JP2024023816A - isolation transformer - Google Patents

isolation transformer Download PDF

Info

Publication number
JP2024023816A
JP2024023816A JP2023216960A JP2023216960A JP2024023816A JP 2024023816 A JP2024023816 A JP 2024023816A JP 2023216960 A JP2023216960 A JP 2023216960A JP 2023216960 A JP2023216960 A JP 2023216960A JP 2024023816 A JP2024023816 A JP 2024023816A
Authority
JP
Japan
Prior art keywords
winding
coil member
isolation transformer
transformer
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023216960A
Other languages
Japanese (ja)
Inventor
祥宏 木下
Sachihiro Kinoshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Proterial Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Proterial Ltd filed Critical Proterial Ltd
Priority to JP2023216960A priority Critical patent/JP2024023816A/en
Publication of JP2024023816A publication Critical patent/JP2024023816A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a small, low-profile isolation transformer that can suppress core magnetic saturation even in high-temperature environments while ensuring sufficient creepage distance.
SOLUTION: An isolation transformer includes a pair of E-shaped cores, a bobbin including a cylindrical body through which a central leg of the E-shaped core is passed, a coil member including a first winding and a second winding formed of a conductive wire wound around the outer periphery of the cylindrical body, a rectangular case that houses the coil member and includes a first terminal connected to the first winding and a second terminal connected to the second winding, the case includes an inner space surrounded by a base, a wall, and a top plate to accommodate the coil member, the pair of E-shaped cores and the coil member are arranged in the inner space, and the top plate is made of Mn-based ferrite and has a groove extending to the wall with a width for leading out the first winding.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、例えば、電気自動車(EV、HEV)の駆動モータ用インバータに使用される絶縁トランスに関する。 The present invention relates to an isolation transformer used, for example, in an inverter for a drive motor of an electric vehicle (EV, HEV).

近年、自動車や産業機器などで使用される大容量のスイッチング電源では、電源回路を小型化するのにスイッチング速度の向上が図られ、それに使用されるスイッチング素子には、耐圧が高く、スイッチング速度を上げることができる炭化ケイ素(SiC)の採用が進んでいる。SiCのゲート駆動用電源回路においてはフライバック方式電源回路が主流であり、スイッチング周波数を、ノイズ対策からラジオ周波数帯(LW帯、AM帯)を除く300kHzから500kHzの範囲に設定したフライバック型インバータが普及している。このようなフライバック型インバータに使用される絶縁トランスは、スイッチング周波数が高いほど小型に設計することが出来るため、回路全体の小型化に大きく寄与している。 In recent years, in large-capacity switching power supplies used in automobiles and industrial equipment, efforts have been made to improve switching speeds in order to miniaturize power supply circuits. The adoption of silicon carbide (SiC), which can increase the Flyback type power supply circuits are the mainstream for SiC gate drive power supply circuits, and flyback type inverters have a switching frequency set in the range of 300kHz to 500kHz, excluding radio frequency bands (LW band, AM band), for noise countermeasures. is widespread. The isolation transformer used in such a flyback type inverter can be designed to be more compact as the switching frequency is higher, which greatly contributes to the miniaturization of the entire circuit.

一方で、各種用途における高機能化に伴って電源システムの高電圧化が進み,スイッチング電源に使用される部品においても高耐電圧品の需要が高まっていて、絶縁トランスもまた高耐電圧、絶縁強化の要求がある。 On the other hand, with the increasing functionality of various applications, the voltage of power supply systems is increasing, and the demand for high withstand voltage products is also increasing for components used in switching power supplies. There is a demand for reinforcement.

このような絶縁トランスとして、例えば特許文献1に、高密度実装に対応し、実装される基板上でトランス本体と周囲の電子部品との絶縁性を確保した構造のトランスが開示されている。図9(A)、図9(B)は特許文献1に開示されたトランス100を正面側と背面側から見た斜視図である。図9(A)はトランスの一次側のピン端子側を手前に正面側から見た斜視図であり、図9(B)はトランスの二次側のピン端子側を手前に背面側から見た斜視図である。トランス100は、一対のE型のコア108、ボビン102、一次側巻線104と二次側巻線106で構成されたトランス本体110と、それを収容する絶縁カバー114で構成されている。 As such an insulating transformer, for example, Patent Document 1 discloses a transformer that is compatible with high-density mounting and has a structure that ensures insulation between the transformer body and surrounding electronic components on the board on which the transformer is mounted. 9(A) and 9(B) are perspective views of the transformer 100 disclosed in Patent Document 1, viewed from the front side and the back side. Figure 9(A) is a perspective view of the transformer as seen from the front with the pin terminal side on the primary side facing you, and Figure 9(B) is a perspective view of the transformer as seen from the back side with the pin terminal side of the secondary side in front of you. FIG. The transformer 100 includes a transformer main body 110 including a pair of E-shaped cores 108, a bobbin 102, a primary winding 104 and a secondary winding 106, and an insulating cover 114 that accommodates the transformer main body 110.

ボビン102に一次側巻線104と二次側巻線106が巻かれた状態で、ボビン102に形成された貫通穴に一対のE型のコアの中央脚部が挿入され取り付けられている。E型のコアの中央脚部はボビンの貫通穴内で近接し、側脚部は一次側巻線104、二次側巻線106の外側で近接して磁路を形成している。またボビン102には、一次側巻線104と接続する複数の一次側のピン端子112がトランスの下方に突出した状態でフランジ部102eに取り付けられている。 With the primary winding 104 and the secondary winding 106 wound around the bobbin 102, central legs of a pair of E-shaped cores are inserted and attached to through holes formed in the bobbin 102. The central leg of the E-shaped core is close to each other within the through hole of the bobbin, and the side legs are close to the outside of the primary winding 104 and the secondary winding 106 to form a magnetic path. Further, a plurality of primary side pin terminals 112 connected to the primary winding 104 are attached to the flange portion 102e of the bobbin 102 in a state of protruding downward from the transformer.

トランス本体110を収容する中空で直方体形状の絶縁カバー114は、その内側の収容空間にトランス本体110の大部分が収容可能な大きさで、トランス本体110の一次側のピン端子112側の一側面が開口した開口部と、上下に対向する天板114aと底板(図示せず)、天板114aと底板とに連なる側板114c、114dを有し、それらによってトランス本体110を囲んでいる。図示した例では、絶縁カバー114の天板114aに副開口部114f(切欠部)が形成されていて、そこからトランス本体110のE型のコア108等が部分的に露出している。そして絶縁カバー114の開口部と対向する側板側には、二次側巻線106と接続する複数の二次側のピン端子116がトランスの下方に突出した状態で底板に取り付けられている。 The hollow, rectangular parallelepiped-shaped insulating cover 114 that accommodates the transformer body 110 is large enough to accommodate most of the transformer body 110 in its inner accommodation space, and has one side surface on the primary pin terminal 112 side of the transformer body 110. The transformer body 110 is surrounded by a top plate 114a and a bottom plate (not shown) that face each other vertically, and side plates 114c and 114d connected to the top plate 114a and the bottom plate. In the illustrated example, a sub-opening 114f (notch) is formed in the top plate 114a of the insulating cover 114, from which the E-shaped core 108 and the like of the transformer body 110 are partially exposed. On the side plate side facing the opening of the insulating cover 114, a plurality of secondary pin terminals 116 connected to the secondary winding 106 are attached to the bottom plate in a state of protruding downward from the transformer.

一次側巻線104の巻始めと巻終わりから引出線104aが引き出され、これら引出線104aは、それぞれ一次側のピン端子112にはんだ付け固定されている。また、二次側巻線106の巻始めと巻終わりからも、それぞれ引出線106aが引き出され、絶縁カバー114の副開口部114fを通じて引き出された後、天板114aから側板114dに沿って下方に向かって延び、それぞれ二次側のピン端子116にはんだ付け固定されている。 Lead wires 104a are drawn out from the beginning and end of the primary winding 104, and these lead wires 104a are each soldered and fixed to a pin terminal 112 on the primary side. In addition, the lead wires 106a are drawn out from the winding start and winding end of the secondary winding 106, respectively, and are drawn out through the sub-opening 114f of the insulating cover 114, and then downward from the top plate 114a along the side plate 114d. The terminals extend toward each other and are fixed to the pin terminals 116 on the secondary side by soldering.

特開2009-16581号公報JP2009-16581A

一般的に定義される絶縁距離とは、一次側巻線と二次側巻線の導体露出部の間の最短距離を示し、沿面距離は絶縁体の沿面に添った距離である。特許文献1のトランス100では、立設された一次側のピン端子104と二次側のピン端子106との間の距離であり、E型のコア108を導体と見做し一次側巻線104と同電位体であるとする場合は、絶縁カバー114から現れたE型のコア108と二次側のピン端子116との間の距離で定義される。 The generally defined insulation distance is the shortest distance between the exposed conductor of the primary winding and the secondary winding, and the creepage distance is the distance along the creeping surface of the insulator. In the transformer 100 of Patent Document 1, the distance is the distance between the upright pin terminal 104 on the primary side and the pin terminal 106 on the secondary side, and the E-shaped core 108 is regarded as a conductor, and the distance between the primary winding 104 If it is assumed that the E-shaped core 108 is the same potential body as the insulating cover 114, it is defined by the distance between the E-shaped core 108 exposed from the insulating cover 114 and the pin terminal 116 on the secondary side.

特許文献1のトランスは、トランス本体110を絶縁カバー114で囲い、二次側巻線106の引出線106aを絶縁カバー114に設けられた開口を通じて外側に引き出し、それを天板114aから側板114dに沿って張り渡すことで、E型のコア108と二次側のピン端子116との間の沿面距離を確保している。 In the transformer of Patent Document 1, a transformer main body 110 is surrounded by an insulating cover 114, a lead wire 106a of the secondary winding 106 is drawn out through an opening provided in the insulating cover 114, and the lead wire 106a is passed from a top plate 114a to a side plate 114d. By extending it along the E-shaped core 108 and the secondary side pin terminal 116, a creepage distance is secured.

一方で、絶縁カバー114の開口から一次側のピン端子104が形成されたフランジ部102eが大きく外側に張り出すようにしてトランス本体110を配置する。このような構造によれば、立設された端子間の沿面距離の確保が容易である反面、トランスの実装面積を小さくするのに制約があった。また一次側のピン端子104と二次側のピン端子106とが異なる部材に設けられているため、絶縁カバー114とトランス本体110との組み合わせの際に、端子の位置のずれやばらつきが生じ易く、回路基板への実装が困難となる場合もあった。 On the other hand, the transformer main body 110 is arranged so that the flange portion 102e on which the primary side pin terminal 104 is formed largely protrudes outward from the opening of the insulating cover 114. According to such a structure, while it is easy to ensure a creepage distance between the vertically arranged terminals, there is a restriction in reducing the mounting area of the transformer. In addition, since the primary side pin terminal 104 and the secondary side pin terminal 106 are provided on different members, when the insulating cover 114 and the transformer body 110 are combined, it is easy to cause misalignment or variation in the position of the terminals. In some cases, mounting on a circuit board was difficult.

また、実装される回路基板に対して垂直な方向にE型のコアを重ねる縦置き構造であるため、トランスの低背化には不向きである。またトランスは、巻線に流れる電流が最大値となる負荷条件でも磁気飽和しないことが求められ、低背化するようにE型のコアを小型化するにも制限がある。また一般にコアを構成する磁性材料は温度に対して飽和磁束密度Bsが変動し、環境温度の上昇とともに小さくなる傾向がある。100℃を超えるような環境温度になる車載用途で、最大の負荷条件でスイッチング電源の駆動が継続した場合でも磁気飽和に耐えられることも求められる。 Furthermore, since it has a vertical structure in which the E-shaped cores are stacked in a direction perpendicular to the circuit board on which it is mounted, it is not suitable for reducing the height of the transformer. Furthermore, the transformer is required to not be magnetically saturated even under a load condition in which the current flowing through the winding reaches its maximum value, and there are limits to the miniaturization of the E-shaped core so as to reduce its height. Further, in general, the saturation magnetic flux density Bs of the magnetic material constituting the core fluctuates with temperature, and tends to decrease as the environmental temperature rises. In automotive applications where the environmental temperature exceeds 100°C, it is also required to withstand magnetic saturation even when the switching power supply continues to operate under maximum load conditions.

そこで本発明は、上述した課題を解決するため、充分な沿面距離を確保しつつ、高温環境下でもコアの磁気飽和を抑制することが出来、低背型で小型の絶縁トランスを提供することを目的とする。 Therefore, in order to solve the above-mentioned problems, the present invention aims to provide a small, low-profile insulation transformer that can suppress magnetic saturation of the core even in high-temperature environments while ensuring sufficient creepage distance. purpose.

本発明は、一対のE型のコアと、前記E型のコアの中央脚部を通す筒状胴部を備えるボビンと、前記筒状胴部の外周に巻装された導線で形成された第1巻線および第2巻線と、を備えたコイル部材と、前記コイル部材を収容し、前記第1巻線と接続する第1端子と前記第2巻線と接続する第2端子とを備えた矩形状のケースと、を有し、前記ケースは前記コイル部材を収容する内空間を備え、前記内空間に、前記一対のE型のコアが横置の状態となるように前記コイル部材が配置され、前記一対のE型のコアは実効断面積Aeが15.5mm以上21.0mm以下であり、実効磁路長leが21.8mm以上24.2mm以下であり、130℃における飽和磁束密度Bsが0.35T以上であるMn系フェライトからなる、絶縁トランスである。 The present invention provides a bobbin comprising a pair of E-shaped cores, a cylindrical body through which the center leg of the E-shaped core passes, and a bobbin formed of a conductive wire wound around the outer periphery of the cylindrical body. a coil member including a first winding and a second winding; a first terminal that accommodates the coil member and connects to the first winding; and a second terminal that connects to the second winding. and a rectangular case, the case having an inner space for accommodating the coil member, and the coil member is placed in the inner space so that the pair of E-shaped cores are placed horizontally. The pair of E-shaped cores have an effective cross-sectional area Ae of 15.5 mm 2 or more and 21.0 mm 2 or less, an effective magnetic path length le of 21.8 mm or more and 24.2 mm or less, and saturation at 130°C. This is an isolation transformer made of Mn-based ferrite with a magnetic flux density Bs of 0.35T or more.

本発明においては、前記Mn系フェライトは、周波数400kHz、励磁磁束密度240mT、温度23℃から130℃における磁心損失が7000kW/m以下であるのが好ましい。
また少なくとも一方の巻線に強化絶縁電線が使用され、前記第1巻線を構成する導線の巻回部と前記第2巻線を構成する導線の巻回部とは、前記第1巻線を構成する導線の巻回部が前記第2巻線を構成する導線の巻回部を挟むように、前記筒状胴部の径方向に重ねて配置され、周波数400kHzにおける前記第1巻線と前記第2巻線の結合係数が0.990以上であるのが好ましい。
In the present invention, the Mn-based ferrite preferably has a core loss of 7000 kW/m 3 or less at a frequency of 400 kHz, an excitation magnetic flux density of 240 mT, and a temperature of 23° C. to 130° C.
Further, a reinforced insulated wire is used for at least one of the windings, and the winding portion of the conducting wire constituting the first winding and the winding portion of the conducting wire constituting the second winding are different from each other. The winding portions of the conducting wire constituting the second winding are arranged to overlap in the radial direction of the cylindrical body so as to sandwich the winding portion of the conducting wire constituting the second winding. It is preferable that the coupling coefficient of the second winding is 0.990 or more.

本発明によれば、充分な沿面距離を確保しつつ、高温環境下でもコアの磁気飽和を抑制することが出来、低背型で小型の絶縁トランスを提供することが出来る。 According to the present invention, it is possible to suppress the magnetic saturation of the core even in a high temperature environment while ensuring a sufficient creepage distance, and it is possible to provide a small and low profile insulation transformer.

本発明の一実施形態の絶縁トランスを構成部材に分解して示した斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing an insulation transformer according to an embodiment of the present invention exploded into constituent members. 本発明の一実施形態の絶縁トランスを正面側から見た斜視図である。FIG. 1 is a perspective view of an insulation transformer according to an embodiment of the present invention, seen from the front side. 本発明の一実施形態の絶縁トランスを背面側から見た斜視図である。FIG. 1 is a perspective view of an insulation transformer according to an embodiment of the present invention, viewed from the back side. 本発明の一実施形態の絶縁トランスの断面図である。FIG. 1 is a sectional view of an isolation transformer according to an embodiment of the present invention. 本発明の一実施形態の絶縁トランスが使用されるフライバック型コンバータの等価回路である。1 is an equivalent circuit of a flyback converter using an isolation transformer according to an embodiment of the present invention. 本発明の一実施形態の絶縁トランスの巻線構造を説明するための模式図である。FIG. 2 is a schematic diagram for explaining a winding structure of an isolation transformer according to an embodiment of the present invention. 本発明の一実施形態を含む絶縁トランスの構成で算出した130℃における直流重畳特性を示すグラフである。It is a graph showing direct current superimposition characteristics at 130° C. calculated with the configuration of an isolation transformer including an embodiment of the present invention. 本発明の一実施形態の絶縁トランスの構成で算出した磁心損失の温度特性を示すグラフである。It is a graph which shows the temperature characteristic of the magnetic core loss calculated with the structure of the isolation transformer of one Embodiment of this invention. 本発明の一実施形態の絶縁トランスの130℃における直流重畳特性を示すグラフである。It is a graph showing the direct current superposition characteristic at 130° C. of the isolation transformer of one embodiment of the present invention. 従来の絶縁トランスを正面側から見た斜視図である。FIG. 2 is a perspective view of a conventional isolation transformer seen from the front side. 従来の絶縁トランスを正面側から見た斜視図である。FIG. 2 is a perspective view of a conventional isolation transformer seen from the front side.

本発明の絶縁トランスの実施形態について説明するが、本発明は、以下に説明する形態に限定されない。図1は本発明の一実施形態の絶縁トランスを構成部材に分解して示した斜視図であり、図2(A)は本発明の一実施形態の絶縁トランスを正面側から見た斜視図であり、図2(B)は本発明の一実施形態の絶縁トランスを背面側から見た斜視図であり、図3は本発明の一実施形態の絶縁トランスの断面図である。また図4に絶縁トランスが使用されるフライバック型コンバータの等価回路の一例を示す。これらの図を適宜参照して本発明の実施形態の絶縁トランスを説明する。 Although embodiments of the isolation transformer of the present invention will be described, the present invention is not limited to the forms described below. FIG. 1 is a perspective view of an isolation transformer according to an embodiment of the present invention, disassembled into component parts, and FIG. FIG. 2(B) is a perspective view of an insulation transformer according to an embodiment of the present invention viewed from the back side, and FIG. 3 is a sectional view of the insulation transformer according to an embodiment of the present invention. Further, FIG. 4 shows an example of an equivalent circuit of a flyback converter using an isolation transformer. An isolation transformer according to an embodiment of the present invention will be described with reference to these figures as appropriate.

フライバック型コンバータは、例えば図4の等価回路に示すように、直流電圧供給源と接続する絶縁トランス1の一次側の第1巻線80と前記第1巻線80と接続するスイッチ回路と、スイッチ回路のON/OFFを制御する制御ICと、前記制御ICへ電源を供給する絶縁トランス1のVcc巻線87と、絶縁トランス1の二次側の第2巻線85と、前記第2巻線85と接続されたダイオードと、コンデンサを含む整流回路を備える。 For example, as shown in the equivalent circuit of FIG. 4, the flyback converter includes a first winding 80 on the primary side of an isolation transformer 1 connected to a DC voltage supply source, and a switch circuit connected to the first winding 80. A control IC that controls ON/OFF of the switch circuit, a Vcc winding 87 of the isolation transformer 1 that supplies power to the control IC, a second winding 85 on the secondary side of the isolation transformer 1, and the second winding 87 of the isolation transformer 1 that supplies power to the control IC. A rectifier circuit including a diode connected to line 85 and a capacitor is provided.

図1から図3に示した絶縁トランス1は、スイッチング周波数が300kHz以上500kHz以下のフライバック型コンバータに用いられ、縦15.5mm、横13.0mmの面内に配置可能で、高さ15.0mm以下の絶縁トランスとして好適な構成例である。 The isolation transformer 1 shown in FIGS. 1 to 3 is used in a flyback converter with a switching frequency of 300 kHz or more and 500 kHz or less, and can be arranged within a plane measuring 15.5 mm long and 13.0 mm wide, and has a height of 15.5 mm. This is a suitable configuration example as an insulation transformer of 0 mm or less.

絶縁トランス1は、筒状胴部を含むボビン30と、前記ボビン30の筒状胴部の外周に巻装された導線で形成された第1巻線80及び第2巻線85(以下、あわせて巻線として説明する場合がある)と、前記ボビン30に横置き配置で装着される一対のE型のコア10a、10bと、金属端子40が設けられたケース50とを備えている。E型のコア10a、10bと、第1巻線80、第2巻線85及びVcc巻線87が設けられたボビン30によりコイル部材60を構成し、前記ケース50内に収容している。 The insulating transformer 1 includes a bobbin 30 including a cylindrical body, and a first winding 80 and a second winding 85 (hereinafter collectively referred to as A pair of E-shaped cores 10a and 10b are mounted on the bobbin 30 in a horizontal arrangement, and a case 50 is provided with a metal terminal 40. A coil member 60 is constituted by a bobbin 30 provided with E-shaped cores 10a and 10b, a first winding 80, a second winding 85, and a Vcc winding 87, and is housed in the case 50.

図1に示すように、本実施形態の絶縁トランス1で用いたE型のコア10a、10bのそれぞれは、一対の側脚部12と、その間に配置された中央脚部11と、側脚部12及び中央脚部11の一端側を接続する矩形の接続部13により略E型に形成されている。中央脚部11は接続部13の一方の長辺側にずれた位置にあって、中央脚部11の断面積を左右の側脚部12、13の全体と略等しくしている。 As shown in FIG. 1, each of the E-shaped cores 10a and 10b used in the isolation transformer 1 of this embodiment includes a pair of side legs 12, a center leg 11 disposed between them, and a side leg 12 and a rectangular connecting portion 13 that connects one end side of the central leg portion 11 to form a substantially E-shape. The central leg portion 11 is located at a position shifted toward one long side of the connecting portion 13, so that the cross-sectional area of the central leg portion 11 is approximately equal to the entirety of the left and right side legs 12 and 13.

ボビン30の筒状胴部の内側の貫通孔35に、一対のコア10a、10bの中央脚部11を挿入し、コア10a、10bの側脚部12を相互に突き合わせて、組み合わされたコア10a、10bの外周に絶縁テープ90を巻いて一体化してコイル部材60とする。一対のコア10a、10bの中央脚部11間にはインダクタンスの調整のためギャップを設ける場合が多い。コイル部材60の上方と側方にはコア10a、10bが現れ、下方には巻線80、85、87の巻線部とボビン30の脚部32が現れる。図1や図3に示すように、コイル部材60の下方側で、巻線80、85、87が形成されていないコア10a、10bの下側(コアの接続部13の下部)に開き空間が出来るが、そこに巻線部の外周よりも僅かに突き出るようにボビン30の鍔部31と繋がった脚部32を形成している。また図示した例では、脚部32に巻線80、85、87の引出線を通す複数の窪み部を設けている。このような構成によれば、コイル部材60をケース50に装着することが容易であるとともに、無駄な空間を排除することで、コイル部材60におけるコア10a、10bが占める体積割合を大きくすることが出来る。それによってコイル部材60の小型化と、限られた空間の中でもコア10a、10bの磁気飽和を考慮した冗長設計が可能である。 The central legs 11 of the pair of cores 10a and 10b are inserted into the through hole 35 inside the cylindrical body of the bobbin 30, and the side legs 12 of the cores 10a and 10b are butted against each other to form the combined core 10a. , 10b are wrapped with insulating tape 90 and integrated to form the coil member 60. In many cases, a gap is provided between the central leg portions 11 of the pair of cores 10a and 10b in order to adjust the inductance. Cores 10a and 10b appear above and on the sides of coil member 60, and winding portions of windings 80, 85, and 87 and leg portions 32 of bobbin 30 appear below. As shown in FIGS. 1 and 3, on the lower side of the coil member 60, there is an open space on the lower side of the cores 10a, 10b where the windings 80, 85, 87 are not formed (below the connecting portion 13 of the core). However, a leg portion 32 connected to the collar portion 31 of the bobbin 30 is formed therein so as to protrude slightly from the outer periphery of the winding portion. In the illustrated example, the leg portion 32 is provided with a plurality of recesses through which the lead wires of the windings 80, 85, and 87 are passed. According to such a configuration, it is easy to attach the coil member 60 to the case 50, and by eliminating unnecessary space, it is possible to increase the volume ratio occupied by the cores 10a and 10b in the coil member 60. I can do it. Thereby, it is possible to downsize the coil member 60 and to create a redundant design that takes into account the magnetic saturation of the cores 10a and 10b even in a limited space.

前記コアの実効断面積Aeは15.5mm以上21.0mm以下であり、実効磁路長leが21.8mm以上24.2mm以下であるのが好ましい。実効断面積Aeが上記範囲を外れ、小さい場合は磁気飽和し易くなり、大きい場合はコアが大型化し、絶縁トランスを小型化するのが困難となる場合がある。また実効磁路長leが上記範囲を外れ、短い場合は初期インダクタンスが増加して磁気飽和する場合がある。またコイルを巻く領域が狭まるためコイルを整列して巻くのが難しくなり、巻線の線径を細くすると、コイルの発熱が増加して絶縁トランスの熱暴走を誘発する場合がある。長い場合はコアが大型化し、絶縁トランスを小型化するのが困難となる場合がある。 It is preferable that the effective cross-sectional area Ae of the core is 15.5 mm 2 or more and 21.0 mm 2 or less, and the effective magnetic path length le is 21.8 mm or more and 24.2 mm or less. If the effective cross-sectional area Ae is outside the above range and is small, magnetic saturation is likely to occur, and if it is large, the core becomes large and it may be difficult to miniaturize the isolation transformer. Furthermore, if the effective magnetic path length le is outside the above range and is short, the initial inductance may increase and magnetic saturation may occur. Furthermore, since the area for winding the coil becomes narrower, it becomes difficult to wind the coil in an aligned manner, and if the wire diameter of the winding is made thinner, the heat generated by the coil increases, which may induce thermal runaway in the insulation transformer. If it is long, the core becomes large and it may be difficult to downsize the isolation transformer.

また、コアに使用する磁性材料として130℃における飽和磁束密度Bsが0.35T以上であるMn系フェライトが好ましい。飽和磁束密度Bsが大きいほどコアの小型化が可能であり、少なくともが0.35T以上であるのが好ましい。また、Mn系フェライトは、周波数400kHz、励磁磁束密度240mT、温度23℃から130℃における磁心損失が7000kW/m以下であることが好ましい。温度23℃から130℃における磁心損失を7000kW/m以下とすることで、100℃に超えるような環境温度で、最大の負荷条件でスイッチング電源を駆動し続けた場合でも、使用される絶縁トランスが熱暴走するのを抑制することが出来る。 Moreover, as a magnetic material used for the core, Mn-based ferrite having a saturation magnetic flux density Bs at 130° C. of 0.35 T or more is preferable. The larger the saturation magnetic flux density Bs, the more compact the core can be, and it is preferable that the saturation magnetic flux density Bs is at least 0.35T or more. Further, it is preferable that the Mn-based ferrite has a core loss of 7000 kW/m 3 or less at a frequency of 400 kHz, an excitation magnetic flux density of 240 mT, and a temperature of 23° C. to 130° C. By keeping the magnetic core loss at temperatures between 23°C and 130°C to 7000kW/ m3 or less, the isolation transformer used can be used even when the switching power supply continues to be driven under maximum load conditions at environmental temperatures exceeding 100°C. It is possible to suppress thermal runaway.

図5に絶縁トランスの巻線構造を説明するための模式図を示す。ボビン30の筒状胴部には、第1巻線80、第2巻線85、Vcc巻線87が設けられていて、第1巻線80で、第2巻線85とVcc巻線87を挟み込んだサンドイッチ巻の構成としている。このような巻線構造によって第1巻線80と第2巻線85との間の結合係数を0.990以上とすることが出来る。結合係数が大きいほど、電力変換効率が高くなるので好ましい。 FIG. 5 shows a schematic diagram for explaining the winding structure of the isolation transformer. A first winding 80, a second winding 85, and a Vcc winding 87 are provided in the cylindrical body of the bobbin 30, and the first winding 80 connects the second winding 85 and the Vcc winding 87. It has a sandwich roll structure. Such a winding structure allows the coupling coefficient between the first winding 80 and the second winding 85 to be 0.990 or more. The larger the coupling coefficient, the higher the power conversion efficiency, which is preferable.

各巻線には銅やアルミニウム、その合金といった導電性材料からなる導体に絶縁被覆を備える被覆線が用いられる。一般的には銅線にポリアミドイミドで絶縁被覆したエナメル線が用いられるが、一次側と二次側の絶縁を考慮すれば、絶縁被膜を複数層形成して絶縁性を向上させた強化絶縁電線である二層絶縁電線あるいは三層絶縁電線を少なくとも一方の巻線に用いるのが好ましい。特には高周波でスイッチングする場合、巻線にはリッツ線、撚り線又はパラレル線を使用し、それを強化絶縁電線とするのが好ましい。 Each winding uses a coated wire that has an insulating coating on a conductor made of a conductive material such as copper, aluminum, or an alloy thereof. Generally, enamelled copper wire coated with polyamide-imide insulation is used, but if you consider the insulation on the primary and secondary sides, reinforced insulated wire with multiple layers of insulation coating to improve insulation properties is used. It is preferable to use a double-layer insulated wire or a triple-layer insulated wire for at least one winding. Particularly when switching at high frequencies, it is preferable to use a litz wire, stranded wire or parallel wire for the winding, and to make it a reinforced insulated wire.

ケース50は、絶縁樹脂からなる矩形の基部51と、前記基部51に設けられた金属端子40(T1~T8)を備えていて、更に基部51の三方の縁部から立設する壁部52、53、54と、前記基部51と対面し壁部52、53、54の上端側を覆う天板部55とを備える。図1や図2に示すようにケース50は、金属端子40(T1~T4)が形成された側の側面が開口した箱状の形態となっている。また図3に示すように金属端子40の端部は基部51の下面と略同じか、下面に対して僅かに突出して形成されている。 The case 50 includes a rectangular base 51 made of insulating resin, metal terminals 40 (T1 to T8) provided on the base 51, and further includes wall portions 52 standing from three edges of the base 51, 53, 54, and a top plate portion 55 that faces the base portion 51 and covers the upper end side of the wall portions 52, 53, 54. As shown in FIGS. 1 and 2, the case 50 has a box-like shape with an open side surface on the side where the metal terminals 40 (T1 to T4) are formed. Further, as shown in FIG. 3, the end portion of the metal terminal 40 is formed to be substantially the same as the lower surface of the base portion 51, or to slightly protrude from the lower surface.

少なくとも壁部52、53、54の高さは前述のコイル部材60よりも高く形成され、基部51、壁部52、53、54と天板部55で囲まれた内空間に前述のコイル部材60が収容可能となっている。図示した例では、天板部55には、第1巻線80の引出線を導出可能な幅で、壁部53側に至る溝部を備えている。 At least the height of the wall parts 52, 53, 54 is formed higher than the above-mentioned coil member 60, and the above-mentioned coil member 60 is placed in the inner space surrounded by the base 51, the walls 52, 53, 54, and the top plate part 55. can be accommodated. In the illustrated example, the top plate portion 55 is provided with a groove portion extending to the wall portion 53 side and having a width that allows the lead wire of the first winding 80 to be drawn out.

ケース50に、第1巻線80が接続する金属端子40(T5~T8)の第1端子と、第2巻線85、Vcc巻線87が接続する金属端子40(T1~T4)の第2端子とが一体に形成されている。ケース50を下方から見ると基部51の下面は略全体が平坦だが、金属端子40の間にはケース50の壁部52側から壁部54側に至る段差部52が形成されていて、第1端子と第2端子との間の沿面距離を長くすることが出来る。また第1端子と第2端子をケース50に一体形成したことにより、従来の場合よりも端子間の位置ずれが抑えられ、回路基板への実装で接続不良といった問題も生じにくい。 The first terminal of the metal terminal 40 (T5 to T8) connected to the first winding 80 and the second terminal of the metal terminal 40 (T1 to T4) connected to the second winding 85 and the Vcc winding 87 are connected to the case 50. The terminals are integrally formed. When the case 50 is viewed from below, the entire lower surface of the base 51 is flat, but a stepped portion 52 extending from the wall 52 side of the case 50 to the wall 54 side is formed between the metal terminals 40. The creepage distance between the terminal and the second terminal can be increased. Furthermore, since the first terminal and the second terminal are integrally formed in the case 50, positional deviation between the terminals is suppressed compared to the conventional case, and problems such as poor connection when mounted on a circuit board are less likely to occur.

金属端子40はSPCCや、ニッケル、コバルト、リン青銅および鉄の合金であるコバール、あるいは42アロイ等やCP線を用いるのが好ましい。 For the metal terminal 40, it is preferable to use SPCC, Kovar, which is an alloy of nickel, cobalt, phosphor bronze, and iron, 42 alloy, or CP wire.

ケース50や前述のボビン30は絶縁樹脂で形成され、絶縁性、機械強度、耐薬品性、耐熱性、耐湿性及び成形性を有する樹脂であれば良く、フェノール樹脂、ジアリルフタレート樹脂、PPS(Poly Phenylene Sulfide:ポリフェニレンサルファイド)樹脂、液晶ポリマー、PET(Polyethylene Terephthalate:ポリエチレンテレフタレート)樹脂、PBT(Poly Butylene Terephthalate:ポリブチレンテレフタレート)樹脂、ABS(Acrylonitrile butadiene styrene:アクリロニトリルブタジエンスチレン)樹脂等が好ましく、それらを射出成形法等の公知の方法で成形したものを用いることができる。 The case 50 and the above-mentioned bobbin 30 are made of an insulating resin, and any resin that has insulation, mechanical strength, chemical resistance, heat resistance, moisture resistance, and moldability may be used, such as phenol resin, diallyl phthalate resin, PPS (Poly Phenylene Sulfide resin, liquid crystal polymer, PET (Polyethylene Terephthalate) resin, PBT (Poly Butylene Terephthalate) resin, ABS (Acrylic lonitrile butadiene styrene (acrylonitrile butadiene styrene) resins are preferred; Those molded by a known method such as injection molding can be used.

図1や図2に示すように、コイル部材60をE型のコア10a、10bが横置き状態となるように、ケース50内の空間に収容し接着剤(図示せず)で固定する。接着は、例えばシリコーン系の接着剤を使用することが出来、硬度が低くて使用温度範囲も広い接着剤を使用するのが好ましい。コイル部材60が載置されるケース50の基部51の上面は平坦となっているが、窪みを設けてコイル部材60の位置決めや、固定用の接着剤溜りにしても良い。 As shown in FIGS. 1 and 2, the coil member 60 is housed in a space within the case 50 and fixed with an adhesive (not shown) so that the E-shaped cores 10a and 10b are placed horizontally. For example, a silicone-based adhesive can be used for adhesion, and it is preferable to use an adhesive that has low hardness and can be used over a wide temperature range. Although the upper surface of the base 51 of the case 50 on which the coil member 60 is placed is flat, a depression may be provided to serve as an adhesive reservoir for positioning and fixing the coil member 60.

コイル部材60に設けられた第2巻線85、Vcc巻線87の巻始めと巻終わりから、引出線75がボビン30の脚部32に形成された溝部を通って引き出され、ケース50の側面が開口した側の金属端子40(T1~T4)の第2端子に絡げてはんだ固定される。図4に示したフライバック型コンバータの例では、絶縁トランス1の金属端子40のT1に第2巻線85の巻始め側(図4の〇5)が接続し、T2に第2巻線85の巻終わり側(〇6)が接続する。またT3にはVcc巻線87の巻始め側(〇7)が接続し、T4にVcc巻線87の巻終わり側(〇8)が接続する。 The lead wire 75 is drawn out from the beginning and end of the winding of the second winding 85 and the Vcc winding 87 provided on the coil member 60 through the groove formed in the leg portion 32 of the bobbin 30, and is drawn out from the side surface of the case 50. is tied around the second terminal of the metal terminal 40 (T1 to T4) on the open side and fixed by solder. In the example of the flyback converter shown in FIG. 4, the winding start side of the second winding 85 (○5 in FIG. 4) is connected to T1 of the metal terminal 40 of the isolation transformer 1, and the second winding 85 is connected to T2. The end of the roll (〇6) is connected. Further, the winding start side (07) of the Vcc winding 87 is connected to T3, and the winding end side (08) of the Vcc winding 87 is connected to T4.

第1巻線80の巻始めと巻終わりから引出線70がケース50の開口側の上方から引き出され、ケース50の天板部55の溝部を通り、壁部53の平面にそって金属端子40(T5~T8)の第1端子へ向けて導出され絡げてはんだ固定される。図示した例では2本の第1巻線80を使い並列結線可能な構成としていて、金属端子40のT8に一方の第1巻線80の巻始め側(〇1)が接続し、T7に他方の第1巻線80の巻始め側(〇2)が接続する。またT6は一方の第1巻線80の巻終わり側(〇3)が接続し、T5には他方の第1巻線80の巻終わり側(〇4)が接続し、絶縁トランスが完成する。 The lead wire 70 is pulled out from the opening side of the case 50 from the beginning and end of the first winding 80, passes through the groove of the top plate 55 of the case 50, and runs along the plane of the wall 53 to connect the metal terminal 40. They are led out toward the first terminals (T5 to T8), tied together, and fixed with solder. In the illustrated example, two first windings 80 are used to enable parallel connection, and the winding start side (〇1) of one first winding 80 is connected to T8 of the metal terminal 40, and the other is connected to T7. The winding start side (02) of the first winding 80 is connected. Further, T6 is connected to the winding end side (〇3) of one first winding 80, and T5 is connected to the winding end side (〇4) of the other first winding 80, thereby completing an isolation transformer.

このような構成によれば、金属端子40(T5~T8)の第1端子とコイル部材60のコア13との間の間隔も大きくすることが出来て、それによって沿面距離を確保して絶縁性能を向上させることができる。 According to such a configuration, it is possible to increase the distance between the first terminal of the metal terminal 40 (T5 to T8) and the core 13 of the coil member 60, thereby ensuring creepage distance and improving insulation performance. can be improved.

以上説明したように、本発明によれば、充分な沿面距離を確保しつつ、高温環境下でもコアの磁気飽和を抑制することが出来、低背型で小型の絶縁トランスを提供することができる。 As explained above, according to the present invention, it is possible to suppress the magnetic saturation of the core even in a high temperature environment while ensuring a sufficient creepage distance, and it is possible to provide a low-profile and small-sized isolation transformer. .

以下の構成で、図1から図3に記載した絶縁トランスを作製した。この絶縁トランスは、縦15.5mm、横13.0mmの面内に配置可能で、高さ15.0mm以下であって、沿面距離が12.5mm以上で、第1巻線による入力側インダクタンスが15.0μHであり、スイッチング周波数が400kHzで、入力電圧が17~25Vのフライバック型インバータに使用するものである。 The isolation transformer shown in FIGS. 1 to 3 was manufactured with the following configuration. This isolation transformer can be placed within a plane measuring 15.5 mm long and 13.0 mm wide, has a height of 15.0 mm or less, has a creepage distance of 12.5 mm or more, and has an input inductance due to the first winding. It is used in a flyback type inverter with a switching frequency of 400 kHz and an input voltage of 17 to 25 V.

絶縁トランスの外形寸法を決めるケースは、実装面がX方向12.5mm(B寸法)、Y方向15.2mm(金属端子を含むA寸法)で、Z方向14.5mm(C寸法)とした、コイル部材を収容するケース内側の寸法は、X方向が11.2mm、Y方向が10.7mm、Z方向が10.0mmである。ケースの内空間に収容可能なコイル部材のコアとして、X方向が10.4mm、Y方向が5.15mm、Z方向が7.5mmのE型のコアを用いた。組み合わせたE型のコアの実効断面積Aeは15.9mmであり、実効磁路長leが22.74mmである。またギャップ長は0.06mm、一対のE型のコアの体積Veは444mmである。第1巻線の巻き数N1を7ターンとし、第2巻線側の電圧や整流回路のダイオードによる電圧降下を考慮して、第2巻線の巻き数N2を16ターンとした。フライバック型インバータの動作条件を考慮し、第1巻線に流れるピーク電流は1.79Aとした。 The case for determining the external dimensions of the isolation transformer is that the mounting surface is 12.5 mm in the X direction (B dimension), 15.2 mm in the Y direction (A dimension including metal terminals), and 14.5 mm in the Z direction (C dimension). The dimensions of the inside of the case that accommodates the coil member are 11.2 mm in the X direction, 10.7 mm in the Y direction, and 10.0 mm in the Z direction. As the core of the coil member that can be accommodated in the inner space of the case, an E-shaped core with a diameter of 10.4 mm in the X direction, 5.15 mm in the Y direction, and 7.5 mm in the Z direction was used. The combined E-shaped core has an effective cross-sectional area Ae of 15.9 mm 2 and an effective magnetic path length le of 22.74 mm. Further, the gap length is 0.06 mm, and the volume Ve of the pair of E-shaped cores is 444 mm 2 . The number of turns N1 of the first winding was set to 7 turns, and the number of turns N2 of the second winding was set to 16 turns in consideration of the voltage on the second winding side and the voltage drop due to the diode of the rectifier circuit. Considering the operating conditions of the flyback inverter, the peak current flowing through the first winding was set to 1.79A.

E型のコアに使用する使用するフェライトとして、日立金属株式会社製のMn系フェライトの2材質を選び、それぞれの磁気特性から、直流重畳特性と磁心損失を算出した。表1に各材質の磁気特性のカタログに記載された代表値を示す。なお各特性は、外径25mm、内径15mm、高さ5mmの円環状コアで評価されている。またそれぞれの130℃における飽和磁束密度は350mT以上である。 Two materials, Mn-based ferrite manufactured by Hitachi Metals, Ltd., were selected as the ferrite used for the E-type core, and the direct current superimposition characteristics and core loss were calculated from the magnetic characteristics of each material. Table 1 shows typical values listed in catalogs of the magnetic properties of each material. Note that each characteristic was evaluated using an annular core with an outer diameter of 25 mm, an inner diameter of 15 mm, and a height of 5 mm. Moreover, the saturation magnetic flux density at 130° C. for each is 350 mT or more.

Figure 2024023816000002
Figure 2024023816000002

(直流重畳特性)
ML25、ML29Dで作成された外径25mm、内径15mm、高さ5mmの円環状コアを準備し、130℃での直流B-H曲線の初磁化曲線(Bm-Hm特性)と、直流重畳特性(μΔ-Hm特性)を測定した。
得られた初磁化曲線の磁束密度Bmと磁界の強さHmから、磁路長Le、ギャップ長Lgの一対のE型コアで構成された磁気回路の磁界の強さH‘を式(1)より求めて、E型コアを組みわせて構成された磁気回路でのB-H’特性を得た。
H‘=(Hm×(Le―Lg)+Bm×Lg/μ)/Le (1)
Bm:磁束密度(T)
Hm:磁界の強さ(A/m)
Le:一対のE型のコアの磁路長(m)
Lg:一対のE型のコアのギャップ長 (m)
μ:真空の透磁率(4π×10-7)(H/m)
μΔ:増分透磁率
(DC superposition characteristics)
Prepare an annular core with an outer diameter of 25 mm, an inner diameter of 15 mm, and a height of 5 mm created using ML25 and ML29D, and calculate the initial magnetization curve (Bm-Hm characteristic) of the DC B-H curve at 130°C and the DC superposition characteristic ( μΔ-Hm characteristics) were measured.
From the magnetic flux density Bm of the obtained initial magnetization curve and the magnetic field strength Hm, the magnetic field strength H' of a magnetic circuit composed of a pair of E-shaped cores with a magnetic path length Le and a gap length Lg can be calculated using equation (1). By further investigation, we obtained the BH' characteristics of a magnetic circuit constructed by combining E-type cores.
H'=(Hm×(Le-Lg)+Bm×Lg/μ 0 )/Le (1)
Bm: magnetic flux density (T)
Hm: Magnetic field strength (A/m)
Le: magnetic path length of a pair of E-shaped cores (m)
Lg: Gap length between a pair of E-shaped cores (m)
μ 0 : Vacuum permeability (4π×10 −7 ) (H/m)
μΔ: Incremental permeability

円環状コアより得られた直流重畳特性の増分透磁率μΔから、磁路長Le、ギャップ長Lgの一対のE型のコアで構成された磁気回路の実効増分透磁率μΔeを求めた。さらに直流重畳特性の磁界の強さHmと前述のB-H‘特性を用いて、磁路長Le、ギャップ長LgのE型コアを組みわせて構成された磁気回路でのμΔe-H’特性を得た。
更に第1巻線の巻き数、一対のE型のコアの磁路長Le、実効断面積Aeにより、第1巻線による一次側インダクタンスLを算出した。図6に磁界の強さH‘を重畳電流に換算したインダクタンスLの重畳特性を示す。2種のMn系フェライトの内、ML29DはML25Dよりも重畳特性に優れることが分かる。
From the incremental magnetic permeability μΔ of the DC superposition characteristic obtained from the annular core, the effective incremental magnetic permeability μΔe of a magnetic circuit composed of a pair of E-shaped cores with a magnetic path length Le and a gap length Lg was determined. Furthermore, using the magnetic field strength Hm of the DC superposition characteristic and the above-mentioned B-H' characteristic, the μΔe-H' characteristic is obtained in a magnetic circuit configured by combining an E-type core with a magnetic path length Le and a gap length Lg. I got it.
Furthermore, the primary inductance L due to the first winding was calculated from the number of turns of the first winding, the magnetic path length Le of the pair of E-shaped cores, and the effective cross-sectional area Ae. FIG. 6 shows the superimposition characteristic of the inductance L, which is obtained by converting the magnetic field strength H' into a superimposed current. It can be seen that among the two types of Mn-based ferrites, ML29D has better superimposition characteristics than ML25D.

(磁心損失)
第1巻線に流れるピーク電流から動作磁束密度を算出して240mTとした。スタイン・メッツの実験式をもとに、23℃、100℃、130℃、150℃で算出された磁心損失と温度のとの関係を図7に示す。ML29DはML25Dよりも温度に対する磁心損失の変化が小さく、23℃から130℃の温度では磁心損失が小さくて、温度特性に優れることが分かる。
(Magnetic core loss)
The operating magnetic flux density was calculated from the peak current flowing through the first winding and was set to 240 mT. FIG. 7 shows the relationship between core loss and temperature calculated at 23° C., 100° C., 130° C., and 150° C. based on the Stein-Metz experimental formula. It can be seen that ML29D has a smaller change in magnetic core loss with respect to temperature than ML25D, and has a smaller magnetic core loss at temperatures from 23° C. to 130° C., and has excellent temperature characteristics.

得られた結果を基にE型のコアにMn系フェライト:ML29Dを使用して絶縁トランスを作成した。 トランスの外形寸法は、X方向が12.5mm、Y方向が15.2mm、Z方向が14.5mmである。ケースはジアリルフタレート樹脂製、ボビンはフェノール樹脂製である。第1巻線として線径φ0.14の線材を4本束ねた3層絶縁電線を2本使い、第2巻線には線径φ0.23ポリウレタン被覆銅線(UEW線)を使い、またVcc巻線にも線径φ0.23ポリウレタン被覆銅線(UEW線)を使い、図4に示すように第1巻線で第2巻線とVcc巻線を挟み、第1巻線を7ターン、第2巻線を16ターン、Vcc巻線を3ターンとしてコイル部材を作製した。コイル部材の外形寸法は、X方向が10.2mm、Y方向が10.2mm、Z方向が8.7mmである。ケースの内空間にコイル部材を収容し、第1巻線の引出線を絶縁トランスの上面側から引き出し、ケースの天板部の溝部を通して、壁部の平面にそって金属端子40(T5~T8)の第1端子へ向けて導出され絡げてはんだ固定した。また、第2巻線85、Vcc巻線87の引出線をケースの側面が開口した側から引き出して金属端子40(T1~T4)の第2端子に絡げてはんだ固定して、絶縁トランスを作製した。周波数400kHzにおける第1巻線と第2巻線の結合係数は0.994であった。 Based on the obtained results, an isolation transformer was created using Mn-based ferrite: ML29D for an E-type core. The external dimensions of the transformer are 12.5 mm in the X direction, 15.2 mm in the Y direction, and 14.5 mm in the Z direction. The case is made of diallyl phthalate resin, and the bobbin is made of phenolic resin. Two three-layer insulated wires made by bundling four wires with a wire diameter of φ0.14 are used as the first winding, and a polyurethane-coated copper wire (UEW wire) with a wire diameter of φ0.23 is used as the second winding. A polyurethane coated copper wire (UEW wire) with a wire diameter of φ0.23 was used for the winding, and as shown in Figure 4, the first winding sandwiched the second winding and the Vcc winding, and the first winding was made with 7 turns. A coil member was produced with 16 turns of the second winding and 3 turns of the Vcc winding. The outer dimensions of the coil member are 10.2 mm in the X direction, 10.2 mm in the Y direction, and 8.7 mm in the Z direction. The coil member is accommodated in the inner space of the case, and the lead wire of the first winding is pulled out from the top side of the insulation transformer, passed through the groove in the top plate of the case, and then passed along the plane of the wall to the metal terminal 40 (T5 to T8). ) was led out to the first terminal of the terminal, tied together and fixed with solder. In addition, the lead wires of the second winding 85 and the Vcc winding 87 are pulled out from the open side of the case, wrapped around the second terminals of the metal terminals 40 (T1 to T4), and fixed with solder to complete the insulation transformer. Created. The coupling coefficient between the first winding and the second winding at a frequency of 400 kHz was 0.994.

得られた絶縁トランスを使って、周波数400KHz、温度130℃の条件で入力側インダクタンスの直流重畳特性を評価した。その結果を図8に示す。絶縁トランスは重畳電流に対してインダクタンスの変化が小さく、第1巻線に流れるピーク電流の1.79Aの条件でも、初期インダクタンスに対する変化は0.5μH程度であった。2.5Aの条件でも変化は1.0μH程度と小さく、高温環境下でもコアの磁気飽和を抑制し、小型で充分な沿面距離を確保した絶縁トランスが得られた。 Using the obtained isolation transformer, the DC superposition characteristics of the input side inductance were evaluated under conditions of a frequency of 400 KHz and a temperature of 130°C. The results are shown in FIG. The change in inductance of the isolation transformer is small with respect to the superimposed current, and even when the peak current flowing through the first winding is 1.79 A, the change with respect to the initial inductance is about 0.5 μH. Even under the condition of 2.5 A, the change was as small as about 1.0 μH, and an isolation transformer was obtained that suppressed the magnetic saturation of the core even in a high-temperature environment and ensured a small size and sufficient creepage distance.

1 絶縁トランス
10a、10b E型のコア
30 ボビン
40 金属端子
50 ケース
60 コイル部品




1 Insulation transformer 10a, 10b E-type core 30 Bobbin 40 Metal terminal 50 Case 60 Coil parts




Claims (4)

一対のE型のコアと、前記E型のコアの中央脚部を通す筒状胴部を備えるボビンと、前記筒状胴部の外周に巻装された導線で形成された第1巻線および第2巻線と、を備えたコイル部材と、
前記コイル部材を収容し、前記第1巻線と接続する第1端子と前記第2巻線と接続する第2端子とを備えた矩形状のケースと、を有し、
前記ケースは、基部と壁部と天板部に囲まれて前記コイル部材を収容する内空間を備え、前記内空間に、前記一対のE型のコア及び前記コイル部材が配置され、
前記天板部には、前記第1巻線を導出する幅で、前記壁部側に至る溝部を備え、
前記一対のE型のコアは実効断面積Aeが15.5mm以上21.0mm以下であり、実効磁路長leが21.8mm以上24.2mm以下であり、130℃における飽和磁束密度Bsが0.35T以上であるMn系フェライトからなる、絶縁トランス。
a bobbin including a pair of E-shaped cores, a cylindrical body through which the central leg of the E-shaped core is passed, a first winding formed of a conductive wire wound around the outer periphery of the cylindrical body; a coil member comprising a second winding;
a rectangular case that houses the coil member and includes a first terminal that connects to the first winding and a second terminal that connects to the second winding;
The case includes an inner space surrounded by a base, a wall, and a top plate to accommodate the coil member, and the pair of E-shaped cores and the coil member are arranged in the inner space,
The top plate portion includes a groove portion extending to the wall portion side with a width for leading out the first winding,
The pair of E-shaped cores have an effective cross-sectional area Ae of 15.5 mm 2 or more and 21.0 mm 2 or less, an effective magnetic path length le of 21.8 mm or more and 24.2 mm or less, and a saturation magnetic flux density Bs at 130°C. An insulating transformer made of Mn-based ferrite with a value of 0.35T or more.
請求項1に記載の絶縁トランスであって、
前記溝部には前記第1巻線が2本設けられ、
前記溝部から2本の前記第1巻線がV字状に分けられて導出され、それぞれ対応する第1端子に接続されている、絶縁トランス。
The isolation transformer according to claim 1,
Two of the first windings are provided in the groove,
An insulating transformer, wherein the two first windings are separated into a V-shape and led out from the groove, and each is connected to a corresponding first terminal.
請求項1または2に記載の絶縁トランスであって、
前記Mn系フェライトは、周波数400kHz、励磁磁束密度240mT、温度23℃から130℃における磁心損失が7000kW/m以下である、絶縁トランス。
The isolation transformer according to claim 1 or 2,
The Mn-based ferrite is an insulation transformer having a frequency of 400 kHz, an excitation magnetic flux density of 240 mT, and a core loss of 7000 kW/m 3 or less at a temperature of 23° C. to 130° C.
請求項1または2に記載の絶縁トランスであって、
少なくとも一方の巻線に強化絶縁電線が使用され、前記第1巻線を構成する導線の巻回部と前記第2巻線を構成する導線の巻回部とは、前記第1巻線を構成する導線の巻回部が前記第2巻線を構成する導線の巻回部を挟むように、前記筒状胴部の径方向に重ねて配置され、
周波数400kHzにおける前記第1巻線と前記第2巻線の結合係数が0.990以上である、絶縁トランス。




The isolation transformer according to claim 1 or 2,
A reinforced insulated wire is used for at least one of the windings, and the winding portion of the conducting wire constituting the first winding and the winding portion of the conducting wire constituting the second winding constitute the first winding. The winding portions of the conductive wire constituting the second winding are arranged to overlap in the radial direction of the cylindrical body portion so as to sandwich the winding portion of the conductive wire constituting the second winding,
An isolation transformer, wherein a coupling coefficient between the first winding and the second winding at a frequency of 400 kHz is 0.990 or more.




JP2023216960A 2021-01-28 2023-12-22 isolation transformer Pending JP2024023816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023216960A JP2024023816A (en) 2021-01-28 2023-12-22 isolation transformer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021011592A JP7420092B2 (en) 2021-01-28 2021-01-28 isolation transformer
JP2023216960A JP2024023816A (en) 2021-01-28 2023-12-22 isolation transformer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021011592A Division JP7420092B2 (en) 2021-01-28 2021-01-28 isolation transformer

Publications (1)

Publication Number Publication Date
JP2024023816A true JP2024023816A (en) 2024-02-21

Family

ID=82747935

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021011592A Active JP7420092B2 (en) 2021-01-28 2021-01-28 isolation transformer
JP2023216960A Pending JP2024023816A (en) 2021-01-28 2023-12-22 isolation transformer

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2021011592A Active JP7420092B2 (en) 2021-01-28 2021-01-28 isolation transformer

Country Status (1)

Country Link
JP (2) JP7420092B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4782459B2 (en) 2005-02-10 2011-09-28 エヌ・ティ・ティ・データ先端技術株式会社 Power supply
JP3964434B2 (en) 2005-02-18 2007-08-22 日立フェライト電子株式会社 Small transformer with cover
JP2008258250A (en) 2007-04-02 2008-10-23 Hitachi Ferrite Electronics Ltd Transformer with case
WO2015111743A1 (en) 2014-01-27 2015-07-30 日立金属株式会社 Transformer, power supply device, and method for manufacturing transformer

Also Published As

Publication number Publication date
JP2022115130A (en) 2022-08-09
JP7420092B2 (en) 2024-01-23

Similar Documents

Publication Publication Date Title
US6900717B2 (en) Bobbin for hybrid coils in planar magnetic components
US9396863B2 (en) Transformer
KR101138031B1 (en) Inductor
US7221252B1 (en) Transformer
JP6525360B1 (en) Power converter
KR101913172B1 (en) Transformer and power supply unit including the same
JP6331060B2 (en) Surface mount type reactor and manufacturing method thereof
US8570135B2 (en) Transformer and display device using the same
US8458893B2 (en) Method for assembling a magnetic component
US6861938B2 (en) High-frequency power inductance element
JP2023514519A (en) Transformer and flat panel display device including the same
KR101781981B1 (en) Hybrid transformer
JP2015060849A (en) Inductance component
JP7420092B2 (en) isolation transformer
JP3381531B2 (en) Choke coil and switching power supply using the same
KR101858117B1 (en) Dual Spiral Transformer
KR101328286B1 (en) Transformer
JP2011233859A (en) Slim type high voltage transformer
KR101610337B1 (en) Coil component and manufacturing method there of
US8970335B2 (en) Coil form for forming an inductive element
JP2015060850A (en) Inductance unit
JP7491441B2 (en) Bobbin
WO2022007706A1 (en) Winding assembly, on-board charger, and vehicle
JPH10149931A (en) Choke coil
JP7211152B2 (en) transformer device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231222