JP2024038596A - Resin molding inspection method, inspection device, and computer program used therefor - Google Patents

Resin molding inspection method, inspection device, and computer program used therefor Download PDF

Info

Publication number
JP2024038596A
JP2024038596A JP2022142712A JP2022142712A JP2024038596A JP 2024038596 A JP2024038596 A JP 2024038596A JP 2022142712 A JP2022142712 A JP 2022142712A JP 2022142712 A JP2022142712 A JP 2022142712A JP 2024038596 A JP2024038596 A JP 2024038596A
Authority
JP
Japan
Prior art keywords
inspection
light
resin molded
range
wavelength range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022142712A
Other languages
Japanese (ja)
Inventor
博康 田渕
Hiroyasu Tabuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Kirin Techno System Co Ltd
Original Assignee
Omron Kirin Techno System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Kirin Techno System Co Ltd filed Critical Omron Kirin Techno System Co Ltd
Priority to JP2022142712A priority Critical patent/JP2024038596A/en
Priority to PCT/JP2023/032526 priority patent/WO2024053672A1/en
Publication of JP2024038596A publication Critical patent/JP2024038596A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently inspect the state of the thickness deviation of resin moldings and obtain objective and highly reliable inspection results.
SOLUTION: The inspection range of a bottle as a blow molded resin molding is illuminated by excitation light such as ultraviolet light, and detection object light such as fluorescence in a wavelength region different from the wavelength region of the excitation light is radiated from the bottle. The inspection range of the bottle being illuminated by the excitation light is imaged in such a way that the wavelength region of the detection object light is included in the wavelength region of the imaging object, whereas the wavelength region of the excitation light is excluded from the wavelength region of the imaging object, and the state of thickness deviation in the inspection range is inspected on the basis of the intensity distribution of the detection object light in the captured image.
SELECTED DRAWING: Figure 9
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、特定波長域の励起光を樹脂成形品に照射したときに波長域が異なる光が放出される現象を利用して、ブロー成形された樹脂成形品の偏肉の状態を検査する方法等に関する。 The present invention is a method for inspecting the uneven thickness of a blow-molded resin molded product by utilizing the phenomenon that when a resin molded product is irradiated with excitation light in a specific wavelength range, light with different wavelength ranges is emitted. Regarding etc.

特定波長域の励起光を樹脂成形品に照射したときに、励起光とは異なる波長域の光が樹脂成形品から放出される現象を利用して検査対象の適否を検査する手法が知られている。例えば、PET樹脂(ポリエチレンテレフタレート樹脂)製のボトルを紫外光で照明してボトルを蛍光発光させることにより、ボトルに巻かれたラベルやボトルに施された印字部等の検査対象とボトルとの間に明暗差を生じさせ、その明暗差を手掛かりとして検査対象の良否を判別する手法が提案されている(例えば特許文献1及び2参照)。 There is a known method for inspecting the suitability of an inspection target by utilizing the phenomenon that when a resin molded product is irradiated with excitation light in a specific wavelength range, light in a wavelength range different from that of the excitation light is emitted from the resin molded product. There is. For example, by illuminating a bottle made of PET resin (polyethylene terephthalate resin) with ultraviolet light and causing the bottle to emit fluorescence, it is possible to create a connection between the bottle and the inspection object, such as a label wrapped around the bottle or a printed part on the bottle. A method has been proposed in which a difference in brightness is generated in the object, and the quality of the object to be inspected is determined using the difference in brightness as a clue (for example, see Patent Documents 1 and 2).

特開2008-281477号公報Japanese Patent Application Publication No. 2008-281477 特開2022-37644号公報JP2022-37644A

樹脂製のボトルは概ね中空円筒形のプリフォームをブロー成形して形成される。ブロー成形では、プリフォームの形状誤差、成形品質に影響する温度その他の各種のパラメータの制御誤差等により、樹脂の延伸が局部的に不足して肉厚が不均一になる偏肉不良が成形不良の一種として生じることがある。成形不良の検査は作業者による目視に委ねられているが、偏肉不良は肉厚の微妙な差を把握する必要があって目視のみでは判別が困難である。そのため、作業者が触感も併用しつつ偏肉の状態を判別する必要があった。しかし、そのような作業は効率が悪く、作業者の習熟度が検査品質に影響して検査結果の客観性や信頼性が損なわれるおそれがある。偏肉不良が生じている場合には、成形機の温度制御パラメータといった成形品質に影響する各種のパラメータを調整する必要があるところ、検査品質が十分でなければ、その調整作業も試行錯誤的となって効率が悪化する。したがって、偏肉状態の検査から不良解消のためのパラメータ調整までの一連の作業の効率を改善することが可能な検査方法等の開発が望まれている。上述した従来の検査方法は、ボトルを蛍光発光させてボトルそれ自体を発光源として機能させることにより、ボトルに付属するラベル等の検査対象の欠損等の有無を判別するものであって、ボトルの成形不良を検査するものではない。 A resin bottle is formed by blow molding a generally hollow cylindrical preform. In blow molding, molding defects are caused by uneven wall thickness, which is caused by local insufficient stretching of the resin and uneven wall thickness due to errors in the shape of the preform, control errors in temperature and other various parameters that affect molding quality, etc. It may occur as a type of. Inspection for molding defects is left to visual inspection by an operator, but uneven thickness defects require an understanding of subtle differences in wall thickness and are difficult to identify by visual inspection alone. Therefore, it was necessary for the operator to determine the state of uneven thickness while also using tactile sensation. However, such work is inefficient, and the operator's proficiency level may affect the quality of the test, which may impair the objectivity and reliability of the test results. If uneven thickness defects occur, it is necessary to adjust various parameters that affect molding quality, such as the temperature control parameters of the molding machine, but if the inspection quality is not sufficient, the adjustment work can be a trial and error process. As a result, efficiency deteriorates. Therefore, it is desired to develop an inspection method that can improve the efficiency of a series of operations from inspecting the state of uneven thickness to adjusting parameters to eliminate defects. The above-mentioned conventional inspection method uses the bottle to emit fluorescence to function as a light source, thereby determining the presence or absence of defects in the inspection target such as the label attached to the bottle. It is not intended to inspect molding defects.

そこで、本発明は、樹脂成形品の偏肉の状態を効率よく検査し、客観的でかつ信頼性の高い検査結果を得ることが可能な樹脂成形品の検査方法等を提供することを目的とする。 SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an inspection method for resin molded products that can efficiently inspect the state of uneven thickness of resin molded products and obtain objective and highly reliable test results. do.

本発明の一態様に係る樹脂成形品の検査方法は、ブロー成形された樹脂成形品における偏肉の状態を検査する樹脂成形品の検査方法であって、照射した光の波長域とは異なる波長域の光を検出対象光として前記樹脂成形品から放出させることが可能な励起光により前記樹脂成形品の検査範囲を照明する手順と、前記励起光にて照明された前記樹脂成形品の前記検査範囲を、前記検出対象光の波長域が撮像対象の波長域に含まれる一方で前記励起光の波長域が前記撮像対象の波長域からは除かれるようにして撮像する手順と、撮像された画像中における前記検出対象光の強度分布に基づいて、前記検査範囲における偏肉の状態を検査する手順と、を含んだものである。 A resin molded product inspection method according to one aspect of the present invention is a resin molded product inspection method for inspecting the state of uneven thickness in a blow-molded resin molded product, and includes a method for inspecting a resin molded product that has a wavelength different from the wavelength range of the irradiated light. A step of illuminating an inspection range of the resin molded product with excitation light that can be emitted from the resin molded product using light in the area as detection target light, and the inspection of the resin molded product illuminated with the excitation light. A procedure for imaging a range such that the wavelength range of the detection target light is included in the wavelength range of the imaging target while the wavelength range of the excitation light is excluded from the wavelength range of the imaging target, and the captured image and a step of inspecting the state of uneven thickness in the inspection range based on the intensity distribution of the detection target light inside.

本発明の一態様に係る樹脂成形品の検査装置は、ブロー成形された樹脂成形品における偏肉の状態を検査する樹脂成形品の検査装置であって、照射した光の波長域とは異なる波長域の光を検出対象光として前記樹脂成形品から放出させることが可能な励起光により前記樹脂成形品の検査範囲を照明する照明手段と、前記励起光にて照明された前記樹脂成形品の前記検査範囲を、前記検出対象光の波長域が撮像対象の波長域に含まれる一方で前記励起光の波長域が前記撮像対象の波長域からは除かれるようにして撮像する撮像手段と、撮像された画像中における前記検出対象光の強度分布に基づいて、前記検査範囲における偏肉の状態を検査し、検査結果を出力する検査手段と、を含んだものである。 A resin molded product inspection device according to one aspect of the present invention is a resin molded product inspection device that inspects the state of uneven thickness in a blow-molded resin molded product, and has a wavelength range different from that of the irradiated light. illuminating means for illuminating an inspection range of the resin molded article with excitation light that can be emitted from the resin molded article as detection target light; an imaging means for imaging an inspection range such that the wavelength range of the detection target light is included in the wavelength range of the imaging target, while the wavelength range of the excitation light is excluded from the wavelength range of the imaging target; and inspection means for inspecting the state of uneven thickness in the inspection range based on the intensity distribution of the detection target light in the image, and outputting an inspection result.

本発明の一態様に係るコンピュータプログラムは、ブロー成形された樹脂成形品における偏肉の状態を検査する樹脂成形品の検査装置であって、照射した光の波長域とは異なる波長域の光を検出対象光として前記樹脂成形品から放出させることが可能な励起光により前記樹脂成形品の検査範囲を照明する照明手段と、前記励起光にて照明された前記樹脂成形品の前記検査範囲を、前記検出対象光の波長域が撮像対象の波長域に含まれる一方で前記励起光の波長域が前記撮像対象の波長域からは除かれるようにして撮像する撮像手段と、を含んだ検査装置に適用されるコンピュータプログラムであって、前記検査装置のコンピュータを、前記撮像手段にて撮像された画像を取得する画像取得手段、及び取得された画像中における前記検出対象光の強度分布に基づいて、前記検査範囲における偏肉の状態を検査し、検査結果を出力する検査手段、として機能させるように構成されたものである。 A computer program according to one aspect of the present invention is a resin molded product inspection device that inspects the state of uneven thickness in a blow-molded resin molded product, and the computer program uses light in a wavelength range different from that of the irradiated light. illumination means for illuminating an inspection range of the resin molded product with excitation light that can be emitted from the resin molded product as detection target light; and an illumination unit that illuminates the inspection range of the resin molded product illuminated with the excitation light, An inspection device comprising an imaging means for capturing an image such that the wavelength range of the detection target light is included in the wavelength range of the imaging target, while the wavelength range of the excitation light is excluded from the wavelength range of the imaging target. An applied computer program that controls the computer of the inspection device based on an image acquisition unit that acquires an image captured by the imaging unit, and the intensity distribution of the detection target light in the acquired image. It is configured to function as an inspection means for inspecting the state of uneven thickness in the inspection range and outputting the inspection results.

本発明の一形態に係る検査方法にて用いられる検査装置の一例を示す図。1 is a diagram showing an example of an inspection device used in an inspection method according to an embodiment of the present invention. ポリエチレンテレフタレート樹脂製のサンプル片に紫外光を照射したときの3次元蛍光スペクトルを測定した結果を示す図。FIG. 3 is a diagram showing the results of measuring a three-dimensional fluorescence spectrum when a sample piece made of polyethylene terephthalate resin was irradiated with ultraviolet light. ボトルを照明する紫外光の分光強度と、ボトルの蛍光発光の分光強度と、フィルタの分光感度との関係の一例を示す図。The figure which shows an example of the relationship between the spectral intensity of the ultraviolet light which illuminates a bottle, the spectral intensity of fluorescence emission of a bottle, and the spectral sensitivity of a filter. カメラの分光感度の一例を示す図。The figure which shows an example of the spectral sensitivity of a camera. 一形態に係る検査方法にて検査対象とされる偏肉不良の例を示す図。FIG. 3 is a diagram illustrating an example of uneven thickness defects that are inspected by the inspection method according to one embodiment. 偏肉不良が生じていない正常なボトルと、偏肉不良が生じたボトルとの間における蛍光発光の相違を示す画像の例。An example of an image showing the difference in fluorescence emission between a normal bottle with no uneven thickness and a bottle with uneven thickness. 図6に示した各ボトルの検査範囲における肉厚のばらつきの程度を、蛍光強度の測定値と確率密度との対応関係によって示す図。FIG. 7 is a diagram showing the degree of variation in wall thickness in the inspection range of each bottle shown in FIG. 6 based on the correspondence between the measured value of fluorescence intensity and the probability density. 図6に示した各ボトルの検査範囲における蛍光強度の測定値の平均値と、肉厚のばらつきに関する標準偏差との対応関係を示す図。FIG. 7 is a diagram showing the correspondence between the average value of the measured fluorescence intensity in the inspection range of each bottle shown in FIG. 6 and the standard deviation regarding the variation in wall thickness. 図1の検査装置の検査部が実行する検査処理の手順の一例を示すフローチャート。2 is a flowchart illustrating an example of the procedure of an inspection process executed by the inspection unit of the inspection apparatus in FIG. 1. FIG.

以下、添付図面を参照して本発明の一形態を説明する。図1は、本発明の一形態に係る検査方法にて用いられる検査装置の一例を示している。本形態の検査方法では、特定波長域の励起光を樹脂成形品に照射したときに、その励起光の波長域とは異なる波長域の光が検出対象光として放出され、その検出対象光の強度と樹脂成形品の肉厚との間に肉厚が大きいほど検出対象光の強度も高くなる関係が生じるという性質を利用して樹脂成形品の偏肉の状態が検査される。以下の形態では、励起光の一例として特定波長域の紫外光を利用し、紫外光の照射に対応して生じる蛍光を検出対象光の一例として、偏肉状態を検査する。図1の検査装置1は、検査対象となるべき樹脂成形品の一例としてのボトル2を検査するものである、検査装置1は、ボトル2の蛍光に基づく画像を取得する画像取得部10と、取得された画像を処理して偏肉の状態を検査する処理部20とを備えている。ボトル2は、一例として、概ね中空円筒形のPET樹脂製のプリフォーム(予備成形体)を、所定の金型(成形型)内でブロー成形することによって形成される。ボトル2の胴部2aは概ね円筒形であり、首部2bと胴部2aの間の肩部2cは概ね円錐台形状である。底部2dは、その中心部が軸線AXに沿って内側に窪んだ形状である。 Hereinafter, one embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows an example of an inspection device used in an inspection method according to one embodiment of the present invention. In the inspection method of this embodiment, when a resin molded product is irradiated with excitation light in a specific wavelength range, light in a wavelength range different from that of the excitation light is emitted as detection target light, and the intensity of the detection target light is The state of uneven thickness of the resin molded product is inspected by utilizing the property that there is a relationship between the thickness of the resin molded product and the larger the wall thickness, the higher the intensity of the light to be detected. In the following embodiment, ultraviolet light in a specific wavelength range is used as an example of excitation light, and the state of uneven thickness is inspected using fluorescence generated in response to the ultraviolet light irradiation as an example of detection target light. The inspection device 1 in FIG. 1 inspects a bottle 2 as an example of a resin molded product to be inspected.The inspection device 1 includes an image acquisition unit 10 that acquires an image based on fluorescence of the bottle 2; The apparatus includes a processing section 20 that processes the acquired image and inspects the state of uneven thickness. The bottle 2 is formed, for example, by blow-molding a generally hollow cylindrical preform made of PET resin in a predetermined mold (molding mold). The body 2a of the bottle 2 has a generally cylindrical shape, and the shoulder 2c between the neck 2b and the body 2a has a generally truncated conical shape. The bottom portion 2d has a shape in which the center portion is recessed inward along the axis AX.

画像取得部10は、ボトル2を照明する照明手段の一例としての照明装置11と、そのボトル2を撮像する撮像手段の一例としての撮像装置12とを備えている。照明装置11は、ボトル2の検査範囲を所定の照明光によって照明する。検査範囲は、ボトル2の全体であってもよいし、ボトル2の一部であってもよい。照明装置11は、ボトル2を蛍光発光させることが可能な波長域の紫外光を照明光として照射する。紫外光の波長域の具体例は後述する。図1の例においては、ボトル2の胴部2aから肩部2cにかけての範囲が検査範囲として設定される。照明装置11は、一例として、その検査範囲を斜め上方から照明する上部照明器11aと、ボトル2の同一の検査範囲を斜め下方から照明する下部照明器11bとを含む。ただし、ボトル2の検査範囲は上記の通り適宜に変更されてよく、照明装置11の構成及び照明方向もボトル2の検査範囲に合わせて適宜に変更されてよい。例えば、ボトル2の首部2bや肩部2cを検査する場合には、それらの位置に合わせて照明装置11及び撮像装置12が配置されてよい。底部2dを検査する場合には、撮像装置12のカメラ13をボトル2の下方に配置してその撮像光軸Lpを軸線AXと一致させ、かつ照明装置11も底部2dを斜め方向から照明するように配置されてよい。 The image acquisition unit 10 includes an illumination device 11 as an example of illumination means for illuminating the bottle 2, and an imaging device 12 as an example of an imaging means for taking an image of the bottle 2. The illumination device 11 illuminates the inspection range of the bottle 2 with predetermined illumination light. The inspection range may be the entire bottle 2 or a part of the bottle 2. The illumination device 11 irradiates the bottle 2 with ultraviolet light in a wavelength range that can cause the bottle 2 to emit fluorescence as illumination light. Specific examples of the wavelength range of ultraviolet light will be described later. In the example of FIG. 1, the range from the body 2a to the shoulder 2c of the bottle 2 is set as the inspection range. The lighting device 11 includes, for example, an upper illuminator 11a that illuminates the inspection range from diagonally above, and a lower illuminator 11b that illuminates the same inspection range of the bottle 2 from diagonally below. However, the inspection range of the bottle 2 may be changed as appropriate as described above, and the configuration and illumination direction of the illumination device 11 may also be changed as appropriate according to the inspection range of the bottle 2. For example, when inspecting the neck 2b and shoulder 2c of the bottle 2, the illumination device 11 and the imaging device 12 may be placed in accordance with their positions. When inspecting the bottom part 2d, the camera 13 of the imaging device 12 is arranged below the bottle 2 so that its imaging optical axis Lp coincides with the axis AX, and the illumination device 11 is also arranged to illuminate the bottom part 2d from an oblique direction. may be placed in

撮像装置12は、カメラ13と、カメラ13への入射光の波長域を検査に適した範囲に制限するフィルタ14とを含んでいる。カメラ13は、例えば、CCD、CMOS等の撮像素子を用いてボトル2の光学像を電気的な画像信号に変換する。カメラ13は、蛍光発光したボトル2の検査範囲を撮像する。撮像方向は、一例として、照明装置11による照明方向と同一の側からボトル2を撮像するように設定される。図1の例では、カメラ13の撮像光軸Lpが水平方向に向けられ、照明器11a、11bの光軸La、Lbが撮像光軸Lpを挟んで対称的に延びるように照明器11a、11b及びカメラ13が配置されている。なお、撮像方向はボトル2で生じる蛍光の強度分布を明確に反映した画像を撮像できる限りにおいて、紫外光による照明方向と同一の側に設定されることを必ずしも要しない。例えば、ボトル2の検査範囲にもよるが、ボトル2を軸線方向に沿って照明し、胴部側方からカメラ13で撮像するといったように、照明方向と撮像方向とが図1とは異なる関係に設定されてもよい。 The imaging device 12 includes a camera 13 and a filter 14 that limits the wavelength range of light incident on the camera 13 to a range suitable for inspection. The camera 13 converts an optical image of the bottle 2 into an electrical image signal using, for example, an image sensor such as a CCD or a CMOS. The camera 13 images the inspection range of the bottle 2 emitting fluorescent light. The imaging direction is set, for example, so that the bottle 2 is imaged from the same side as the illumination direction by the lighting device 11. In the example of FIG. 1, the imaging optical axis Lp of the camera 13 is oriented in the horizontal direction, and the illuminators 11a and 11b are arranged so that the optical axes La and Lb of the illuminators 11a and 11b extend symmetrically across the imaging optical axis Lp. and a camera 13 are arranged. Note that the imaging direction does not necessarily need to be set on the same side as the illumination direction by ultraviolet light, as long as an image that clearly reflects the intensity distribution of fluorescence generated in the bottle 2 can be taken. For example, depending on the inspection range of the bottle 2, the relationship between the illumination direction and the imaging direction is different from that shown in FIG. may be set to .

カメラ13の撮像範囲は、少なくともボトル2の検査範囲の画像を撮像できるように設定されていればよい。なお、検査時において、ボトル2は静止していてもよいし、移動していてもよい。例えば、飲料の充填ラインにカメラ13を設置し、カメラ13の撮像範囲にボトル2が達したタイミングでカメラ13に撮像動作を実行させることにより、移動中のボトル2が逐次撮像されてもよい。ボトル2の全周を検査範囲として撮像するといったように、一台のカメラ13による一回の撮像動作では検査範囲の一部しか撮像できない場合には、ボトル2を自転させ、ボトル2の全周が複数回に分けて撮像されるようにカメラ13の撮像動作を制御することにより検査範囲の全体の画像が撮像されてもよい。ボトル2を固定し、照明装置11及び撮像装置12をボトル2の回りに移動させて検査範囲の全体の画像が撮像されてもよい。あるいは、ボトル2を異なる方向から撮像する複数のカメラ13を設け、ボトル2の検査範囲をそれらのカメラ13で周方向に分担して撮像してもよい。照明装置11は常時点灯でもよいし、カメラ13の撮像動作に同期して点灯するように制御されてもよい。なお、検査範囲はボトル2の全周に設定されることを必ずしも要しない。また、検査範囲は一定の広がりを有する面として設定されることを必ずしも要しない。例えば、ボトル2上に複数のスポット状の検出位置を設定し、それらの検出位置の集合を検査範囲として、各検出位置の画像を検査範囲の画像としてカメラ13にて撮像してもよい。そのような画像を撮像するためには、例えばカメラ13の撮像素子が捉えた画像から、検出位置に対応する画素群を画像信号の読み出し対象としてカメラ13から出力させてもよいし、カメラ13からは撮像素子の撮像範囲に対応する画像信号を出力させ、その画像信号のうち検出位置に対応する画像信号を抽出して検出範囲の画像を取得してもよい。複数のスポット状の検出位置の集合を検査範囲とする場合、検出位置の個数を増加させることにより、検査の精度を向上させることが可能である。いずれにしても、カメラ13の撮像範囲は検査範囲を含むように設定されてよく、検査範囲はカメラ13の撮像範囲の少なくとも一部に設定されてよい。 The imaging range of the camera 13 may be set so that at least an image of the inspection range of the bottle 2 can be captured. Note that during the inspection, the bottle 2 may be stationary or may be moving. For example, the moving bottle 2 may be sequentially imaged by installing the camera 13 on a beverage filling line and causing the camera 13 to perform an imaging operation at the timing when the bottle 2 reaches the imaging range of the camera 13. If only a part of the inspection range can be imaged with one imaging operation using one camera 13, such as capturing an image of the entire circumference of the bottle 2 as an inspection range, the bottle 2 may be rotated and the entire circumference of the bottle 2 may be imaged. An image of the entire inspection range may be captured by controlling the imaging operation of the camera 13 so that the image is captured in multiple times. The bottle 2 may be fixed, and the illumination device 11 and the imaging device 12 may be moved around the bottle 2 to capture an image of the entire inspection range. Alternatively, a plurality of cameras 13 may be provided to take images of the bottle 2 from different directions, and the inspection range of the bottle 2 may be shared in the circumferential direction by these cameras 13 to take images. The lighting device 11 may be lit all the time, or may be controlled to be lit in synchronization with the imaging operation of the camera 13. Note that the inspection range does not necessarily need to be set around the entire circumference of the bottle 2. Further, the inspection range does not necessarily need to be set as a surface having a certain extent. For example, a plurality of spot-like detection positions may be set on the bottle 2, a set of these detection positions may be set as an inspection range, and an image of each detection position may be imaged by the camera 13 as an image of the inspection range. In order to capture such an image, for example, from the image captured by the image sensor of the camera 13, a pixel group corresponding to the detection position may be outputted from the camera 13 as an image signal readout target, or Alternatively, an image signal corresponding to the imaging range of the image sensor may be output, and an image signal corresponding to the detection position may be extracted from the image signal to obtain an image of the detection range. When a set of a plurality of spot-shaped detection positions is used as an inspection range, the accuracy of inspection can be improved by increasing the number of detection positions. In any case, the imaging range of the camera 13 may be set to include the inspection range, and the inspection range may be set to at least a part of the imaging range of the camera 13.

フィルタ14は、カメラ13による撮像対象となる波長域に関し、ボトル2にて生じる蛍光の波長域が撮像対象の波長域に含まれる一方で、ボトル2を照明する紫外光の波長域が撮像対象の波長域からは除かれるようにしてカメラ13への入射光の波長域を調整する。ただし、フィルタ14の分光特性は紫外光の波長域のカメラ13への入射を完全に遮断するように設定されることを必ずしも要しない。カメラ13にて撮像される画像が、蛍光強度の分布を反映した明暗分布を示し、かつ紫外光の波長域が明暗分布に与える影響が画像中から実質的に除かれる程度に紫外光の波長域の通過をフィルタ14にて制限できればよい。換言すれば、カメラ13に入射する光の波長域に関して、ボトル2にて生じる蛍光の波長域と比較してボトル2を照明する紫外光の波長域が制限されるようにフィルタ14の分光特性が設定されていればよい。その限りにおいて、フィルタ14は紫外光の波長域の入射を完全に阻止する例に限定されず、紫外光の波長域の入射光量を蛍光の波長域のそれに比して相対的に減少させるものであってもよい。 Regarding the wavelength range to be imaged by the camera 13, the filter 14 is arranged such that the wavelength range of fluorescence generated in the bottle 2 is included in the wavelength range of the imaged object, while the wavelength range of ultraviolet light illuminating the bottle 2 is included in the wavelength range of the imaged object. The wavelength range of the incident light to the camera 13 is adjusted so that it is excluded from the wavelength range. However, the spectral characteristics of the filter 14 do not necessarily need to be set to completely block the incidence of the ultraviolet light wavelength range into the camera 13. The wavelength range of ultraviolet light is such that the image captured by the camera 13 shows a brightness distribution reflecting the distribution of fluorescence intensity, and the influence of the wavelength range of ultraviolet light on the brightness distribution is substantially eliminated from the image. It is only necessary that the filter 14 restricts the passage of the light. In other words, the spectral characteristics of the filter 14 are such that the wavelength range of the ultraviolet light that illuminates the bottle 2 is limited compared to the wavelength range of the fluorescence generated in the bottle 2 with respect to the wavelength range of the light incident on the camera 13. It is sufficient if it is set. To that extent, the filter 14 is not limited to completely blocking the incidence of ultraviolet light in the wavelength range, but may be one that relatively reduces the amount of incident light in the ultraviolet wavelength range compared to that in the fluorescence wavelength range. There may be.

一方、蛍光の波長域に関しては、検査に必要な光量の蛍光がカメラ13に入射すれば足りる。蛍光の全波長域がフィルタ14を通過してカメラ13に入射するようにフィルタ14の分光特性が設定されてもよいし、蛍光の一部の波長域はフィルタ14によりカメラ13への入射が制限されてもよい。例えば、蛍光の波長域のうち、照明光としての紫外光の波長域に比較的近い短波長側の一部の波長域については、フィルタ14にてその通過を制限し、その制限される波長域よりも長波長側の蛍光についてはフィルタ14を通過してカメラ13に入射させるようにフィルタ14の分光特性が設定されてもよい。 On the other hand, regarding the wavelength range of fluorescence, it is sufficient that the amount of fluorescence necessary for inspection is incident on the camera 13. The spectral characteristics of the filter 14 may be set so that the entire wavelength range of the fluorescence passes through the filter 14 and enters the camera 13, or the filter 14 restricts the incidence of part of the wavelength range of the fluorescence into the camera 13. may be done. For example, in the wavelength range of fluorescence, for a part of the wavelength range on the short wavelength side that is relatively close to the wavelength range of ultraviolet light as illumination light, the filter 14 restricts its passage, and the restricted wavelength range The spectral characteristics of the filter 14 may be set so that fluorescence with wavelengths longer than that of the filter 14 passes through the filter 14 and enters the camera 13.

フィルタ14を用いて撮像対象の波長域を制限する理由は次の通りである。ボトル2からカメラ13に向かう光には、ボトル2で生じた蛍光のみならずボトル2で反射した紫外光も含まれる。紫外光がカメラ13に入射すると、得られる画像に紫外光の影響が出現し、蛍光の強度分布に基づく成形不良の検査に支障をきたすおそれがある。一方、PET樹脂で生じる蛍光の波長域は、照射された紫外光の波長域と一致せず、両者の波長域にはずれが生じる。したがって、蛍光の波長域がカメラ13の撮像対象の波長域に含まれる一方で、紫外光の波長域が撮像対象の波長域から除かれるようにフィルタ14の分光特性を設定すれば、ボトル2上での反射光の影響を抑えて蛍光の強度分布を正しく反映した画像を撮像することができる。なお、撮像対象の波長域を選別する手段としては、カメラ13とは別部品としてのフィルタ14を用いることを必ずしも要しない。例えば、カメラ13の撮像素子が感度を示す波長域を選択可能な機能をカメラ13が備えている場合には、その機能を利用して撮像対象の波長域が調整されてもよい。なお、ボトル2からの反射光に、励起光の波長に対して2倍の波長をもつ二次光等の高次光成分が含まれる等、励起光の波長域及び検出対象とすべき蛍光の波長域のいずれとも異なる波長域の光が外乱成分として含まれ、かつその外乱成分が画像中の明暗差に影響を与える場合には、外乱成分も撮像対象の波長域から除かれるようにフィルタ14の分光特性やカメラ13の感度が設定されてよい。 The reason why the filter 14 is used to limit the wavelength range of the imaging target is as follows. The light directed from the bottle 2 toward the camera 13 includes not only fluorescence generated in the bottle 2 but also ultraviolet light reflected by the bottle 2. When ultraviolet light enters the camera 13, the resulting image is affected by the ultraviolet light, which may impede inspection for molding defects based on the fluorescence intensity distribution. On the other hand, the wavelength range of fluorescence generated in PET resin does not match the wavelength range of the irradiated ultraviolet light, and a difference occurs between the two wavelength ranges. Therefore, if the spectral characteristics of the filter 14 are set so that the wavelength range of fluorescence is included in the wavelength range of the object to be imaged by the camera 13, while the wavelength range of ultraviolet light is excluded from the wavelength range of the object to be imaged, It is possible to capture an image that accurately reflects the intensity distribution of fluorescence by suppressing the influence of reflected light. Note that it is not necessarily necessary to use the filter 14 as a separate component from the camera 13 as a means for selecting the wavelength range of the imaging target. For example, if the camera 13 has a function that allows selection of the wavelength range in which the image sensor of the camera 13 exhibits sensitivity, the wavelength range of the imaging target may be adjusted using that function. Note that the wavelength range of the excitation light and the wavelength range of the fluorescence to be detected may be such that the reflected light from the bottle 2 contains higher-order light components such as secondary light with a wavelength twice that of the excitation light. If light in a wavelength range different from any of the above is included as a disturbance component and the disturbance component affects the brightness difference in the image, the filter 14 spectroscopy is adjusted so that the disturbance component is also removed from the wavelength range of the imaging target. The characteristics and the sensitivity of the camera 13 may be set.

なお、画像取得部10が設置された環境におけるボトル2の照明光は、主として照明装置11による照明光にてボトル2が照明され、かつボトル2で生じる蛍光の強度分布を反映した画像がカメラ13にて撮像される限りにおいて、可視域の環境光、例えば自然光が含まれてもよい。すなわち、環境光を遮光し、照明装置11からの照明光によってのみボトル2が照明されてもよいし、蛍光の強度分布を反映した画像に実質的な影響を与えない限りにおいて幾らかの環境光がボトル2に入射してもよい。あるいは、フィルタ14等を利用して、蛍光強度を反映した画像の撮像に対して不要となる可視域の光の影響をカメラ13にて撮像される画像から除いてもよい。 Note that the illumination light of the bottle 2 in the environment where the image acquisition unit 10 is installed is mainly the illumination light from the illumination device 11, and the image reflecting the intensity distribution of fluorescence generated in the bottle 2 is captured by the camera 13. Ambient light in the visible range, such as natural light, may be included as long as the image is captured in the image. That is, the bottle 2 may be illuminated only by the illumination light from the illumination device 11 while blocking the environmental light, or some environmental light may be used as long as it does not substantially affect the image reflecting the intensity distribution of fluorescence. may be incident on bottle 2. Alternatively, the filter 14 or the like may be used to remove from the image captured by the camera 13 the influence of light in the visible range that is unnecessary for capturing an image reflecting the fluorescence intensity.

次に、図2~図4を参照して照明装置11の紫外光の波長域等の選定に関する具体的な検討について説明する。図2は、PET樹脂のサンプル片に紫外光を照射したときの3次元蛍光スペクトルを測定した結果を示している。縦軸は照射した紫外光の波長であり、横軸は蛍光の波長である。図中の等高線の粗密は蛍光強度を示し、密であるほど蛍光強度が高い。図2によれば、365nm付近の紫外光をPET樹脂に照射した場合、380~430nmの波長域において比較的強度が高い蛍光が生じる。 Next, a specific study regarding selection of the wavelength range of ultraviolet light of the illumination device 11 will be explained with reference to FIGS. 2 to 4. FIG. 2 shows the results of measuring a three-dimensional fluorescence spectrum when a sample piece of PET resin was irradiated with ultraviolet light. The vertical axis is the wavelength of the irradiated ultraviolet light, and the horizontal axis is the wavelength of fluorescence. The density of the contour lines in the figure indicates the fluorescence intensity, and the denser the contour lines, the higher the fluorescence intensity. According to FIG. 2, when PET resin is irradiated with ultraviolet light around 365 nm, relatively high intensity fluorescence is generated in the wavelength range of 380 to 430 nm.

図3は、ボトル2を照明する紫外光の分光強度と、ボトル2の蛍光発光の分光強度と、フィルタ14の分光感度との関係を示している。図3の横軸は波長を、縦軸は紫外光及び蛍光の分光強度及びフィルタ14の分光感度をそれぞれ示す。図3から理解されるように、365nm付近にて分光強度がピークを示す紫外光にてPET樹脂製を照明した場合、380nm~430nmの波長域で蛍光が生じる。紫外光の分光強度の分布と、蛍光の分光強度の分布とは一部重複するが、紫外光の波長域が360nm~380nmの範囲であれば、フィルタ14の分光特性を、概ね400nmから長波長側の光を通過させ、それよりも短波長側の波長域の通過を制限するように設定すれば、紫外光のカメラ13への入射を抑えつつ、ボトル2で発生した蛍光を効率よくカメラ13に入射させることができる。 FIG. 3 shows the relationship between the spectral intensity of ultraviolet light illuminating the bottle 2, the spectral intensity of fluorescence emission from the bottle 2, and the spectral sensitivity of the filter 14. In FIG. 3, the horizontal axis represents the wavelength, and the vertical axis represents the spectral intensity of ultraviolet light and fluorescence and the spectral sensitivity of the filter 14, respectively. As understood from FIG. 3, when a PET resin is illuminated with ultraviolet light whose spectral intensity peaks around 365 nm, fluorescence occurs in the wavelength range of 380 nm to 430 nm. Although the spectral intensity distribution of ultraviolet light and the spectral intensity distribution of fluorescence partially overlap, if the wavelength range of ultraviolet light is in the range of 360 nm to 380 nm, the spectral characteristics of the filter 14 can be changed from approximately 400 nm to long wavelengths. If the setting is made to allow the light from the bottle 2 to pass through and to restrict the passage of the shorter wavelength range, the fluorescence generated in the bottle 2 can be efficiently transmitted to the camera 13 while suppressing the incidence of ultraviolet light to the camera 13. It can be input to

図2によれば、紫外光の波長域を320nm付近がピークとなるように設定すれば、より多くの蛍光を得ることが可能である。しかし、その場合は蛍光の波長域も短波長側にシフトする。図4に示すように、可視光域の画像を撮像する目的で使用される一般的なカメラの分光感度は、550nm付近の感度が最も高い。カメラの感度は、長波長側は1000nm付近で、短波長側では400nm付近で実質的に失われる。したがって、紫外光の波長域を320nm付近に設定すれば、カメラ13が十分な分光感度を示す波長域に対して蛍光の波長域が外れるおそれがある。そのため、照明装置11から照射する紫外光は、上記のように360nm~380nmの範囲に設定することが好ましい。 According to FIG. 2, it is possible to obtain more fluorescence by setting the wavelength range of the ultraviolet light so that the peak is around 320 nm. However, in that case, the wavelength range of fluorescence also shifts to the shorter wavelength side. As shown in FIG. 4, the spectral sensitivity of a general camera used for the purpose of capturing images in the visible light range is highest near 550 nm. The sensitivity of the camera is substantially lost at around 1000 nm on the long wavelength side and around 400 nm on the short wavelength side. Therefore, if the wavelength range of ultraviolet light is set to around 320 nm, the wavelength range of fluorescence may deviate from the wavelength range in which the camera 13 exhibits sufficient spectral sensitivity. Therefore, it is preferable that the ultraviolet light emitted from the lighting device 11 be set in the range of 360 nm to 380 nm as described above.

次に、図5を参照して、本形態の検査方法にて検出の対象となる偏肉不良の例を説明する。ボトル2のブロー成形は、プリフォームをガラス転移温度まで加熱させてゴム状に軟化させ、その状態でプリフォームを延伸ロッドにてボトル2の軸線AX(図1)の方向に延伸しつつプリフォーム内にガス圧を導入し、それによりプリフォームを縦横の2軸方向に延伸させて冷却固化するといった手順で行われる。プリフォームに形状誤差がある場合、あるいは、成形過程での各種の操作や制御、例えば、プリフォームを加熱するヒータ出力(加熱量)等の樹脂加熱に関する温度管理、延伸ロッドによる延伸操作、金型の各部の温度管理等に不備がある場合には、プリフォームを均質に延伸させることができず、成形不良が発生することがある。例えば、延伸が局部的に不足すると、肉厚が不均一となる偏肉不良が発生することがある。図5はボトル2の肩部に偏肉部D1が生じた例を示し、図5(b)はボトル2の底部に偏肉部D2が生じた例を示している。あるいは、図5(c)に示すように、延伸が不均一に進行した結果として底部に芯ずれ部D3が発生することもある。芯ずれ部D3は、本来であればボトル2の底部の軸線AXを中心として肉厚が相対的に大きい芯部が形成されるべきところ、その不均一な延伸により底部の中心から偏った箇所の肉厚が増加することにより発生する。したがって、芯ずれ部D3も偏肉部D1、D2と同様に偏肉不良の一種として捉えることが可能である。その他にも、胴部等の他の箇所にて偏肉不良が発生することもある。 Next, with reference to FIG. 5, an example of uneven thickness defects to be detected by the inspection method of this embodiment will be described. Blow molding of the bottle 2 involves heating the preform to the glass transition temperature to soften it into a rubber-like state, and then stretching the preform in the direction of the axis AX of the bottle 2 (Fig. 1) using a stretching rod. This is carried out by introducing gas pressure into the preform, thereby stretching the preform in two axial directions (vertical and horizontal), and cooling and solidifying it. If there is a shape error in the preform, or various operations and controls during the molding process, such as temperature control related to resin heating such as heater output (heating amount) to heat the preform, stretching operation with a stretching rod, mold If there is a deficiency in the temperature control, etc. of each part of the preform, the preform may not be stretched uniformly, and molding defects may occur. For example, if stretching is insufficient locally, uneven thickness defects may occur where the thickness becomes non-uniform. FIG. 5 shows an example in which an uneven thickness portion D1 occurs in the shoulder portion of the bottle 2, and FIG. 5(b) shows an example in which an uneven thickness portion D2 occurs in the bottom portion of the bottle 2. Alternatively, as shown in FIG. 5(c), a misaligned portion D3 may occur at the bottom as a result of uneven stretching. The misaligned portion D3 is where a core portion with a relatively large wall thickness should normally be formed around the axis AX of the bottom of the bottle 2, but due to uneven stretching, it is a portion that is deviated from the center of the bottom portion. This occurs due to an increase in wall thickness. Therefore, the misaligned portion D3 can also be regarded as a type of defective thickness unevenness like the uneven thickness portions D1 and D2. In addition, uneven thickness may occur at other locations such as the body.

以上のような偏肉不良が生じた場合、肉厚が増加した箇所では蛍光強度が正常時のそれよりも増加するといった変化が生じる。そのため、偏肉不良が生じているボトル2に紫外光を照射したときの蛍光強度の分布は、偏肉不良が生じていない正常時の蛍光強度の分布とは異なるものとなる。例えば、正常時の蛍光強度の分布に対して、偏肉不良が発生している場合には、蛍光強度が高い、又は低い箇所が生じるように蛍光強度の分布が変化する。蛍光強度の分布の異同は、ボトル2の位置と関連付けた蛍光強度の高低の差として評価されることを必ずしも必要としない。例えば、正常時における蛍光強度のばらつきの程度に対して、偏肉不良の発生時における蛍光強度のばらつきの程度が大きくなるといった変化も蛍光強度の分布の変化として捉えることができる。 When the uneven thickness defect as described above occurs, a change occurs in which the fluorescence intensity increases compared to the normal level at the portion where the thickness increases. Therefore, the distribution of fluorescence intensity when ultraviolet light is irradiated on the bottle 2 with defective thickness unevenness is different from the distribution of fluorescence intensity during normal times when defective thickness unevenness does not occur. For example, when a defective thickness occurs, the distribution of fluorescence intensity changes so that there are areas where the fluorescence intensity is high or low compared to the normal distribution of fluorescence intensity. The difference in the distribution of fluorescence intensity does not necessarily need to be evaluated as a difference in the height of the fluorescence intensity associated with the position of the bottle 2. For example, a change in which the degree of variation in fluorescence intensity when uneven thickness defects occurs is greater than the degree of variation in fluorescence intensity during normal times can also be regarded as a change in the distribution of fluorescence intensity.

次に、ボトルの蛍光強度と偏肉の状態との関係についての具体的な検討を説明する。図6はボトルの肩部を撮像した例であり、同図(a)は偏肉不良がない正常なボトルの画像、同図(b)は幾らかの偏肉不良が生じているボトルの画像、同図(c)は偏肉不良がさらに進んだボトルの画像である。図6(b)及び(c)の偏肉不良は、金型の肩部を成形する領域を加熱するためのヒータの出力を基準値よりも低く設定したことによって生じたものである。例えば、図6(a)はヒータの出力を基準出力75%に設定した場合、同図(b)はヒータの出力を65%に設定した場合、同図(c)はヒータの出力を55%に設定した場合である。図6(a)~(c)の比較から、偏肉不良が生じている箇所の蛍光強度が正常な場合よりも高まることが確認できる。しかも、その偏肉不良の程度はヒータの出力、すなわち金型の温度を制御するパラメータの値と相関する可能性がある。 Next, a specific study on the relationship between the fluorescence intensity of the bottle and the state of uneven thickness will be explained. Figure 6 is an example of an image of the shoulder of a bottle, where (a) is an image of a normal bottle with no uneven thickness defects, and (b) is an image of a bottle with some uneven thickness defects. , Figure (c) is an image of a bottle in which the thickness unevenness defect has further progressed. The uneven thickness defects shown in FIGS. 6(b) and 6(c) were caused by setting the output of the heater for heating the area where the shoulder part of the mold is formed to be lower than the reference value. For example, Fig. 6(a) shows the case where the heater output is set to 75% of the standard output, Fig. 6(b) shows the case when the heater output is set to 65%, and Fig. 6(c) shows the case where the heater output is set to 55%. This is the case when it is set to . From the comparison of FIGS. 6(a) to 6(c), it can be confirmed that the fluorescence intensity at the location where the uneven thickness defect occurs is higher than that in the normal case. Moreover, the degree of the uneven thickness defect may be correlated with the output of the heater, that is, the value of the parameter that controls the temperature of the mold.

図7は、図6(a)~(c)の各ボトルの周方向の向きを10°ずつ変化させ、各向きで蛍光強度を測定したときの測定値と、測定値の確率密度との関係を調べた結果を示している。この場合は、ボトルの全周が検査範囲である。サンプル1は図6(a)のボトルに、サンプル2は図6(b)のボトルに、サンプル3は図6(c)のボトルにそれぞれ対応し、従って、サンプル1~3のヒータ出力は75%、65%、55%である。図7の横軸は照度測定値であり、蛍光強度に対応する。縦軸は確率密度であり、照度測定値が出現する頻度を定量的に示す値である。確率密度が高いほど、その照度測定値が出現する頻度が高いことを示す。 Figure 7 shows the relationship between the measured values and the probability density of the measured values when the circumferential direction of each bottle in Figures 6 (a) to (c) is changed by 10 degrees and the fluorescence intensity is measured in each direction. The results are shown below. In this case, the entire circumference of the bottle is the inspection range. Sample 1 corresponds to the bottle in FIG. 6(a), sample 2 corresponds to the bottle in FIG. 6(b), and sample 3 corresponds to the bottle in FIG. 6(c). Therefore, the heater output of samples 1 to 3 is 75 %, 65%, and 55%. The horizontal axis in FIG. 7 is the illuminance measurement value, which corresponds to the fluorescence intensity. The vertical axis is the probability density, which is a value that quantitatively indicates the frequency with which illuminance measurement values appear. The higher the probability density, the more frequently the illuminance measurement value appears.

図7から明らかなように、偏肉不良が生じていないサンプル1では、照度測定値が42付近をピークとする比較的狭い範囲に集中する傾向があり、蛍光強度のばらつきが比較的小さい。一方、偏肉不良が生じているサンプル2、3では照度測定値のばらつきが大きくなる傾向があり、そのばらつきの程度はサンプル2よりもサンプル3でより大きく、かつ確率密度のピークもサンプル2よりサンプル3の方が小さい。したがって、偏肉不良が生じてボトルの肉厚のばらつきが大きくなるほど、蛍光強度のばらつきも大きくなる傾向があると解される。 As is clear from FIG. 7, in Sample 1 in which no thickness deviation defects occur, the measured illuminance values tend to concentrate in a relatively narrow range with a peak around 42, and the variation in fluorescence intensity is relatively small. On the other hand, in Samples 2 and 3 where uneven thickness defects occur, there is a tendency for the variation in the measured illuminance values to be large, and the degree of variation is larger in Sample 3 than in Sample 2, and the peak of the probability density is also higher than in Sample 2. Sample 3 is smaller. Therefore, it is understood that the greater the variation in bottle wall thickness due to uneven wall thickness defects, the greater the variation in fluorescence intensity tends to be.

図8は、ボトルの周方向の向きを10°ずつ変化させ、そのボトルの肩部の蛍光強度を測定したときの測定値の平均値と、得られた測定値の標準偏差との関係を調べた結果を示している。この場合もボトルの肩部の全周が検査範囲である。同図の横軸の照度平均値は、10°ごとに撮像される画像の蛍光強度をその画像中の平均値等で代表し、各角度における画像の代表値をさらに平均した値に相当する。縦軸の標準偏差は、ボトルの10°ごとの測定で得られる蛍光強度の代表値のばらつきの程度を示す。この測定では、プリフォームを加熱するためのヒータ出力を55%~90%まで5%刻みで変化させてボトルを成形し、ヒータ出力ごとに照度平均値と標準偏差との関係を調べている。なお、ヒータ出力75α%は、ヒータ出力75%に対して若干の補正を加えた例である。 Figure 8 shows the relationship between the average value of the measured values and the standard deviation of the obtained measured values when the fluorescent intensity of the shoulder of the bottle was measured by changing the circumferential direction of the bottle by 10 degrees. The results are shown below. In this case as well, the entire circumference of the shoulder of the bottle is the inspection range. The average illuminance value on the horizontal axis in the figure represents the fluorescence intensity of images captured every 10 degrees by the average value in the image, and corresponds to a value obtained by further averaging the representative values of the images at each angle. The standard deviation on the vertical axis indicates the degree of variation in the representative value of fluorescence intensity obtained by measuring every 10 degrees of the bottle. In this measurement, bottles were molded by varying the heater output for heating the preform from 55% to 90% in 5% increments, and the relationship between the average illumination value and standard deviation was investigated for each heater output. Note that the heater output of 75α% is an example in which a slight correction is added to the heater output of 75%.

図8から明らかなように、ヒータ出力が増加するに従って蛍光強度の平均値及び標準偏差が小さくなる傾向があり、蛍光強度の平均値と標準偏差との間には、直線Rxで示したように概ね正比例的に変化する関係がある。ただし、ヒータ出力が過度に大きくなると、蛍光強度の平均値及び標準偏差との関係は、直線Rxで示す比例関係から明確に逸脱する。図8では、領域Erに示すように、ヒータ出力90%にて比例関係からの逸脱が示されており、ヒータ出力80%~90%の間にヒータ出力の上限が存在することが推定される。 As is clear from FIG. 8, the average value and standard deviation of the fluorescence intensity tend to decrease as the heater output increases, and there is a gap between the average value and the standard deviation of the fluorescence intensity as shown by the straight line Rx. There is a relationship that changes approximately in direct proportion. However, when the heater output becomes excessively large, the relationship between the average value and standard deviation of the fluorescence intensity clearly deviates from the proportional relationship shown by the straight line Rx. In FIG. 8, as shown in the region Er, deviation from the proportional relationship is shown at 90% of the heater output, and it is estimated that there is an upper limit of the heater output between 80% and 90% of the heater output. .

図8の例において、蛍光強度の平均値はボトルの全周を検査したときの肉厚の平均値に相関する。したがって、標準偏差はボトルの周方向における肉厚のばらつきの大小に相関し、ばらつきが大きいほど標準偏差が大きい。図6の画像の例からも明らかなように、偏肉不良の程度が大きいほど、ボトルの蛍光強度の平均値が大きく、かつ標準偏差も大きい。したがって、図8によれば、ヒータ出力が小さくて加熱量が不足するほど偏肉不良がより顕著に出現し、ヒータ出力が上限を超えない限りは、ヒータ出力の増加によって加熱量が補われるに従って肉厚のばらつきが収束して偏肉不良が生じ難くなることが確認できる。 In the example of FIG. 8, the average value of fluorescence intensity correlates with the average value of wall thickness when inspecting the entire circumference of the bottle. Therefore, the standard deviation correlates with the magnitude of variation in wall thickness in the circumferential direction of the bottle, and the greater the variation, the greater the standard deviation. As is clear from the example of the image in FIG. 6, the greater the degree of uneven thickness defect, the greater the average value of the fluorescence intensity of the bottle and the greater the standard deviation. Therefore, according to FIG. 8, the smaller the heater output is and the less the heating amount is, the more noticeable the uneven thickness defects appear, and as long as the heater output does not exceed the upper limit, the heating amount is compensated for by increasing the heater output. It can be confirmed that the variation in wall thickness has converged and uneven thickness defects are less likely to occur.

以上の検討によれば、ボトルの検査範囲の画像中に現れる蛍光強度の標準偏差を求めれば、ボトルの検査範囲における偏肉の状態を定量的に把握することができる。蛍光強度の標準偏差は検査範囲における蛍光強度の分布の状態、言い換えれば蛍光強度のばらつきの程度を定量的に示す指標値の例であって、偏肉の状態を定量的に示す客観的でかつ信頼性の高い検査結果として利用することができる。蛍光強度の平均値と標準偏差との間に直線Rxのような相関関係があり、その関係が予め判明していれば、蛍光強度の分布を標準偏差によって定量化し、得られた標準偏差が直線Rxの関係に従って縮小して許容範囲へと収束するようにヒータ出力を調整(増加)してもよい。それによれば、偏肉不良を解消するための温度制御パラメータ等の調整作業の少なくとも一部を省力化して作業効率を高めることが可能である。さらに、図8に領域Erで例示したように、蛍光強度の平均値と標準偏差との関係が、直線RXで示したような所定の対応関係から逸脱する場合には、ヒータ出力が上限を超える等の理由により偏肉とは異なる何らかの成形不良が生じている可能性がある。例えば、樹脂が過剰に加熱されたことによって延伸が過度に進行し、樹脂の分子鎖が配向して高密度化、結晶化が進むことにより白化等の成形不良が生じているおそれがある。したがって、蛍光強度の平均値と標準偏差との関係が所定の対応関係(一例として直線RXで示す比例関係)から逸脱しているか否かを併せて検査し、逸脱している場合にはその検査結果も出力することにより、白化等の成形不良の有無も検査することが可能である。あるいは、白化等の成形不良の有無に限らず、ブロー成形条件に対して何らかの異常な状態が生じていることを検査結果として出力してもよい。 According to the above study, by determining the standard deviation of the fluorescence intensity appearing in the image of the bottle inspection area, it is possible to quantitatively understand the state of uneven thickness in the bottle inspection area. The standard deviation of fluorescence intensity is an example of an index value that quantitatively indicates the state of the distribution of fluorescence intensity in the inspection range, in other words, the degree of variation in fluorescence intensity, and is an objective and quantitative indicator of the state of uneven thickness. It can be used as a highly reliable test result. If there is a correlation like a straight line Rx between the average value of fluorescence intensity and the standard deviation, and if this relationship is known in advance, the distribution of fluorescence intensity can be quantified by the standard deviation, and the obtained standard deviation can be expressed as a straight line. The heater output may be adjusted (increased) so that it is reduced in accordance with the relationship of Rx and converged to an allowable range. According to this, it is possible to save labor in at least a part of the adjustment work of temperature control parameters, etc. for eliminating defective thickness unevenness, and to improve work efficiency. Furthermore, as illustrated in the region Er in FIG. 8, if the relationship between the average value of the fluorescence intensity and the standard deviation deviates from the predetermined correspondence relationship as shown by the straight line RX, the heater output exceeds the upper limit. For reasons such as this, there is a possibility that some kind of molding defect other than uneven thickness has occurred. For example, when the resin is heated excessively, stretching progresses excessively, and the molecular chains of the resin become oriented, resulting in increased density and crystallization, which may result in molding defects such as whitening. Therefore, it is also checked whether the relationship between the average value of the fluorescence intensity and the standard deviation deviates from a predetermined correspondence relationship (for example, a proportional relationship shown by the straight line RX), and if it deviates, it is examined. By outputting the results, it is also possible to check for molding defects such as whitening. Alternatively, it is possible to output as an inspection result not only the presence or absence of molding defects such as whitening, but also the fact that some abnormal state has occurred with respect to the blow molding conditions.

図1に戻って、検査装置1の処理部20を説明する。処理部20は、画像取得部10によって撮像された画像中における蛍光強度の分布に基づいて、ボトル2の検査範囲における偏肉の状態を検査する。処理部20は、一例として、CPU及びその動作に必要な内部記憶装置等を含んだコンピュータユニットを用いて構成される。処理部20には、画像調整部21と検査部22とが設けられている。画像調整部21及び検査部22は、例えば処理部20のコンピュータハードウエアと、ソフトウエアとしてのコンピュータプログラムの一例である検査プログラムPGとの組み合わせによって実現される論理的装置として設けられる。ただし、処理部20の少なくとも一部は、LSI等の論理回路を組み合わせた物理的装置として構成されてもよい。なお、処理部20には、検査装置1のオペレータが適宜の指示を入力するためのキーボード、ポインティングデバイスといった各種の入力手段が接続されてよい。図1では、入力手段の図示が省略されている。 Returning to FIG. 1, the processing section 20 of the inspection device 1 will be explained. The processing unit 20 inspects the state of uneven thickness in the inspection range of the bottle 2 based on the distribution of fluorescence intensity in the image captured by the image acquisition unit 10. The processing unit 20 is configured using, for example, a computer unit including a CPU and an internal storage device necessary for its operation. The processing section 20 is provided with an image adjustment section 21 and an inspection section 22. The image adjustment section 21 and the inspection section 22 are provided as logical devices realized by, for example, a combination of the computer hardware of the processing section 20 and an inspection program PG, which is an example of a computer program as software. However, at least a portion of the processing unit 20 may be configured as a physical device combining logic circuits such as LSI. Note that the processing unit 20 may be connected to various input means such as a keyboard and a pointing device for the operator of the inspection apparatus 1 to input appropriate instructions. In FIG. 1, illustration of input means is omitted.

画像調整部21は、カメラ13から出力される画像信号を受け取り、検査部22の検査に適した画像処理を施すことにより、カメラ13で撮像された画像を検査部22の検査に適した画像に調整する。例えば、画像調整部21は、画像の明度、コントラスト等の補正処理等を実施してよい。検査部22は、画像調整部21にて処理された画像信号を受け取り、ボトル2の検査範囲における偏肉の状態を検査する。それにより、検査部22は検査手段の一例として機能する。 The image adjustment unit 21 receives the image signal output from the camera 13 and performs image processing suitable for the inspection by the inspection unit 22 to convert the image captured by the camera 13 into an image suitable for the inspection by the inspection unit 22. adjust. For example, the image adjustment unit 21 may perform correction processing for image brightness, contrast, and the like. The inspection section 22 receives the image signal processed by the image adjustment section 21 and inspects the state of uneven thickness in the inspection range of the bottle 2 . Thereby, the inspection section 22 functions as an example of inspection means.

検査部22の処理は、検査範囲における蛍光強度の分布に基づいて偏肉の状態を検査する限りにおいて、適宜に構成されてよい。例えば、検査部22は、カメラ13が撮像した画像中の蛍光強度の分布に基づいて蛍光強度の標準偏差を演算することにより、検査範囲における蛍光強度のばらつきの程度、言い換えれば肉厚のばらつき程度を定量的に示すデータを生成し、得られたデータを検査結果としてモニタ23に表示させ、あるいは記憶装置24に検査結果として記憶させてもよい。検査結果の出力手段はモニタ23、及び記憶装置24に限らず、プリンタが出力手段として接続されてもよい。肉厚のばらつきが大きいほど標準偏差も大きくなるため、偏肉不良か否かを判別する基準値を標準偏差に関して設定し、演算された標準偏差を基準値と比較して偏肉不良の有無を偏肉状態の検査として実施してもよい。 The processing of the inspection unit 22 may be configured as appropriate as long as the state of uneven thickness is inspected based on the distribution of fluorescence intensity in the inspection range. For example, the inspection unit 22 calculates the standard deviation of the fluorescence intensity based on the distribution of fluorescence intensity in the image captured by the camera 13, thereby calculating the degree of variation in fluorescence intensity in the inspection range, in other words, the degree of variation in wall thickness. It is also possible to generate data quantitatively representing the test result, and display the obtained data on the monitor 23 as the test result, or store it in the storage device 24 as the test result. The means for outputting test results is not limited to the monitor 23 and the storage device 24, but a printer may be connected as the output means. The larger the variation in wall thickness, the larger the standard deviation. Therefore, a reference value for determining whether or not there is a thickness unevenness defect is set for the standard deviation, and the calculated standard deviation is compared with the reference value to determine whether or not there is an uneven thickness defect. It may also be carried out as an inspection of the state of uneven thickness.

検査部22によって生成された偏肉状態の検査結果を、ブロー成形機の制御装置に提供し、ブロー成形の品質に影響する温度調整手段のパラメータを偏肉状態が解消する方向に制御してもよい。例えば、プリフォームを加熱するためのヒータの出力を検査部22から出力される検査結果に応じて操作してもよい。例えば、ボトル2の特定箇所を検査範囲としたときにその範囲で偏肉不良のおそれがある場合には、ヒータの検査範囲に対応する箇所の出力を増加させるといった操作が行われてよい。温度調整手段はヒータに限らず、金型を部分的に冷却する冷却装置であってもよく、ブロー成形中の冷却条件を偏肉状態が解消する方向に制御してもよい。あるいは、ブロー成形の過程でプリフォーム内に挿入される延伸ロッドの操作のパラメータが制御されてもよい。いずれにしても、検査部22の処理によって偏肉の状態を定量的に示す検査結果が得られることにより、その検査結果を参照してブロー成形の品質に影響する各種の成形条件のパラメータが制御されてよい。 The inspection result of the uneven thickness state generated by the inspection unit 22 is provided to the control device of the blow molding machine, and the parameters of the temperature adjustment means that affect the quality of blow molding are controlled in a direction to eliminate the uneven thickness state. good. For example, the output of a heater for heating the preform may be controlled according to the test results output from the test section 22. For example, when a specific location of the bottle 2 is set as the inspection range and there is a risk of uneven thickness in that range, an operation may be performed to increase the output of the heater at the location corresponding to the inspection range. The temperature adjustment means is not limited to a heater, but may be a cooling device that partially cools the mold, and may control the cooling conditions during blow molding in a direction that eliminates the uneven thickness state. Alternatively, the parameters of the operation of the stretch rod inserted into the preform during the blow molding process may be controlled. In any case, the processing of the inspection unit 22 yields inspection results that quantitatively indicate the state of uneven thickness, and the parameters of various molding conditions that affect the quality of blow molding are controlled by referring to the inspection results. It's okay to be.

図10は、検査部22における偏肉不良の検査処理の手順の一例を示している。その検査処理において、まず検査部22は、ボトル2に設定された検査範囲の画像を、画像調整部21を介してカメラ13から取得する(ステップS1)。上述したように一台のカメラ13の一回の撮像動作にて検査範囲の一部の画像のみが撮像される場合には、ボトル2の自転に同期した周期で同一のカメラ13を繰り返し動作させて検査範囲の画像を取得してもよいし、検査範囲を分担して撮像する複数台のカメラ13からの画像のそれぞれを取得してもよい。あるいは、照明装置11及び撮像装置12をボトル2の回りに移動させつつボトル2を繰り返し撮像してもよい。 FIG. 10 shows an example of a procedure for inspecting uneven thickness defects in the inspection section 22. In the inspection process, the inspection section 22 first obtains an image of the inspection range set on the bottle 2 from the camera 13 via the image adjustment section 21 (step S1). As described above, when only a part of the inspection range is captured in one imaging operation of one camera 13, the same camera 13 is operated repeatedly at a period synchronized with the rotation of the bottle 2. The image of the inspection range may be acquired by using the camera 13, or each of the images from a plurality of cameras 13 which share images of the inspection range may be acquired. Alternatively, the bottle 2 may be repeatedly imaged while the illumination device 11 and the imaging device 12 are moved around the bottle 2.

次に、検査部22は、得られた検査範囲の画像中における蛍光強度の分布に基づいて、検査範囲における肉厚のばらつきの程度を示す指標値を演算する(ステップS2)。この処理では、例えば、検査範囲の画像を適宜の大きさの単位領域に区分して単位領域ごとの蛍光強度の平均値が演算され、得られた平均値の標準偏差が指標値として演算されてよい。その後、検査部22は、演算された指標値に基づいて、検査結果を示す検査データを生成し、これをモニタ23や記憶装置24に出力する(ステップS3)。この場合、標準偏差に加えて、単位領域ごとの蛍光強度の平均値、蛍光強度の最大値等、ステップS1にて取得した画像から得られる各種の情報が指標値と対応付けてデータに格納されてよい。標準偏差等の指標値が偏肉不良を示す所定の判定値と比較されて偏肉不良の有無がステップS3にて判定され、その判定結果が検査データに含まれてもよい。図8の直線Rxのように、蛍光強度の平均値と標準偏差との関係が予め判明している場合には、その関係に従って、ステップS2で演算された指標値に対応する温度制御パラメータ、例えばプリフォームを加熱するためのヒータ出力の適正値が演算され、その温度制御パラメータの調整量が検査データの一部として出力されてもよい。温度制御パラメータに限らず、偏肉状態の程度に影響する各種の成形条件が検査結果に従って調整されてよい。また、ステップS3では、蛍光強度の平均値と標準偏差との関係が直線RXで例示したような所定の対応関係から逸脱しているか否かを併せて検査し、逸脱している場合には白化等の成形不良が発生し、あるいは成形条件に何らかの異常が生じているおそれがあることを検査結果の一部として出力してもよい。 Next, the inspection unit 22 calculates an index value indicating the degree of variation in wall thickness in the inspection range based on the distribution of fluorescence intensity in the obtained image of the inspection range (step S2). In this process, for example, the image of the inspection range is divided into unit areas of appropriate size, the average value of the fluorescence intensity for each unit area is calculated, and the standard deviation of the obtained average value is calculated as the index value. good. Thereafter, the inspection unit 22 generates inspection data indicating the inspection result based on the calculated index value, and outputs this to the monitor 23 and the storage device 24 (step S3). In this case, in addition to the standard deviation, various information obtained from the image acquired in step S1, such as the average value of fluorescence intensity for each unit area and the maximum value of fluorescence intensity, are stored in the data in association with the index value. It's fine. The index value such as the standard deviation is compared with a predetermined determination value indicating a defective thickness unevenness, and the presence or absence of a defective thickness unevenness is determined in step S3, and the determination result may be included in the inspection data. When the relationship between the average value of fluorescence intensity and the standard deviation is known in advance, such as the straight line Rx in FIG. An appropriate value of the heater output for heating the preform may be calculated, and the adjustment amount of the temperature control parameter may be output as part of the inspection data. In addition to the temperature control parameters, various molding conditions that affect the degree of uneven thickness may be adjusted according to the inspection results. In addition, in step S3, it is also checked whether the relationship between the average value of the fluorescence intensity and the standard deviation deviates from a predetermined correspondence relationship as exemplified by the straight line RX. It may be output as part of the inspection results that there is a possibility that a molding defect such as the above has occurred or that some abnormality has occurred in the molding conditions.

以上に説明したように、本形態の検査装置1によれば、検査対象のボトル2の検査範囲を照明装置11の紫外光で照明し、蛍光発光したボトル2の画像を、蛍光の波長域が撮像対象の波長域に含まれる一方で紫外光の波長域が撮像対象の波長域からは除かれるようにフィルタ14を介してカメラ13にて紫外光の照明方向と同一の側から撮像し、撮像された画像中の蛍光強度の分布に基づいてボトル2の検査範囲における偏肉の状態を検査することができる。そのような検査方法によれば、ボトル2の偏肉の状態を作業者の目視に依存することなく画像処理によって検査することができるため、検査の効率を向上させ、客観的で信頼性の高い検査結果を得ることが可能である。なお、図5(b)に示した底部の偏肉や図5(c)に示した芯ずれを検査する場合には、偏肉不良がない正常な状態でも蛍光強度が局部的に高まる箇所が生じる。そのような個所がボトル2の検査範囲に含まれている場合には、正常時に画像中で明部として出現すべき領域を予め把握し、その領域を標準偏差等の指標値の演算対象から除外する、あるいは正常時の蛍光強度と実際の検査範囲の蛍光強度との差分を求め、得られた明暗分布から標準偏差等を計算する、といった処理を適用することにより、正常時でも現れる明部の影響を除外するように指標値を演算して上記と同様に偏肉状態を検査することが可能である。 As explained above, according to the inspection device 1 of the present embodiment, the inspection range of the bottle 2 to be inspected is illuminated with ultraviolet light from the illumination device 11, and an image of the bottle 2 emitting fluorescence is displayed in the wavelength range of the fluorescence. The camera 13 captures an image from the same side as the illumination direction of the ultraviolet light through the filter 14 so that the wavelength range of the ultraviolet light is included in the wavelength range of the imaged target while being excluded from the wavelength range of the imaged target. The state of uneven thickness in the inspection range of the bottle 2 can be inspected based on the distribution of fluorescence intensity in the image. According to such an inspection method, the uneven thickness of the bottle 2 can be inspected by image processing without depending on the operator's visual inspection, which improves inspection efficiency and provides an objective and highly reliable inspection method. It is possible to obtain test results. Note that when inspecting the uneven thickness of the bottom shown in Figure 5(b) or the misalignment shown in Figure 5(c), there may be areas where the fluorescence intensity locally increases even in a normal state with no uneven thickness. arise. If such a location is included in the inspection range of Bottle 2, the area that should appear as a bright area in the image during normal operation is determined in advance, and that area is excluded from the calculation of index values such as standard deviation. By applying processes such as determining the difference between the fluorescence intensity in normal conditions and the fluorescence intensity in the actual inspection range and calculating the standard deviation etc. from the obtained brightness/darkness distribution, bright areas that appear even in normal conditions can be calculated. It is possible to calculate the index value so as to exclude the influence and inspect the state of uneven thickness in the same manner as above.

本発明は、上述した形態に限定されることなく、ブロー成形によって形成される各種の樹脂成形品における偏肉状態の検査に適用可能である。また、樹脂成形品の照明に用いる励起光は、紫外光に限らない。励起光は、照射した光の波長域とは異なる波長域の光を樹脂成形品から放出させることが可能であればよく、検出対象光としてラマン散乱光を放出させることが可能な励起光が照明に用いられてもよい。したがって、励起光は紫外域に限らず可視光の波長域を含んでもよい。いずれにしても、励起光に対して検出対象光の波長域が相違し、励起光の波長域の像を除きつつ検出対象光の波長域の画像を撮像できれば、励起光と検出対象光との組み合わせは適宜に変更されてよい。樹脂成形品の素材はPET樹脂に限らず、ブロー成形の素材として利用可能であり、かつ励起光の照射によって、励起光とは異なる波長域の光を検出対象光として放出する限り、各種の樹脂材料が素材とされてよい。また、検査対象の樹脂成形品はボトル状の容器に限定されることなく、ブロー成形にて形成される限りにおいて、各種の用途に向けられた樹脂成形品が検査対象とされてよい。 The present invention is not limited to the above-mentioned embodiment, but can be applied to the inspection of uneven thickness in various resin molded products formed by blow molding. Furthermore, the excitation light used for illuminating the resin molded product is not limited to ultraviolet light. The excitation light only needs to be able to emit light in a wavelength range different from the wavelength range of the irradiated light from the resin molded product, and the excitation light that can emit Raman scattered light as the detection target light is used for illumination. May be used for. Therefore, the excitation light is not limited to the ultraviolet range, but may include the visible light wavelength range. In any case, if the wavelength range of the detection target light is different from that of the excitation light and it is possible to capture an image of the detection target light while excluding the image of the excitation light wavelength range, the excitation light and the detection target light can be separated. The combination may be changed as appropriate. The material for the resin molded product is not limited to PET resin, but various resins can be used as long as they can be used as blow molding materials and emit light in a wavelength range different from the excitation light as the detection target light when irradiated with the excitation light. A material may be used as a material. Furthermore, the resin molded products to be inspected are not limited to bottle-shaped containers, and resin molded products for various uses may be inspected as long as they are formed by blow molding.

上記の形態では、検出対象光の強度のばらつきの程度を定量的に示す指標値として、蛍光強度の標準偏差を求めたが、偏肉の状態の検査では、肉厚のばらつきの程度が客観的に把握できる限りにおいて各種の指標値が求められてよい。例えば、標準偏差に代えて、又は加えて、分散その他、ばらつきの程度を示す値として統計的に用いられる各種の値が求められてよい。上記の形態では、検出対象光の強度のばらつきの程度によって偏肉状態を把握し、そのばらつきの程度を標準偏差等の指標値によって定量的に表現したが、偏肉の状態を検査する手法はそのような例に限らない。ばらつきの程度を指標値で表現する手法は、検出対象光の強度分布に基づいて偏肉の状態を検査する手法の一例であって、その他にも適宜の手法で偏肉の状態を検査することが可能である。例えば、偏肉不良が生じてないと判断される正常な樹脂成形品における検出対象光の強度分布を基準データとして用意し、実際の検査で取得された画像中における検出対象光の強度分布を基準データと比較して、強度分布の相違が許容範囲を超えるか否かを判別することにより、許容範囲を超える偏肉が生じているか否かが検査されてもよい。偏肉不良の有無までを判断せず、検出対象光の強度分布を可視化して示すグラフその他のデータを検査結果として生成し、出力してもよい。いずれにしても、検出対象光の強度分布は、検査範囲における樹脂成形品の肉厚の分布と相関するため、その相関関係を利用することにより、強度分布に基づいて偏肉の状態を評価することが可能である。 In the above configuration, the standard deviation of the fluorescence intensity was determined as an index value that quantitatively indicates the degree of variation in the intensity of the detection target light, but when inspecting the state of uneven thickness, the degree of variation in wall thickness is objectively determined. Various index values may be determined as long as they can be determined. For example, instead of or in addition to the standard deviation, various values used statistically as values indicating the degree of dispersion, such as variance, may be obtained. In the above embodiment, the state of uneven thickness is grasped by the degree of variation in the intensity of the detection target light, and the degree of variation is expressed quantitatively by index values such as standard deviation. However, the method for inspecting the state of uneven thickness is This is not the only example. The method of expressing the degree of variation using an index value is an example of a method of inspecting the state of uneven thickness based on the intensity distribution of the light to be detected, and the state of uneven thickness may be inspected using any other appropriate method. is possible. For example, the intensity distribution of the detection target light in a normal resin molded product that is judged to have no uneven thickness defects is prepared as the reference data, and the intensity distribution of the detection target light in the image acquired in the actual inspection is used as the reference data. By comparing with data and determining whether or not the difference in intensity distribution exceeds an allowable range, it may be inspected whether or not a thickness deviation exceeding an allowable range has occurred. A graph or other data that visualizes the intensity distribution of the light to be detected may be generated and output as the inspection results without determining the presence or absence of uneven thickness defects. In any case, the intensity distribution of the detection target light correlates with the wall thickness distribution of the resin molded product in the inspection range, so by using that correlation, the state of uneven thickness can be evaluated based on the intensity distribution. Is possible.

上記の形態では、撮像手段として、カメラ13を含んだ撮像装置12を用いたが、撮像手段はカメラを用いる例に必ずしも限定されない。本発明の検査においては、樹脂成形品の検査範囲における検出対象光の強度に応じた信号強度を表すデータが取得できれば、そのデータにて示された検出対象光の強度分布に基づいて偏肉の状態を検査することが可能である。したがって、検出対象光の強度に応じた検出信号を出力する各種のセンサを利用して検出対象光の強度を反映したデータを取得し、得られたデータ中における検出対象光の強度分布に基づいて偏肉の状態が検査されてもよい。例えば、2次元平面状の検出範囲を有する光強度センサを用いて検査範囲における検出対象光の強度分布を示したデータが取得されてもよい。あるいは、1次元の光強度センサ(ラインセンサ)にて検査範囲を走査することにより、検査範囲における検出対象光の強度分布を示したデータが取得されてもよい。そのように取得されたデータは、検出対象光の強度分布に応じた信号強度を有する点で上記の形態のカメラ13にて取得される画像データと実質的に等価である。したがって、その種のデータも本発明における「画像」の概念に含まれるものであって、その種のデータを取得するための各種のセンサを用いた検出装置は本発明の「撮像手段」の概念に含まれるものである。 In the above embodiment, the imaging device 12 including the camera 13 is used as the imaging means, but the imaging means is not necessarily limited to an example using a camera. In the inspection of the present invention, if data representing the signal intensity corresponding to the intensity of the detection target light in the inspection range of the resin molded product can be obtained, uneven thickness can be detected based on the intensity distribution of the detection target light indicated by the data. It is possible to check the condition. Therefore, data that reflects the intensity of the detection target light is obtained using various sensors that output detection signals according to the intensity of the detection target light, and based on the intensity distribution of the detection target light in the obtained data. The state of uneven thickness may be inspected. For example, data indicating the intensity distribution of the detection target light in the inspection range may be acquired using a light intensity sensor having a two-dimensional planar detection range. Alternatively, data indicating the intensity distribution of the detection target light in the inspection range may be acquired by scanning the inspection range with a one-dimensional light intensity sensor (line sensor). The data acquired in this manner is substantially equivalent to the image data acquired by the camera 13 of the above configuration in that it has a signal intensity that corresponds to the intensity distribution of the detection target light. Therefore, such data is also included in the concept of "image" in the present invention, and a detection device using various sensors for acquiring such data is included in the concept of "imaging means" in the present invention. It is included in

上述した実施の形態及び変形例のそれぞれから導き出される本発明の各種の態様を以下に記載する。なお、以下の説明では、本発明の各態様の理解を容易にするために添付図面に図示された対応する構成要素を括弧書きにて付記するが、それにより本発明が図示の形態に限定されるものではない。 Various aspects of the present invention derived from each of the embodiments and modifications described above will be described below. In the following description, in order to facilitate understanding of each aspect of the present invention, corresponding components illustrated in the accompanying drawings will be added in parentheses, but the present invention is not limited to the illustrated form. It's not something you can do.

本発明の一態様に係る樹脂成形品の検査方法は、ブロー成形された樹脂成形品(2)における偏肉の状態を検査する樹脂成形品の検査方法であって、照射した光の波長域とは異なる波長域の光を検出対象光として前記樹脂成形品から放出させることが可能な励起光により前記樹脂成形品の検査範囲を照明する手順と、前記励起光にて照明された前記樹脂成形品の前記検査範囲を、前記検出対象光の波長域が撮像対象の波長域に含まれる一方で前記励起光の波長域が前記撮像対象の波長域からは除かれるようにして撮像する手順と、撮像された画像中における前記検出対象光の強度分布に基づいて、前記検査範囲における偏肉の状態を検査する手順と、を含んだものである。 A resin molded product inspection method according to one aspect of the present invention is a resin molded product inspection method for inspecting the state of uneven thickness in a blow-molded resin molded product (2), and includes the following: A procedure for illuminating an inspection range of the resin molded product with excitation light that can be emitted from the resin molded product using light in different wavelength ranges as detection target light, and the resin molded product illuminated with the excitation light. imaging the inspection range in such a way that the wavelength range of the detection target light is included in the wavelength range of the imaging target, while the wavelength range of the excitation light is excluded from the wavelength range of the imaging target; and and a step of inspecting the state of uneven thickness in the inspection range based on the intensity distribution of the detection target light in the image.

本発明の一態様に係る樹脂成形品の検査装置(1)は、ブロー成形された樹脂成形品(2)における偏肉の状態を検査する樹脂成形品の検査装置であって、照射した光の波長域とは異なる波長域の光を検出対象光として前記樹脂成形品から放出させることが可能な励起光により前記樹脂成形品の検査範囲を照明する照明手段(11)と、前記励起光にて照明された前記樹脂成形品の前記検査範囲を、前記検出対象光の波長域が撮像対象の波長域に含まれる一方で前記励起光の波長域が前記撮像対象の波長域からは除かれるようにして撮像する撮像手段(12)と、撮像された画像中における前記検出対象光の強度分布に基づいて、前記検査範囲における偏肉の状態を検査し、検査結果を出力する検査手段(22)と、を含んだものである。 A resin molded product inspection device (1) according to one aspect of the present invention is a resin molded product inspection device that inspects the state of uneven thickness in a blow-molded resin molded product (2), and is configured to illumination means (11) for illuminating an inspection range of the resin molded product with excitation light that can emit light in a wavelength range different from the wavelength range from the resin molded product as detection target light; The inspection range of the illuminated resin molded product is configured such that the wavelength range of the detection target light is included in the wavelength range of the imaging target, while the wavelength range of the excitation light is excluded from the wavelength range of the imaging target. an imaging means (12) for taking an image, and an inspection means (22) for inspecting the state of uneven thickness in the inspection range based on the intensity distribution of the detection target light in the captured image and outputting an inspection result. , it includes.

本発明の一態様に係るコンピュータプログラム(PG)は、ブロー成形された樹脂成形品(2)における偏肉の状態を検査する樹脂成形品の検査装置(1)であって、照射した光の波長域とは異なる波長域の光を検出対象光として前記樹脂成形品から放出させることが可能な励起光により前記樹脂成形品の検査範囲を照明する照明手段(11)と、前記励起光にて照明された前記樹脂成形品の前記検査範囲を、前記検出対象光の波長域が撮像対象の波長域に含まれる一方で前記励起光の波長域が前記撮像対象の波長域からは除かれるようにして撮像する撮像手段(12)と、を含んだ検査装置に適用されるコンピュータプログラムであって、前記検査装置のコンピュータ(20)を、前記撮像手段にて撮像された画像を取得する画像取得手段(22、S1)、及び取得された画像中における前記検出対象光の強度分布に基づいて、前記検査範囲における偏肉の状態を検査し、検査結果を出力する検査手段(22、S2、S3)、として機能させるように構成されたものである。 A computer program (PG) according to one aspect of the present invention is a resin molded product inspection device (1) that inspects the state of uneven thickness in a blow-molded resin molded product (2), illumination means (11) for illuminating an inspection range of the resin molded product with excitation light that can emit light in a wavelength range different from the wavelength range from the resin molded product as detection target light; and illumination with the excitation light. The inspection range of the resin molded product is set such that the wavelength range of the detection target light is included in the wavelength range of the imaging target, while the wavelength range of the excitation light is excluded from the wavelength range of the imaging target. A computer program that is applied to an inspection apparatus that includes an image capturing means (12) that captures an image, the computer (20) of the inspection apparatus having an image capturing means (12) that acquires an image captured by the image capturing means. 22, S1), and inspection means (22, S2, S3) for inspecting the state of uneven thickness in the inspection range based on the intensity distribution of the detection target light in the acquired image, and outputting the inspection result; It is configured to function as

ブロー成形された樹脂成形品を励起光で照明した場合、その照明に対応して樹脂成形品から励起光の波長域とは異なる波長域の検出対象光が放出される。検出対象光の強度は樹脂の肉厚が大きいほど高くなる。したがって、画像中の検出対象光の強度分布は検査範囲における樹脂成形品の肉厚のばらつきを反映する。そのため、上記の態様によれば、検出対象光の強度分布を手掛かりとして偏肉の状態を把握することが可能である。偏肉の状態を作業者の目視に依存することなく画像処理によって検査することができるため、検査の効率を向上させ、客観的で信頼性の高い検査結果を得ることが可能である。 When a blow-molded resin molded product is illuminated with excitation light, detection target light having a wavelength range different from that of the excitation light is emitted from the resin molded product in response to the illumination. The intensity of the light to be detected increases as the thickness of the resin increases. Therefore, the intensity distribution of the detection target light in the image reflects variations in the thickness of the resin molded product in the inspection range. Therefore, according to the above aspect, it is possible to grasp the state of uneven thickness using the intensity distribution of the detection target light as a clue. Since the state of uneven thickness can be inspected by image processing without relying on the operator's visual observation, inspection efficiency can be improved and objective and highly reliable inspection results can be obtained.

上記態様において、前記励起光は一例として紫外光であり、前記検出対象光は前記樹脂成形品で生じる蛍光であってもよい。前記検査する手順では、前記検出対象光の強度のばらつきの程度を定量的に示す指標値を演算してもよい。さらに、前記検査する手順では、前記指標値として前記検査範囲における前記検出対象光の強度の標準偏差を演算してもよい。検査手段の処理に関しても同様である。検出対象光の強度のばらつきの程度を定量化した標準偏差等を指標値として演算することにより、偏肉の状態を客観的に示し、成形時の樹脂加熱温度といった成形条件を調整するための客観的な目安、指針となる検査結果を提供することが可能である。 In the above aspect, the excitation light may be, for example, ultraviolet light, and the detection target light may be fluorescence generated in the resin molded product. In the inspection procedure, an index value quantitatively indicating the degree of variation in the intensity of the detection target light may be calculated. Furthermore, in the inspection procedure, a standard deviation of the intensity of the detection target light in the inspection range may be calculated as the index value. The same applies to the processing of the inspection means. By calculating the standard deviation, which quantifies the degree of variation in the intensity of the light to be detected, as an index value, the state of uneven thickness can be objectively indicated, and objective information can be used to adjust molding conditions such as the resin heating temperature during molding. It is possible to provide test results that serve as a guideline.

前記検査する手順では、前記検査範囲における前記検出対象光の強度の平均値と前記標準偏差との関係が所定の対応関係から逸脱するか否かを併せて検査してもよい。検査手段の処理に関しても同様である。検出対象光の強度の平均値と標準偏差との関には、偏肉の状態が悪化するほど平均値も標準偏差も大きくなるといったような対応関係が認められることがある。しかしながら、成形条件が不適切に設定されることにより白化等の成形不良が生じているか、又はそのおそれがある場合には、平均値と標準偏差との関係がそのような対応関係から逸脱することがある。したがって、検出対象光の強度の平均値と標準偏差との関係が所定の対応関係から逸脱するか否かを検査に含めることにより、偏肉の状態に加えて、他の成形不良の発生の有無、あるいはその発生のおそれの有無、さらには成形条件の設定の適否等を判別するための情報を検査結果として取得することが可能である。 In the inspection procedure, it may also be inspected whether the relationship between the average value of the intensity of the detection target light in the inspection range and the standard deviation deviates from a predetermined correspondence relationship. The same applies to the processing of the inspection means. A correspondence relationship may be observed between the average value and standard deviation of the intensity of the light to be detected, such that the worse the uneven thickness is, the larger the average value and standard deviation become. However, if molding defects such as whitening occur or are likely to occur due to inappropriate molding conditions, the relationship between the average value and standard deviation may deviate from such a correspondence relationship. There is. Therefore, by including in the inspection whether the relationship between the average value of the intensity of the detection target light and the standard deviation deviates from the predetermined correspondence relationship, it is possible to check whether or not other molding defects have occurred in addition to the state of uneven thickness. It is possible to obtain information as inspection results to determine whether or not there is a risk of such occurrence, and whether the molding conditions are appropriately set.

1 検査装置
2 ボトル(樹脂成形品)
11 照明装置(照明手段)
12 撮像装置(撮像手段)
13 カメラ
14 フィルタ
20 処理部(コンピュータ)
22 検査部(検査手段)
D1、D2 偏肉部
D3 芯ずれ部
1 Inspection device 2 Bottle (resin molded product)
11 Lighting device (lighting means)
12 Imaging device (imaging means)
13 Camera 14 Filter 20 Processing unit (computer)
22 Inspection Department (Inspection Means)
D1, D2 Uneven thickness portion D3 Misalignment portion

Claims (15)

ブロー成形された樹脂成形品における偏肉の状態を検査する樹脂成形品の検査方法であって、
照射した光の波長域とは異なる波長域の光を検出対象光として前記樹脂成形品から放出させることが可能な励起光により前記樹脂成形品の検査範囲を照明する手順と、
前記励起光にて照明された前記樹脂成形品の前記検査範囲を、前記検出対象光の波長域が撮像対象の波長域に含まれる一方で前記励起光の波長域が前記撮像対象の波長域からは除かれるようにして撮像する手順と、
撮像された画像中における前記検出対象光の強度分布に基づいて、前記検査範囲における偏肉の状態を検査する手順と、
を含んだ樹脂成形品の検査方法。
A resin molded product inspection method for inspecting the state of uneven thickness in a blow molded resin molded product, the method comprising:
a step of illuminating an inspection range of the resin molded product with excitation light that can emit light in a wavelength range different from the wavelength range of the irradiated light from the resin molded product as detection target light;
The inspection range of the resin molded product illuminated with the excitation light is such that the wavelength range of the detection target light is included in the wavelength range of the imaging target, and the wavelength range of the excitation light is outside the wavelength range of the imaging target. a procedure for taking an image while excluding the
A step of inspecting the state of uneven thickness in the inspection range based on the intensity distribution of the detection target light in the captured image;
Inspection method for resin molded products containing
前記検査する手順では、前記検出対象光の強度のばらつきの程度を定量的に示す指標値を演算する請求項1に記載の樹脂成形品の検査方法。 2. The method for inspecting a resin molded product according to claim 1, wherein in the inspection step, an index value quantitatively indicating the degree of variation in intensity of the detection target light is calculated. 前記検査する手順では、前記指標値として前記検査範囲における前記検出対象光の強度の標準偏差を演算する請求項2に記載の樹脂成形品の検査方法。 3. The method for inspecting a resin molded product according to claim 2, wherein in the inspection step, a standard deviation of the intensity of the detection target light in the inspection range is calculated as the index value. 前記検査する手順では、前記検査範囲における前記検出対象光の強度の平均値と前記標準偏差との関係が所定の対応関係から逸脱するか否かを併せて検査する請求項3に記載の樹脂成形品の検査方法。 The resin molding according to claim 3, wherein in the testing step, it is also tested whether the relationship between the average value of the intensity of the detection target light in the testing range and the standard deviation deviates from a predetermined correspondence relationship. Product inspection method. 前記励起光が紫外光であり、前記検出対象光が前記樹脂成形品で生じる蛍光である請求項1~4のいずれか一項に記載の樹脂成形品の検査方法。 The method for inspecting a resin molded article according to any one of claims 1 to 4, wherein the excitation light is ultraviolet light and the detection target light is fluorescence generated in the resin molded article. ブロー成形された樹脂成形品における偏肉の状態を検査する樹脂成形品の検査装置であって、
照射した光の波長域とは異なる波長域の光を検出対象光として前記樹脂成形品から放出させることが可能な励起光により前記樹脂成形品の検査範囲を照明する照明手段と、
前記励起光にて照明された前記樹脂成形品の前記検査範囲を、前記検出対象光の波長域が撮像対象の波長域に含まれる一方で前記励起光の波長域が前記撮像対象の波長域からは除かれるようにして撮像する撮像手段と、
撮像された画像中における前記検出対象光の強度分布に基づいて、前記検査範囲における偏肉の状態を検査し、検査結果を出力する検査手段と、
を含んだ樹脂成形品の検査装置。
A resin molded product inspection device that inspects the state of uneven thickness in a blow molded resin molded product,
illumination means that illuminates an inspection range of the resin molded product with excitation light that can cause the resin molded product to emit light in a wavelength range different from the wavelength range of the irradiated light as detection target light;
The inspection range of the resin molded product illuminated with the excitation light is such that the wavelength range of the detection target light is included in the wavelength range of the imaging target, and the wavelength range of the excitation light is outside the wavelength range of the imaging target. an imaging means for taking an image in such a manner that the
Inspection means for inspecting the state of uneven thickness in the inspection range based on the intensity distribution of the detection target light in the captured image, and outputting an inspection result;
Inspection equipment for resin molded products including
前記検査手段は、前記検出対象光の強度のばらつきの程度を定量的に示す指標値を演算し、演算結果に基づいて前記検査結果を示すデータを生成し、出力する請求項6に記載の樹脂成形品の検査装置。 The resin according to claim 6, wherein the inspection means calculates an index value quantitatively indicating the degree of variation in intensity of the detection target light, and generates and outputs data indicating the inspection result based on the calculation result. Molded product inspection equipment. 前記検査手段は、前記指標値として前記検査範囲における前記検出対象光の強度の標準偏差を演算する請求項7に記載の樹脂成形品の検査装置。 8. The resin molded product inspection apparatus according to claim 7, wherein the inspection means calculates a standard deviation of the intensity of the detection target light in the inspection range as the index value. 前記検査手段は、前記検査範囲における前記検出対象光の強度の平均値と前記標準偏差との関係が所定の対応関係から逸脱するか否かを併せて検査する請求項8に記載の樹脂成形品の検査装置。 The resin molded article according to claim 8, wherein the inspection means also inspects whether the relationship between the average value of the intensity of the detection target light in the inspection range and the standard deviation deviates from a predetermined correspondence relationship. inspection equipment. 前記励起光が紫外光であり、前記検出対象光が前記樹脂成形品で生じる蛍光である請求項6~9のいずれか一項に記載の樹脂成形品の検査装置。 The inspection device for a resin molded article according to any one of claims 6 to 9, wherein the excitation light is ultraviolet light, and the detection target light is fluorescence generated in the resin molded article. ブロー成形された樹脂成形品における偏肉の状態を検査する樹脂成形品の検査装置であって、照射した光の波長域とは異なる波長域の光を検出対象光として前記樹脂成形品から放出させることが可能な励起光により前記樹脂成形品の検査範囲を照明する照明手段と、前記励起光にて照明された前記樹脂成形品の前記検査範囲を、前記検出対象光の波長域が撮像対象の波長域に含まれる一方で前記励起光の波長域が前記撮像対象の波長域からは除かれるようにして撮像する撮像手段と、を含んだ検査装置に適用されるコンピュータプログラムであって、
前記検査装置のコンピュータを、
前記撮像手段にて撮像された画像を取得する画像取得手段、及び
取得された画像中における前記検出対象光の強度分布に基づいて、前記検査範囲における偏肉の状態を検査し、検査結果を出力する検査手段、として機能させるように構成されたコンピュータプログラム。
A resin molded product inspection device for inspecting the state of uneven thickness in a blow molded resin molded product, wherein light in a wavelength range different from the wavelength range of the irradiated light is emitted from the resin molded product as detection target light. an illumination means for illuminating an inspection range of the resin molded product with excitation light that can illuminate the inspection range of the resin molded product illuminated with the excitation light; A computer program that is applied to an inspection apparatus, the computer program comprising: an imaging means that captures an image in such a way that the wavelength range of the excitation light is included in the wavelength range of the imaging target, while being excluded from the wavelength range of the imaging target,
The computer of the inspection device,
an image acquisition unit that acquires an image captured by the imaging unit; and an image acquisition unit that inspects the state of uneven thickness in the inspection range based on the intensity distribution of the detection target light in the acquired image, and outputs an inspection result. A computer program configured to function as a testing means.
前記検査手段は、前記検出対象光の強度のばらつきの程度を定量的に示す指標値を演算し、演算結果に基づいて前記検査結果を示すデータを生成し、出力する請求項11に記載のコンピュータプログラム。 The computer according to claim 11, wherein the inspection means calculates an index value quantitatively indicating the degree of variation in intensity of the detection target light, and generates and outputs data indicating the inspection result based on the calculation result. program. 前記検査手段は、前記指標値として前記検査範囲における前記検出対象光の強度の標準偏差を演算する請求項12に記載のコンピュータプログラム。 13. The computer program according to claim 12, wherein the inspection means calculates a standard deviation of the intensity of the detection target light in the inspection range as the index value. 前記検査手段は、前記検査範囲における前記検出対象光の強度の平均値と前記標準偏差との関係が所定の対応関係から逸脱するか否かを併せて検査する請求項13に記載のコンピュータプログラム。 14. The computer program product according to claim 13, wherein the inspection means also inspects whether the relationship between the average value of the intensity of the detection target light in the inspection range and the standard deviation deviates from a predetermined correspondence relationship. 前記励起光が紫外光であり、前記検出対象光が前記樹脂成形品で生じる蛍光である請求項11~14のいずれか一項に記載のコンピュータプログラム。 The computer program according to any one of claims 11 to 14, wherein the excitation light is ultraviolet light, and the detection target light is fluorescence generated in the resin molded product.
JP2022142712A 2022-09-08 2022-09-08 Resin molding inspection method, inspection device, and computer program used therefor Pending JP2024038596A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022142712A JP2024038596A (en) 2022-09-08 2022-09-08 Resin molding inspection method, inspection device, and computer program used therefor
PCT/JP2023/032526 WO2024053672A1 (en) 2022-09-08 2023-09-06 Resin molded article inspection method, inspection device, and computer program used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022142712A JP2024038596A (en) 2022-09-08 2022-09-08 Resin molding inspection method, inspection device, and computer program used therefor

Publications (1)

Publication Number Publication Date
JP2024038596A true JP2024038596A (en) 2024-03-21

Family

ID=90191270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022142712A Pending JP2024038596A (en) 2022-09-08 2022-09-08 Resin molding inspection method, inspection device, and computer program used therefor

Country Status (2)

Country Link
JP (1) JP2024038596A (en)
WO (1) WO2024053672A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235425A (en) * 2000-02-23 2001-08-31 Hitachi Eng Co Ltd Method and apparatus for inspecting thickness irregularity of pet bottle
US6962670B1 (en) * 2000-08-16 2005-11-08 Eastman Chemical Company Determination of layer thickness or non-uniformity of layer thickness based on fluorophore additives
EP2284481A1 (en) * 2009-08-05 2011-02-16 Emhart Glass S.A. Glass container wall thickness measurement using fluorescence
JP2017020880A (en) * 2015-07-10 2017-01-26 東レエンジニアリング株式会社 Film thickness unevenness inspection device

Also Published As

Publication number Publication date
WO2024053672A1 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
US10489901B2 (en) System and method for inspection of wet ophthalmic lens
JP5009663B2 (en) Appearance inspection system
KR20190101857A (en) Visual inspection device and illumination condition setting method of visual inspection device
KR20160090359A (en) Surface defect detection method and surface defect detection device
CN113870172A (en) Workpiece inspection and defect detection system indicating number of defect images for training
WO2016203210A1 (en) Colour measurement of gemstones
US10491788B2 (en) Apparatus and method for controlling the quality of transparent objects
GB2473230A (en) Automated cigarette production line inspection apparatus using a contact image sensor to examine a rotating smoking article
KR102340173B1 (en) Contact lens inspection in a plastic shell
JP2008249568A (en) Visual examination device
AU2016270992A1 (en) System and method for inspecting containers using multiple radiation sources
WO2012080686A1 (en) Apparatus for imaging features of a rod
US6628379B1 (en) Method and apparatus for inspection of rubber product
JP2021117227A (en) Detection and characterization of defects in pharmaceutical cylindrical containers
JP5224288B2 (en) Surface inspection apparatus and surface inspection method
JP2016090476A (en) Foreign matter detection method
WO2024053672A1 (en) Resin molded article inspection method, inspection device, and computer program used therefor
JP2008175818A (en) Surface inspection apparatus and method
WO2024053671A1 (en) Resin molded article inspection method and inspection device
JP2007333661A (en) Method and apparatus for visual inspection of electronic component
WO2020184530A1 (en) Inspection device
JP2005134294A (en) Method and apparatus for inspecting shape of cylindrical part
CN114761790A (en) Method for checking the wall thickness of a container made of an at least partially transparent material
JP5994413B2 (en) Inspection device for lack of ring-shaped articles
JP3545127B2 (en) Inspection method of bottle with handle