JP2024030661A - Wire-like circuit board, device and manufacturing method thereof - Google Patents

Wire-like circuit board, device and manufacturing method thereof Download PDF

Info

Publication number
JP2024030661A
JP2024030661A JP2022133692A JP2022133692A JP2024030661A JP 2024030661 A JP2024030661 A JP 2024030661A JP 2022133692 A JP2022133692 A JP 2022133692A JP 2022133692 A JP2022133692 A JP 2022133692A JP 2024030661 A JP2024030661 A JP 2024030661A
Authority
JP
Japan
Prior art keywords
circuit board
thin film
circuit layer
wire
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022133692A
Other languages
Japanese (ja)
Inventor
淳 武居
Atsushi Takei
一徳 栗原
Kazunori Kurihara
靖之 日下
Yasuyuki Kusaka
大樹 延島
Daiki Nobeshima
俊弘 竹下
Toshihiro Takeshita
健一 野村
Kenichi Nomura
学 吉田
Manabu Yoshida
グェン・タン・ヴィン
Thanh-Vinh NGUYEN
香理 木村
Kaori Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2022133692A priority Critical patent/JP2024030661A/en
Publication of JP2024030661A publication Critical patent/JP2024030661A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structure Of Printed Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wire-like circuit board which is appropriate to be applied to a stretchable device and has flexibility, a device and a manufacturing method thereof.
SOLUTION: A circuit board is configured by winding a thin film substrate to which a circuit layer consisting of a thin film covering an elastic body film and including a conductive circuit portion is applied, swell is formed on a surface of the circuit layer in a length direction in such a manner that the swell is flattened when the circuit board is stretched in the length direction, and a device using the circuit board is also provided. A manufacturing method of the circuit board includes the steps of: applying a load so as to separate opposed two short sides of the rectangular elastic body film from each other while restricting them in a width direction and performing elastic deformation in a uniaxial direction; applying the circuit layer consisting of the conductive thin film while covering the elastic body film; and forming the swell on the surface of the circuit layer in the uniaxial direction by cancelling the load, and performing winding in mutually reverse directions from two long sides of the elastic body film.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、伸縮性を有するワイヤ状の回路基板、デバイス及びその製造方法に関する。 The present invention relates to a stretchable wire-shaped circuit board, a device, and a method for manufacturing the same.

健康モニタリングや感覚の共有システムなどにおいて、身体に違和感なく着装できる電子デバイスが求められ、この中枢の回路部分では高機能化とともに小型且つ軽量化が求められる。 Electronic devices that can be comfortably worn on the body are required for health monitoring and sensory sharing systems, and the central circuitry of these devices is required to be highly functional, compact, and lightweight.

例えば、特許文献1では、シート材料上に回路層を形成した上で渦巻状に巻かれてなる渦巻状回路デバイスが開示されている。渦巻状に巻かれた回路は、従来の回路に比べ、体積特性及び重量特性において極めて有利であり、航空宇宙技術等における小型且つ軽量の、より一層多機能な回路デバイスに適用され得るとしている。 For example, Patent Document 1 discloses a spiral circuit device in which a circuit layer is formed on a sheet material and then spirally wound. The spirally wound circuit is extremely advantageous in terms of volume and weight characteristics compared to conventional circuits, and can be applied to smaller, lighter, and more multifunctional circuit devices in aerospace technology and the like.

特表2006-527484号公報Special Publication No. 2006-527484

上記したような渦巻状回路デバイスをウェアラブルデバイスに使用するには、変形に対する自由度が必要であり、特に、巻き軸方向(長さ方向)への伸縮性が必要とされる。また、変形性を有する渦巻状回路デバイスとしてより細くワイヤ状に加工するには、その体積や重量を増加させる原因となる、渦巻き層間を接着する粘着剤の如き使用を極力制限することも求められる。 In order to use the above-described spiral circuit device in a wearable device, a degree of freedom in deformation is required, and in particular, stretchability in the direction of the winding axis (lengthwise direction) is required. In addition, in order to process a deformable spiral circuit device into a thinner wire shape, it is also necessary to limit the use of adhesives to bond between spiral layers as much as possible, which increases the volume and weight of the spiral circuit device. .

本発明は、上記したような状況に鑑みてなされたものであって、その目的とするところは、ストレッチャブルデバイスへの適用に好適な、伸縮性を有するワイヤ状の回路基板、デバイス及びその製造方法を提供することにある。 The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a stretchable wire-shaped circuit board and device suitable for application to stretchable devices, and the manufacture thereof. The purpose is to provide a method.

本発明による回路基板は、伸縮性を有するワイヤ状の回路基板であって、弾性体膜の上を覆って導電性回路部分を有する薄膜からなる回路層を付与された薄膜基板が巻回されてなり、長手方向に沿って前記回路層の表面にうねりが形成され、前記長手方向に伸張させたときに前記うねりが平坦化することを特徴とする。かかる特徴によれば、小型且つ軽量であることを損なわず、巻き軸方向(長さ方向)への伸縮性を有し得て、ストレッチャブルデバイスへの適用に好適なのである。 The circuit board according to the present invention is a wire-shaped circuit board having stretchability, and is wound with a thin film board provided with a circuit layer made of a thin film covering an elastic film and having a conductive circuit portion. The circuit layer is characterized in that undulations are formed on the surface of the circuit layer along the longitudinal direction, and the undulations are flattened when stretched in the longitudinal direction. According to this feature, it is possible to have stretchability in the direction of the winding axis (lengthwise direction) without sacrificing its small size and light weight, and is suitable for application to stretchable devices.

また本発明によるデバイスは、伸縮性を有するワイヤ状の回路基板を用いたデバイスであって、弾性体膜の上を覆って導電性回路部分を有する薄膜からなる回路層の上に機能性素子を付与された薄膜基板が巻回されてなり、長手方向に沿って前記回路層の表面にうねりが形成され、前記長手方向に伸張させたときに前記うねりが平坦化することを特徴とする。かかる特徴によれば、小型且つ軽量であることを損なわず、巻き軸方向(長さ方向)への伸縮性を有し得て、ストレッチャブルデバイスへの適用に好適なのである。 Further, the device according to the present invention is a device using a stretchable wire-shaped circuit board, in which a functional element is placed on a circuit layer made of a thin film covering an elastic film and having a conductive circuit portion. The applied thin film substrate is wound, and undulations are formed on the surface of the circuit layer along the longitudinal direction, and the undulations are flattened when stretched in the longitudinal direction. According to this feature, it is possible to have stretchability in the direction of the winding axis (lengthwise direction) without sacrificing its small size and light weight, and is suitable for application to stretchable devices.

上記した発明において、長方形の前記弾性体膜の対向する2辺から互いに逆回りに巻回された並行する2本の巻回部を含むことを特徴としてもよい。かかる特徴によれば、回路密度を高めることができて、ストレッチャブルデバイスへの適用に好適なのである。 The above-described invention may be characterized by including two parallel winding portions wound in opposite directions from two opposite sides of the rectangular elastic membrane. According to this feature, the circuit density can be increased and it is suitable for application to stretchable devices.

更に本発明による回路基板の製造方法は、伸縮性を有するワイヤ状の回路基板の製造方法であって、長方形の弾性体膜の対向する2つの短辺をそれぞれ幅方向に拘束しつつ互いに離間させるように荷重を与えて一軸方向に弾性変形させるステップと、前記弾性体膜の上を覆って導電性薄膜からなる回路層を付与するステップと、前記荷重を解除して前記一軸方向に沿って前記回路層の表面にうねりを形成させるとともに、前記弾性体膜の2つの長辺から互いに逆回り巻回させるステップと、含むことを特徴とする。かかる特徴によれば、小型且つ軽量であることを損なわず、巻き軸方向(長さ方向)への伸縮性を有し得て、ストレッチャブルデバイスへの適用に好適な回路基板を簡便に得られるのである。 Furthermore, the method for manufacturing a circuit board according to the present invention is a method for manufacturing a wire-shaped circuit board having stretchability, in which two opposing short sides of a rectangular elastic film are restrained in the width direction and spaced apart from each other. a step of applying a load to elastically deform the elastic film in a uniaxial direction; a step of applying a circuit layer made of a conductive thin film to cover the elastic film; and a step of releasing the load and deforming the elastic film along the uniaxial direction. The method is characterized in that it includes the steps of forming undulations on the surface of the circuit layer and winding the elastic film from two long sides in opposite directions. According to these characteristics, it is possible to easily obtain a circuit board that is stretchable in the direction of the winding axis (lengthwise direction) without sacrificing its small size and light weight, and is suitable for application to stretchable devices. It is.

本発明による実施例としてのワイヤ状の回路基板の斜視図である。FIG. 1 is a perspective view of a wire-shaped circuit board as an embodiment of the present invention. 同回路基板の長手方向に沿った断面を表す斜視図である。FIG. 3 is a perspective view showing a cross section along the longitudinal direction of the same circuit board. 同断面の拡大図である。It is an enlarged view of the same cross section. 回路基板の第1の製造方法の工程を示す斜視図である。FIG. 3 is a perspective view showing steps of a first method for manufacturing a circuit board. 回路基板の第2の製造方法の工程を示す斜視図である。It is a perspective view which shows the process of the 2nd manufacturing method of a circuit board. 回路基板の第3の製造方法の工程を示す写真である。It is a photograph which shows the process of the 3rd manufacturing method of a circuit board. 製造試験における回路基板の寸法記号を示す斜視図である。FIG. 3 is a perspective view showing dimension symbols of a circuit board in a manufacturing test. 第1製造試験における初期長さと幅によるスクロール形状の形成の有無を示すグラフである。It is a graph showing whether a scroll shape is formed or not depending on the initial length and width in the first manufacturing test. 第2製造試験における製造条件と得られた回路基板のスクロール幅の一覧表である。It is a list of the manufacturing conditions and the scroll width of the obtained circuit board in the second manufacturing test.

以下に、本発明による1つの実施例であるワイヤ状の回路基板、これを用いたデバイス、及び、これらの製造方法について、図1乃至図6を用いて説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS A wire-shaped circuit board, a device using the same, and a method for manufacturing the same, which is one embodiment of the present invention, will be described below with reference to FIGS. 1 to 6.

図1に示すように、回路基板1は、薄膜基板2を長手方向に沿った巻き軸の周りに巻回させたことにより、全体としてワイヤ状(線状)を呈する。本実施例においては、巻き軸A1及びA2の2つが存在し、これによって、並行する2本の巻回部R1及びR2を形成している。 As shown in FIG. 1, the circuit board 1 has a wire shape as a whole by winding the thin film substrate 2 around a winding axis extending in the longitudinal direction. In this embodiment, there are two winding axes A1 and A2, thereby forming two parallel winding portions R1 and R2.

図2及び図3(a)を併せて参照すると、巻回部R1及びR2は、薄膜基板2による複層状体となり、各層の内周側の表面には巻き軸A1及びA2に沿ってうねり3が形成されている。つまり、うねり3はその尾根3a及び谷3bを巻き軸A1及びA2に垂直な平面上で巻き軸A1及びA2周りに周回させるように形成される。薄膜基板2は、弾性体膜5とその上を覆う回路層4の二層構造となっている。回路層4は、導電性回路部分を有する薄膜によって形成されている。 Referring to FIG. 2 and FIG. 3(a) together, the winding portions R1 and R2 are multilayer bodies formed by the thin film substrate 2, and the inner surface of each layer has undulations 3 along the winding axes A1 and A2. is formed. In other words, the undulations 3 are formed such that the ridges 3a and valleys 3b thereof revolve around the winding axes A1 and A2 on a plane perpendicular to the winding axes A1 and A2. The thin film substrate 2 has a two-layer structure including an elastic film 5 and a circuit layer 4 covering the elastic film 5. The circuit layer 4 is formed by a thin film having a conductive circuit portion.

ここで、図3(b)に示すように、回路基板1を長手方向(紙面左右方向)に伸張させると、うねり3が平坦化してその尾根3a及び谷3bの高低差を小さくする。また、伸張させるための力を解除すると、回路基板1は、弾性体膜5の弾性によって同図(a)のようなうねり3の高低差の大きな形状に戻る。 Here, as shown in FIG. 3(b), when the circuit board 1 is stretched in the longitudinal direction (in the left-right direction on the paper), the undulations 3 are flattened and the height difference between the ridges 3a and valleys 3b is reduced. Further, when the stretching force is released, the circuit board 1 returns to the shape with a large difference in height of the undulations 3 as shown in FIG. 2A due to the elasticity of the elastic film 5.

つまり、回路層4は、弾性体膜5のような優れた弾性を有していなくても、長手方向に沿ったうねり3を形成していることで、長手方向の伸張に対してうねり3を平坦化させることで追従できる。そのため、回路基板1は長手方向に荷重を付与して伸張させることができ、さらに、かかる荷重を解除して元の形状に戻すことができる。例えば、ワイヤ状の回路基板1をストレッチャブル配線とし得る。 In other words, even though the circuit layer 4 does not have excellent elasticity like the elastic film 5, it forms the undulations 3 along the longitudinal direction, so that the undulations 3 are suppressed when stretched in the longitudinal direction. It can be followed by flattening. Therefore, the circuit board 1 can be stretched by applying a load in the longitudinal direction, and can be returned to its original shape by releasing the load. For example, the wire-shaped circuit board 1 can be made into stretchable wiring.

また、回路基板1は、回路層4を所定の構成として必要な機能性素子を組み込むことにより、例えば、曲げ検出デバイス、光発電デバイス、発光デバイスなどのストレッチャブルデバイスとし得る。 Moreover, the circuit board 1 can be made into a stretchable device such as a bend detection device, a photovoltaic device, a light emitting device, etc. by incorporating necessary functional elements with the circuit layer 4 having a predetermined configuration.

例えば、回路層4の導電性回路部分に用いられる材料としては、薄膜基板2の変形に追従できるものが求められる。例えば、回路基板1を用いたデバイスとして圧力センサを構成する場合、ポリチオフェン系導電性ポリマーであるPEDOT:PSSなどの導電性高分子材料が好適に用いられる。その他、発光素子とする場合には、導電性高分子材料、発光弾性体材料、有機発光材料などを用い得る。また、ストレッチャブル配線とする場合には、液体金属材料などを用い得る。さらに、光発電素子とする場合には、導電性高分子材料、金、P3HT/PCBMなどの有機薄膜太陽電池用の有機半導体材料、液体金属材料などの適用が考慮される。 For example, the material used for the conductive circuit portion of the circuit layer 4 is required to be able to follow the deformation of the thin film substrate 2. For example, when constructing a pressure sensor as a device using the circuit board 1, a conductive polymer material such as PEDOT:PSS, which is a polythiophene-based conductive polymer, is suitably used. In addition, conductive polymer materials, luminescent elastic materials, organic luminescent materials, and the like may be used in the case of making a light emitting element. Furthermore, in the case of stretchable wiring, a liquid metal material or the like may be used. Furthermore, in the case of a photovoltaic device, applications of conductive polymer materials, gold, organic semiconductor materials for organic thin film solar cells such as P3HT/PCBM, and liquid metal materials are considered.

次に、このような回路基板1の製造方法について説明する。 Next, a method for manufacturing such a circuit board 1 will be explained.

[第1の製造方法]
図4(a)に示すように、まず、長方形の弾性体膜5を用意し、対向する2つの短辺をそれぞれ幅方向に拘束するように、長手方向の両端部をそれぞれ治具11で固定する。弾性体膜5としては、例えば、PDMS(ポリジメチルシロキサン)等のシリコーンエラストマを好適に使用し得る。
[First manufacturing method]
As shown in FIG. 4(a), first, a rectangular elastic membrane 5 is prepared, and both ends in the longitudinal direction are fixed with jigs 11 so that the two opposing short sides are restrained in the width direction. do. As the elastic film 5, for example, a silicone elastomer such as PDMS (polydimethylsiloxane) can be suitably used.

同図(b)に示すように、治具11によって弾性体膜5の短辺を幅方向に拘束しながら2つの治具11を互いに離間させるように荷重を与え、弾性体膜5を長手の一軸方向に伸張させるように弾性変形させる(弾性変形ステップ)。そして、その弾性変形を維持したまま、弾性体膜5の上を覆うように回路層4を付与する(回路層付与ステップ)。回路層4としては、可撓性を有することでうねり3を形成し得る膜体であり、例えば、パリレン(登録商標)やフッ素樹脂などの絶縁膜に導電性回路部分を付与した導電性薄膜である。弾性体膜5に回路層4を付与することで薄膜基板2を得る。なお、回路層4を形成する前にはOプラズマを印加するなどして、各層間の接合性を高くすることが好ましい。回路層4を複層とする場合も同様にプラズマ処理を行うことが好ましい。 As shown in FIG. 5B, while restraining the short sides of the elastic membrane 5 in the width direction with the jig 11, a load is applied to separate the two jigs 11 from each other, and the elastic membrane 5 is It is elastically deformed so as to be stretched in a uniaxial direction (elastic deformation step). Then, the circuit layer 4 is applied so as to cover the elastic film 5 while maintaining its elastic deformation (circuit layer application step). The circuit layer 4 is a film body that can form the undulations 3 due to its flexibility, and is, for example, a conductive thin film in which a conductive circuit portion is added to an insulating film such as Parylene (registered trademark) or fluororesin. be. A thin film substrate 2 is obtained by applying a circuit layer 4 to an elastic film 5. Note that, before forming the circuit layer 4, it is preferable to apply O 2 plasma or the like to improve the bondability between each layer. When the circuit layer 4 is made into a multilayer structure, it is also preferable to perform plasma treatment in the same manner.

同図(c)に示すように、治具11に与えた荷重を維持した状態から、同図(d)に示すように、治具11に与えた荷重を解除する(荷重解除ステップ)。すると、治具11に拘束されない薄膜基板2の長手方向の中央部分において巻回部R1及びR2が形成される。巻回部R1及びR2は、長方形の弾性体膜5の対向する2辺(長辺)から薄膜基板2の弾性体膜5を外側にするようにして互いに逆回りに巻回される。このように、2つの長辺から互いに逆回りに巻回させた巻回部を含む形状を、以降、「スクロール形状」と呼ぶことにする。また、回路層4の表面には、弾性体膜5の長辺に沿ってうねり3が形成される。このようにして、回路基板1を得ることができる。なお、巻回部R1及びR2の間を長手方向に切断することで、巻回部を1つとするワイヤ状の回路基板を得ることもできる。 As shown in FIG. 5C, the load applied to the jig 11 is maintained while the load applied to the jig 11 is released as shown in FIG. Then, winding portions R1 and R2 are formed in the central portion of the thin film substrate 2 in the longitudinal direction that is not restrained by the jig 11. The winding portions R1 and R2 are wound in opposite directions from two opposite sides (long sides) of the rectangular elastic film 5 so that the elastic film 5 of the thin film substrate 2 faces outside. Hereinafter, the shape including the winding portions wound in opposite directions from the two long sides will be referred to as a "scroll shape". Furthermore, undulations 3 are formed on the surface of the circuit layer 4 along the long sides of the elastic film 5 . In this way, the circuit board 1 can be obtained. Note that by cutting in the longitudinal direction between the winding parts R1 and R2, a wire-shaped circuit board having one winding part can also be obtained.

このような製造方法においては、延伸させる量は弾性体膜5の弾性限によるため比較的大きくでき、巻回部を形成させるための条件を調整しやすい。 In such a manufacturing method, the amount of stretching depends on the elastic limit of the elastic membrane 5, so it can be relatively large, and the conditions for forming the wound portion can be easily adjusted.

なお、同図(d)に示すように、治具11に荷重を与えていない状態から、治具11の2つを互いに離間する方向に荷重を与えると、治具11による短辺の拘束があるため、同図(c)に示すように巻回部R1及びR1を広げて薄膜基板2の全体を平坦とする。また、うねり3は小さくなり、十分に荷重を与えると消失する。 Note that, as shown in FIG. 2(d), when a load is applied in the direction of separating the two jigs 11 from each other from a state where no load is applied to the jigs 11, the restraint of the short sides by the jigs 11 is reduced. Therefore, the winding portions R1 and R1 are spread out to make the entire thin film substrate 2 flat, as shown in FIG. Moreover, the undulations 3 become smaller and disappear when a sufficient load is applied.

[第2の製造方法]
図5に示すように、他の製造方法によってもスクロール形状を有する回路基板1を得ることができる。
[Second manufacturing method]
As shown in FIG. 5, the circuit board 1 having a scroll shape can also be obtained by other manufacturing methods.

まず、同図(a)に示すように、長方形の弾性体膜5の上を覆うように伸張前回路層4’を付与した伸張前薄膜基板2’を用意する。このとき、弾性体膜5に荷重は付与されていない。そして、第1の製造方法と同様に、長方形の伸張前薄膜基板2’の対向する2つの短辺をそれぞれ幅方向に拘束するように、長手方向の両端部をそれぞれ治具11で固定する。 First, as shown in FIG. 3A, a pre-stretched thin film substrate 2' is prepared, on which a pre-stretched circuit layer 4' is provided so as to cover the rectangular elastic film 5. At this time, no load is applied to the elastic membrane 5. Then, similarly to the first manufacturing method, both ends in the longitudinal direction are fixed with jigs 11 so that the two opposing short sides of the rectangular pre-stretched thin film substrate 2' are restrained in the width direction.

次に、同図(b)に示すように、治具11によって伸張前薄膜基板2’の短辺を幅方向に拘束しながら2つの治具11を互いに離間させるように荷重を与え、伸張前薄膜基板2’を長手の一軸方向に伸張させるように変形させて薄膜基板2とする。このとき弾性体膜5は弾性変形をし、伸張前回路層4’は塑性変形により伸張して回路層4となる。なお、伸張前回路層4’は、伸張することで回路層4となるような寸法とされ、塑性変形によっても薄膜形状を維持できる材料を用いて形成される。伸張前回路層4’の材料としては、例えば、パリレンを好適に用い得る。また、伸張前回路層4’の導電性回路部分に用いられる材料としても、伸張前薄膜基板2’の変形に追従できるものが求められる。例えば、上記した、導電性高分子材料、発光弾性体材料、有機発光材料、液体金属材料、金、有機半導体材料などを好適に用い得る。 Next, as shown in FIG. 2B, while restraining the short sides of the unstretched thin film substrate 2' in the width direction with the jig 11, a load is applied so as to separate the two jigs 11 from each other. A thin film substrate 2 is obtained by deforming the thin film substrate 2' so as to stretch it in one longitudinal direction. At this time, the elastic membrane 5 undergoes elastic deformation, and the unstretched circuit layer 4' is expanded by plastic deformation to become the circuit layer 4. The pre-stretched circuit layer 4' has dimensions such that it becomes the circuit layer 4 when stretched, and is formed using a material that can maintain its thin film shape even when plastically deformed. As a material for the unstretched circuit layer 4', for example, parylene can be suitably used. Furthermore, the material used for the conductive circuit portion of the unstretched circuit layer 4' is required to be able to follow the deformation of the unstretched thin film substrate 2'. For example, the above-mentioned conductive polymer materials, luminescent elastic materials, organic luminescent materials, liquid metal materials, gold, organic semiconductor materials, and the like can be suitably used.

最後に、同図(c)に示すように、治具11に与えた荷重を解除すると、治具11に拘束されない薄膜基板2の長手方向の中央部分において巻回部R1及びR2が形成される。巻回部R1及びR2は、長方形の弾性体膜5の対向する2辺(長辺)から薄膜基板2の弾性体膜5を外側にするようにして互いに逆回りに巻回され、スクロール形状を得る。また、回路層4の表面には、弾性体膜5の長辺に沿ってうねり3が形成される。このようにして、回路基板1を得ることができる。 Finally, as shown in FIG. 3C, when the load applied to the jig 11 is released, winding portions R1 and R2 are formed in the longitudinal center portion of the thin film substrate 2 that is not restrained by the jig 11. . The winding portions R1 and R2 are wound in opposite directions from the opposite two sides (long sides) of the rectangular elastic film 5 so that the elastic film 5 of the thin film substrate 2 faces outward, forming a scroll shape. obtain. Furthermore, undulations 3 are formed on the surface of the circuit layer 4 along the long sides of the elastic film 5 . In this way, the circuit board 1 can be obtained.

また、同図(c)に示すように、治具11に荷重を与えていない状態から、治具11の2つを互いに離間する方向に荷重を与えると、同図(b)に示すように、薄膜基板2は伸張される。このとき、治具11による短辺の拘束があるため、巻回部R1及びR1を広げて薄膜基板2の全体を平坦とする。また、うねり3は小さくなり、十分に荷重を与えると消失する。 Furthermore, when a load is applied in a direction that separates the two jigs 11 from each other from a state where no load is applied to the jig 11, as shown in FIG. 2(c), as shown in FIG. , the thin film substrate 2 is stretched. At this time, since the short sides are restrained by the jig 11, the wound portions R1 and R1 are expanded to make the entire thin film substrate 2 flat. Moreover, the undulations 3 become smaller and disappear when a sufficient load is applied.

このような製造方向においては、塑性変形させる量は伸張前回路層4’の塑性変形能によるため、上記した第1の製造方法に比較して小さくなる傾向にある。一方、伸張前回路層4’を付与するときに治具11への荷重を要さず、製造が容易である。 In this manufacturing direction, the amount of plastic deformation depends on the plastic deformability of the unstretched circuit layer 4', and therefore tends to be smaller than in the first manufacturing method described above. On the other hand, when applying the unstretched circuit layer 4', no load is required on the jig 11, and manufacturing is easy.

[第3の製造方法]
図6に示すように、例えば、1mを超えるような長さを有する回路基板1を製造することもできる。
[Third manufacturing method]
As shown in FIG. 6, it is also possible to manufacture a circuit board 1 having a length exceeding 1 m, for example.

まず、同図(a)に示すように、円盤状の基台の表面に剥離剤を成膜し、その上に第2の製造方法と同様の伸張前薄膜基板2’を成膜する。さらに、伸張前薄膜基板2’に渦巻き状の切れ込みをいれた。 First, as shown in FIG. 3A, a release agent is deposited on the surface of a disc-shaped base, and a pre-stretched thin film substrate 2' is deposited thereon in the same manner as in the second manufacturing method. Furthermore, a spiral cut was made in the pre-stretched thin film substrate 2'.

ここでは、基台として直径8インチのシリコンウエハを用い、剥離剤としてCytop 809Mをスピンコートにより成膜した。また、伸張前薄膜基板2’の弾性体膜5として、Sylgard184の主剤と硬化剤を5:1で混合し、約50μmの厚さで塗布して硬化させた。さらに、伸張前薄膜基板2’の伸張前回路層4’として、パリレンCを4μmの厚さで成膜した。また、渦巻き状の切れ込みの幅は約5mmとした。 Here, a silicon wafer with a diameter of 8 inches was used as a base, and Cytop 809M was used as a release agent to form a film by spin coating. Further, as the elastic film 5 of the pre-stretched thin film substrate 2', the main ingredient of Sylgard 184 and a curing agent were mixed at a ratio of 5:1, and the mixture was coated to a thickness of about 50 μm and cured. Furthermore, Parylene C was formed into a film with a thickness of 4 μm as the unstretched circuit layer 4' of the unstretched thin film substrate 2'. Further, the width of the spiral cut was approximately 5 mm.

次に、同図(b)に示すように、外周側から伸張前薄膜基板2’の一部を剥離させ、引っ張り荷重を付与して延伸させる。延伸させた部分の荷重を解除すると、剥離・延伸させた部分において薄膜基板2に巻回部R1及びR2を形成しスクロール形状を有する回路基板1となる。ここでは、伸張前薄膜基板2’の長さ3cm程度を剥離させ、5cm程度の長さまで延伸させて薄膜基板2とし、荷重を解除した。 Next, as shown in FIG. 4B, a part of the unstretched thin film substrate 2' is peeled off from the outer circumferential side, and a tensile load is applied to stretch it. When the load on the stretched portion is released, winding portions R1 and R2 are formed on the thin film substrate 2 at the peeled and stretched portion, resulting in a circuit board 1 having a scroll shape. Here, a length of about 3 cm of the unstretched thin film substrate 2' was peeled off, stretched to a length of about 5 cm to form the thin film substrate 2, and the load was released.

さらに、同図(c)に示すように、剥離・延伸を渦巻きの外側から、順次、繰り返して行い、長く連続したスクロール形状を有する回路基板1を得た。 Furthermore, as shown in FIG. 2(c), peeling and stretching were sequentially and repeatedly performed from the outside of the spiral to obtain a circuit board 1 having a long continuous scroll shape.

以上のように、薄膜基板2を巻回させる構造により、小型且つ軽量であることを損なわず、巻き軸方向(長さ方向)への伸縮性を有し得る回路基板1を得ることができる。また、このような回路基板1は、ワイヤ状で長さ方向への伸縮性を有するため、ストレッチャブルデバイスへの適用に好適であり、比較的簡便に得られる。 As described above, by the structure in which the thin film substrate 2 is wound, it is possible to obtain the circuit board 1 which can be stretchable in the direction of the winding axis (lengthwise direction) without impairing its small size and light weight. Moreover, since such a circuit board 1 is wire-shaped and has stretchability in the length direction, it is suitable for application to a stretchable device and can be obtained relatively easily.

次に、上記した第2の製造方法による回路基板の製造を実際に行った結果について、図7乃至図9を用いて説明する。 Next, the results of actually manufacturing a circuit board using the second manufacturing method described above will be explained using FIGS. 7 to 9.

[第1製造試験]
上記した第2の製造方法と同様の製造方法によって薄膜基板2を製造したときに、スクロール形状を有するワイヤ状の回路基板1を得られるか、複数の製造条件で確認した。
[First manufacturing test]
It was confirmed under a plurality of manufacturing conditions whether a wire-shaped circuit board 1 having a scroll shape could be obtained when the thin film substrate 2 was manufactured by a manufacturing method similar to the second manufacturing method described above.

まず、図7に示すように、治具11間の初期長さL、幅Wの長方形の伸張前薄膜基板2’を用意した。つまり、弾性体膜5とその上を覆う伸張前回路層4’を付与した伸張前薄膜基板2’の両短辺を治具11で拘束した。なお、弾性体膜5は、Sylgard(登録商標) 184 Erastomer kit(ザ・ダウ・ケミカル・カンパニー社製)を用い、主剤:硬化剤を5:1の割合で混合して厚さ55μmに成膜して得た。また、伸張前回路層4’としては、弾性体膜5の上にParylene C(PARYLENEは登録商標)を4μmの厚さに成膜して得た。 First, as shown in FIG. 7, a rectangular unstretched thin film substrate 2' having an initial length L and a width W between the jigs 11 was prepared. That is, both short sides of the unstretched thin film substrate 2' provided with the elastic film 5 and the unstretched circuit layer 4' covering the elastic film 5 were restrained by the jig 11. The elastic film 5 was formed to a thickness of 55 μm using Sylgard (registered trademark) 184 Erastomer kit (manufactured by The Dow Chemical Company) by mixing the main agent and curing agent at a ratio of 5:1. I got it. The pre-stretched circuit layer 4' was obtained by forming Parylene C (PARYLENE is a registered trademark) on the elastic film 5 to a thickness of 4 μm.

次に、治具11の2つを互いに離間させるように荷重を付与し、治具11間の距離が初期長さLの1.8倍となるまで伸張前薄膜基板2’を伸張させ、伸張前回路層4’を塑性変形させ、薄膜基板2(図5(b)参照)を得た。さらに、治具11間を離間させた荷重を解除し、薄膜基板2がスクロール形状を呈するかを観察した。 Next, a load is applied to separate the two jigs 11 from each other, and the unstretched thin film substrate 2' is stretched until the distance between the jigs 11 becomes 1.8 times the initial length L. The front circuit layer 4' was plastically deformed to obtain a thin film substrate 2 (see FIG. 5(b)). Furthermore, the load that caused the jigs 11 to be spaced apart was released, and it was observed whether the thin film substrate 2 took on a scroll shape.

図8には、観察した結果を示した。ここでは、「〇」がスクロール形状を呈したものであり、「×」はスクロール形状を得られなかったものである。スクロール形状を呈する幅と初期長さとの組み合わせに条件のあることが判る。 FIG. 8 shows the observed results. Here, "〇" indicates that a scroll shape was obtained, and "x" indicates that a scroll shape was not obtained. It can be seen that there is a condition for the combination of width and initial length that provides a scroll shape.

[第2製造試験]
上記した第2の製造方法と同様の製造方法によってスクロール形状を有する回路基板1を製造したときのスクロール形状部分の幅(スクロール幅)を測定した。
[Second manufacturing test]
When a circuit board 1 having a scroll shape was manufactured by a manufacturing method similar to the second manufacturing method described above, the width of the scroll-shaped portion (scroll width) was measured.

図9には、弾性体膜5の厚さ、伸張前回路層4’の厚さ、伸張前薄膜基板2’の長さ及び幅、伸張前薄膜基板2’を伸張させる割合(最大歪)を変化させたときのスクロール幅を示した。なお、最大歪 εは、初期長さ Lに対し、全長がL×(1+ε/100%)となるまで伸張させたことを示す。例えば、最大歪 εが100%の場合は、初期長さ Lに対し、伸張させたときの寸法を2×Lとするのである。 FIG. 9 shows the thickness of the elastic membrane 5, the thickness of the unstretched circuit layer 4', the length and width of the unstretched thin film substrate 2', and the ratio (maximum strain) at which the unstretched thin film substrate 2' is stretched. The scroll width when changed is shown. Note that the maximum strain ε indicates that the initial length L is expanded until the total length becomes L×(1+ε/100%). For example, when the maximum strain ε is 100%, the initial length L is set to 2×L when expanded.

No.1~27については、以下の条件とした。弾性体膜5は、上記と同じくSylgard 184 Erastomer kitを主剤:硬化剤を5:1の割合で混合し、ヤング率を1.37MPaとした。また、伸張前回路層4’は、上記と同じくParylene Cを厚さ4μmとして用いた。なお、伸張前回路層4’のヤング率は1.8GPaである。 No. For Nos. 1 to 27, the following conditions were used. The elastic film 5 was prepared by mixing the Sylgard 184 Erastomer kit at a ratio of 5:1 of base material and curing agent, and had a Young's modulus of 1.37 MPa. Further, as the pre-stretched circuit layer 4', Parylene C was used with a thickness of 4 μm as described above. Note that the Young's modulus of the unstretched circuit layer 4' is 1.8 GPa.

No.28、29は、弾性体膜5を混合材料とし、伸張前薄膜基板2’を複層にした場合の例である。弾性体膜5は、Sylgard 184 Erastomer kitの主剤(a)、硬化剤(b)と、Ecoflex 00-30(Smoothon社製)のA剤(c)、B剤(d)を混合した。混合比率は(a):(b):(c):(d)=40:1:82:82とした。なお、ヤング率は86kPaであった。また、伸張前薄膜基板2’は、Parylene C→diX-SR(diXは登録商標:KISCO株式会社製)→Parylene C→Cytop 809M(Cytopは登録商標:AGC化学品カンパニー製)の四層構造とした。Paryleneは、2層ともに厚さ0.2μmとし、ヤング率は1.8GPaであった。diX-SRは、No.28において厚さ1μm、No.29において厚さ0.8μmとし、ヤング率は4.0GPaであった。Cytop 809Mは、厚さ0.3μmとし、ヤング率は1.3GPaであった。 No. 28 and 29 are examples in which the elastic membrane 5 is made of a mixed material and the pre-stretched thin film substrate 2' is made into a multilayer structure. The elastic film 5 was prepared by mixing the base agent (a) and curing agent (b) of Sylgard 184 Erastomer kit with the A agent (c) and B agent (d) of Ecoflex 00-30 (manufactured by Smoothon). The mixing ratio was (a):(b):(c):(d)=40:1:82:82. Note that Young's modulus was 86 kPa. In addition, the thin film substrate 2' before stretching has a four-layer structure of Parylene C → diX-SR (diX is a registered trademark: manufactured by KISCO Corporation) → Parylene C → Cytop 809M (Cytop is a registered trademark: manufactured by AGC Chemicals Company). did. Both Parylene layers had a thickness of 0.2 μm and a Young's modulus of 1.8 GPa. diX-SR is No. No. 28 has a thickness of 1 μm. In No. 29, the thickness was 0.8 μm, and the Young's modulus was 4.0 GPa. Cytop 809M had a thickness of 0.3 μm and a Young's modulus of 1.3 GPa.

これらに示すように、種々の条件においてスクロール形状を有する回路基板1を製造することができた。伸張前薄膜基板の厚さが薄く、伸張前薄膜基板の幅Wが小さく、最大歪εが大きいものほどスクロール幅が小さくなる傾向にあった。 As shown in these figures, the circuit board 1 having a scroll shape could be manufactured under various conditions. The scroll width tended to become smaller as the thickness of the unstretched thin film substrate was smaller, the width W of the unstretched thin film substrate was smaller, and the maximum strain ε was larger.

以上、本発明による実施例及びこれに基づく変形例を説明したが、本発明は必ずしもこれに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、様々な代替実施例及び改変例を見出すことができるであろう。 Although embodiments according to the present invention and modifications based thereon have been described above, the present invention is not necessarily limited thereto, and those skilled in the art will be able to understand that it deviates from the gist of the present invention or the scope of the appended claims. Various alternative embodiments and modifications may be found without having to do so.

1 回路基板
2 薄膜基板
2’伸張前薄膜基板
3 うねり
4 回路層
4’伸張前回路層
5 弾性体膜
11 治具
R1、R2 巻回部
1 Circuit board 2 Thin film board 2' Thin film board before stretching 3 Waviness 4 Circuit layer 4' Circuit layer before stretching 5 Elastic film 11 Jig R1, R2 Winding part

Claims (5)

伸縮性を有するワイヤ状の回路基板であって、
弾性体膜の上を覆って導電性回路部分を有する薄膜からなる回路層を付与された薄膜基板が巻回されてなり、長手方向に沿って前記回路層の表面にうねりが形成され、前記長手方向に伸張させたときに前記うねりが平坦化することを特徴とするワイヤ状の回路基板。
A wire-shaped circuit board having stretchability,
A thin film substrate provided with a circuit layer made of a thin film having a conductive circuit portion covering an elastic film is wound, and undulations are formed on the surface of the circuit layer along the longitudinal direction. A wire-shaped circuit board characterized in that the undulations become flat when stretched in a direction.
長方形の前記弾性体膜の対向する2辺から互いに逆回りに巻回された並行する2本の巻回部を含むことを特徴とする請求項1記載のワイヤ状の回路基板。 2. The wire-shaped circuit board according to claim 1, further comprising two parallel winding portions wound in opposite directions from two opposite sides of the rectangular elastic film. 伸縮性を有するワイヤ状の回路基板を用いたデバイスであって、
弾性体膜の上を覆って導電性回路部分を有する薄膜からなる回路層の上に機能性素子を付与された薄膜基板が巻回されてなり、長手方向に沿って前記回路層の表面にうねりが形成され、前記長手方向に伸張させたときに前記うねりが平坦化することを特徴とするワイヤ状の回路基板を用いたデバイス。
A device using a stretchable wire-shaped circuit board,
A thin film substrate provided with a functional element is wound on a circuit layer consisting of a thin film covering an elastic film and having a conductive circuit portion, and the surface of the circuit layer is undulated along the longitudinal direction. A device using a wire-shaped circuit board, characterized in that the undulations are flattened when stretched in the longitudinal direction.
長方形の前記薄膜基板の対向する2辺から互いに逆回りに巻回された並行する2本の巻回部を含むことを特徴とする請求項3記載のデバイス。 4. The device according to claim 3, comprising two parallel winding portions wound in opposite directions from two opposing sides of the rectangular thin film substrate. 伸縮性を有するワイヤ状の回路基板の製造方法であって、
長方形の弾性体膜の対向する2つの短辺をそれぞれ幅方向に拘束しつつ互いに離間させるように荷重を与えて一軸方向に弾性変形させるステップと、
前記弾性体膜の上を覆って導電性薄膜からなる回路層を付与するステップと、
前記荷重を解除して前記一軸方向に沿って前記回路層の表面にうねりを形成させるとともに、前記弾性体膜の2つの長辺から互いに逆回り巻回させるステップと、含むことを特徴とするワイヤ状の回路基板の製造方法。

A method for manufacturing a wire-shaped circuit board having stretchability, the method comprising:
applying a load so as to constrain two opposing short sides of the rectangular elastic membrane in the width direction and separating them from each other, thereby elastically deforming the rectangular elastic membrane in a uniaxial direction;
applying a circuit layer made of a conductive thin film to cover the elastic film;
A wire characterized in that it includes the step of releasing the load to form undulations on the surface of the circuit layer along the uniaxial direction, and winding the elastic film from two long sides in opposite directions. A method of manufacturing a circuit board.

JP2022133692A 2022-08-24 2022-08-24 Wire-like circuit board, device and manufacturing method thereof Pending JP2024030661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022133692A JP2024030661A (en) 2022-08-24 2022-08-24 Wire-like circuit board, device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022133692A JP2024030661A (en) 2022-08-24 2022-08-24 Wire-like circuit board, device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2024030661A true JP2024030661A (en) 2024-03-07

Family

ID=90106855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022133692A Pending JP2024030661A (en) 2022-08-24 2022-08-24 Wire-like circuit board, device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2024030661A (en)

Similar Documents

Publication Publication Date Title
US10383219B2 (en) Extremely stretchable electronics
US7491892B2 (en) Stretchable and elastic interconnects
US9842669B2 (en) Stretchable wire and method of fabricating the same
EP2356680B1 (en) Extremely stretchable electronics
Joo et al. Silver nanowire-embedded PDMS with a multiscale structure for a highly sensitive and robust flexible pressure sensor
CN109951946B (en) Strain relief structures for stretchable interconnects
US20070020445A1 (en) Flexible Structures For Sensors And Electronics
WO2019124274A1 (en) Extensible electroconductive wiring material, and extensible electroconductive wiring module having same
KR101926371B1 (en) Method of manufacturing highly sensitive strain sensors, strain sensors and wearable devices including the same
US9704964B1 (en) Graphene-based device with liquid metal contacts
KR101441235B1 (en) Stiffness-gradient stretchable substrate, manufacturing method of the same substrate, stretchable electronics package produced using the substrate and manufacturing method of the same package
Oh et al. Spontaneously formed wrinkled substrates for stretchable electronics using intrinsically rigid materials
JP2024030661A (en) Wire-like circuit board, device and manufacturing method thereof
KR101768675B1 (en) Stretchable package using hybrid substrate and stretchable electrode and method of the same
EP2902294A2 (en) Extremely stretchable electronics
KR20160087291A (en) Stretchable substrates with locally varied stiffness and stretchable electronics packages produced using the same substrates and Producing Method Thereof
WO2017156502A1 (en) Integrated electronic device with flexible and stretchable substrate
WO2019177030A1 (en) Electronic functional member and electronic component
KR101450441B1 (en) Stretchable substrate with intercalating bumps and a substrate-delamination layer, manufacturing method of the same substrate, stretchable electronics package produced using the substrate and manufacturing method of the same package
KR102170894B1 (en) Flexible substrate assembly with stretchable electrodes and fabrication method of it
KR101436243B1 (en) Stretchable substrate with intercalating bumps, manufacturing method of the same substrate, stretchable electronics package produced using the substrate and manufacturing method of the same package
US20220117082A1 (en) A stretchable interconnect structure and method of fabricating the same
Jianhui et al. Stretchable interconnections for flexible electronic systems
KR101680443B1 (en) Stretchable substrates with locally varied stiffness and stretchable electronics packages produced using the same substrates and Producing Method Thereof
KR20210073993A (en) Stretchable substrate

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220916