記遷移金属を含有する化合物と前記アゾール類とリン酸とを物理的に混合する方法(メカノケミカル法)が挙げられる。前記遷移金属を含有する化合物と前記アゾール類とリン酸との混合比率は、得られる前記配位性高分子の各成分の量論比に応じて適宜設定することができる。 The method for producing the water-disassembly adhesive of the present invention is not particularly limited as long as the above-mentioned coordination polymer can be formed. A method of physically mixing (mechanochemical method) is mentioned. The mixing ratio of the transition metal-containing compound, the azole, and phosphoric acid can be appropriately set depending on the stoichiometric ratio of each component of the resulting coordination polymer.
また、このようにして得られた前記配位性高分子には真空乾燥を施すことが好ましい。これにより、合成時に吸着した大気中のガスや溶媒等を脱離できる。真空乾燥時の加熱温度としては特に制限はないが、大気中のガス(水など)や合成に用いた溶媒の沸点より高い温度が好ましい。 The coordination polymer thus obtained is preferably subjected to vacuum drying. This allows the atmospheric gases and solvents adsorbed during synthesis to be desorbed. There are no particular limitations on the heating temperature during vacuum drying, but a temperature higher than the boiling point of the atmospheric gases (such as water) and the solvent used in synthesis is preferred.
〔仮接着方法〕
本発明の仮接着方法は、固体状(好ましくはシート状若しくは粉末状)の前記本発明の水易解体性接着剤を前記配位性高分子の融点以上分解点未満の温度で加熱して溶融させる工程(溶融工程)と、
被着材の間に溶融状態の前記水易解体性接着剤からなる接着剤層を形成する工程(接着剤層形成工程)と、
溶融状態の前記接着剤層を前記配位性高分子の融点未満に降温して硬化させる工程(硬化工程)と、
硬化した前記接着剤層を水に接触させて解体する工程(解体工程)と
を含む方法である。
[Temporary adhesion method]
The temporary adhesion method of the present invention includes melting the solid (preferably sheet or powder) water-disassembleable adhesive of the present invention by heating it at a temperature higher than or equal to the melting point of the coordination polymer and lower than the decomposition point. (melting process),
a step of forming an adhesive layer made of the easily dismantled adhesive in a molten state between adherends (adhesive layer forming step);
a step of curing the adhesive layer in a molten state by lowering the temperature to below the melting point of the coordination polymer (curing step);
This method includes a step of bringing the cured adhesive layer into contact with water and dismantling it (dismantling step).
(溶融工程)
前記溶融工程は、固体状(好ましくは粉末状)の前記水易解体性接着剤を前記配位性高分子の融点以上分解点未満の温度で加熱する工程である。これにより、溶融状態の前記水易解体性接着剤(前記配位性高分子)が得られる。なお、前記配位性高分子の分解点は、熱重量測定(TGA)等の熱分析により測定することができる。また、加熱時間としては特に制限はなく、前記水易解体性接着剤が十分に溶融されるように、適宜設定することができる。加熱雰囲気としては特に制限はないが、被着材の熱的安定性を考慮して、不活性ガスを用いてもよい。
(melting process)
The melting step is a step of heating the solid (preferably powdered) water-disintegrable adhesive at a temperature higher than the melting point and lower than the decomposition point of the coordination polymer. As a result, the easily disassembleable adhesive (the coordination polymer) in a molten state is obtained. Note that the decomposition point of the coordination polymer can be measured by thermal analysis such as thermogravimetry (TGA). Further, the heating time is not particularly limited and can be set as appropriate so that the water easily dismantled adhesive is sufficiently melted. Although there are no particular restrictions on the heating atmosphere, an inert gas may be used in consideration of the thermal stability of the adherend.
固体状の前記水易解体性接着剤を加熱して溶融する際、被着材の上に予め配置した固体状の前記水易解体性接着剤を加熱して溶融してもよいし(溶融方法1)、被着材の間に予め配置(挟持)した固体状の前記水易解体性接着剤を加熱して溶融してもよいし(溶融方法2)、固体状の前記水易解体性接着剤を別個独立に(被着材の上に配置したり、被着材の間に配置(挟持)したりせずに)加熱して溶融してもよい(溶融方法3)。 When heating and melting the solid water-dismantling adhesive, the solid water-dismantling adhesive placed in advance on the adherend may be heated and melted (melting method 1) The solid water easily dismantled adhesive placed in advance (sandwiched) between adherends may be heated and melted (melting method 2), or the solid water easily dismantled adhesive may be melted (melting method 2). The agent may be heated and melted separately (without being placed on or between adherends) (melting method 3).
(接着剤層形成工程)
前記接着剤層形成工程は、被着材の間に溶融状態の前記水易解体性接着剤からなる接着剤層を形成する工程である。具体的には、前記溶融工程において、前記溶融方法1により前記水易解体性接着剤を溶融した場合には、溶融状態の前記水易解体性接着剤の上に他の被着材を配置することにより、被着材の間に溶融状態の前記接着剤層を形成することができる。また、前記溶融方法2により前記水易解体性接着剤を溶融した場合には、溶融完了により、被着材の間に溶融状態の前記接着剤層が形成される。さらに、前記溶融方法3により前記水易解体性接着剤を溶融した場合には、溶融状態の前記水易解体性接着剤を被着材上に塗布し、その上に他の被着材を配置することによって、被着材の間に溶融状態の前記接着剤層を形成することができる。
(Adhesive layer forming process)
The adhesive layer forming step is a step of forming an adhesive layer made of the water-easily dismantlable adhesive in a molten state between the adherends. Specifically, in the melting step, when the water-easily dismantlable adhesive is melted by the melting method 1, the adhesive layer in a molten state can be formed between the adherends by placing another adherend on the water-easily dismantlable adhesive in a molten state. When the water-easily dismantlable adhesive is melted by the melting method 2, the adhesive layer in a molten state is formed between the adherends upon completion of melting. Furthermore, when the water-easily dismantlable adhesive is melted by the melting method 3, the adhesive layer in a molten state can be formed between the adherends by applying the water-easily dismantlable adhesive in a molten state onto the adherends and placing another adherend on the adhesive.
(硬化工程)
前記硬化工程は、溶融状態の前記接着剤層を前記配位性高分子の融点未満(好ましくは、融点より30℃以上低い温度)に降温する工程である。これにより、前記接着剤層が硬化し、硬化した前記接着剤層により前記被着材が仮接着される。溶融状態の前記接着剤層を降温する際、前記接着剤層を加圧することが好ましい。これにより、前記接着剤層に空隙(ボイド)が生成しにくくなり、接合強度が向上する。また、降温時間としては特に制限はなく、前記接着剤層が十分に硬化するように、適宜設定することができる。
(Curing process)
The curing step is a step of lowering the temperature of the molten adhesive layer to a temperature lower than the melting point of the coordination polymer (preferably a temperature at least 30°C lower than the melting point). This hardens the adhesive layer, and the adherend is temporarily bonded by the hardened adhesive layer. When lowering the temperature of the molten adhesive layer, it is preferable to pressurize the adhesive layer. This makes it difficult for voids to form in the adhesive layer, improving the bonding strength. There is no particular limit to the temperature-lowering time, and it can be set appropriately so that the adhesive layer is sufficiently hardened.
(解体工程)
前記解体工程は、硬化した前記接着剤層に水を接触させる工程である。これにより、前記接着剤層が容易に解体される。硬化した前記接着剤層に水を接触させる方法としては特に制限はなく、例えば、前記硬化工程で得られる仮接着体を、水、水溶液又は水含有組成物に浸漬する方法、水蒸気または水蒸気を含むガスにより燻蒸する方法等が挙げられる。本発明の仮接着方法において、前記の水等は加熱する必要はなく、常温の水等を使用することができる。また、水との接触時間としては特に制限はなく、前記接着剤層が十分に解体されるように、適宜設定することができる。
(Dismantling process)
The dismantling step is a step of bringing the cured adhesive layer into contact with water. This allows the adhesive layer to be easily dismantled. There is no particular limitation on the method of bringing the cured adhesive layer into contact with water, and examples of the method include a method of immersing the temporary adhesive body obtained in the curing step in water, an aqueous solution or a water-containing composition, and a method of fumigating with water vapor or a gas containing water vapor. In the temporary adhesion method of the present invention, the water does not need to be heated, and water at room temperature can be used. In addition, there is no particular limitation on the contact time with water, and it can be appropriately set so that the adhesive layer is sufficiently dismantled.
また、この解体工程においては、硬化した前記接着剤層に水を接触させる際又は接触させた後に、前記接着剤層に超音波処理を施すことが好ましい。これにより、前記接着剤層が更に解体されやすくなる。超音波処理の条件としては特に制限はないが、例えば、出力としては100~2000Wが好ましく、処理時間としては5~300秒間が好ましい。 Further, in this disassembly step, it is preferable that the adhesive layer is subjected to ultrasonic treatment when or after the cured adhesive layer is brought into contact with water. This makes it easier to dismantle the adhesive layer. There are no particular limitations on the conditions for ultrasonic treatment, but for example, the output is preferably 100 to 2000 W, and the treatment time is preferably 5 to 300 seconds.
以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.
(実施例1)
酸化亜鉛(ZnO)とイミダゾール(ImH)とリン酸(H3PO4)とをモル比で1:2:3となるように秤量し、これらを乳鉢で15分間混合し、得られた混合物を100℃で600分間真空乾燥して、[Zn(HPO4)(H2PO4)2](ImH2)2(融点:160℃。以下「ZnPaIm」と略す。)からなる白色粉末を得た。また、熱重量測定(TGA)により求めたZnPaImの分解点は200℃であった。
(Example 1)
Zinc oxide (ZnO), imidazole (ImH), and phosphoric acid (H 3 PO 4 ) were weighed in a molar ratio of 1:2:3, mixed in a mortar for 15 minutes, and the resulting mixture was Vacuum drying was performed at 100° C. for 600 minutes to obtain a white powder consisting of [Zn(HPO 4 )(H 2 PO 4 ) 2 ](ImH 2 ) 2 (melting point: 160° C., hereinafter abbreviated as “ZnPaIm”). . Further, the decomposition point of ZnPaIm determined by thermogravimetry (TGA) was 200°C.
この白色粉末を用いて2枚のアルミニウム板を図1に示すように仮接着した。具体的には、アルミニウムA1050板(被着材A、長さ45mm×幅17mm×厚さ1.5mm)上の端部(縦10mm×横17mm)に前記白色粉末を載せ、160℃で加熱して前記白色粉末を溶融させ、溶融状態の接着剤層を形成した。次に、この溶融状態の接着剤層の上に、アルミニウムA1050板(被着材B、長さ45mm×幅17mm×厚さ1.5mm)の端部(縦10mm×横17mm)を載せ、その上に500gの重りを載せて加圧しながら25℃まで降温して前記接着剤層を硬化させ、2枚のアルミニウムA1050板(被着材A及びB)を仮接着した。この仮接着体を2個作製した。 Two aluminum plates were temporarily bonded using this white powder as shown in FIG. Specifically, the white powder was placed on the edge (10 mm long x 17 mm wide) of an aluminum A1050 plate (adherent A, length 45 mm x width 17 mm x thickness 1.5 mm), and heated at 160°C. The white powder was melted to form a molten adhesive layer. Next, the end (length 10 mm x width 17 mm) of an aluminum A1050 plate (adherent B, length 45 mm x width 17 mm x thickness 1.5 mm) was placed on top of this molten adhesive layer. A 500 g weight was placed on top and the temperature was lowered to 25° C. while applying pressure to harden the adhesive layer, and two aluminum A1050 plates (adherents A and B) were temporarily bonded. Two pieces of this temporary bonded body were produced.
得られた仮接着体の1つについて、引張試験機(インストロン・ジャパン・カンパニィ・リミテッド製「5566型万能試験機」)を用いて引張速度1mm/minで、図1に示すように引張試験を行い、引張せん断強度を測定した。前記仮接着体の引張せん断強度は2.7MPaであり、これを接合強度とした。 One of the obtained temporary adhesive bodies was subjected to a tensile test as shown in Fig. 1 at a tensile speed of 1 mm/min using a tensile testing machine (“5566 Universal Testing Machine” manufactured by Instron Japan Company Limited). The tensile shear strength was measured. The tensile shear strength of the temporary bonded body was 2.7 MPa, which was taken as the bonding strength.
次に、もう1つの仮接着体の一方の端部(被着材A又はBの前記接着剤層が形成されていない端部)に500gの重りを取り付け、この重りを垂下させた状態で前記仮接着体を20℃の水に浸漬した。その結果、浸漬開始から1秒以下で前記接着剤層が解体された。 Next, a 500 g weight was attached to one end of the other temporary adhesive body (the end of the adherend A or B where the adhesive layer was not formed), and the temporary adhesive body was immersed in water at 20°C with the weight hanging down. As a result, the adhesive layer was broken down within 1 second after the start of immersion.
以上の結果から、本発明の水易解体性接着剤からなる接着剤層は、比較的高い接合強度を有し、かつ、常温の水により容易に解体されるものであることが確認された。 These results confirm that the adhesive layer made of the water-dismantlable adhesive of the present invention has a relatively high bonding strength and is easily dismantled with water at room temperature.
(実施例2)
実施例1と同様にして調製したZnPaIm(融点:160℃、分解点:200℃)からなる白色粉末を用いて2枚の銅円板を図2Aに示すように仮接着した。具体的には、銅C1020円板(被着材A、直径10mm、厚さ5mm)上の中心部(直径5mm)に前記白色粉末を載せ、160℃で加熱して前記白色粉末を溶融させ、溶融状態の接着剤層を形成した。次に、この溶融状態の接着剤層の上に、銅C1020円板(被着材B、直径5mm、厚さ2mm)を載せ、被着材Bの自重により加圧しながら25℃まで降温して前記接着剤層を硬化させ、2枚の銅C1020円板(被着材A及びB)を仮接着した。この仮接着体を複数個作製した。
Example 2
Two copper discs were temporarily bonded as shown in FIG. 2A using white powder made of ZnPaIm (melting point: 160°C, decomposition point: 200°C) prepared in the same manner as in Example 1. Specifically, the white powder was placed on the center (diameter 5 mm) of a copper C1020 disc (adherend A, diameter 10 mm, thickness 5 mm), and heated at 160°C to melt the white powder and form a molten adhesive layer. Next, a copper C1020 disc (adherend B, diameter 5 mm, thickness 2 mm) was placed on this molten adhesive layer, and the adhesive layer was hardened by lowering the temperature to 25°C while applying pressure under the weight of the adherend B, and two copper C1020 discs (adherends A and B) were temporarily bonded. A plurality of such temporary adhesive bodies were produced.
得られた仮接着体の1つについて、圧縮試験機(株式会社イマダ製「デジタルフォースゲージ」を用いて自作したもの)を用いて、大気中、荷重速度1mm/minで、図2Bに示すように圧縮試験を行い、圧縮せん断強度を測定し、これを初期の接合強度とした。初期の接合強度は4.65MPaであった。 A compression test was performed on one of the obtained temporary adhesive bodies using a compression tester (homemade using Imada's "Digital Force Gauge") in air at a loading rate of 1 mm/min, as shown in Figure 2B, to measure the compressive shear strength, which was taken as the initial bond strength. The initial bond strength was 4.65 MPa.
次に、残りの仮接着体のうちの1つを20℃の水道水に30分間浸漬した。水浸漬後の仮接着体について、上記と同様にして圧縮試験を行い、圧縮せん断強度を測定し、これを水浸漬後の接合強度とした。表2及び図3には、初期の接合強度に対する水浸漬後の接合強度の割合を示す。 Next, one of the remaining temporary adhesive bodies was immersed in tap water at 20°C for 30 minutes. The temporary adhesive body after water immersion was subjected to a compression test in the same manner as above to measure the compressive shear strength, which was taken as the bonding strength after water immersion. Table 2 and Figure 3 show the ratio of the bonding strength after water immersion to the initial bonding strength.
また、残りの仮接着体のうちの1つを上記と同様に水に浸漬した後、超音波洗浄器(アズワン株式会社製「MCD-6」)を用いて、20℃のイオン交換水中、出力:150Wで15秒間の超音波処理を行った。水浸漬+超音波処理後の仮接着体について、上記と同様にして圧縮試験を行い、圧縮せん断強度を測定し、これを水浸漬+超音波処理後の接合強度とした。表2及び図3には、初期の接合強度に対する水浸漬+超音波処理後の接合強度の割合を示す。 In addition, after immersing one of the remaining temporarily bonded bodies in water in the same manner as above, the output was immersed in ion-exchanged water at 20°C using an ultrasonic cleaner (“MCD-6” manufactured by As One Co., Ltd.). : Ultrasonication was performed at 150W for 15 seconds. The temporarily bonded body after water immersion + ultrasonic treatment was subjected to a compression test in the same manner as above, and the compressive shear strength was measured, which was taken as the bonding strength after water immersion + ultrasonic treatment. Table 2 and FIG. 3 show the ratio of the bond strength after water immersion + ultrasonic treatment to the initial bond strength.
(実施例3)
酸化亜鉛(ZnO)と1,2,4-トリアゾール(1,2,4-Tz)とリン酸(H3PO4)とをモル比で1:2:2となるように秤量し、これらを乳鉢で15分間混合し、得られた混合物を100℃で600分間真空乾燥して、[Zn(H2PO4)2(1,2,4-Tz)2](融点:184℃。以下「ZnPaTz」と略す。)からなる白色粉末を得た。また、熱重量測定(TGA)により求めたZnPaTzの分解点は189℃であった。
Example 3
Zinc oxide (ZnO), 1,2,4-triazole (1,2,4-Tz), and phosphoric acid (H 3 PO 4 ) were weighed out in a molar ratio of 1:2:2, mixed in a mortar for 15 minutes, and the resulting mixture was vacuum dried at 100°C for 600 minutes to obtain a white powder consisting of [Zn(H 2 PO 4 ) 2 (1,2,4-Tz) 2 ] (melting point: 184°C, hereinafter abbreviated as "ZnPaTz"). The decomposition point of ZnPaTz determined by thermogravimetry (TGA) was 189°C.
このZnPaTzからなる白色粉末を用い、溶融時の加熱温度を185℃に変更した以外は実施例2と同様にして、複数個の仮接着体を作製した。得られた仮接着体の1つについて、実施例2と同様に測定した初期の接合強度は4.31MPaであった。また、実施例2と同様にして、水浸漬後及び水浸漬+超音波処理後の接合強度を測定した。表2及び図3には、初期の接合強度に対する水浸漬後及び水浸漬+超音波処理後の接合強度の割合を示す。 Using this white powder of ZnPaTz, a plurality of temporary bonded bodies were produced in the same manner as in Example 2, except that the heating temperature during melting was changed to 185°C. The initial bonding strength of one of the obtained temporary bonded bodies was measured in the same manner as in Example 2 and was 4.31 MPa. Further, in the same manner as in Example 2, the bonding strength was measured after water immersion and after water immersion + ultrasonic treatment. Table 2 and FIG. 3 show the ratio of the bond strength after water immersion and after water immersion + ultrasonic treatment to the initial bond strength.
(比較例1)
ZnPaImの代わりに、溶融しないMOFである亜鉛2-メチルイミダゾール(ZIF-8、シグマ・アルドリッチ社製。以下「ZIF-8」と略す。)を用いた以外は実施例2と同様にして、仮接着体の作製を試みたが、ZIF-8は加熱すると分解したため、仮接着体を作製することは困難であった。
(Comparative Example 1)
An attempt was made to prepare a temporary bonded body in the same manner as in Example 2, except that zinc 2-methylimidazole (ZIF-8, manufactured by Sigma-Aldrich Co., Ltd., hereinafter abbreviated as "ZIF-8"), which is a non-melting MOF, was used instead of ZnPaIm. However, since ZIF-8 decomposed when heated, it was difficult to prepare a temporary bonded body.
(比較例2)
亜鉛2-メチルイミダゾール(ZIF-8、シグマ・アルドリッチ社製)と水とを混合してペースト状の接着剤の調製を試みたが、ZIF-8は水に分散させることができなかったため、ペースト状の接着剤を調製することは困難であった。
(Comparative Example 2)
An attempt was made to prepare a paste-like adhesive by mixing zinc 2-methylimidazole (ZIF-8, Sigma-Aldrich) with water, but since ZIF-8 could not be dispersed in water, it was difficult to prepare a paste-like adhesive.
表2及び図3に示したように、本発明の水易解体性接着剤からなる接着剤層は、水浸漬後の接合強度が、初期(水浸漬前)に比べて低下したことから、比較的高い接合強度を有し、かつ、常温の水により容易に解体されるものであることが確認された。また、水浸漬後の接着剤層に超音波処理を施すと、接合強度が更に低下したことから、本発明の水易解体性接着剤からなる接着剤層は、水浸漬と超音波処理とを併用することによって、更に容易に解体できることがわかった。 As shown in Table 2 and Figure 3, the adhesive layer made of the water-dismantlable adhesive of the present invention had a lower bond strength after immersion in water compared to the initial strength (before immersion in water), confirming that it had a relatively high bond strength and was easily dismantled by water at room temperature. Furthermore, when the adhesive layer after immersion in water was subjected to ultrasonic treatment, the bond strength was further reduced, indicating that the adhesive layer made of the water-dismantlable adhesive of the present invention can be dismantled even more easily by combining immersion in water with ultrasonic treatment.
以上説明したように、本発明によれば、比較的高い接合強度を有し、かつ、常温の水により容易に解体できる接着剤層を形成することが可能となる。したがって、本発明の水易解体性接着剤を用いる仮接着方法は、接着剤層の解体が容易であるため、精密部品の仮固定、シリコンインゴットの切断、ウエハ研磨、回路形成過程の仮固定、基板上の素子リサイクルのための接合材料、日用品複合体リサイクルのための接合材料、建材・車ボデー等の構造材リサイクルのための接合材料、生体試料用の仮固定等の、製造や検査過程の仮固定、およびリサイクル過程の接着方法として有用である。 As described above, according to the present invention, it is possible to form an adhesive layer that has a relatively high bonding strength and can be easily dismantled with water at room temperature. Therefore, the temporary bonding method using the water-easily dismantlable adhesive of the present invention is useful as an adhesive method for temporary fixation in manufacturing and inspection processes, such as temporary fixation of precision parts, cutting of silicon ingots, wafer polishing, temporary fixation in the circuit formation process, bonding materials for recycling elements on substrates, bonding materials for recycling composite daily necessities, bonding materials for recycling structural materials such as building materials and car bodies, temporary fixation of biological samples, and the like, as well as a bonding method for the recycling process.
Claims (3)
被着材の間に溶融状態の前記水易解体性接着剤からなる接着剤層を形成する工程と、
溶融状態の前記接着剤層を前記配位性高分子の融点未満に降温して硬化させる工程と、
硬化した前記接着剤層を水に接触させて解体する工程と
を含むことを特徴とする仮接着方法。 A step of heating and melting the water-dismantlable adhesive according to claim 1 at a temperature equal to or higher than the melting point and lower than the decomposition point of the coordination polymer;
forming an adhesive layer between adherends, the adhesive layer being made of the molten water-dismantlable adhesive;
a step of curing the molten adhesive layer by lowering the temperature to a temperature lower than the melting point of the coordination polymer;
and bringing the cured adhesive layer into contact with water to disintegrate it.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022150614A JP2024044843A (en) | 2022-09-21 | 2022-09-21 | Water-disintegratable adhesive and temporary bonding method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022150614A JP2024044843A (en) | 2022-09-21 | 2022-09-21 | Water-disintegratable adhesive and temporary bonding method using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024044843A true JP2024044843A (en) | 2024-04-02 |
Family
ID=90480272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022150614A Pending JP2024044843A (en) | 2022-09-21 | 2022-09-21 | Water-disintegratable adhesive and temporary bonding method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2024044843A (en) |
-
2022
- 2022-09-21 JP JP2022150614A patent/JP2024044843A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2832792A1 (en) | Curable resin composition, method for producing same, highly thermally conductive resin composition, and highly thermally conductive multilayer substrate | |
CN109400167B (en) | SiC ceramic with compact connecting layer and preparation method and application thereof | |
JP2014518832A (en) | Method for producing ceramic member combined from a plurality of preforms | |
JP2024044843A (en) | Water-disintegratable adhesive and temporary bonding method using the same | |
RU2193543C2 (en) | Method of manufacturing caked structured ceramic product from aluminum nitride | |
JP3495051B2 (en) | Ceramic-metal joint | |
JPS60197801A (en) | Composition for fixing alloy powder molding during sintering | |
JPS5895668A (en) | Adhesive for non-oxide ceramics and adhesion | |
JPS589859A (en) | Manufacture of binder and formed body based on alkali metal silicate aqueous solution | |
CN114561152B (en) | Room-temperature-curing inorganic-organic composite adhesive with temperature resistance of 400 ℃ and preparation method thereof | |
WO2006115102A1 (en) | Coating layer for heat insulation, laminate for heat insulation, coating material for heat insulation and process for production of the coating material | |
KR101848241B1 (en) | Method for manufacturing epoxy composites comprising boron nitride | |
JPS60171269A (en) | Manufacture of complicated shape silicon nitride sintered body | |
JP7458479B2 (en) | Composite and method for producing the composite | |
CN107419248A (en) | A kind of process of surface treatment of stamping parts of automobile | |
US20240209248A1 (en) | Adhesive and adhesion method using the same | |
JPH02149476A (en) | Binder for silicon carbide ceramics | |
JPS60145966A (en) | Method of dewaxing ceramic injection formed body | |
JP2024091505A (en) | Adhesive and bonding method using the same | |
CN116143538B (en) | Air pressure forming process of carbon fiber composite material | |
JP2001348288A (en) | Particle-dispersed silicon material and method of producing the same | |
JP3370060B2 (en) | Ceramic-metal joint | |
JP3020383B2 (en) | Silicon member bonding method and silicon bonding structure | |
CN104496512A (en) | Binder for silicon carbide ceramic online reaction joint and preparation method thereof | |
JP4318814B2 (en) | Method for producing metal-ceramic composite material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231218 |