JP2024037524A - 撮像装置およびその制御方法 - Google Patents

撮像装置およびその制御方法 Download PDF

Info

Publication number
JP2024037524A
JP2024037524A JP2022142437A JP2022142437A JP2024037524A JP 2024037524 A JP2024037524 A JP 2024037524A JP 2022142437 A JP2022142437 A JP 2022142437A JP 2022142437 A JP2022142437 A JP 2022142437A JP 2024037524 A JP2024037524 A JP 2024037524A
Authority
JP
Japan
Prior art keywords
blur correction
imaging device
image blur
reaction force
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022142437A
Other languages
English (en)
Inventor
光洋 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2022142437A priority Critical patent/JP2024037524A/ja
Publication of JP2024037524A publication Critical patent/JP2024037524A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】像ブレ補正手段の駆動により撮像装置に加わる反力が像ブレ補正の精度に与える影響を良好に抑制することを可能とする撮像装置を提供する。【解決手段】像ブレを光学的に補正するブレ補正機構と、像ブレを、撮像画像に対する画像処理により補正する幾何変形部110とを有する撮像装置を設ける。撮像装置が、ブレ補正機構の駆動情報を取得し、取得された駆動情報に基づいて、ブレ補正機構の駆動により撮像装置に加わる反力を予測する。そして、撮像装置が、反力の予測結果に基づいて、ブレ補正機構による像ブレ補正の実行と幾何変形部110による像ブレ補正の実行の割合を制御する。【選択図】図1

Description

本発明は、撮像装置およびその制御方法に関する。
デジタルカメラ等の撮像装置に手ぶれ等が加わることによって生じる画像のブレ(像ブレ)を補正する像ブレ補正機能を有する撮像装置が提案されている。また、昨今の防犯や防災に関する意識の高まりにより、監視カメラの普及が進むと予想される。しかし、様々な環境下において監視システムを構築しようとすると、監視カメラが不安定な状態で設置される場合が考えられる。例えば、監視カメラが、不整地の地面の上に設置されたり、簡便な方法で固定されたりする状況が考えられる。また、例えば、監視カメラが、天井に吊り下げて設置され、固定されていない状況が考えられる。このような状況で設置された監視カメラの場合、像ブレ補正手段(IS:Image Stabilizer)の駆動によって慣性力(反力)が発生し、ジャイロが揺すられてしまうことがある。そして、揺すられた監視カメラの動きを振れ検出手段としてのジャイロが検出し、検出した動きがISの駆動機構にフィードバックされることで、像ブレ補正の精度が低下してしまう。
特許文献1は、連続で撮影された複数枚の画像を位置合わせした後に合成処理を施す撮像装置を開示している。この撮像装置は、ある時点で検出された画像間の位置ずれ量から次に取得される画像の位置ずれ量を予測し、予測値を用いて検出された位置ずれから次に取得される画像の位置ずれを予測して、光学的に画像の像ブレを補正する。
特開2018-22964号公報
特許文献1が開示する撮像装置は、位置ずれ量を予測し、予測値に基づいて像ブレ補正手段の制御を行う。しかし、この撮像装置では、像ブレ補正手段の駆動により撮像装置に加わる反力が像ブレ補正の精度に与える影響を良好に抑制することができない。本発明は、像ブレ補正手段の駆動により撮像装置に加わる反力が像ブレ補正の精度に与える影響を良好に抑制することを可能とする撮像装置の提供を目的とする。
本発明の一実施形態の撮像装置は、撮像装置に加わる振れによって生じる像ブレを光学的に補正する第1の像ブレ補正手段と、撮像装置に加わる振れによって生じる像ブレを、撮像画像に対する画像処理により補正する第2の像ブレ補正手段と、前記第1の像ブレ補正手段の駆動情報を取得する取得手段と、前記取得された駆動情報に基づいて、前記第1の像ブレ補正手段の駆動により前記撮像装置に加わる反力を予測する予測手段と、前記反力の予測結果に基づいて、前記第1の像ブレ補正手段による像ブレ補正と前記第2の像ブレ補正手段による像ブレ補正の割合を制御する制御手段と、を有する。
本発明の撮像装置によれば、像ブレ補正手段の駆動により撮像装置に加わる反力が像ブレ補正の精度に与える影響を良好に抑制することが可能となる。
本実施形態の撮像装置の構成例を示す図である。 実施例1の撮像装置の動作処理を説明するフローチャートである。 テンプレートマッチングを説明する図である。 ブレ補正機構の駆動により撮像装置に加わる反力を説明する図である。 ブレ補正機構の駆動による反力の推定方法の一例を説明する図である。 ブレ補正機構の駆動による反力の推定方法の一例を説明する図である。 ブレ補正機構の駆動による反力の推定方法の一例を説明する図である。 所定の重量バランスを有する撮像装置の設置例を示す図である。 実施例2の撮像装置の構成を示す図である。 実施例2の撮像装置の動作処理を説明するフローチャートである。 補正割合判定部の機能ブロック図の一例である。
(実施例1)
図1は、本実施形態の撮像装置の構成例を示す図である。
図1に示す撮像装置は、撮像光学系101乃至制御部112を有する。
撮像光学系101は、被写体光を形成する光学系である。撮像光学系101は、フォーカスレンズ、ズームレンズの他、撮像装置に加わる振れにより撮像画像に生じるブレ(像ブレ)を補正するブレ補正機構(第1の像ブレ補正手段)を有する。ブレ補正機構は、例えばシフトレンズ等の光学部材を有する。ブレ補正機構が駆動し、例えばシフトレンズが撮像光学系101の光軸に垂直な平面内で移動することで、像ブレを光学的に補正することができる。
撮像素子102は、撮像光学系101により形成された被写体像を光電変換して、撮像画像に係る信号を出力する。撮像素子102は、例えば、CCD(Charte Coupled Device)センサ、CMOS(Complementary Metal Oxide Semiconductor)センサ等である。本実施例では、撮像光学系101が有するブレ補正機構を像ブレ補正に用いるが、撮像素子102をブレ補正機構として適用してもよい。撮像素子102をブレ補正機構として適用する場合、制御部112が、撮像素子102を光軸に垂直な平面内で駆動することで、像ブレを光学的に補正する。
制御部112は、撮像装置全体を制御する。制御部112は、例えば、CPU(Central Processing Unit)を有する。例えば、制御部112は、撮像光学系101乃至現像処理部103を制御して、撮像処理を実行する。また、制御部112は、ブレ補正機構を駆動して、像ブレ補正を実行する。また、制御部112は、第2の像ブレ補正手段として機能する幾何変形部110を制御して、撮像画像に対する画像処理による像ブレ補正を実行させる。図1に示す例では、制御部112は、後述する補正量算出部106、補正情報取得部107、補正割合判定部108を有する。
現像処理部103は、撮像素子102が出力する電気信号に基づいて、映像信号を形成する。現像処理部103は、不図示のA/D変換回路、オートゲイン制御回路(AGC)、オートホワイトバランス回路を有し、デジタル信号を形成する。現像処理部103により形成された映像信号に係る、1フレーム又は複数のフレーム画像は、映像出力部111による表示など各種処理に使用されるとともに、記憶部であるメモリ104に一時的に記憶保持される。
動き情報取得部105は、撮像装置の動き情報を取得する。撮像装置の動き情報は、例えば、撮像装置の位置及び姿勢の時間的な変動を示す。動き情報には、撮像装置に加わる振れの他に、パンニングやチルティングといった撮影者の意図による動きも含まれる。動き情報取得部105は、例えばジャイロセンサや加速度センサを有する。撮像装置本体の動き情報が計測可能であれば、ジャイロセンサや加速度センサによる取得方法以外の方法を用いてもよい。
補正量算出部106は、動き情報取得部105から得られる撮像装置の動き情報に基づいて、像ブレ補正を行うためのブレ補正量を算出する。補正情報取得部107は、撮像光学系101内のブレ補正機構がブレ補正量に基づいてどのような動きをしているかを示す情報(駆動情報)を取得する。本実施例では、駆動情報は、ブレ補正機構の位置情報を含む。駆動情報が、ブレ補正機構の速度情報、加速度情報を含んでいてもよい。
補正割合判定部108は、補正情報取得部107から得られるブレ補正機構の駆動情報(位置情報)に基づいて、ブレ補正機構の駆動により撮像装置に生じる反力を予測する。そして、補正割合判定部108は、反力の予測結果に基づいて、ブレ補正割合、つまりブレ補正機構による像ブレ補正と、幾何変形部110による像ブレ補正の割合を判定する。制御部112は、ブレ補正機構および幾何変形部110を制御して、ブレ補正割合に応じた像ブレ補正を実行させる。本実施形態では、ブレ補正機構の制御による像ブレ補正を第1の像ブレ補正とし、幾何変形部110の制御による像ブレ補正を第2の像ブレ補正とする。
動きベクトル検出部109は、現像処理部103及びメモリ104から順次入力されてくる2枚のフレーム画像間の動きベクトルを検出する。幾何変形部110は、動きベクトル検出部109から得られるフレーム間の動きベクトルに基づいて、撮像画像に対する画像処理を実行して、像ブレを補正する。具体的には、幾何変形部110は、動きベクトルに基づいてフレーム間の幾何変形量を算出し、算出した幾何変形量に基づいて、撮像画像に対して像ブレ補正のための幾何変形処理を施す。幾何変形処理が施された撮像画像は、メモリ104または不図示の画像記憶装置に記憶される。映像出力部111は、像ブレ補正が施された画像等に係る各種映像を表示する。
図2は、実施例1の撮像装置の動作処理を説明するフローチャートである。
本フローチャートにしたがう処理は、制御部112が有するCPUが制御プログラムを所定の記憶部から読み出して実行することで実現される。なお、図2中のSは、本フローチャートにしたがう処理に対応するステップ番号である。
S201において、動き情報取得部105が、撮像装置の動き情報を取得し、補正量算出部106に出力する。続いて、S202において、補正量算出部106が、撮像装置の動き情報に基づいて、撮像装置に加わる振れを打ち消すようにブレ補正機構を制御するための補正量情報(ブレ補正量)を生成する。補正量算出部106は、ハイパスフィルタ(HPF)を備えており、撮像装置の動き情報に含まれる角速度情報の周波数成分のうち、予め設定された低域カットオフ周波数以下の低周波成分を遮断し、低域カットオフ周波数を超える高周波成分を出力する。補正量算出部106は、HPFから出力された撮像装置の動きの高周波成分を積分し、積分された撮像装置の動きの高周波成分をブレ補正量として補正割合判定部108に出力する。HPFの低域カットオフ周波数及び積分処理の時定数は、撮像装置の動き情報に含まれているカメラワークの動きにより決定される。HPFまたは積分処理から出力された撮像装置の動き情報に基づいて、撮像装置の動きにカメラワークの動きが含まれているかどうかの判定が行われる。カメラワークには、撮像装置に加えられるパンニングやチルティングのような、撮影者の意図によるものが含まれる。ブレ補正量は、ブレ補正機構による像ブレ補正の割合を制御するために用いられるとともに、実際に像ブレ補正のためにブレ補正機構を駆動させるための補正量情報の生成に用いられる。S202における処理の後、処理がS205に進む。
S203において、制御部112が、撮像素子102が出力する撮像画像に係るアナログ信号を取得し、現像処理部103を制御して当該アナログ信号を処理することで、映像信号を生成する。具体的には、現像処理部103は、不図示のA/D変換部によって、アナログ信号を例えば14ビットのデジタル信号に変換する。さらに、不図示のAGC及びAWBによって、デジタル信号が信号レベル補正、白レベル補正が施され、動きベクトル検出部109及び表示部111に伝送されるとともに、メモリ104に記憶保持される。AGCは、Auto Gain Controlの略称である。また、AWBは、Auto White Balanceの略称である。本実施例の撮像装置では、所定のフレームレートで順次フレーム画像が生成され、伝送及び記憶保持されるフレーム画像も順次更新される。
次に、S204において、動きベクトル検出部109が、現像処理部103及びメモリ104から得られる2枚の撮像画像(フレーム画像)に基づいて、動きベクトルを検出する。そして、処理がS207に進む。本実施例では、動きベクトル検出方法の一例として、テンプレートマッチングを用いた動きベクトルの検出方法を適用するものとする。
図3は、テンプレートマッチングを説明する図である。
図3(A)は、原画像を示す。図3(B)は、参照画像を示す。原画像と参照画像は、現像処理部103やメモリ104から取得されるフレーム画像である。動きベクトル検出部109は、原画像中の任意の位置にテンプレートブロック301を配置し、テンプレートブロック301と参照画像の各領域との相関値を算出する。動きベクトル検出部109は、参照画像の全領域に対して相関値を算出すると演算量が膨大になるので、参照画像上の相関値を算出する矩形領域をサーチ範囲302として設定する。サーチ範囲302の位置や大きさについては特に制限は無いが、サーチ範囲302の内部にテンプレートブロック301の移動先に相当する領域が含まれていない場合には、正しい動きベクトルを検出することはできない。
本実施例では、相関値の算出方法の一例として、差分絶対値和(SAD)を用いる。SADは、Sum of Absolute Differenceの略称である。SADの計算式を式(1)に示す。
Figure 2024037524000002
f(i,j)は、テンプレートブロック301内の座標(i,j)における輝度値を表す。g(i,j)は、サーチ範囲302において相関値算出の対象となるブロック303内の各輝度値を表す。SADでは、両ブロック内の各輝度値f(i,j)及びg(i,j)について差の絶対値を計算し、その総和を求めることで相関値S_SADを得ることが出来る。従って、相関値S_SADの値が小さいほど、両ブロック間の輝度値の差分が小さい、つまりテンプレートブロック301と相関値算出領域303のブロック内のテクスチャが類似している。動きベクトル検出部109は、サーチ範囲302の全領域について相関値対象ブロック303を移動させて相関値を算出する。そして、動きベクトル検出部109は、テンプレートブロック301とサーチ範囲302との間で相関値を算出し、最も相関が高くなる位置を判定することにより、原画像上のテンプレートブロックが参照画像においてどの位置に移動したかを決定する。これにより、画像間の動きベクトルが検出される。本実施例では動きベクトルの検出方法として、SADによるテンプレートマッチングを用いるが、正規化相互相関(NCC)を用いる方法、勾配法、特徴点抽出による対応点探索等の方法を用いても良い。以上にようにして検出されたフレーム画像間の動きベクトルは、幾何変形部110に伝送される。
図2の説明に戻る。S205において、補正割合判定部108が、補正情報取得部107から得られるブレ補正機構の駆動情報に基づいて、ブレ補正機構の駆動により撮像装置に加わる反力を予測する。そして、補正割合判定部108は、反力の予測結果に基づいて、ブレ補正割合を判定する。この例では、補正割合判定部108は、駆動情報に含まれるブレ補正機構の位置情報に基づいて、反力を予測するものとする。
図4は、ブレ補正機構の駆動により撮像装置に加わる反力を説明する図である。
図4に示す例では、ブレ補正機構として、像ブレ補正用のレンズ(シフトレンズ)403を用いる。撮像装置本体401にレンズ装置402が装着されている。レンズ装置402の内部には、シフトレンズ403が搭載されている。撮像装置本体401は、三脚404に固定されている。
例えば、シフトレンズ403が像ブレを補正するために上方向に移動したとする。シフトレンズ403の移動に伴って発生した力405に対応して、撮像装置本体401には、下方向に反力406が発生する。この例では、撮像装置本体401内に搭載されている撮像素子と光軸408とが交わる位置で反力406が生じている。反力の大きさは、シフトレンズ403の移動速度が速くなるほど大きくなる。撮像装置が不安定な状態で設置されている環境において、反力が閾値より大きくなると、反力の影響を受けて、撮像装置本体401が揺すられてしまう。シフトレンズ403の位置で生じる力405と、力405の影響を受けて撮像装置本体401で生じる反力406とでは大きさも向きも異なる。したがって、例えばレンズ装置402に搭載されたジャイロでは、反力406により揺すられた撮像装置の動きを良好に検出することは困難である。そこで、制御部112は、シフトレンズ403の位置情報に基づいて、シフトレンズ403の駆動により生じる力を求め、求めた力の大きさに基づいて、今後反力406の大きさがどのように変化するかを予測する。そして、制御部112は、反力406の大きさの予測結果に基づいて、ブレ補正割合を判定する。
今後反力406が大きくなることが予測される場合には、制御部112は、シフトレンズ403の駆動による像ブレ補正の割合を小さくする。すなわち、制御部112は、シフトレンズ403による像ブレ補正の効果を弱めて、予め反力が生じないようにすることで、撮像装置が揺すられることを抑制する。なお、後述するように、シフトレンズ403による像ブレ補正の効果を弱めることでフレーム画像に残留するブレ補正残り量については、幾何変形部110による像ブレ補正が実行される。その結果、反力の予測結果に応じたシフトレンズ403の駆動による像ブレ補正の割合と幾何変形部110による像ブレ補正の割合の制御が実現される。
補正割合判定部108が補正情報取得部107から取得した駆動情報に基づいて求まるシフトレンズ403の時刻tにおける位置をP(t)とする。シフトレンズ403の移動速度v(t)は、式(2)に示すようにP(t)を時間微分することによって求まる。
Figure 2024037524000003
シフトレンズ403が駆動する際に生じる力Fは、シフトレンズ403の重さをmとすると、以下の式(3)によって得られる。シフトレンズ403の重さmは、予め計測されており、補正割合判定部108に記憶保持されているものとする。
Figure 2024037524000004
本実施例では、説明の簡単化のために、撮像装置の重さや重量バランスを考慮に入れず、シフトレンズ403が駆動する際に生じる力Fを、そのまま撮像装置に生じる反力として扱う場合について説明する。
図5乃至図7は、ブレ補正機構の駆動による反力の推定方法の一例を説明する図である。図5乃至図7に示すグラフの横軸は時間を示す。縦軸は、シフトレンズ403の駆動により発生する力Fを示す。
まず、図5を参照して、反力の推定方法の一例について説明する。像ブレ補正は高周波の微小振動を補正することを目的としているので、シフトレンズ403は、撮像装置に加わる振れを打ち消すように、小刻みに振動して移動する。そして、シフトレンズ403の移動速度が大きくなると反力が生じるので、その時の力Fの大きさに基づいて、点線で示す、大きさth1の閾値502を設定する。シフトレンズレンズ403は、駆動可能な範囲内で様々な方向に移動するので、本実施例では、正負の両方向に対して同じ大きさの閾値を設定している。実際に反力が生じる力Fの大きさに閾値502を設定してしまうと、既に撮像装置が反力の影響を受けた後で対処をすることになる。したがって、実際に反力が生じる力Fよりも小さい値に閾値502を設定しておく。そして、補正割合判定部108は、力Fが閾値502を超えた場合に、今後反力が大きくなると予測する。図5では、ポイント503において力Fが閾値502を超えている。したがって、ポイント503に対応する時刻から撮像装置が反力の影響を受け始めると予測することができる。
次に、図6を参照して、反力の推定方法の他の例について説明する。図6において、図5と同じものについては同符号を付している。補正割合判定部108が、所定の期間602と、大きさth2の閾値601を設定し、期間602に逐次入力されてくる力Fが閾値601を超えた回数を計算する。力Fが期間602内に閾値601を超えた回数が所定回数を超えた場合に、今後反力がさらに大きくなっていくと予測することが可能となる。期間602および上記所定回数については、工場出荷時に計測された反力が発生する速度に基づいて予め設定しておいてもよいし、撮影者が手動で設定してもよい。
次に、図7を参照して、反力の推定方法の他の例について説明する。図7において、図5、図6と同じものについては同符号を付している。
補正割合判定部108は、期間602におけるシフトレンズ403の力Fのピーク値(極大値)について関数フィッティングを行い、関数フィッティングにより求めた関数の値に基づいて、反力を予測する。直線702は、力Fのピーク値について一次関数でフィッティングを行って得られた関数を示す。この関数によれば、期間602以降も力Fが増大していくことが予測できる。そして、当該関数の値に対応する、予測された力Fが、点線に示す大きさth3の閾値701を超える場合に、補正割合判定部108は、反力が大きくなって、撮像装置本体に影響することを予測する。
関数フィッティングには、2次関数などの1次関数以外の関数を使用してもよい。また、本実施例では、シフトレンズ403の移動速度が正の方向の場合についてのみ想定したが、移動速度が負の方向である場合でも、同様にして反力の予測を行うことが可能である。正負いずれかの移動速度に応じた力Fの大きさが判定基準を満たせば、撮像装置が反力の影響を受ける可能性があると判定すればよい。また、補正割合判定部108が、機械学習を用いて、反力を推定してもよい。例えば、力Fの時系列データを学習データとし、撮像装置が反力の影響を受けたタイミングに正解ラベルを付与して学習を行っておく。そして、補正割合判定部108が、公知の手法により、学習データを用いて、逐次入力されてくるシフトレンズ403の移動速度に応じた力Fに対して反力の発生を予測する。機械学習によれば、閾値の設定をすることなく、反力を予測することが可能となる。
上記の説明では、ブレ補正機構の駆動により生じる力を撮像装置に生じる反力として扱ってきたが、撮像装置の重量バランスに基づいて反力を推定することで、より良好な反力の予測を行うことが可能となる。図4の符号407に示すように、シフトレンズ403から反力406が生じる箇所までの距離をrとした場合の反力406の大きさをNとする。Nは、式(2)によるシフトレンズ403が駆動する際に生じる力Fと、距離rとに基づいて、式(4)を用いて算出することができる。
Figure 2024037524000005
図8は、所定の重量バランスを有する撮像装置の設置例を示す図である。
図8に示す設置例では、撮像装置は、図4に示す設置例とは異なる重量バランスを有する。図4に示す設置例では、反力406が生じている箇所は、撮像素子102と光軸408が交わる点であり、さらに三脚404による撮像装置の固定点がその真下にある。したがって反力406の大きさNは、式(4)を用いて算出することができる。しかし、反力406の大きさNは、撮像装置がどの位置で固定されているかによって変化する。図8に示すように、三脚801による撮像装置の固定点が、図4に示す設置例とは異なる位置にある場合を想定する。シフトレンズレンズ403と固定点との距離802の値をr1、固定点と撮像素子102との距離803の値をr2とする。補正割合判定部108は、以下の式(5)により、反力406の大きさNを算出する。
Figure 2024037524000006
r1、r2については、例えば予め計測しておいて,補正割合判定部108に記憶保持しておく。補正割合判定部108は、以上のようにして求められた反力406の大きさNを用いて、図5乃至図7を参照して説明した方法により反力の予測を行う。つまり図5乃至7に示す力FをNに置き換えて反力の予測を行う。これにより、撮像装置の重量バランスを考慮して、より精度の高い予測を行うことが可能となる。
なお、図5乃至図7の説明で参照した閾値502、601及び701の設定方法として、工場出荷時等に予め反力の大きさを計測し、計測した値に基づいてこれらの閾値を記憶保持しておく方法や、撮影者が手動で閾値を設定する方法などが挙げられる。撮影状況に応じて動的に閾値を変化させるという方法を用いてもよい。例えば、撮影時に焦点距離を望遠側に変更した場合を考える。焦点距離を望遠側に変更すると、被写体が大きく表示されるようになり、画像上に現れる見かけのブレの大きさも、拡大されたように大きくなる。したがって、広角側では無視できる程度の大きさの反力も望遠側になると同様に拡大されるため対処が必要になる場合がある。そこで、補正割合判定部108は、撮影時の焦点距離が望遠側になるほど閾値を小さくし、より小さな反力でも撮像装置に影響が出るほど大きくなると予測できるようにする。すなわち、焦点距離に応じて閾値を変更することで、より高精度な判定ができるようになる。
撮像装置から主被写体までの距離(被写体距離)に応じて、反力の予測に用いる閾値を変更するようにしてもよい。被写体距離が近いほど、画像上に現れる見かけのブレの大きさは大きくなる。従って、補正割合判定部108が、被写体距離が近いほど閾値を小さくすることで、被写体上に現れる反力の影響を良好に判定することができるようになる。被写体距離の取得には、オートフォーカスの機能がピント合わせに使用している被写体距離情報や、撮像装置に別途搭載される距離計測装置を用いれば良い。
また、撮像装置が設置されている環境に応じて、反力の予測に用いる閾値を設定してもよい。撮像装置が設置されている場所が砂場やぬかるみのような不安定な地面の上であったり、撮像装置が安定性の低い三脚を使用して固定されていたり、天井から吊り下げられている場合には、撮像装置は小さな反力に対しても容易に揺すられやすくなる。従って、このような設置環境の場合には、閾値を小さくすることで、より小さな反力でも撮像装置が揺すられる可能性があると判定できるようになる。
撮像装置の設置環境の判定には、シーン判別機能やGPS等によって位置情報を利用する方法や撮影者が手動で設定する方法などを適用できる。また、その他の外部情報に応じて閾値を変更するようにしてもよい。例えば、撮像装置に搭載されている通信機能を用いて気象情報を取得し、強風に見舞われることが予想される場合には、風の影響による振動を反力と間違えて判定してしまわないように閾値を大きくしてもよい。これにより、撮像装置が置かれた環境の変化に応じた適切な判定をすることが可能となる。
反力が今後大きくなって、撮像装置が揺すられる可能性があると予測された場合には、補正割合判定部108は、反力の影響が抑えられるようにブレ補正割合を制御する。具体的には、シフトレンズ403を駆動する割合を小さくするために、補正量算出部106から得られるブレ補正量に変更を加える。シフトレンズ403を駆動する割合を小さくするためには、シフトレンズ403の駆動により発生する力が反力の予測に用いる閾値よりも小さくなるようにブレ補正量にゲインを乗じるという方法がある。この方法によれば、反力が生じない程度までシフトレンズ403の駆動速度が低減するので、撮像装置が揺すられることを防ぐことが可能となる。
しかし、シフトレンズ403を駆動する割合を小さくするということは、像ブレ補正の効果を弱めることになり、取得されるフレーム画像には補正しきれなかったブレの動き(ブレ補正残り)が残存してしまう。そこで、制御部112は、幾何変形部110を制御して、画像処理によって、ブレ補正残りの量(ブレ補正残り量)に対応する像ブレ補正を行うようにする。このようにすることで、反力の影響を抑えつつ、像ブレが良好に補正されたフレーム画像を取得することが可能となる。
図2の説明に戻る。S206において、制御部112が、補正割合判定部108による変更後のブレ補正量に基づいて、ブレ補正機構を駆動させる。補正割合判定部108から得られるブレ補正量は、撮像装置に加わる反力の予測結果に応じて、ブレ補正機構によるブレ補正の効果が弱められた値となっている。したがって、ブレ補正機構の駆動による反力は生じないようになっているが、取得されるフレーム画像にはブレが残留してしまう。このため、ブレが残留しているフレーム画像は、幾何変形部110に伝送され、幾何変形処理によって、残留している像ブレ(ブレ補正残り)の補正が行われる。
S207において、幾何変形部110が、動きベクトル検出部109から得られたフレーム画像間の動きベクトルに基づいて、フレーム画像に対して幾何変形処理を施すことで、ブレ補正残りを補正する。動きベクトル検出部109から得られる動きベクトルは、フレーム画像中の複数の領域に含まれる各々の領域の局所的な動きを表す。一方、撮像装置に生じている振れは、フレーム画像全体の動きとして画像上に現れるので、動きベクトル群からフレーム画像全体の動きを算出する必要がある。
フレーム画像全体の動きを算出する方法の一例としては、動きベクトル群に対してヒストグラム処理を行うという方法がある。まず、各動きベクトルの水平方向及び垂直方向のそれぞれについて、その移動量に着目したヒストグラムを生成する。そして、生成されたヒストグラムの最頻値を抽出して、画面全体の動きを示す値とする。ヒストグラム処理によりフレーム画像全体の動きを算出することで、検出に失敗した動きベクトルや、画面全体の動きとは無関係の移動物体の動きを排除して、精度よくフレーム画像全体の動きを算出することができる。
フレーム画像全体の動きを算出する他の方法としては、ロバスト推定法によって検出に失敗した動きベクトルを除外しつつ、アフィン行列やホモグラフィ行列等の幾何変換行列を求める方法がある。補正の対象となるぶれのモデルに応じて適切な方法を選択すれば良い。そして、幾何変形部110が、算出されたフレーム画像全体の動きを打ち消すようにフレーム画像に対して幾何変形処理を施すことで、ブレが補正されたフレーム画像を得ることができる。以上のようにして得られたブレが補正されたフレーム画像は、映像出力部111に伝送される。映像出力部111は、幾何変形部110から得られたフレーム画像を不図示のモニタ類に表示したり、画像記憶装置に記録保持したりする。
本実施例の撮像装置は、ブレ補正機構が駆動することにより生じる反力の大きさを予測し、反力が大きくなると判定された場合には、ブレ補正機構による像ブレ補正の効果を弱める。そして、撮像装置は、像ブレ補正の効果を弱めることにより残留するブレの動きを幾何変形処理により除去する。これにより、ブレ補正機構が駆動することによる反力の影響を抑制しつつ、像ブレが良好に補正された画像を取得することが可能となる。
(実施例2)
図9は、実施例2の撮像装置の構成を示す図である。
同図において、図1に示した構成要素と共通するものについては図1と同符号を付す。実施例2の撮像装置は、ブレ補正機構の駆動による反力の予測のために、補正情報取得部107から得られるブレ補正機構の駆動情報(位置情報)と、ブレ補正量と、動きベクトル検出部109から得られる動きベクトルを用いる。このために、図9の動きベクトル検出部109から補正割合判定部108に対して、動きベクトルが出力される。
図10は、実施例2の撮像装置の動作処理を説明するフローチャートである。
図10において実施例1と異なる処理を行う部分についてのみ説明する。図10のS201、S202、S203、S204、S206、S207は、図2のS201、S202、S203、S204、S206、S207と同様である。
S1001において、補正割合判定部108は、補正情報取得部107から得られるブレ補正機構の位置情報と、補正量算出部106から得られるブレ補正量と、動きベクトル検出部109から得られる動きベクトルに基づいて、反力の大きさを予測する。反力が今後大きくなって、撮像装置が揺すられる可能性があると予測された場合には、補正割合判定部108は、実施例1と同様に、ブレ補正機構を駆動する割合を小さくするために、補正量算出部106から得られるブレ補正量に変更を加える。
図11は、実施例2の撮像装置が有する補正割合判定部の機能ブロック図の一例である。
ブレ補正残り量算出部1101は、ブレ補正機構の位置情報とブレ補正量とに基づいて、撮像されたフレーム画像間に現れる第1のブレ補正残り量を算出する。ブレ補正機構がブレ補正量に応じた駆動量で駆動した場合には、ブレ補正残りは発生しないはずである。しかし、実際にはブレ補正機構の駆動範囲の制約等により、ブレ補正機構が、ブレ補正量に応じた駆動量による動きとは異なる動きをする場合がある。この場合に、両者の差分がブレ補正残り量としてフレーム画像上に現れる。ブレ補正機構の位置情報とブレ補正量とに基づいて、画像上にどの程度ブレの動きが残留しているかを算出することができる。
ブレ補正残り量比較部1102は、ブレ補正残り量の比較処理を実行する。ブレ補正機構の駆動により生じたブレ補正残りはフレーム画像上に現れるので、動きベクトル検出部109で検出されたフレーム画像間の動きを表す動きベクトルには、ブレ補正残りが含まれている。したがって、まず、ブレ補正残り量比較部1102は、動きベクトルに基づいて、第2のブレ補正残り量を取得する。そして、ブレ補正残り量比較部1102は、ブレ残り量算出部1101から出力された第1のブレ補正残り量と、取得した第2のブレ補正残り量とを比較する。
撮像装置が反力の影響を受けていない状態の場合、第1のブレ補正残り量と第2のブレ補正残り量は一致する。しかし、撮像装置が反力の影響を受けて揺すられている場合には、動き情報取得部105は撮像装置の動きを良好に検出できず、第1のブレ補正残り量と第2のブレ補正残り量とで差異(差分)が生じる。そして、反力の影響が大きくなるにつれて、ブレ補正残り量の差分は増大していく。したがって、ブレ補正残り量の差分を解析することで、反力が撮像装置に及ぼす影響を予測することが可能となる。
反力予測部1103は、ブレ補正残り量比較部1102による比較結果つまり第1のブレ補正残り量と第2のブレ補正残り量との差分に基づいて、反力を予測する。反力の予測方法は、実施例1と同様であり、図5乃至図7を参照して説明した方法を、第1のブレ補正残り量と第2のブレ補正残り量との差分に対して適用すればよい。例えば、第1のブレ補正残り量と第2のブレ補正残り量との差分をF2とする。図5に示す方法のF2への適用例では、補正割合判定部108は、F2が所定の閾値を超えた場合に、反力が大きくなることを予測する。また、図6に示す方法のF2への適用例では、補正割合判定部108は、F2が所定の期間内に閾値を超えた回数が、所定回数を超えた場合に、反力が大きくなることを予測する。また、図7に示す方法のF2への適用例では、補正割合判定部108は、F2の極大値に基づいて求まる関数の値が閾値を超える場合に、反力が大きくなることを予測する。
本実施例の撮像装置は、ブレ補正機構の駆動情報から得られるブレ補正残り量と動きベクトルから得られるブレ補正残り量を比較して反力の予測を行う。したがって、実施例1とは異なり、ブレ補正機構の重さや、撮像装置の重量バランスといった情報を必要とせずに反力の予測を行うことが可能となる。
本実施形態の開示は、以下の構成を含む。
(構成1)
撮像装置に加わる振れによって生じる像ブレを光学的に補正する第1の像ブレ補正手段と、
撮像装置に加わる振れによって生じる像ブレを、撮像画像に対する画像処理により補正する第2の像ブレ補正手段と、
前記第1の像ブレ補正手段の駆動情報を取得する取得手段と、
前記取得された駆動情報に基づいて、前記第1の像ブレ補正手段の駆動により前記撮像装置に加わる反力を予測する予測手段と、
前記反力の予測結果に基づいて、前記第1の像ブレ補正手段による像ブレ補正と前記第2の像ブレ補正手段による像ブレ補正の割合を制御する制御手段と、を有する
ことを特徴とする撮像装置。
(構成2)
前記制御手段は、前記予測手段によって前記反力が大きくなることが予測された場合に、前記第1の像ブレ補正手段による像ブレ補正の割合を小さくする
ことを特徴とする構成1に記載の撮像装置。
(構成3)
前記制御手段は、前記予測手段によって前記反力が大きくなることが予測された場合に、前記第1の像ブレ補正手段の駆動量を小さくするとともに、当該駆動量を小さくすることで生じるブレ補正残りを、前記第2の像ブレ補正手段による像ブレ補正の実行により補正する
ことを特徴とする構成1または構成2に記載の撮像装置。
(構成4)
前記予測手段は、前記第1の像ブレ補正手段の駆動情報に基づいて算出される前記反力が閾値を超えた場合に、前記反力が大きくなることを予測する
ことを特徴とする構成2または構成3に記載の撮像装置。
(構成5)
前記予測手段は、前記第1の像ブレ補正手段の駆動情報に基づいて算出される前記反力が所定の期間内に閾値を超えた回数が、所定回数を超えた場合に、前記反力が大きくなることを予測する
ことを特徴とする構成2または構成3に記載の撮像装置。
(構成6)
前記予測手段は、前記第1の像ブレ補正手段の駆動情報に基づいて算出される前記反力の極大値に基づいて求まる関数の値が閾値を超える場合に、前記反力が大きくなることを予測する
ことを特徴とする構成2または構成3に記載の撮像装置。
(構成7)
前記予測手段は、前記反力の予測に用いる前記閾値を、焦点距離、被写体距離または前記撮像装置が設置されている環境の情報に基づいて変更する
ことを特徴とする構成4乃至6のいずれか1つに記載の撮像装置。
(構成8)
前記予測手段は、前記第1の像ブレ補正手段の駆動情報と、前記撮像装置の重量バランスの情報とに基づいて、前記反力を予測する
ことを特徴とする構成1乃至7のいずれか1つに記載の撮像装置。
(構成9)
前記予測手段は、前記第1の像ブレ補正手段の駆動情報に基づいて、機械学習によって前記反力を予測する
ことを特徴とする構成1乃至3のいずれか1つに記載の撮像装置。
(構成10)
前記予測手段は、前記撮像装置に加わる振れの検出結果に基づいて求まる前記像ブレの補正量と、前記第1の像ブレ補正手段の駆動情報と、被写体の撮像画像から得られる動きベクトルとに基づいて、前記反力を予測する
ことを特徴とする構成1に記載の撮像装置。
(構成11)
前記予測手段は、前記撮像装置に加わる振れの検出結果に基づいて求まる前記像ブレの補正量と前記第1の像ブレ補正手段の駆動情報とに基づいて算出される第1のブレ補正残り量と、前記動きベクトルから算出される第2のブレ補正残り量とを比較して、前記反力を予測する
ことを特徴とする構成10に記載の撮像装置。
(構成12)
前記制御手段は、前記予測手段によって前記反力が大きくなることが予測された場合に、前記第1の像ブレ補正手段による像ブレ補正の割合を小さくする
ことを特徴とする構成10または構成11に記載の撮像装置。
(構成13)
前記予測手段は、前記第1のブレ補正残り量と前記第2のブレ補正残り量との差分が閾値を超えた場合に、前記反力が大きくなることを予測する
ことを特徴とする構成10または構成11に記載の撮像装置。
(構成14)
前記予測手段は、前記第1のブレ補正残り量と前記第2のブレ補正残り量との差分が所定の期間内に閾値を超えた回数が、所定回数を超えた場合に、前記反力が大きくなることを予測する
ことを特徴とする構成10または構成11に記載の撮像装置。
(構成15)
前記予測手段は、前記第1のブレ補正残り量と前記第2のブレ補正残り量との差分の極大値に基づいて求まる関数の値が閾値を超える場合に、前記反力が大きくなることを予測する
ことを特徴とする構成10または構成11に記載の撮像装置。
(構成16)
撮像装置に加わる振れによって生じる像ブレを光学的に補正する第1の像ブレ補正手段と、撮像装置に加わる振れによって生じる像ブレを、撮像画像に対する画像処理により補正する第2の像ブレ補正手段とを有する撮像装置の制御方法であって、
前記第1の像ブレ補正手段の駆動情報を取得する取得工程と、
前記取得された駆動情報に基づいて、前記第1の像ブレ補正手段の駆動により前記撮像装置に加わる反力を予測する予測工程と、
前記反力の予測結果に基づいて、前記第1の像ブレ補正手段による像ブレ補正の実行と前記第2の像ブレ補正手段による像ブレ補正の実行の割合を制御する制御工程と、を有する
ことを特徴とする制御方法。
(その他の実施形態)
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
109 動きベクトル検出部
110 幾何変形部
112 制御部

Claims (16)

  1. 撮像装置に加わる振れによって生じる像ブレを光学的に補正する第1の像ブレ補正手段と、
    撮像装置に加わる振れによって生じる像ブレを、撮像画像に対する画像処理により補正する第2の像ブレ補正手段と、
    前記第1の像ブレ補正手段の駆動情報を取得する取得手段と、
    前記取得された駆動情報に基づいて、前記第1の像ブレ補正手段の駆動により前記撮像装置に加わる反力を予測する予測手段と、
    前記反力の予測結果に基づいて、前記第1の像ブレ補正手段による像ブレ補正と前記第2の像ブレ補正手段による像ブレ補正の割合を制御する制御手段と、を有する
    ことを特徴とする撮像装置。
  2. 前記制御手段は、前記予測手段によって前記反力が大きくなることが予測された場合に、前記第1の像ブレ補正手段による像ブレ補正の割合を小さくする
    ことを特徴とする請求項1に記載の撮像装置。
  3. 前記制御手段は、前記予測手段によって前記反力が大きくなることが予測された場合に、前記第1の像ブレ補正手段の駆動量を小さくするとともに、当該駆動量を小さくすることで生じるブレ補正残りを、前記第2の像ブレ補正手段による像ブレ補正の実行により補正する
    ことを特徴とする請求項2に記載の撮像装置。
  4. 前記予測手段は、前記第1の像ブレ補正手段の駆動情報に基づいて算出される前記反力が閾値を超えた場合に、前記反力が大きくなることを予測する
    ことを特徴とする請求項2に記載の撮像装置。
  5. 前記予測手段は、前記第1の像ブレ補正手段の駆動情報に基づいて算出される前記反力が所定の期間内に閾値を超えた回数が、所定回数を超えた場合に、前記反力が大きくなることを予測する
    ことを特徴とする請求項2に記載の撮像装置。
  6. 前記予測手段は、前記第1の像ブレ補正手段の駆動情報に基づいて算出される前記反力の極大値に基づいて求まる関数の値が閾値を超える場合に、前記反力が大きくなることを予測する
    ことを特徴とする請求項2に記載の撮像装置。
  7. 前記予測手段は、前記反力の予測に用いる前記閾値を、焦点距離、被写体距離または前記撮像装置が設置されている環境の情報に基づいて変更する
    ことを特徴とする請求項4乃至6のいずれか1項に記載の撮像装置。
  8. 前記予測手段は、前記第1の像ブレ補正手段の駆動情報と、前記撮像装置の重量バランスの情報とに基づいて、前記反力を予測する
    ことを特徴とする請求項1に記載の撮像装置。
  9. 前記予測手段は、前記第1の像ブレ補正手段の駆動情報に基づいて、機械学習によって前記反力を予測する
    ことを特徴とする請求項1に記載の撮像装置。
  10. 前記予測手段は、前記撮像装置に加わる振れの検出結果に基づいて求まる前記像ブレの補正量と、前記第1の像ブレ補正手段の駆動情報と、被写体の撮像画像から得られる動きベクトルとに基づいて、前記反力を予測する
    ことを特徴とする請求項1に記載の撮像装置。
  11. 前記予測手段は、前記撮像装置に加わる振れの検出結果に基づいて求まる前記像ブレの補正量と前記第1の像ブレ補正手段の駆動情報とに基づいて算出される第1のブレ補正残り量と、前記動きベクトルから算出される第2のブレ補正残り量とを比較して、前記反力を予測する
    ことを特徴とする請求項10に記載の撮像装置。
  12. 前記制御手段は、前記予測手段によって前記反力が大きくなることが予測された場合に、前記第1の像ブレ補正手段による像ブレ補正の割合を小さくする
    ことを特徴とする請求項10または請求項11に記載の撮像装置。
  13. 前記予測手段は、前記第1のブレ補正残り量と前記第2のブレ補正残り量との差分が閾値を超えた場合に、前記反力が大きくなることを予測する
    ことを特徴とする請求項10または請求項11に記載の撮像装置。
  14. 前記予測手段は、前記第1のブレ補正残り量と前記第2のブレ補正残り量との差分が所定の期間内に閾値を超えた回数が、所定回数を超えた場合に、前記反力が大きくなることを予測する
    ことを特徴とする請求項10または請求項11に記載の撮像装置。
  15. 前記予測手段は、前記第1のブレ補正残り量と前記第2のブレ補正残り量との差分の極大値に基づいて求まる関数の値が閾値を超える場合に、前記反力が大きくなることを予測する
    ことを特徴とする請求項10または請求項11に記載の撮像装置。
  16. 撮像装置に加わる振れによって生じる像ブレを光学的に補正する第1の像ブレ補正手段と、撮像装置に加わる振れによって生じる像ブレを、撮像画像に対する画像処理により補正する第2の像ブレ補正手段とを有する撮像装置の制御方法であって、
    前記第1の像ブレ補正手段の駆動情報を取得する取得工程と、
    前記取得された駆動情報に基づいて、前記第1の像ブレ補正手段の駆動により前記撮像装置に加わる反力を予測する予測工程と、
    前記反力の予測結果に基づいて、前記第1の像ブレ補正手段による像ブレ補正の実行と前記第2の像ブレ補正手段による像ブレ補正の実行の割合を制御する制御工程と、を有する
    ことを特徴とする制御方法。
JP2022142437A 2022-09-07 2022-09-07 撮像装置およびその制御方法 Pending JP2024037524A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022142437A JP2024037524A (ja) 2022-09-07 2022-09-07 撮像装置およびその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022142437A JP2024037524A (ja) 2022-09-07 2022-09-07 撮像装置およびその制御方法

Publications (1)

Publication Number Publication Date
JP2024037524A true JP2024037524A (ja) 2024-03-19

Family

ID=90300347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022142437A Pending JP2024037524A (ja) 2022-09-07 2022-09-07 撮像装置およびその制御方法

Country Status (1)

Country Link
JP (1) JP2024037524A (ja)

Similar Documents

Publication Publication Date Title
CN109842753B (zh) 摄像头防抖系统、方法、电子设备和存储介质
US9979889B2 (en) Combined optical and electronic image stabilization
CN109194876B (zh) 图像处理方法、装置、电子设备和计算机可读存储介质
KR101528860B1 (ko) 디지털 촬영 장치의 흔들림 보정 방법 및 장치
CN110636223B (zh) 防抖处理方法和装置、电子设备、计算机可读存储介质
CN110035228B (zh) 摄像头防抖系统、方法、电子设备和计算机可读存储介质
US7860387B2 (en) Imaging apparatus and control method therefor
CN109951638B (zh) 摄像头防抖系统、方法、电子设备和计算机可读存储介质
JP2016046666A (ja) 撮像装置およびその制御方法、並びにプログラム
CN110300263B (zh) 陀螺仪处理方法和装置、电子设备、计算机可读存储介质
WO2017185265A1 (zh) 一种图像拍摄参数的确定方法及摄像装置
CN114449173A (zh) 光学防抖控制方法、装置、存储介质与电子设备
JP5388910B2 (ja) 画像揺れ補正装置および画像揺れ補正方法
JP2007267184A (ja) 撮像装置
KR102592745B1 (ko) 자세 추정 장치, 자세 추정 방법 및 기록 매체에 저장된 컴퓨터 프로그램
EP3267675B1 (en) Terminal device and photographing method
JP6282133B2 (ja) 撮像装置、その制御方法、および制御プログラム
JP4807582B2 (ja) 画像処理装置、撮像装置及びそのプログラム
JP7131541B2 (ja) 画像処理装置、画像処理方法および画像処理プログラム
JP2024037524A (ja) 撮像装置およびその制御方法
CN106454066B (zh) 图像处理设备及其控制方法
JP2019092036A (ja) 撮像装置及び制御方法
JP6316030B2 (ja) 撮像装置及びその制御方法
JP2017134185A (ja) 像ブレ補正装置、撮像装置、レンズ装置、像ブレ補正装置の制御方法、プログラム、および、記憶媒体
JP2009027437A (ja) 画像処理装置,画像処理方法及び撮像装置