JP2024022788A - Conductive paste, method for producing conductive paste and connection structure - Google Patents

Conductive paste, method for producing conductive paste and connection structure Download PDF

Info

Publication number
JP2024022788A
JP2024022788A JP2022126132A JP2022126132A JP2024022788A JP 2024022788 A JP2024022788 A JP 2024022788A JP 2022126132 A JP2022126132 A JP 2022126132A JP 2022126132 A JP2022126132 A JP 2022126132A JP 2024022788 A JP2024022788 A JP 2024022788A
Authority
JP
Japan
Prior art keywords
solder particles
flux
conductive paste
electrode
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022126132A
Other languages
Japanese (ja)
Inventor
雄太 山中
Yuta Yamanaka
主 國澤
Tsukasa Kunisawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2022126132A priority Critical patent/JP2024022788A/en
Publication of JP2024022788A publication Critical patent/JP2024022788A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conductive paste that enhances both storage stability and screen printing quality, while facilitating efficient solder particle placement on an electrode.
SOLUTION: A conductive paste according to the present invention includes a thermosetting component, and flux-carrying solder particles. The flux-carrying solder particles each consist of a solder particle, and flux carried on the solder particle. The solder particles have an average particle size of 5.0 μm or less. The flux carried on the solder particle is a carboxylic acid or carboxylate.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、はんだ粒子を含む導電ペーストに関する。また、本発明は、はんだ粒子を含む導電ペーストの製造方法及び上記導電ペーストを用いた接続構造体に関する。 The present invention relates to a conductive paste containing solder particles. The present invention also relates to a method of manufacturing a conductive paste containing solder particles, and a connected structure using the conductive paste.

異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。上記異方性導電材料では、バインダー樹脂中に導電性粒子が分散されている。 Anisotropic conductive materials such as anisotropic conductive pastes and anisotropic conductive films are widely known. In the above anisotropic conductive material, conductive particles are dispersed in a binder resin.

上記異方性導電材料は、各種の接続構造体を得るために使用されている。上記異方性導電材料による接続としては、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、半導体チップとガラス基板との接続(COG(Chip on Glass))、並びにフレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))等が挙げられる。 The above-mentioned anisotropic conductive material is used to obtain various connected structures. Examples of connections using the anisotropic conductive material include connections between flexible printed circuit boards and glass substrates (FOG (Film on Glass)), connections between semiconductor chips and flexible printed circuit boards (COF (Chip on Film)), and semiconductor Examples include connection between a chip and a glass substrate (COG (Chip on Glass)), connection between a flexible printed circuit board and a glass epoxy substrate (FOB (Film on Board)), and the like.

近年、はんだ粒子等の導電性粒子を含む導電材料では、プリント配線板等における配線及びコネクター等のファインピッチ化により、導電性粒子の小粒子径化が進行している。 In recent years, in conductive materials containing conductive particles such as solder particles, the diameter of the conductive particles has been reduced due to the finer pitch of wiring and connectors in printed wiring boards and the like.

下記の特許文献1では、平均粒子径0.4μm~2.0μmの金属粒子を主成分として含む導電性ペーストが開示されている。上記導電性ペーストでは、上記金属粒子の全個数100%中、粒子径が0.2μm以下の金属粒子の個数が5%以下である。 Patent Document 1 listed below discloses a conductive paste containing metal particles as a main component with an average particle diameter of 0.4 μm to 2.0 μm. In the conductive paste, the number of metal particles having a particle diameter of 0.2 μm or less is 5% or less out of 100% of the total number of metal particles.

特開平10-134637号公報Japanese Patent Application Publication No. 10-134637

はんだ粒子を含む導電ペーストを用いて導電接続を行う際には、上方の複数の電極と下方の複数の電極とが電気的に接続されて、導電接続が行われる。はんだ粒子は、上下の電極間に配置されることが望ましく、隣接する横方向の電極間には配置されないことが望ましい。隣接する横方向の電極間は、電気的に接続されないことが望ましい。 When making a conductive connection using a conductive paste containing solder particles, a plurality of upper electrodes and a plurality of lower electrodes are electrically connected to make a conductive connection. The solder particles are preferably placed between the upper and lower electrodes, and desirably not between adjacent lateral electrodes. It is desirable that adjacent horizontal electrodes are not electrically connected.

一般に、はんだ粒子を含む導電ペーストは、スクリーン印刷等により基板上の特定の位置に配置された後、リフロー等により加熱されて用いられる。導電ペーストがはんだ粒子の融点以上に加熱されることで、はんだ粒子が溶融し、電極間にはんだが凝集することで、上下の電極間が電気的に接続される。導電ペーストにおいて、はんだ粒子を電極上に効率的に配置するために、フラックスが用いられることがある。 Generally, a conductive paste containing solder particles is placed at a specific position on a substrate by screen printing or the like, and then heated by reflow or the like before use. When the conductive paste is heated to a temperature higher than the melting point of the solder particles, the solder particles melt and the solder aggregates between the electrodes, thereby electrically connecting the upper and lower electrodes. Flux is sometimes used in conductive pastes to efficiently place solder particles on the electrodes.

ここで、特許文献1の導電ペーストのように、粒子径の小さい導電性粒子を用いた場合には、導電ペースト中の導電性粒子の表面積の合計が大きくなるので、導電性粒子を電極上に効率的に配置するために、導電ペーストに大量のフラックスが配合されることがある。 Here, when conductive particles with a small particle size are used as in the conductive paste of Patent Document 1, the total surface area of the conductive particles in the conductive paste becomes large, so the conductive particles are placed on the electrode. For efficient placement, large amounts of flux are sometimes incorporated into the conductive paste.

しかしながら、液体のフラックスを導電ペーストに大量に配合した場合には、導電ペーストの保存安定性(ポットライフ)が悪化することがある。導電ペーストの保存安定性(ポットライフ)が悪化すると、スクリーン印刷を行う場合に、印刷時の導電ペーストの粘度が低くなって、スクリーン透過量が多くなることで、にじみが発生したり、印刷時の導電ペーストの粘度が高くなって、導電ペーストがメッシュに目詰まりすることで、かすれが発生したりすることがある。 However, when a large amount of liquid flux is blended into the conductive paste, the storage stability (pot life) of the conductive paste may deteriorate. If the storage stability (pot life) of the conductive paste deteriorates, the viscosity of the conductive paste during screen printing will decrease, and the amount of penetration through the screen will increase, causing bleeding or problems during printing. The viscosity of the conductive paste becomes high and the conductive paste clogs the mesh, which may cause scratches.

一方、固体のフラックスを導電ペーストに大量に配合した場合にも、導電ペーストの保存安定性(ポットライフ)が悪化し、印刷時の導電ペーストの粘度が高くなって、導電ペーストがメッシュに目詰まりすることがある。結果として、導電ペーストのかすれが発生することがある。従来の導電ペーストでは、導電ペーストの保存安定性(ポットライフ)の悪化により、導電ペーストをプリント配線板等に均一に塗布することができないことがある。 On the other hand, when a large amount of solid flux is mixed into the conductive paste, the storage stability (pot life) of the conductive paste deteriorates, the viscosity of the conductive paste increases during printing, and the conductive paste clogs the mesh. There are things to do. As a result, the conductive paste may become blurred. With conventional conductive pastes, it may not be possible to uniformly apply the conductive paste to a printed wiring board or the like due to deterioration in storage stability (pot life) of the conductive paste.

本発明の目的は、保存安定性を高めることができ、スクリーン印刷性を高めることができ、かつ、電極上にはんだ粒子を効率的に配置することができる導電ペーストを提供することである。また、本発明の目的は、上記導電ペーストの製造方法及び上記導電ペーストを用いた接続構造体を提供することである。 An object of the present invention is to provide a conductive paste that can improve storage stability, improve screen printability, and efficiently arrange solder particles on electrodes. Moreover, the objective of this invention is to provide the manufacturing method of the said electrically conductive paste, and the connection structure using the said electrically conductive paste.

本発明の広い局面によれば、熱硬化性成分と、フラックス付きはんだ粒子とを含み、前記フラックス付きはんだ粒子が、はんだ粒子と、前記はんだ粒子に担持されたフラックスとを備え、前記はんだ粒子の平均粒子径が、5.0μm以下であり、前記はんだ粒子に担持されたフラックスが、カルボン酸又はカルボン酸塩である、導電ペーストが提供される。 According to a broad aspect of the present invention, the present invention includes a thermosetting component and a flux-coated solder particle, the flux-coated solder particle comprising a solder particle and a flux supported on the solder particle; A conductive paste is provided, wherein the average particle diameter is 5.0 μm or less, and the flux supported on the solder particles is a carboxylic acid or a carboxylate salt.

本発明に係る導電ペーストのある特定の局面では、前記はんだ粒子に担持されたフラックスの平均粒子径の、前記はんだ粒子の平均粒子径に対する比が、0.001以上10.0以下である。 In a particular aspect of the conductive paste according to the present invention, the ratio of the average particle diameter of the flux supported on the solder particles to the average particle diameter of the solder particles is 0.001 or more and 10.0 or less.

本発明に係る導電ペーストのある特定の局面では、前記はんだ粒子に担持されたフラックスが、カルボン酸アミン塩である。 In a particular aspect of the conductive paste according to the present invention, the flux supported on the solder particles is a carboxylic acid amine salt.

本発明に係る導電ペーストのある特定の局面では、作製直後の前記導電ペーストを25℃及び50%RHの条件で24時間保管した後の前記導電ペーストの25℃及び5rpmでの粘度の、作製直後の前記導電ペーストの25℃及び5rpmでの粘度に対する比が、1.5以下である。 In a particular aspect of the conductive paste according to the present invention, the viscosity of the conductive paste at 25° C. and 5 rpm immediately after the manufactured conductive paste is stored at 25° C. and 50% RH for 24 hours. The ratio of viscosity of the conductive paste at 25° C. and 5 rpm is 1.5 or less.

本発明の広い局面によれば、はんだ粒子と、前記はんだ粒子に担持されたフラックスとを備えるフラックス付きはんだ粒子を得る工程と、熱硬化性成分と、前記フラックス付きはんだ粒子とを混合して、導電ペーストを得る工程とを備え、前記はんだ粒子の平均粒子径が、5.0μm以下であり、前記はんだ粒子に担持されたフラックスが、カルボン酸又はカルボン酸塩である、導電ペーストの製造方法が提供される。 According to a broad aspect of the present invention, a step of obtaining fluxed solder particles comprising solder particles and a flux supported on the solder particles, mixing a thermosetting component and the fluxed solder particles, obtaining a conductive paste, the average particle diameter of the solder particles is 5.0 μm or less, and the flux supported on the solder particles is a carboxylic acid or a carboxylate salt. provided.

本発明に係る導電ペーストの製造方法のある特定の局面では、前記導電ペーストを得る工程において、フラックスをさらに混合する。 In a particular aspect of the method for manufacturing a conductive paste according to the present invention, flux is further mixed in the step of obtaining the conductive paste.

本発明の広い局面によれば、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、前記接続部の材料が、上述した導電ペーストであり、前記第1の電極と前記第2の電極とが、前記接続部中のはんだ部により電気的に接続されている接続構造体が提供される。 According to a broad aspect of the present invention, a first connection target member having a first electrode on its surface, a second connection target member having a second electrode on its surface, and the first connection target member, a connecting portion connecting the second connection target member, the material of the connecting portion is the above-mentioned conductive paste, and the first electrode and the second electrode are connected to the connecting portion. A connecting structure is provided that is electrically connected by a solder portion therein.

本発明に係る導電ペーストは、熱硬化性成分と、フラックス付きはんだ粒子とを含み、フラックス付きはんだ粒子が、はんだ粒子と、上記はんだ粒子に担持されたフラックスとを備える。本発明に係る導電ペーストでは、上記はんだ粒子の平均粒子径が、5.0μm以下である。本発明に係る導電ペーストでは、上記はんだ粒子に担持されたフラックスが、カルボン酸又はカルボン酸塩である。本発明に係る導電ペーストでは、上記の構成が備えられているので、保存安定性を高めることができ、スクリーン印刷性を高めることができ、かつ、電極上にはんだ粒子を効率的に配置することができる。 The conductive paste according to the present invention includes a thermosetting component and solder particles with flux, and the solder particles with flux include solder particles and flux supported on the solder particles. In the conductive paste according to the present invention, the average particle diameter of the solder particles is 5.0 μm or less. In the conductive paste according to the present invention, the flux supported on the solder particles is a carboxylic acid or a carboxylate salt. Since the conductive paste according to the present invention has the above configuration, it is possible to improve storage stability, improve screen printability, and efficiently arrange solder particles on electrodes. Can be done.

図1は、本発明の一実施形態に係る導電ペーストを用いて得られる接続構造体を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a connected structure obtained using a conductive paste according to an embodiment of the present invention.

以下、本発明の詳細を説明する。 The details of the present invention will be explained below.

(導電ペースト)
本発明に係る導電ペーストは、熱硬化性成分と、フラックス付きはんだ粒子とを含み、フラックス付きはんだ粒子が、はんだ粒子と、上記はんだ粒子に担持されたフラックスとを備える。本発明に係る導電ペーストでは、上記はんだ粒子の平均粒子径が、5.0μm以下である。本発明に係る導電ペーストでは、上記はんだ粒子に担持されたフラックスが、カルボン酸又はカルボン酸塩である。
(conductive paste)
The conductive paste according to the present invention includes a thermosetting component and solder particles with flux, and the solder particles with flux include solder particles and flux supported on the solder particles. In the conductive paste according to the present invention, the average particle diameter of the solder particles is 5.0 μm or less. In the conductive paste according to the present invention, the flux supported on the solder particles is a carboxylic acid or a carboxylate salt.

本発明に係る導電ペーストでは、上記の構成が備えられているので、保存安定性を高めることができ、スクリーン印刷性を高めることができ、かつ、電極上にはんだ粒子を効率的に配置することができる。 Since the conductive paste according to the present invention has the above configuration, it is possible to improve storage stability, improve screen printability, and efficiently arrange solder particles on electrodes. Can be done.

また、本発明に係る導電ペーストでは、電極間の導電接続時に、複数のはんだ粒子(フラックス付きはんだ粒子)が、上下の対向した電極間に集まりやすく、複数のはんだ粒子を電極(ライン)上に配置することができる。また、複数のはんだ粒子の一部が、接続されてはならない横方向の電極間に配置され難く、接続されてはならない横方向の電極間に配置されるはんだ粒子の量をかなり少なくすることができる。結果として、本発明では、接続されるべき上下の電極間の導通信頼性を効果的に高めることができ、接続されてはならない隣接する横方向の電極間の絶縁信頼性を効果的に高めることができる。 In addition, in the conductive paste according to the present invention, multiple solder particles (solder particles with flux) tend to gather between the upper and lower opposing electrodes during conductive connection between the electrodes, and the multiple solder particles are placed on the electrodes (lines). can be placed. In addition, it is difficult for some of the plurality of solder particles to be placed between horizontal electrodes that should not be connected, and it is possible to considerably reduce the amount of solder particles that are placed between horizontal electrodes that should not be connected. can. As a result, the present invention can effectively increase the continuity reliability between the upper and lower electrodes that should be connected, and can effectively increase the insulation reliability between adjacent lateral electrodes that should not be connected. Can be done.

さらに、本発明では、電極間の位置ずれを防ぐことができる。本発明では、導電ペーストを上面に配置した第1の接続対象部材に、第2の接続対象部材を重ね合わせる際に、第1の接続対象部材の電極と第2の接続対象部材の電極とのアライメントがずれた状態でも、そのずれを補正して電極同士を接続させることができる(セルフアライメント効果)。 Furthermore, in the present invention, positional displacement between the electrodes can be prevented. In the present invention, when the second connection target member is superimposed on the first connection target member on which the conductive paste is disposed, the electrodes of the first connection target member and the electrodes of the second connection target member are overlapped. Even in a state where the alignment is misaligned, the misalignment can be corrected and the electrodes can be connected to each other (self-alignment effect).

保存安定性をより一層高め、スクリーン印刷性をより一層高める観点からは、作製直後の上記導電ペーストの25℃及び5rpmでの粘度(η25)は、好ましくは30Pa・s以上、より好ましくは50Pa・s以上であり、好ましくは250Pa・s以下、より好ましくは200Pa・s以下である。上記粘度(η25)は、配合成分の種類及び配合量により適宜調整することができる。 From the viewpoint of further increasing storage stability and screen printability, the viscosity (η25) at 25° C. and 5 rpm of the conductive paste immediately after preparation is preferably 30 Pa·s or more, more preferably 50 Pa·s. s or more, preferably 250 Pa·s or less, more preferably 200 Pa·s or less. The above viscosity (η25) can be adjusted as appropriate depending on the types and amounts of the ingredients.

上記粘度(η25)は、例えば、E型粘度計を用いて、25℃及び5rpmの条件で測定することができる。上記E型粘度計としては、東機産業社製「TVE22L」等が挙げられる。 The viscosity (η25) can be measured, for example, using an E-type viscometer at 25° C. and 5 rpm. Examples of the E-type viscometer include "TVE22L" manufactured by Toki Sangyo Co., Ltd.

作製直後の上記導電ペーストを25℃及び50%RHの条件で24時間保管した後の上記導電ペーストの25℃及び5rpmでの粘度(ηA)は、好ましくは50Pa・s以上、より好ましくは100Pa・s以上であり、好ましくは400Pa・s以下、より好ましくは300Pa・s以下である。上記粘度(ηA)が、上記下限以上及び上記上限以下であると、保存安定性をより一層高め、スクリーン印刷性をより一層高めることができ、かつ、電極上にはんだ粒子をより一層効率的に配置することができる。上記粘度(ηA)は、配合成分の種類及び配合量により適宜調整することができる。 The viscosity (ηA) at 25° C. and 5 rpm of the conductive paste after storing the conductive paste immediately after preparation for 24 hours at 25° C. and 50% RH is preferably 50 Pa·s or more, more preferably 100 Pa·s. s or more, preferably 400 Pa·s or less, more preferably 300 Pa·s or less. When the viscosity (ηA) is not less than the lower limit and not more than the upper limit, storage stability can be further improved, screen printability can be further improved, and solder particles can be applied on the electrode more efficiently. can be placed. The above viscosity (ηA) can be adjusted as appropriate depending on the types and amounts of the ingredients.

上記粘度(ηA)は、例えば、E型粘度計を用いて、25℃及び5rpmの条件で測定することができる。上記E型粘度計としては、東機産業社製「TVE22L」等が挙げられる。 The viscosity (ηA) can be measured, for example, using an E-type viscometer at 25° C. and 5 rpm. Examples of the E-type viscometer include "TVE22L" manufactured by Toki Sangyo Co., Ltd.

作製直後の上記導電ペーストを25℃及び50%RHの条件で24時間保管した後の上記導電ペーストの25℃及び5rpmでの粘度(ηA)の、作製直後の上記導電ペーストの25℃及び5rpmでの粘度(η25)に対する比を、比(ηA/η25)とする。上記比(ηA/η25)は、好ましくは0.6以上、より好ましくは0.7以上、さらに好ましくは0.8以上、特に好ましくは0.9以上、最も好ましくは1.0以上である。上記比(ηA/η25)は、好ましくは1.8以下、より好ましくは1.7以下、さらに好ましくは1.5以下、特に好ましくは1.2以下である。上記比(ηA/η25)が、上記下限以上及び上記上限以下であると、保存安定性をより一層高め、スクリーン印刷性をより一層高めることができ、かつ、電極上にはんだ粒子をより一層効率的に配置することができる。 The viscosity (ηA) at 25°C and 5 rpm of the above conductive paste after storing the above conductive paste immediately after production at 25 °C and 50% RH for 24 hours, and the viscosity (ηA) at 25 °C and 5 rpm of the above conductive paste immediately after production. The ratio of A to the viscosity (η25) is defined as the ratio (ηA/η25). The ratio (ηA/η25) is preferably 0.6 or more, more preferably 0.7 or more, even more preferably 0.8 or more, particularly preferably 0.9 or more, and most preferably 1.0 or more. The ratio (ηA/η25) is preferably 1.8 or less, more preferably 1.7 or less, even more preferably 1.5 or less, particularly preferably 1.2 or less. When the ratio (ηA/η25) is not less than the lower limit and not more than the upper limit, storage stability can be further improved, screen printability can be further improved, and solder particles can be spread on the electrode more efficiently. It can be placed as follows.

はんだ粒子の融点での導電ペーストの粘度(ηmp)は、好ましくは0.1Pa・s以上、より好ましくは0.5Pa・s以上であり、好ましくは50a・s以下、より好ましくは30Pa・s以下、さらに好ましくは10Pa・s以下である。上記粘度(ηmp)が、上記上限以下であると、電極上にはんだ粒子をより一層効率的に配置することができる。上記粘度(ηmp)が、上記下限以上であると、接続部でのボイドを抑制し、接続部以外への導電ペーストのはみだしを抑制することができる。 The viscosity (ηmp) of the conductive paste at the melting point of the solder particles is preferably 0.1 Pa·s or more, more preferably 0.5 Pa·s or more, and preferably 50 a·s or less, more preferably 30 Pa·s or less. , more preferably 10 Pa·s or less. When the viscosity (ηmp) is less than or equal to the upper limit, solder particles can be arranged on the electrode even more efficiently. When the viscosity (ηmp) is equal to or higher than the lower limit, voids at the connection portion can be suppressed, and the conductive paste can be prevented from protruding to areas other than the connection portion.

上記粘度(ηmp)は、STRESSTECH(REOLOGICA社製)等を用いて、歪制御1rad、周波数1Hz、昇温速度20℃/分、測定温度範囲25℃~200℃(但し、はんだ粒子の融点が200℃を超える場合には温度上限をはんだ粒子の融点とする)の条件で測定可能である。測定結果から、はんだ粒子の融点での導電ペースト粘度が算出される。 The above viscosity (ηmp) was measured using STRESSTECH (manufactured by REOLOGICA), etc., with strain control of 1 rad, frequency of 1 Hz, temperature increase rate of 20 °C/min, and measurement temperature range of 25 °C to 200 °C (provided that the melting point of the solder particles is 200 °C). ℃, the upper temperature limit is the melting point of the solder particles). From the measurement results, the viscosity of the conductive paste at the melting point of the solder particles is calculated.

上記導電ペーストは異方性導電ペーストであることが好ましい。上記導電ペーストは、電極の電気的な接続に好適に用いられる。上記導電ペーストは、回路接続ペーストであることが好ましい。 Preferably, the conductive paste is an anisotropic conductive paste. The above-mentioned conductive paste is suitably used for electrical connection of electrodes. Preferably, the conductive paste is a circuit connection paste.

上記導電ペーストの使用環境は、特に限定されない。上記導電ペーストは、25℃及び50%RHの環境で使用されてもよく、それ以外の環境で使用されてもよい。 The environment in which the conductive paste is used is not particularly limited. The conductive paste may be used in an environment of 25° C. and 50% RH, or in other environments.

以下、上記導電ペーストに含まれる各成分を説明する。なお、本明細書中において、「(メタ)アクリル」は「アクリル」と「メタクリル」との一方又は双方を意味する。 Each component contained in the conductive paste will be explained below. In addition, in this specification, "(meth)acrylic" means one or both of "acrylic" and "methacrylic."

(熱硬化性成分)
本発明に係る導電ペーストは、熱硬化性成分を含む。上記導電ペーストは、熱硬化性成分として、熱硬化性化合物を含むことが好ましい。上記導電ペーストは、熱硬化剤を含んでいてもよく、含んでいなくてもよい。上記導電ペーストは、熱硬化性成分として、熱硬化性化合物と熱硬化剤とを含んでいてもよい。上記導電ペーストが、熱硬化性化合物と熱硬化剤とを含む場合には、導電ペーストをより一層良好に硬化させることができる。
(thermosetting component)
The conductive paste according to the present invention contains a thermosetting component. The conductive paste preferably contains a thermosetting compound as a thermosetting component. The conductive paste may or may not contain a thermosetting agent. The conductive paste may contain a thermosetting compound and a thermosetting agent as thermosetting components. When the conductive paste contains a thermosetting compound and a thermosetting agent, the conductive paste can be cured even better.

(熱硬化性成分:熱硬化性化合物)
上記熱硬化性化合物は特に限定されない。上記熱硬化性化合物としては、オキセタン化合物、エポキシ化合物、エピスルフィド化合物、(メタ)アクリル化合物、フェノール化合物、アミノ化合物、不飽和ポリエステル化合物、ポリウレタン化合物、シリコーン化合物及びポリイミド化合物等が挙げられる。導電ペーストの硬化性及び粘度をより一層良好にする観点、導通信頼性をより一層高める観点、及び絶縁信頼性をより一層高める観点からは、上記熱硬化性化合物としては、エポキシ化合物又はエピスルフィド化合物が好ましく、エポキシ化合物がより好ましい。導電ペーストの硬化性及び粘度をより一層良好にする観点、導通信頼性をより一層高める観点、及び絶縁信頼性をより一層高める観点からは、上記熱硬化性化合物は、エポキシ化合物を含むことが好ましい。上記熱硬化性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Thermosetting component: thermosetting compound)
The above thermosetting compound is not particularly limited. Examples of the thermosetting compound include oxetane compounds, epoxy compounds, episulfide compounds, (meth)acrylic compounds, phenol compounds, amino compounds, unsaturated polyester compounds, polyurethane compounds, silicone compounds, and polyimide compounds. From the viewpoint of further improving the curability and viscosity of the conductive paste, further increasing the conduction reliability, and further increasing the insulation reliability, the thermosetting compound may be an epoxy compound or an episulfide compound. Preferably, epoxy compounds are more preferable. From the viewpoint of further improving the curability and viscosity of the conductive paste, further increasing the continuity reliability, and further increasing the insulation reliability, the thermosetting compound preferably contains an epoxy compound. . The above thermosetting compounds may be used alone or in combination of two or more.

上記エポキシ化合物は、少なくとも1個のエポキシ基を有する化合物である。上記エポキシ化合物としては、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、フェノールノボラック型エポキシ化合物、ビフェニル型エポキシ化合物、ビフェニルノボラック型エポキシ化合物、ビフェノール型エポキシ化合物、ナフタレン型エポキシ化合物、フルオレン型エポキシ化合物、フェノールアラルキル型エポキシ化合物、ナフトールアラルキル型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、アントラセン型エポキシ化合物、アダマンタン骨格を有するエポキシ化合物、トリシクロデカン骨格を有するエポキシ化合物、ナフチレンエーテル型エポキシ化合物、及びトリアジン核を骨格に有するエポキシ化合物等が挙げられる。上記エポキシ化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。 The above epoxy compound is a compound having at least one epoxy group. The above-mentioned epoxy compounds include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, phenol novolak type epoxy compounds, biphenyl type epoxy compounds, biphenyl novolac type epoxy compounds, biphenol type epoxy compounds, and naphthalene type epoxy compounds. , fluorene type epoxy compound, phenol aralkyl type epoxy compound, naphthol aralkyl type epoxy compound, dicyclopentadiene type epoxy compound, anthracene type epoxy compound, epoxy compound having an adamantane skeleton, epoxy compound having a tricyclodecane skeleton, naphthylene ether type Examples include epoxy compounds and epoxy compounds having a triazine nucleus in their skeleton. Only one kind of the above-mentioned epoxy compound may be used, or two or more kinds thereof may be used in combination.

上記エポキシ化合物は、常温(25℃)で液状又は固体であり、上記エポキシ化合物が常温で固体である場合には、上記エポキシ化合物の溶融温度は、上記はんだ粒子の融点以下であることが好ましい。上記の好ましいエポキシ化合物を用いることで、接続対象部材を貼り合わせた段階では、粘度が高く、搬送等の衝撃により、加速度が付与された際に、第1の接続対象部材と、第2の接続対象部材との位置ずれを抑制することができる。さらに、硬化時の熱により、導電ペーストの粘度を大きく低下させることができ、はんだ粒子の凝集を効率よく進行させることができる。 The epoxy compound is liquid or solid at room temperature (25° C.), and when the epoxy compound is solid at room temperature, the melting temperature of the epoxy compound is preferably equal to or lower than the melting point of the solder particles. By using the preferred epoxy compound described above, the viscosity is high at the stage when the connection target members are bonded together, and when acceleration is applied due to impact such as transportation, the first connection target member and the second connection target member are bonded together. Misalignment with the target member can be suppressed. Furthermore, the heat generated during curing can greatly reduce the viscosity of the conductive paste, allowing the solder particles to coagulate efficiently.

接続信頼性を高める観点からは、上記エポキシ化合物は、フェノールノボラック型エポキシ化合物、又は、ビスフェノールF型エポキシ化合物を含むことが好ましい。 From the viewpoint of improving connection reliability, the epoxy compound preferably includes a phenol novolac type epoxy compound or a bisphenol F type epoxy compound.

導電ペースト100重量%中、上記熱硬化性成分の含有量は、好ましくは10重量%以上、より好ましくは15重量%以上、さらに好ましくは20重量%以上であり、好ましくは90重量%以下、より好ましくは85重量%以下、さらに好ましくは80重量%以下、特に好ましくは75重量%以下である。上記熱硬化性成分の含有量が、上記下限以上及び上記上限以下であると、電極上にはんだ粒子をより一層効率的に配置することができ、電極間の絶縁信頼性をより一層高めることができ、電極間の導通信頼性をより一層高めることができる。耐衝撃性を効果的に高める観点からは、上記熱硬化性成分の含有量は多い方が好ましい。 The content of the thermosetting component in 100% by weight of the conductive paste is preferably 10% by weight or more, more preferably 15% by weight or more, even more preferably 20% by weight or more, and preferably 90% by weight or less, more preferably It is preferably 85% by weight or less, more preferably 80% by weight or less, particularly preferably 75% by weight or less. When the content of the thermosetting component is not less than the lower limit and not more than the upper limit, the solder particles can be arranged on the electrodes even more efficiently, and the insulation reliability between the electrodes can be further improved. This makes it possible to further improve the reliability of conduction between the electrodes. From the viewpoint of effectively increasing impact resistance, it is preferable that the content of the thermosetting component be as large as possible.

導電ペースト100重量%中、上記熱硬化性化合物の含有量は、好ましくは5重量%以上、より好ましくは10重量%以上、さらに好ましくは15重量%以上であり、好ましくは90重量%以下、より好ましくは85重量%以下、さらに好ましくは80重量%以下、特に好ましくは75重量%以下である。上記熱硬化性化合物の含有量が、上記下限以上及び上記上限以下であると、電極上にはんだ粒子をより一層効率的に配置することができ、電極間の絶縁信頼性をより一層高めることができ、電極間の導通信頼性をより一層高めることができる。耐衝撃性を効果的に高める観点からは、上記熱硬化性化合物の含有量は多い方が好ましい。 The content of the thermosetting compound in 100% by weight of the conductive paste is preferably 5% by weight or more, more preferably 10% by weight or more, even more preferably 15% by weight or more, and preferably 90% by weight or less, more preferably It is preferably 85% by weight or less, more preferably 80% by weight or less, particularly preferably 75% by weight or less. When the content of the thermosetting compound is not less than the lower limit and not more than the upper limit, the solder particles can be arranged on the electrodes even more efficiently, and the insulation reliability between the electrodes can be further improved. This makes it possible to further improve the reliability of conduction between the electrodes. From the viewpoint of effectively increasing impact resistance, it is preferable that the content of the thermosetting compound be as large as possible.

導電ペースト100重量%中、上記エポキシ化合物の含有量は、好ましくは5重量%以上、より好ましくは10重量%以上、さらに好ましくは15重量%以上であり、好ましくは90重量%以下、より好ましくは85重量%以下、さらに好ましくは80重量%以下、特に好ましくは75重量%以下である。上記エポキシ化合物の含有量が、上記下限以上及び上記上限以下であると、電極上にはんだ粒子をより一層効率的に配置することができ、電極間の絶縁信頼性をより一層高めることができ、電極間の導通信頼性をより一層高めることができる。耐衝撃性を効果的に高める観点からは、上記エポキシ化合物の含有量は多い方が好ましい。 The content of the epoxy compound in 100% by weight of the conductive paste is preferably 5% by weight or more, more preferably 10% by weight or more, even more preferably 15% by weight or more, and preferably 90% by weight or less, more preferably It is 85% by weight or less, more preferably 80% by weight or less, particularly preferably 75% by weight or less. When the content of the epoxy compound is not less than the lower limit and not more than the upper limit, the solder particles can be arranged on the electrodes even more efficiently, and the insulation reliability between the electrodes can be further improved. The reliability of conduction between the electrodes can be further improved. From the viewpoint of effectively increasing impact resistance, it is preferable that the content of the epoxy compound is as large as possible.

(熱硬化性成分:熱硬化剤)
上記熱硬化剤は特に限定されない。上記熱硬化剤は、上記熱硬化性化合物を熱硬化させる。上記熱硬化剤としては、イミダゾール硬化剤、アミン硬化剤、フェノール硬化剤、ポリチオール硬化剤等のチオール硬化剤、酸無水物硬化剤、熱カチオン開始剤(熱カチオン硬化剤)及び熱ラジカル発生剤等が挙げられる。上記熱硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Thermosetting component: thermosetting agent)
The above thermosetting agent is not particularly limited. The thermosetting agent thermosets the thermosetting compound. Examples of the above-mentioned thermosetting agents include thiol curing agents such as imidazole curing agents, amine curing agents, phenol curing agents, and polythiol curing agents, acid anhydride curing agents, thermal cationic initiators (thermal cationic curing agents), thermal radical generators, etc. can be mentioned. The above thermosetting agents may be used alone or in combination of two or more.

導電ペーストを低温でより一層速やかに硬化可能とする観点からは、上記熱硬化剤は、イミダゾール硬化剤、チオール硬化剤、又はアミン硬化剤であることが好ましい。また、上記熱硬化性化合物と上記熱硬化剤とを混合したときの保存安定性を高める観点からは、上記熱硬化剤は、潜在性の硬化剤であることが好ましい。潜在性の硬化剤は、潜在性イミダゾール硬化剤、潜在性チオール硬化剤又は潜在性アミン硬化剤であることが好ましい。なお、上記熱硬化剤は、ポリウレタン樹脂又はポリエステル樹脂等の高分子物質で被覆されていてもよい。 From the viewpoint of enabling the conductive paste to be cured more quickly at low temperatures, the thermosetting agent is preferably an imidazole curing agent, a thiol curing agent, or an amine curing agent. Further, from the viewpoint of improving the storage stability when the thermosetting compound and the thermosetting agent are mixed, the thermosetting agent is preferably a latent curing agent. Preferably, the latent curing agent is a latent imidazole curing agent, a latent thiol curing agent or a latent amine curing agent. Note that the thermosetting agent may be coated with a polymeric substance such as polyurethane resin or polyester resin.

上記イミダゾール硬化剤は、特に限定されない。上記イミダゾール硬化剤としては、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、及び2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-フェニル-4-ベンジル-5-ヒドロキシメチルイミダゾール、2-パラトルイル-4-メチル-5-ヒドロキシメチルイミダゾール、2-メタトルイル-4-メチル-5-ヒドロキシメチルイミダゾール、2-メタトルイル-4,5-ジヒドロキシメチルイミダゾール、2-パラトルイル-4,5-ジヒドロキシメチルイミダゾール等における1H-イミダゾールの5位の水素をヒドロキシメチル基で、かつ、2位の水素をフェニル基またはトルイル基で置換したイミダゾール化合物等が挙げられる。 The above imidazole curing agent is not particularly limited. Examples of the imidazole curing agent include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6 -[2'-Methylimidazolyl-(1')]-ethyl-s-triazine and 2,4-diamino-6-[2'-methylimidazolyl-(1')]-ethyl-s-triazine isocyanuric acid addition 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4-benzyl-5-hydroxymethylimidazole, 2-paratolyl-4-methyl- 5 of 1H-imidazole in 5-hydroxymethylimidazole, 2-metatolyl-4-methyl-5-hydroxymethylimidazole, 2-metatolyl-4,5-dihydroxymethylimidazole, 2-paratolyl-4,5-dihydroxymethylimidazole, etc. Examples include imidazole compounds in which the hydrogen at position is substituted with a hydroxymethyl group, and the hydrogen at position 2 is substituted with a phenyl group or tolyl group.

上記チオール硬化剤は、特に限定されない。上記チオール硬化剤としては、トリメチロールプロパントリス-3-メルカプトプロピオネート、ペンタエリスリトールテトラキス-3-メルカプトプロピオネート、及びジペンタエリスリトールヘキサ-3-メルカプトプロピオネート等が挙げられる。 The above-mentioned thiol curing agent is not particularly limited. Examples of the thiol curing agent include trimethylolpropane tris-3-mercaptopropionate, pentaerythritol tetrakis-3-mercaptopropionate, and dipentaerythritol hexa-3-mercaptopropionate.

上記アミン硬化剤は特に限定されない。上記アミン硬化剤としては、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラスピロ[5.5]ウンデカン、ビス(4-アミノシクロヘキシル)メタン、メタフェニレンジアミン及びジアミノジフェニルスルホン等が挙げられる。 The above amine curing agent is not particularly limited. Examples of the amine curing agent include hexamethylene diamine, octamethylene diamine, decamethylene diamine, 3,9-bis(3-aminopropyl)-2,4,8,10-tetraspiro[5.5]undecane, bis(4 -aminocyclohexyl)methane, metaphenylenediamine, and diaminodiphenylsulfone.

上記酸無水物硬化剤は、特に限定されない。上記酸無水物硬化剤としては、エポキシ化合物等の熱硬化性化合物の硬化剤として用いられる酸無水物を広く用いることができる。上記酸無水物硬化剤としては、無水フタル酸、テトラヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルブテニルテトラヒドロ無水フタル酸、フタル酸誘導体の無水物、無水マレイン酸、無水ナジック酸、無水メチルナジック酸、無水グルタル酸、無水コハク酸、グリセリンビス無水トリメリット酸モノアセテート、及びエチレングリコールビス無水トリメリット酸等の2官能の酸無水物硬化剤、無水トリメリット酸等の3官能の酸無水物硬化剤、並びに、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸、メチルシクロヘキセンテトラカルボン酸無水物、及びポリアゼライン酸無水物等の4官能以上の酸無水物硬化剤等が挙げられる。 The acid anhydride curing agent is not particularly limited. As the acid anhydride curing agent, acid anhydrides used as curing agents for thermosetting compounds such as epoxy compounds can be widely used. The acid anhydride curing agents include phthalic anhydride, tetrahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylbutenyltetrahydrophthalic anhydride. , anhydrides of phthalic acid derivatives, maleic anhydride, nadic anhydride, methyl nadic anhydride, glutaric anhydride, succinic anhydride, glycerin bis-trimellitic anhydride monoacetate, and difunctional compounds such as ethylene glycol bis-trimellitic anhydride. trifunctional acid anhydride curing agents such as trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic anhydride, methylcyclohexenetetracarboxylic anhydride, polyazelaic anhydride, etc. Examples include acid anhydride curing agents having four or more functional groups.

上記熱カチオン開始剤は、特に限定されない。上記熱カチオン開始剤としては、ヨードニウム系カチオン硬化剤、オキソニウム系カチオン硬化剤及びスルホニウム系カチオン硬化剤等が挙げられる。上記ヨードニウム系カチオン硬化剤としては、ビス(4-tert-ブチルフェニル)ヨードニウムヘキサフルオロホスファート等が挙げられる。上記オキソニウム系カチオン硬化剤としては、トリメチルオキソニウムテトラフルオロボラート等が挙げられる。上記スルホニウム系カチオン硬化剤としては、トリ-p-トリルスルホニウムヘキサフルオロホスファート等が挙げられる。 The thermal cationic initiator is not particularly limited. Examples of the thermal cationic initiator include iodonium-based cationic curing agents, oxonium-based cationic curing agents, and sulfonium-based cationic curing agents. Examples of the iodonium-based cationic curing agent include bis(4-tert-butylphenyl)iodonium hexafluorophosphate. Examples of the oxonium-based cationic curing agent include trimethyloxonium tetrafluoroborate. Examples of the sulfonium-based cationic curing agent include tri-p-tolylsulfonium hexafluorophosphate.

上記熱ラジカル発生剤は、特に限定されない。上記熱ラジカル発生剤としては、アゾ化合物及び有機過酸化物等が挙げられる。上記アゾ化合物としては、アゾビスイソブチロニトリル(AIBN)等が挙げられる。上記有機過酸化物としては、ジ-tert-ブチルペルオキシド及びメチルエチルケトンペルオキシド等が挙げられる。 The thermal radical generator described above is not particularly limited. Examples of the thermal radical generator include azo compounds and organic peroxides. Examples of the azo compound include azobisisobutyronitrile (AIBN) and the like. Examples of the organic peroxide include di-tert-butyl peroxide and methyl ethyl ketone peroxide.

上記熱硬化剤の反応開始温度は、好ましくは50℃以上、より好ましくは60℃以上、さらに好ましくは70℃以上であり、好ましくは250℃以下、より好ましくは200℃以下、さらに好ましくは175℃以下、特に好ましくは150℃以下である。上記熱硬化剤の反応開始温度が、上記下限以上及び上記上限以下であると、電極上にはんだ粒子をより一層効率的に配置することができる。上記熱硬化剤の反応開始温度は、70℃以上150℃以下であることが特に好ましい。 The reaction initiation temperature of the thermosetting agent is preferably 50°C or higher, more preferably 60°C or higher, even more preferably 70°C or higher, preferably 250°C or lower, more preferably 200°C or lower, and even more preferably 175°C. The temperature below is particularly preferably 150°C or below. When the reaction start temperature of the thermosetting agent is equal to or higher than the lower limit and lower than the upper limit, solder particles can be arranged on the electrode even more efficiently. It is particularly preferable that the reaction initiation temperature of the thermosetting agent is 70°C or more and 150°C or less.

上記熱硬化剤の反応開始温度は、示差走査熱量測定(DSC)での発熱ピークの立ち上がり開始の温度を意味する。 The reaction start temperature of the thermosetting agent means the temperature at which the exothermic peak starts rising in differential scanning calorimetry (DSC).

上記熱硬化剤の含有量は特に限定されない。上記熱硬化性化合物100重量部に対して、上記熱硬化剤の含有量は、好ましくは0.01重量部以上、より好ましくは1重量部以上であり、好ましくは200重量部以下、より好ましくは100重量部以下、さらに好ましくは75重量部以下である。上記熱硬化剤の含有量が、上記下限以上であると、導電ペーストを十分に硬化させることが容易である。上記熱硬化剤の含有量が、上記上限以下であると、硬化後に硬化に関与しなかった余剰の熱硬化剤が残存し難くなり、かつ硬化物の耐熱性がより一層高くなる。 The content of the thermosetting agent is not particularly limited. With respect to 100 parts by weight of the thermosetting compound, the content of the thermosetting agent is preferably 0.01 parts by weight or more, more preferably 1 part by weight or more, and preferably 200 parts by weight or less, more preferably The amount is 100 parts by weight or less, more preferably 75 parts by weight or less. When the content of the thermosetting agent is equal to or higher than the lower limit, it is easy to sufficiently cure the conductive paste. When the content of the thermosetting agent is below the above upper limit, it becomes difficult for excess thermosetting agent that did not take part in curing to remain after curing, and the heat resistance of the cured product becomes even higher.

(フラックス付きはんだ粒子)
上記導電ペーストは、フラックス付きはんだ粒子を含む。上記フラックス付きはんだ粒子は、はんだ粒子と、上記はんだ粒子に担持されたフラックスとを備える。
(solder particles with flux)
The conductive paste includes solder particles with flux. The solder particles with flux include solder particles and flux supported on the solder particles.

上記フラックス付きはんだ粒子では、上記フラックスが、上記はんだ粒子(担体)に担持されている。ここで、担持とは、担体の上に、担持される物質が固定されている状態のことを意味する。上記担持される物質は、上記担体の表面上に配置されていてもよい。上記担持される物質は、上記担体の表面上に点在していてもよく、上記担体の表面上に密集していてもよく、上記担体の表面上を被覆していてもよい。上記フラックス付きはんだ粒子では、上記フラックスは、上記はんだ粒子の表面上に、化学結合を介して配置されていてもよく、化学結合を介さずに配置されていてもよい。上記フラックス付きはんだ粒子では、上記フラックスは、上記はんだ粒子の表面上に、化学結合を介さずに配置されていることが好ましい。 In the solder particles with flux, the flux is supported on the solder particles (carrier). Here, "supported" means a state in which a substance to be supported is immobilized on a carrier. The supported substance may be placed on the surface of the carrier. The supported substance may be scattered on the surface of the carrier, may be concentrated on the surface of the carrier, or may be coated on the surface of the carrier. In the flux-coated solder particles, the flux may be placed on the surface of the solder particles through a chemical bond or without a chemical bond. In the solder particles with flux, the flux is preferably arranged on the surface of the solder particles without any chemical bond.

上記導電ペースト100重量%中、上記フラックス付きはんだ粒子の含有量は、好ましくは50重量%以上、より好ましく55重量%以上、さらに好ましくは60重量%以上であり、好ましくは90重量%以下、より好ましくは85重量%以下、さらに好ましくは80重量%以下である。上記フラックス付きはんだ粒子の含有量が、上記下限以上及び上記上限以下であると、電極上にはんだ粒子をより一層効率的に配置することができ、電極間にはんだを多く配置することが容易であり、導通信頼性をより一層高めることができる。導通信頼性をより一層高める観点からは、上記フラックス付きはんだ粒子の含有量は多い方が好ましい。 The content of the fluxed solder particles in 100% by weight of the conductive paste is preferably 50% by weight or more, more preferably 55% by weight or more, even more preferably 60% by weight or more, and preferably 90% by weight or less, more preferably It is preferably 85% by weight or less, more preferably 80% by weight or less. When the content of the solder particles with flux is at least the above lower limit and below the above upper limit, the solder particles can be arranged on the electrodes even more efficiently, and it is easy to arrange a large amount of solder between the electrodes. Yes, it is possible to further improve conduction reliability. From the viewpoint of further improving conduction reliability, it is preferable that the content of the solder particles with flux is large.

上記熱硬化性成分100重量部に対して、上記フラックス付きはんだ粒子の含有量は、好ましくは100重量部以上、より好ましくは150重量部以上、さらに好ましくは200重量部以上であり、好ましくは400重量部以下、より好ましくは350重量部以下、さらに好ましくは300重量部以下である。上記フラックス付きはんだ粒子の含有量が、上記下限以上及び上記上限以下であると、電極上にはんだ粒子をより一層効率的に配置することができ、電極間にはんだを多く配置することが容易であり、導通信頼性をより一層高めることができる。導通信頼性をより一層高める観点からは、上記フラックス付きはんだ粒子の含有量は多い方が好ましい。 The content of the solder particles with flux is preferably 100 parts by weight or more, more preferably 150 parts by weight or more, even more preferably 200 parts by weight or more, and preferably 400 parts by weight or more, based on 100 parts by weight of the thermosetting component. It is not more than 350 parts by weight, more preferably not more than 300 parts by weight. When the content of the solder particles with flux is at least the above lower limit and below the above upper limit, the solder particles can be arranged on the electrodes even more efficiently, and it is easy to arrange a large amount of solder between the electrodes. Yes, it is possible to further improve conduction reliability. From the viewpoint of further improving conduction reliability, it is preferable that the content of the solder particles with flux is large.

[はんだ粒子]
上記はんだ粒子は、上記フラックス付きはんだ粒子における担体である。上記はんだ粒子には、上記フラックスが担持されている。本発明の効果をより一層効果的に発揮する観点からは、上記はんだ粒子には、複数の上記フラックスが担持されていることが好ましい。本発明の効果をより一層効果的に発揮する観点からは、複数の上記フラックスが、上記はんだ粒子に担持されていることが好ましい。上記はんだ粒子の表面は、複数の上記フラックスにより被覆されていることが好ましい。
[Solder particles]
The solder particles are carriers in the fluxed solder particles. The flux is supported on the solder particles. From the viewpoint of exhibiting the effects of the present invention even more effectively, it is preferable that the solder particles carry a plurality of the fluxes. From the viewpoint of exhibiting the effects of the present invention even more effectively, it is preferable that a plurality of the above-mentioned fluxes are supported on the above-mentioned solder particles. Preferably, the surfaces of the solder particles are coated with a plurality of the fluxes.

上記はんだ粒子は、中心部分及び外表面のいずれもがはんだにより形成されている。上記はんだ粒子は、中心部分及び外表面のいずれもがはんだである粒子である。上記はんだ粒子の代わりに、はんだ以外の材料から形成された基材粒子と該基材粒子の表面上に配置されたはんだ部とを備える導電性粒子を用いた場合には、電極上に導電性粒子が集まり難くなる。また、上記導電性粒子では、導電性粒子同士のはんだ接合性が低いために、電極上に移動した導電性粒子が電極外に移動しやすくなる傾向があり、電極間の位置ずれの抑制効果も低くなる傾向がある。 Both the center portion and the outer surface of the solder particles are made of solder. The solder particles described above are particles in which both the center portion and the outer surface are solder. When conductive particles comprising base particles made of a material other than solder and a solder portion disposed on the surface of the base particles are used instead of the solder particles described above, conductive particles can be placed on the electrodes. Particles become difficult to collect. In addition, since the conductive particles described above have low solder bondability between conductive particles, the conductive particles that have moved onto the electrode tend to move out of the electrode, and the effect of suppressing misalignment between the electrodes is also low. tends to be lower.

上記はんだ粒子の平均粒子径は、5.0μm以下である。上記はんだ粒子の平均粒子径は、好ましくは0.1μm以上、より好ましくは0.5μm以上、さらに好ましくは1.0μm以上であり、好ましくは4.9μm以下、より好ましくは4.5μm以下、さらに好ましくは4.0μm以下である。上記はんだ粒子の平均粒子径が、上記下限以上及び上記上限以下であると、電極上にはんだ粒子をより一層効率的に配置することができる。上記はんだ粒子の平均粒子径が、上記上限以下であると、ファインピッチ化した基材等に対するスクリーン印刷性をより一層高めることができる。本発明に係る導電ペーストでは、上記はんだ粒子の平均粒子径が小さいほど、本発明の上記の効果がより一層効果的に発揮される。即ち、本発明に係る導電ペーストでは、上記はんだ粒子の平均粒子径が小さいほど、電極上にはんだ粒子をより一層効率的に配置することができ、接続されるべき上下の電極間の導通信頼性を効果的に高めることができ、接続されてはならない隣接する横方向の電極間の絶縁信頼性を効果的に高めることができる。 The average particle diameter of the solder particles is 5.0 μm or less. The average particle diameter of the solder particles is preferably 0.1 μm or more, more preferably 0.5 μm or more, even more preferably 1.0 μm or more, and preferably 4.9 μm or less, more preferably 4.5 μm or less, and Preferably it is 4.0 μm or less. When the average particle diameter of the solder particles is not less than the above lower limit and not more than the above upper limit, the solder particles can be arranged on the electrode much more efficiently. When the average particle diameter of the solder particles is equal to or less than the above upper limit, screen printing properties on fine-pitch substrates and the like can be further improved. In the conductive paste according to the present invention, the smaller the average particle diameter of the solder particles, the more effectively the above effects of the present invention are exhibited. That is, in the conductive paste according to the present invention, the smaller the average particle diameter of the solder particles, the more efficiently the solder particles can be arranged on the electrodes, and the reliability of conduction between the upper and lower electrodes to be connected is improved. can effectively increase the insulation reliability between adjacent horizontal electrodes that should not be connected.

上記はんだ粒子の平均粒子径は、数平均粒子径であることが好ましい。上記はんだ粒子の平均粒子径は、例えば、任意のはんだ粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、各はんだ粒子の粒子径の平均値を算出することや、レーザー回折式粒度分布測定を行うことにより求められる。電子顕微鏡又は光学顕微鏡での観察では、1個当たりのはんだ粒子の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個のはんだ粒子の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。レーザー回折式粒度分布測定では、1個当たりのはんだ粒子の粒子径は、球相当径での粒子径として求められる。上記はんだ粒子の平均粒子径は、レーザー回折式粒度分布測定により算出することが好ましい。 The average particle diameter of the solder particles is preferably a number average particle diameter. The average particle diameter of the above solder particles can be determined, for example, by observing 50 arbitrary solder particles with an electron microscope or optical microscope and calculating the average value of the particle diameter of each solder particle, or by laser diffraction particle size distribution measurement. It is sought after by doing. In observation using an electron microscope or an optical microscope, the particle diameter of each solder particle is determined as the particle diameter in equivalent circle diameter. In observation using an electron microscope or an optical microscope, the average particle diameter of any 50 solder particles in equivalent circle diameter is approximately equal to the average particle diameter in equivalent sphere diameter. In the laser diffraction particle size distribution measurement, the particle diameter of each solder particle is determined as the particle diameter in equivalent sphere diameter. The average particle diameter of the solder particles is preferably calculated by laser diffraction particle size distribution measurement.

上記はんだ粒子の粒子径の変動係数(CV値)は、好ましくは5%以上、より好ましくは10%以上であり、好ましくは40%以下、より好ましくは30%以下である。上記はんだ粒子の粒子径の変動係数が、上記下限以上及び上記上限以下であると、電極上にはんだ粒子をより一層効率的に配置することができる。但し、上記はんだ粒子の粒子径のCV値は、5%未満であってもよい。 The coefficient of variation (CV value) of the particle diameter of the solder particles is preferably 5% or more, more preferably 10% or more, and preferably 40% or less, more preferably 30% or less. When the coefficient of variation of the particle diameter of the solder particles is not less than the above lower limit and not more than the above upper limit, the solder particles can be arranged on the electrodes even more efficiently. However, the CV value of the particle diameter of the solder particles may be less than 5%.

上記変動係数(CV値)は、以下のようにして測定できる。 The above coefficient of variation (CV value) can be measured as follows.

CV値(%)=(ρ/Dn)×100
ρ:はんだ粒子の粒子径の標準偏差
Dn:はんだ粒子の粒子径の平均値
CV value (%) = (ρ/Dn) x 100
ρ: Standard deviation of particle diameter of solder particles Dn: Average value of particle diameter of solder particles

上記はんだ粒子の形状は特に限定されない。上記はんだ粒子の形状は、球状であってもよく、球状以外の形状であってもよく、扁平状等の形状であってもよい。 The shape of the solder particles is not particularly limited. The shape of the solder particles may be spherical, a shape other than spherical, or a flat shape.

電極上にはんだ粒子をより一層効率的に配置する観点からは、上記はんだ粒子の比重は、好ましくは4以上、より好ましくは5以上、さらに好ましくは6以上である。 From the viewpoint of arranging the solder particles on the electrodes more efficiently, the specific gravity of the solder particles is preferably 4 or more, more preferably 5 or more, and still more preferably 6 or more.

上記はんだ粒子の比重は、例えば、島津製作所社製「アキュピックII 1340」により求められる。 The specific gravity of the solder particles is determined by, for example, "Accupic II 1340" manufactured by Shimadzu Corporation.

上記はんだは、融点が450℃以下である金属(低融点金属)であることが好ましい。上記はんだ粒子は、融点が450℃以下である金属粒子(低融点金属粒子)であることが好ましい。上記低融点金属粒子は、低融点金属を含む粒子である。該低融点金属とは、融点が450℃以下の金属を示す。低融点金属の融点は好ましくは300℃以下、より好ましくは260℃以下である。上記はんだは、融点が250℃未満の低融点はんだであることが好ましい。 The solder is preferably a metal having a melting point of 450° C. or lower (low melting point metal). The solder particles are preferably metal particles having a melting point of 450° C. or lower (low-melting point metal particles). The low melting point metal particles are particles containing a low melting point metal. The low melting point metal refers to a metal having a melting point of 450° C. or lower. The melting point of the low melting point metal is preferably 300°C or lower, more preferably 260°C or lower. The solder is preferably a low melting point solder having a melting point of less than 250°C.

接続信頼性をより一層高める観点からは、上記はんだ粒子の融点は、好ましくは100℃以上、より好ましくは150℃以上、さらに好ましくは200℃以上であり、好ましくは400℃以下、より好ましくは350℃以下、さらに好ましくは300℃以下である。 From the viewpoint of further improving connection reliability, the melting point of the solder particles is preferably 100°C or higher, more preferably 150°C or higher, even more preferably 200°C or higher, and preferably 400°C or lower, more preferably 350°C or higher. The temperature is preferably 300°C or lower, more preferably 300°C or lower.

上記はんだ粒子の融点は、示差走査熱量測定(DSC)により求めることができる。示差走査熱量測定(DSC)装置としては、SII社製「EXSTAR DSC7020」等が挙げられる。 The melting point of the solder particles can be determined by differential scanning calorimetry (DSC). Examples of the differential scanning calorimetry (DSC) device include "EXSTAR DSC7020" manufactured by SII.

また、上記はんだ粒子は錫を含むことが好ましい。上記はんだ粒子に含まれる金属100重量%中、錫の含有量は、好ましくは30重量%以上、より好ましくは40重量%以上、さらに好ましくは70重量%以上、特に好ましくは90重量%以上である。上記はんだ粒子における錫の含有量が、上記下限以上であると、はんだ部と電極との導通信頼性及び接続信頼性がより一層高くなる。 Further, it is preferable that the solder particles contain tin. The content of tin is preferably 30% by weight or more, more preferably 40% by weight or more, still more preferably 70% by weight or more, and particularly preferably 90% by weight or more in 100% by weight of the metal contained in the solder particles. . When the content of tin in the solder particles is equal to or higher than the lower limit, the conduction reliability and connection reliability between the solder portion and the electrode will be further increased.

なお、上記錫の含有量は、高周波誘導結合プラズマ発光分光分析装置(例えば、堀場製作所社製「ICP-AES」)、又は蛍光X線分析装置(例えば、島津製作所社製「EDX-800HS」)等を用いて測定することができる。 The above tin content is based on a high-frequency inductively coupled plasma emission spectrometer (for example, "ICP-AES" manufactured by Horiba) or a fluorescent X-ray analyzer (for example, "EDX-800HS" manufactured by Shimadzu Corporation). It can be measured using, etc.

上記はんだ粒子を用いることで、はんだが溶融して電極に接合し、はんだ部が電極間を導通させる。例えば、はんだ部と電極とが点接触ではなく面接触しやすいため、接続抵抗が低くなる。また、上記はんだ粒子の使用により、はんだ部と電極との接合強度が高くなる結果、はんだ部と電極との剥離がより一層生じ難くなり、導通信頼性及び接続信頼性がより一層高くなる。 By using the above-mentioned solder particles, the solder melts and joins to the electrodes, and the solder portion establishes conduction between the electrodes. For example, since the solder portion and the electrode tend to make surface contact rather than point contact, the connection resistance becomes low. Furthermore, the use of the solder particles increases the bonding strength between the solder part and the electrode, making it even more difficult for the solder part to separate from the electrode, resulting in even higher conduction reliability and connection reliability.

上記はんだ粒子を構成する低融点金属は特に限定されない。該低融点金属は、錫、又は錫を含む合金であることが好ましい。該合金は、錫-銀合金、錫-銅合金、錫-銀-銅合金、錫-ビスマス合金、錫-亜鉛合金、錫-インジウム合金、及び錫-アンチモン合金等が挙げられる。電極に対する濡れ性に優れることから、上記低融点金属は、錫、錫-銀合金、錫-銀-銅合金、錫-ビスマス合金、錫-インジウム合金、及び錫-アンチモン合金であることが好ましく、錫-銀-銅合金、錫-ビスマス合金、錫-インジウム合金、又は錫―アンチモン合金であることがより好ましい。 The low melting point metal constituting the solder particles is not particularly limited. The low melting point metal is preferably tin or an alloy containing tin. Examples of the alloy include tin-silver alloy, tin-copper alloy, tin-silver-copper alloy, tin-bismuth alloy, tin-zinc alloy, tin-indium alloy, and tin-antimony alloy. The low melting point metal is preferably tin, tin-silver alloy, tin-silver-copper alloy, tin-bismuth alloy, tin-indium alloy, and tin-antimony alloy, since they have excellent wettability to the electrode. More preferably, it is a tin-silver-copper alloy, a tin-bismuth alloy, a tin-indium alloy, or a tin-antimony alloy.

上記はんだ粒子は、JIS Z3001:溶接用語に基づき、液相線が450℃以下である溶加材であることが好ましい。上記はんだ粒子の組成としては、例えば亜鉛、金、銀、鉛、銅、錫、ビスマス、及びインジウム等を含む金属組成が挙げられる。低融点で鉛フリーである錫-インジウム系(117℃共晶)、又は錫-ビスマス系(139℃共晶)が好ましい。すなわち、上記はんだ粒子は、鉛を含まないことが好ましく、錫とインジウムとを含むか、又は錫とビスマスとを含むことが好ましい。 The solder particles are preferably filler metals whose liquidus line is 450° C. or less based on JIS Z3001: Welding terminology. Examples of the composition of the solder particles include metal compositions containing zinc, gold, silver, lead, copper, tin, bismuth, indium, and the like. Preferred are tin-indium (117° C. eutectic) or tin-bismuth (139° C. eutectic) which have a low melting point and are lead-free. That is, the solder particles preferably do not contain lead, and preferably contain tin and indium, or tin and bismuth.

はんだ部と電極との接合強度をより一層高めるために、上記はんだ粒子は、ニッケル、銅、アンチモン、アルミニウム、亜鉛、鉄、金、チタン、リン、ゲルマニウム、テルル、コバルト、ビスマス、マンガン、クロム、モリブデン、及びパラジウム等の金属を含んでいてもよい。また、はんだ部と電極との接合強度をさらに一層高める観点からは、上記はんだ粒子は、ニッケル、銅、アンチモン、アルミニウム又は亜鉛を含むことが好ましい。はんだ部と電極との接合強度をより一層高める観点からは、接合強度を高めるためのこれらの金属の含有量は、はんだ粒子に含まれる金属100重量%中、好ましくは0.0001重量%以上、好ましくは1重量%以下である。 In order to further increase the bonding strength between the solder part and the electrode, the solder particles include nickel, copper, antimony, aluminum, zinc, iron, gold, titanium, phosphorus, germanium, tellurium, cobalt, bismuth, manganese, chromium, It may also contain metals such as molybdenum and palladium. Moreover, from the viewpoint of further increasing the bonding strength between the solder part and the electrode, it is preferable that the solder particles contain nickel, copper, antimony, aluminum, or zinc. From the viewpoint of further increasing the bonding strength between the solder part and the electrode, the content of these metals for increasing the bonding strength is preferably 0.0001% by weight or more based on 100% by weight of the metal contained in the solder particles, Preferably it is 1% by weight or less.

[フラックス]
上記フラックス付きはんだ粒子は、上記はんだ粒子に担持されたフラックス(以下、「フラックスX」とすることがある)を備える。上記フラックスXは、上記はんだ粒子に担持されている。
[flux]
The solder particles with flux include flux (hereinafter sometimes referred to as "flux X") supported on the solder particles. The flux X is supported on the solder particles.

上記導電ペーストでは、上記はんだ粒子に担持されたフラックス(フラックスX)が、カルボン酸又はカルボン酸塩である。上記フラックスXは、カルボン酸であってもよく、カルボン酸塩であってもよい。 In the conductive paste, the flux (flux X) supported on the solder particles is a carboxylic acid or a carboxylate salt. The flux X may be a carboxylic acid or a carboxylate.

カルボン酸とは、1個以上のカルボキシル基を有する有機化合物である。上記カルボン酸は、1個のカルボキシル基を有していてもよく、2個のカルボキシル基を有していてもよく、2個以上のカルボキシル基を有していてもよく、3個のカルボキシル基を有していてもよく、3個以上のカルボキシル基を有していてもよい。上記カルボン酸は、10個以下のカルボキシル基を有していてもよく、8個以下のカルボキシル基を有していてもよく、5個以下のカルボキシル基を有していてもよい。 A carboxylic acid is an organic compound having one or more carboxyl groups. The carboxylic acid may have one carboxyl group, two carboxyl groups, two or more carboxyl groups, or three carboxyl groups. or three or more carboxyl groups. The carboxylic acid may have 10 or less carboxyl groups, may have 8 or less carboxyl groups, or may have 5 or less carboxyl groups.

上記カルボン酸としては、脂肪族系カルボン酸、脂環式カルボン酸、及び芳香族カルボン酸等が挙げられる。上記脂肪族系カルボン酸としては、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、クエン酸、及びリンゴ酸等が挙げられる。上記脂環式カルボン酸としては、シクロヘキシルカルボン酸、及び1,4-シクロヘキシルジカルボン酸等が挙げられる。上記芳香族カルボン酸としては、イソフタル酸、テレフタル酸、トリメリット酸、及びエチレンジアミン四酢酸等が挙げられる。電極上にはんだ粒子をより一層効率的に配置する観点からは、上記カルボン酸は、グルタル酸、シクロヘキシルカルボン酸、又はアジピン酸であることが好ましい。 Examples of the carboxylic acids include aliphatic carboxylic acids, alicyclic carboxylic acids, and aromatic carboxylic acids. Examples of the aliphatic carboxylic acids include malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, citric acid, and malic acid. Examples of the alicyclic carboxylic acid include cyclohexylcarboxylic acid and 1,4-cyclohexyldicarboxylic acid. Examples of the aromatic carboxylic acids include isophthalic acid, terephthalic acid, trimellitic acid, and ethylenediaminetetraacetic acid. From the viewpoint of arranging solder particles on the electrode more efficiently, the carboxylic acid is preferably glutaric acid, cyclohexylcarboxylic acid, or adipic acid.

上記カルボン酸塩としては、上述したカルボン酸と塩基化合物との中和反応物(塩)が挙げられる。上記カルボン酸塩は、カルボン酸と塩基化合物との中和反応により生じた塩であることが好ましい。上記中和反応の条件としては、25℃~60℃の加熱温度及び5分間~30分間の加熱時間の条件であることが好ましい。上記カルボン酸は、金属の表面を洗浄する効果を有することが好ましく、上記塩基化合物は、上記カルボン酸を中和する作用を有することが好ましい。 Examples of the above-mentioned carboxylic acid salt include neutralization reaction products (salts) of the above-mentioned carboxylic acid and a basic compound. The carboxylic acid salt is preferably a salt produced by a neutralization reaction between a carboxylic acid and a basic compound. The conditions for the neutralization reaction are preferably a heating temperature of 25° C. to 60° C. and a heating time of 5 minutes to 30 minutes. The carboxylic acid preferably has the effect of cleaning the surface of the metal, and the basic compound preferably has the effect of neutralizing the carboxylic acid.

上記塩基化合物は、アミノ基を有する有機化合物(アミン化合物)であることが好ましい。上記塩基化合物としては、ジエタノールアミン、トリエタノールアミン、メチルジエタノールアミン、エチルジエタノールアミン、シクロヘキシルアミン、ジシクロヘキシルアミン、ベンジルアミン、ベンズヒドリルアミン、2-メチルベンジルアミン、3-メチルベンジルアミン、4-tert-ブチルベンジルアミン、N-メチルベンジルアミン、N-エチルベンジルアミン、N-フェニルベンジルアミン、N-tert-ブチルベンジルアミン、N-イソプロピルベンジルアミン、N,N-ジメチルベンジルアミン、イミダゾール化合物、及びトリアゾール化合物が挙げられる。電極上にはんだ粒子をより一層効率的に配置する観点からは、上記塩基化合物は、ベンジルアミンであることが好ましい。 The basic compound is preferably an organic compound having an amino group (amine compound). The above basic compounds include diethanolamine, triethanolamine, methyldiethanolamine, ethyldiethanolamine, cyclohexylamine, dicyclohexylamine, benzylamine, benzhydrylamine, 2-methylbenzylamine, 3-methylbenzylamine, 4-tert-butylbenzylamine. , N-methylbenzylamine, N-ethylbenzylamine, N-phenylbenzylamine, N-tert-butylbenzylamine, N-isopropylbenzylamine, N,N-dimethylbenzylamine, imidazole compounds, and triazole compounds. . From the viewpoint of arranging solder particles on the electrode more efficiently, the basic compound is preferably benzylamine.

電極上にはんだ粒子をより一層効率的に配置する観点からは、上記カルボン酸塩は、カルボン酸アミン塩であることが好ましい。上記カルボン酸アミン塩としては、グルタル酸ベンジルアミン塩、アジピン酸ベンジルアミン塩、及びリンゴ酸ベンジルアミン塩等が挙げられる。 From the viewpoint of arranging solder particles on the electrode more efficiently, the carboxylic acid salt is preferably a carboxylic acid amine salt. Examples of the carboxylic acid amine salt include glutaric acid benzylamine salt, adipic acid benzylamine salt, and malic acid benzylamine salt.

電極上にはんだ粒子をより一層効率的に配置する観点からは、上記フラックスXは、カルボン酸塩であることが好ましく、カルボン酸アミン塩であることがより好ましく、グルタル酸ベンジルアミン塩、又はアジピン酸ベンジルアミン塩であることがさらに好ましい。 From the viewpoint of arranging the solder particles on the electrode more efficiently, the flux More preferred is an acid benzylamine salt.

上記フラックスXは、25℃で固体であることが好ましい。具体的には、上記はんだ粒子に担持され、かつ、上記熱硬化性成分と混合されていない状態(フラックス付きはんだ粒子単体の状態)で、上記フラックスXが、25℃で固体であることが好ましい。 It is preferable that the flux X is solid at 25°C. Specifically, it is preferable that the flux X is solid at 25° C. when supported on the solder particles and not mixed with the thermosetting component (solder particles with flux alone). .

また、上記フラックスXは、はんだ粒子に担持される前の状態で、25℃で固体であることが好ましい。上記はんだ粒子に担持される前のフラックスが、25℃で固体であることが好ましい。すなわち、フラックス単体が、25℃で固体であることが好ましい。 Further, it is preferable that the flux X is solid at 25° C. before being supported on the solder particles. It is preferable that the flux before being supported on the solder particles is solid at 25°C. That is, it is preferable that the flux alone is solid at 25°C.

なお、上記フラックス付きはんだ粒子単体の状態で、上記フラックスXが25℃で固体であるか否かについては、示差走査熱量測定(DSC)により判断することができる。示差走査熱量測定(DSC)装置としては、SII社製「EXSTAR DSC7020」等が挙げられる。 Note that whether or not the flux X is solid at 25° C. in the state of a single fluxed solder particle can be determined by differential scanning calorimetry (DSC). Examples of the differential scanning calorimetry (DSC) device include "EXSTAR DSC7020" manufactured by SII.

なお、上記はんだ粒子に担持される前の状態で、フラックス(フラックス単体)が25℃で固体であるか否かについては、以下のように判断することができる。本明細書において、25℃で液体ではないフラックスに関しては、25℃及び50%RHでフラックス単体を5分間静置したときに形状を保つフラックスを、25℃で固体のフラックスと定義し、25℃及び50%RHでフラックス単体を5分間静置したときに形状を保たないフラックスを、25℃で半固体のフラックスと定義する。また、25℃で半固体のフラックスは、25℃で固体のフラックスに含まれない。 Note that whether or not the flux (flux alone) is solid at 25° C. before being supported on the solder particles can be determined as follows. In this specification, a flux that is not liquid at 25°C is defined as a flux that is solid at 25°C, and a flux that maintains its shape when left standing for 5 minutes at 25°C and 50% RH. A flux that does not retain its shape when left standing for 5 minutes at 50% RH is defined as a semi-solid flux at 25°C. Further, a flux that is semi-solid at 25°C is not included in a flux that is solid at 25°C.

上記フラックスXの形状は、特に限定されない。上記フラックスXは、球状であってもよく、球状以外の形状であってもよく、扁平状等の形状であってもよい。スクリーン印刷性をより一層高める観点からは、上記フラックスXの形状は、球状であることが好ましい。 The shape of the flux X is not particularly limited. The flux X may be spherical, may have a shape other than spherical, or may have a flat shape or the like. From the viewpoint of further improving screen printability, the shape of the flux X is preferably spherical.

上記フラックスXの粒子径は、好ましくは0.1μm以上、より好ましくは0.2μm以上、さらに好ましくは0.5μm以上であり、好ましくは30μm以下、より好ましくは20μm以下、さらに好ましくは10μm以下である。 The particle size of the flux be.

上記フラックスXの粒子径は、平均粒子径であることが好ましく、数平均粒子径であることがより好ましい。上記フラックスXの平均粒子径は、例えば、任意のフラックスX50個を電子顕微鏡又は光学顕微鏡にて観察し、各フラックスXの粒子径の平均値を算出することや、レーザー回折式粒度分布測定を行うことにより求められる。電子顕微鏡又は光学顕微鏡での観察では、1個当たりのフラックスXの粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個のフラックスXの円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。レーザー回折式粒度分布測定では、1個当たりのフラックスXの粒子径は、球相当径での粒子径として求められる。上記フラックスXの平均粒子径は、レーザー回折式粒度分布測定により算出することが好ましい。 The particle size of the flux X is preferably an average particle size, more preferably a number average particle size. The average particle diameter of the above flux X can be determined, for example, by observing 50 arbitrary fluxes X with an electron microscope or optical microscope and calculating the average value of the particle diameter of each flux X, or by performing laser diffraction particle size distribution measurement. It is required by In observation using an electron microscope or an optical microscope, the particle diameter of each flux X is determined as the particle diameter in equivalent circle diameter. In observation using an electron microscope or an optical microscope, the average particle diameter of any 50 fluxes X in equivalent circle diameter is approximately equal to the average particle diameter in equivalent sphere diameter. In the laser diffraction particle size distribution measurement, the particle diameter of each flux X is determined as the particle diameter in equivalent sphere diameter. The average particle diameter of the flux X is preferably calculated by laser diffraction particle size distribution measurement.

上記フラックス付きはんだ粒子において、上記フラックスXの粒子径を測定する場合には、例えば、以下のようにして測定できる。 When measuring the particle diameter of the flux X in the flux-coated solder particles, for example, it can be measured as follows.

フラックス付きはんだ粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、フラックス付きはんだ粒子検査用埋め込み樹脂体を作製する。その検査用埋め込み樹脂体中の分散したフラックス付きはんだ粒子におけるフラックスXの中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、フラックス付きはんだ粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率5万倍に設定し、50個のフラックスXを無作為に選択し、各フラックスXの粒子径を計測し、それらを算術平均してフラックスXの粒子径とする。 Fluxed solder particles are added to "Technovit 4000" manufactured by Kulzer Co., Ltd. to a content of 30% by weight, and dispersed to produce an embedded resin body for inspecting fluxed solder particles. Using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies), cut out a cross section of the fluxed solder particles so as to pass through the center of the flux X in the fluxed solder particles dispersed in the embedded resin body for inspection. Then, using a field emission scanning electron microscope (FE-SEM), set the image magnification to 50,000 times, randomly select 50 fluxes X, measure the particle diameter of each flux The particle size of flux X is determined by taking the arithmetic mean of

上記はんだ粒子に担持されたフラックス(フラックスX)の平均粒子径の、上記はんだ粒子の平均粒子径に対する比は、好ましくは0.001以上、より好ましくは0.01以上、さらに好ましくは0.02以上であり、好ましくは10.0以下、より好ましくは5.0以下、さらに好ましくは4.0以下である。上記比(フラックスXの平均粒子径/はんだ粒子の平均粒子径)が上記下限以上及び上記上限以下であると、フラックスXをはんだ粒子に対して効果的に接触させることができ、加熱時のフラックス性能をより一層高めることができる。 The ratio of the average particle diameter of the flux (flux or more, preferably 10.0 or less, more preferably 5.0 or less, even more preferably 4.0 or less. When the above ratio (average particle diameter of flux X/average particle diameter of solder particles) is above the above lower limit and below the above upper limit, flux Performance can be further improved.

上記フラックスXの融点(活性温度)は、好ましくは50℃以上、より好ましくは80℃以上、さらに好ましくは100℃以上であり、好ましくは300℃以下、より好ましくは250℃以下、さらに好ましくは200℃以下である。上記フラックスXの融点が、上記下限以上及び上記上限以下であると、電極上にはんだ粒子をより一層効率的に配置することができる。 The melting point (activation temperature) of the flux below ℃. When the melting point of the flux X is greater than or equal to the lower limit and less than or equal to the upper limit, solder particles can be disposed on the electrode even more efficiently.

上記フラックスXの融点は、示差走査熱量測定(DSC)により求めることができる。示差走査熱量測定(DSC)装置としては、SII社製「EXSTAR DSC7020」等が挙げられる。 The melting point of the flux X can be determined by differential scanning calorimetry (DSC). Examples of the differential scanning calorimetry (DSC) device include "EXSTAR DSC7020" manufactured by SII.

電極上にはんだ粒子をより一層効率的に配置する観点からは、上記フラックスXの融点は、上記はんだ粒子の融点よりも、低いことが好ましい。電極上にはんだ粒子をより一層効率的に配置する観点からは、上記フラックスXの融点は、上記はんだ粒子の融点よりも、5℃以上低いことがより好ましく、10℃以上低いことがさらに好ましい。 From the viewpoint of arranging the solder particles on the electrodes more efficiently, the melting point of the flux X is preferably lower than the melting point of the solder particles. From the viewpoint of arranging the solder particles on the electrodes more efficiently, the melting point of the flux X is more preferably 5° C. or more lower than the melting point of the solder particles, and even more preferably 10° C. or more lower.

フラックスを上記はんだ粒子に担持させる方法(フラックス付きはんだ粒子の作製方法)としては、例えば、以下の方法が挙げられる。フラックスを溶解させた溶媒に、はんだ粒子を浸漬させる方法。溶媒中にはんだ粒子を浸漬し、該溶媒中でフラックスを化学反応により生成する方法。はんだ粒子とフラックスとを固相混合する方法。 Examples of the method for supporting flux on the solder particles (method for producing solder particles with flux) include the following method. A method in which solder particles are immersed in a solvent in which flux is dissolved. A method in which solder particles are immersed in a solvent and flux is generated in the solvent through a chemical reaction. A method of solid phase mixing of solder particles and flux.

上記フラックス付きはんだ粒子が上記フラックスXを担持していることを確認する方法としては、例えば、フラックス付きはんだ粒子について、示差走査熱量測定(DSC)を行い、はんだ粒子の融点と、フラックスXの融点とにおいてそれぞれピークが発現していることを確認する方法等がある。示差走査熱量測定(DSC)装置としては、SII社製「EXSTAR DSC7020」等が挙げられる。 As a method for confirming that the flux-coated solder particles carry the flux There are methods to confirm that peaks are expressed in each. Examples of the differential scanning calorimetry (DSC) device include "EXSTAR DSC7020" manufactured by SII.

電極上にはんだ粒子をより一層効率的に配置する観点からは、上記はんだ粒子の表面積100%中、上記フラックスXが担持されている表面積の割合(フラックスXによる被覆率)は、好ましくは10%以上、より好ましくは20%以上であり、好ましくは90%以下、より好ましくは80%以下である。 From the viewpoint of arranging the solder particles on the electrodes more efficiently, the proportion of the surface area on which the flux X is supported (coverage rate by flux X) is preferably 10% of the 100% surface area of the solder particles. More preferably, it is 20% or more, preferably 90% or less, and more preferably 80% or less.

上記フラックスXによる被覆率は、以下の方法で測定することができる。走査型電子顕微鏡(SEM)での観察により、20個のフラックス付きはんだ粒子を観察し、はんだ粒子の表面積100%中、上記フラックスXが担持されている部分の合計の面積(投影面積)の割合を計算する。 The coverage by the flux X can be measured by the following method. By observing 20 solder particles with flux using a scanning electron microscope (SEM), the ratio of the total area (projected area) of the part carrying the above flux X to 100% of the surface area of the solder particles was determined. Calculate.

上記フラックス付きはんだ粒子1個において、上記はんだ粒子100重量部に対して、上記フラックスXの含有量は、好ましくは0.01重量部以上、より好ましくは0.1重量部以上、さらに好ましくは1重量部以上であり、好ましくは30重量部以下、より好ましくは20重量部以下、さらに好ましくは10重量部以下である。上記フラックスXの含有量が、上記下限以上及び上記上限以下であると、電極上にはんだ粒子をより一層効率的に配置することができ、電極間にはんだを多く配置することが容易であり、導通信頼性をより一層高めることができる。 In one flux-coated solder particle, the content of the flux X is preferably 0.01 parts by weight or more, more preferably 0.1 parts by weight or more, still more preferably 1 part by weight, based on 100 parts by weight of the solder particles. The amount is at least 30 parts by weight, more preferably at most 20 parts by weight, even more preferably at most 10 parts by weight. When the content of the flux X is not less than the lower limit and not more than the upper limit, solder particles can be arranged on the electrodes even more efficiently, and it is easy to arrange a large amount of solder between the electrodes, Continuity reliability can be further improved.

上記導電ペーストは、上記フラックス付きはんだ粒子における上記フラックスXとは異なるフラックス(以下、「フラックスY」とすることがある)を含んでいてもよい。上記導電ペーストは、上記フラックスX以外のフラックス(フラックスY)を含んでいてもよい。電極上にはんだ粒子をより一層効率的に配置する観点からは、上記導電ペーストは、熱硬化性成分と、フラックス付きはんだ粒子と、フラックス(フラックスY)とを含むことが好ましい。上記フラックスYは、上記導電ペースト中で、上記はんだ粒子に担持されていないことが好ましい。上記フラックスYは、上記フラックスXと同一であってもよく、異なっていてもよい。上記フラックスYは、固体であってもよく、液体であってもよい。 The conductive paste may contain a flux different from the flux X in the flux-coated solder particles (hereinafter sometimes referred to as "flux Y"). The conductive paste may contain a flux other than the flux X (flux Y). From the viewpoint of arranging solder particles on the electrodes more efficiently, the conductive paste preferably contains a thermosetting component, solder particles with flux, and flux (flux Y). It is preferable that the flux Y is not supported on the solder particles in the conductive paste. The flux Y may be the same as or different from the flux X. The flux Y may be solid or liquid.

上記フラックスYとしては、塩化亜鉛、塩化亜鉛と無機ハロゲン化物との混合物、塩化亜鉛と無機酸との混合物、溶融塩、有機リン化合物、有機ハロゲン化物、ヒドラジン、アミン化合物、有機酸、有機酸の塩、及び松脂等が挙げられる。上記フラックスYは、1種のみが用いられてもよく、2種以上が併用されてもよい。 The above flux Y includes zinc chloride, a mixture of zinc chloride and an inorganic halide, a mixture of zinc chloride and an inorganic acid, a molten salt, an organic phosphorus compound, an organic halide, hydrazine, an amine compound, an organic acid, and an organic acid. Examples include salt, pine resin, and the like. The above flux Y may be used alone or in combination of two or more.

上記溶融塩としては、塩化アンモニウム等が挙げられる。 Examples of the molten salt include ammonium chloride.

上記有機リン化合物としては、有機ホスホニウム塩、有機リン酸、有機リン酸エステル、有機ホスホン酸、有機ホスホン酸エステル、有機ホスフィン酸、及び有機ホスフィン酸エステル等が挙げられる。 Examples of the organic phosphorus compounds include organic phosphonium salts, organic phosphoric acids, organic phosphoric esters, organic phosphonic acids, organic phosphonic esters, organic phosphinic acids, and organic phosphinic esters.

上記アミン化合物としては、シクロヘキシルアミン、ジシクロヘキシルアミン、ベンジルアミン、ベンズヒドリルアミン、イミダゾール、ベンゾイミダゾール、フェニルイミダゾール、カルボキシベンゾイミダゾール、ベンゾトリアゾール、及びカルボキシベンゾトリアゾール等が挙げられる。 Examples of the amine compounds include cyclohexylamine, dicyclohexylamine, benzylamine, benzhydrylamine, imidazole, benzimidazole, phenylimidazole, carboxybenzimidazole, benzotriazole, and carboxybenzotriazole.

上記松脂は、アビエチン酸を主成分とするロジン類である。上記ロジン類としては、アビエチン酸、及びアクリル変性ロジン等が挙げられる。 The above-mentioned pine resin is a rosin whose main component is abietic acid. Examples of the rosins include abietic acid and acrylic modified rosin.

上記有機酸及び上記有機酸の塩としては、上述したカルボン酸及びカルボン酸塩が挙げられる。 Examples of the above-mentioned organic acids and salts of the above-mentioned organic acids include the above-mentioned carboxylic acids and carboxylic acid salts.

電極上にはんだ粒子をより一層効率的に配置する観点からは、上記フラックスYは、上記フラックスXと同一であることが好ましい。 From the viewpoint of arranging solder particles on the electrodes more efficiently, the flux Y is preferably the same as the flux X.

上記フラックスX100重量部に対して、上記フラックスYの含有量は、好ましくは10重量部以上、より好ましくは30重量部以上、さらに好ましくは50重量部以上であり、好ましくは1000重量部以下、より好ましくは800重量部以下、さらに好ましくは500重量部以下である。上記フラックスYの含有量が、上記下限以上であると、電極上にはんだ粒子をより一層効率的に配置することができる。上記フラックスYの含有量が、上記上限以下であると、保存安定性及びスクリーン印刷性をより一層高めることができる。 With respect to 100 parts by weight of the flux X, the content of the flux Y is preferably 10 parts by weight or more, more preferably 30 parts by weight or more, even more preferably 50 parts by weight or more, and preferably 1000 parts by weight or less, more preferably Preferably it is 800 parts by weight or less, more preferably 500 parts by weight or less. When the content of the flux Y is equal to or higher than the lower limit, solder particles can be arranged on the electrodes even more efficiently. When the content of the above-mentioned flux Y is below the above-mentioned upper limit, storage stability and screen printability can be further improved.

上記導電ペースト100重量%中、上記フラックスYの含有量は、好ましくは1重量%以上、より好ましくは5重量%以上であり、好ましくは30重量%以下、より好ましくは25重量%以下である。フラックスYの含有量が、上記下限以上であると、電極上にはんだ粒子をより一層効率的に配置することができる。上記フラックスYの含有量が、上記上限以下であると、保存安定性及びスクリーン印刷性をより一層高めることができる。 The content of the flux Y in 100% by weight of the conductive paste is preferably 1% by weight or more, more preferably 5% by weight or more, and preferably 30% by weight or less, more preferably 25% by weight or less. When the content of flux Y is at least the above lower limit, solder particles can be arranged on the electrodes even more efficiently. When the content of the above-mentioned flux Y is below the above-mentioned upper limit, storage stability and screen printability can be further improved.

上記熱硬化性成分100重量部に対して、上記フラックスYの含有量は、好ましくは1重量部以上、より好ましくは5重量部以上、さらに好ましくは10重量部以上であり、好ましくは35重量部以下、より好ましくは30重量部以下、さらに好ましくは25重量部以下である。上記フラックスYの含有量が、上記下限以上であると、電極上にはんだ粒子をより一層効率的に配置することができる。上記フラックスYの含有量が、上記上限以下であると、保存安定性及びスクリーン印刷性をより一層高めることができる。 With respect to 100 parts by weight of the thermosetting component, the content of the flux Y is preferably 1 part by weight or more, more preferably 5 parts by weight or more, still more preferably 10 parts by weight or more, and preferably 35 parts by weight. The amount is more preferably 30 parts by weight or less, still more preferably 25 parts by weight or less. When the content of the flux Y is equal to or higher than the lower limit, solder particles can be arranged on the electrodes even more efficiently. When the content of the above-mentioned flux Y is below the above-mentioned upper limit, storage stability and screen printability can be further improved.

上記フラックス付きはんだ粒子100重量部に対して、上記フラックスYの含有量は、好ましくは1重量部以上、より好ましくは3重量部以上、さらに好ましくは5重量部以上であり、好ましくは35重量部以下、より好ましくは30重量部以下、さらに好ましくは25重量部以下である。上記フラックスYの含有量が、上記下限以上であると、電極上にはんだ粒子をより一層効率的に配置することができる。上記フラックスYの含有量が、上記上限以下であると、保存安定性及びスクリーン印刷性をより一層高めることができる。 The content of the flux Y is preferably 1 part by weight or more, more preferably 3 parts by weight or more, still more preferably 5 parts by weight or more, and preferably 35 parts by weight with respect to 100 parts by weight of the solder particles with flux. The amount is more preferably 30 parts by weight or less, still more preferably 25 parts by weight or less. When the content of the flux Y is equal to or higher than the lower limit, solder particles can be arranged on the electrodes even more efficiently. When the content of the above-mentioned flux Y is below the above-mentioned upper limit, storage stability and screen printability can be further improved.

(他の成分)
上記導電ペーストは、必要に応じて、例えば、チキソトロピック剤、充填剤、増量剤、軟化剤、可塑剤、レベリング剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。
(other ingredients)
The above conductive paste may contain, if necessary, for example, a thixotropic agent, a filler, an extender, a softener, a plasticizer, a leveling agent, a polymerization catalyst, a curing catalyst, a coloring agent, an antioxidant, a heat stabilizer, and a light stabilizer. It may contain various additives such as a UV absorber, a lubricant, an antistatic agent, and a flame retardant.

フラックス性能を良好に補助し、電極上にはんだ粒子をより一層効率的に配置する観点からは、上記導電ペーストは、チキソトロピック剤を含むことが好ましい。上記チキソトロピック剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。 From the viewpoint of favorably assisting flux performance and arranging solder particles on the electrodes more efficiently, the conductive paste preferably contains a thixotropic agent. The above-mentioned thixotropic agents may be used alone or in combination of two or more.

上記導電ペースト100重量%中、上記チキソトロピック剤の含有量は、好ましくは0.005重量%以上、より好ましくは0.01重量%以上、さらに好ましくは0.05重量%以上であり、好ましくは2重量%以下、より好ましくは1重量%以下、さらに好ましくは0.5重量%以下である。上記チキソトロピック剤の含有量が、上記下限以上及び上記上限以下であると、フラックス性能を良好に補助し、電極上にはんだ粒子をより一層効率的に配置することができる。 The content of the thixotropic agent in 100% by weight of the conductive paste is preferably 0.005% by weight or more, more preferably 0.01% by weight or more, even more preferably 0.05% by weight or more, and preferably It is 2% by weight or less, more preferably 1% by weight or less, even more preferably 0.5% by weight or less. When the content of the thixotropic agent is not less than the above lower limit and not more than the above upper limit, flux performance can be favorably assisted and solder particles can be arranged on the electrode more efficiently.

上記フラックス付きはんだ粒子100重量部に対して、上記チキソトロピック剤の含有量は、好ましくは0.003重量部以上、より好ましくは0.005重量部以上、さらに好ましくは0.01重量部以上であり、好ましくは2重量部以下、より好ましくは1重量部以下、さらに好ましくは0.7重量部以下である。上記チキソトロピック剤の含有量が、上記下限以上及び上記上限以下であると、フラックス性能を良好に補助し、電極上にはんだ粒子をより一層効率的に配置することができる。 The content of the thixotropic agent is preferably 0.003 parts by weight or more, more preferably 0.005 parts by weight or more, and even more preferably 0.01 parts by weight or more with respect to 100 parts by weight of the solder particles with flux. The amount is preferably 2 parts by weight or less, more preferably 1 part by weight or less, even more preferably 0.7 parts by weight or less. When the content of the thixotropic agent is not less than the above lower limit and not more than the above upper limit, flux performance can be favorably assisted and solder particles can be arranged on the electrode more efficiently.

上記熱硬化性成分100重量部に対して、上記チキソトロピック剤の含有量は、好ましくは0.1重量部以上、より好ましくは0.3重量部以上であり、好ましくは5重量部以下、より好ましくは3重量部以下である。上記チキソトロピック剤の含有量が、上記下限以上及び上記上限以下であると、フラックス性能を良好に補助し、電極上にはんだ粒子をより一層効率的に配置することができる。 The content of the thixotropic agent is preferably 0.1 parts by weight or more, more preferably 0.3 parts by weight or more, and preferably 5 parts by weight or less, based on 100 parts by weight of the thermosetting component. Preferably it is 3 parts by weight or less. When the content of the thixotropic agent is not less than the above lower limit and not more than the above upper limit, flux performance can be favorably assisted and solder particles can be arranged on the electrode more efficiently.

上記熱硬化性化合物100重量部に対して、上記チキソトロピック剤の含有量は、好ましくは0.1重量部以上、より好ましくは0.3重量部以上であり、好ましくは5重量部以下、より好ましくは3重量部以下である。上記チキソトロピック剤の含有量が、上記下限以上及び上記上限以下であると、フラックス性能を良好に補助し、電極上にはんだ粒子をより一層効率的に配置することができる。 The content of the thixotropic agent is preferably 0.1 parts by weight or more, more preferably 0.3 parts by weight or more, and preferably 5 parts by weight or less, based on 100 parts by weight of the thermosetting compound. Preferably it is 3 parts by weight or less. When the content of the thixotropic agent is not less than the above lower limit and not more than the above upper limit, flux performance can be favorably assisted and solder particles can be arranged on the electrode more efficiently.

上記チキソトロピック剤は、(A)25℃で液体であり、かつ水酸基を有するチキソトロピック剤であるか、又は、(B)25℃で固体であり、かつ上記チキソトロピック剤を25℃及び50%RHで24時間放置したときの、下記の重量増加率が0.2重量%以上であるチキソトロピック剤であることが好ましい。上記チキソトロピック剤が上記の好ましい態様である場合には、フラックス性能を良好に補助し、電極上にはんだ粒子をより一層効率的に配置することができる。 The thixotropic agent is (A) a thixotropic agent that is a liquid at 25°C and has a hydroxyl group, or (B) a thixotropic agent that is a solid at 25°C and the thixotropic agent is 50% It is preferable that the thixotropic agent has the following weight increase rate of 0.2% by weight or more when left at RH for 24 hours. When the above-mentioned thixotropic agent is in the above-mentioned preferred embodiment, it can favorably assist the flux performance and arrange the solder particles on the electrode much more efficiently.

重量増加率(重量%)=(W2-W1)×100/W1
W1:放置前の上記チキソトロピック剤の重量
W2:放置後の上記チキソトロピック剤の重量
Weight increase rate (weight%) = (W2-W1) x 100/W1
W1: Weight of the above thixotropic agent before standing W2: Weight of the above thixotropic agent after standing

上記チキソトロピック剤は、(A)25℃で液体であり、かつ水酸基を有するチキソトロピック剤(以下、「チキソトロピック剤A」とすることがある)であってもよい。また、上記チキソトロピック剤は、(B)25℃で固体であり、かつ上記重量増加率が0.2重量%以上であるチキソトロピック剤(以下、「チキソトロピック剤B」とすることがある)であってもよい。上記チキソトロピック剤は、上記チキソトロピック剤A又は上記チキソトロピック剤Bであることが好ましい。 The thixotropic agent may be (A) a thixotropic agent that is liquid at 25° C. and has a hydroxyl group (hereinafter sometimes referred to as "thixotropic agent A"). Further, the above-mentioned thixotropic agent is (B) a thixotropic agent that is solid at 25°C and has the above-mentioned weight increase rate of 0.2% by weight or more (hereinafter sometimes referred to as "thixotropic agent B") It may be. The thixotropic agent is preferably the thixotropic agent A or the thixotropic agent B.

上記チキソトロピック剤Aは、25℃で液体であり、かつ水酸基(-OH基)を有する。 The thixotropic agent A is liquid at 25° C. and has a hydroxyl group (—OH group).

上記チキソトロピック剤Aは、25℃で液体である。具体的には、上記熱硬化性成分、及び上記フラックス付きはんだ粒子と混合されていない状態で、上記チキソトロピック剤A(チキソトロピック剤A単体)が、25℃で液体である。 The thixotropic agent A is liquid at 25°C. Specifically, the thixotropic agent A (thixotropic agent A alone) is a liquid at 25° C. in a state where it is not mixed with the thermosetting component and the fluxed solder particles.

上記導電ペーストでは、25℃の導電ペースト中で、上記チキソトロピック剤Aが液体であることが好ましい。上記導電ペーストでは、25℃の導電ペースト中で、上記チキソトロピック剤Aが液体で存在することが好ましい。 In the conductive paste, it is preferable that the thixotropic agent A is a liquid in the conductive paste at 25°C. In the conductive paste, the thixotropic agent A is preferably present in liquid form in the conductive paste at 25°C.

上記チキソトロピック剤Aは、水酸基を少なくとも1個有する。上記チキソトロピック剤Aは、水酸基を1個有していてもよく、2個有していてもよく、2個以上有していてもよく、3個有していてもよく、3個以上有していてもよく、4個以上有していてもよい。上記チキソトロピック剤Aは、1価アルコールであってもよく、多価アルコールであってもよい。上記チキソトロピック剤Aは、2価アルコールであってもよく、3価アルコールであってもよく、4価アルコールであってもよい。導電ペーストの揮発を防ぎ、スクリーン印刷性をより一層高める観点からは、上記チキソトロピック剤Aは、水酸基を2個以上有することが好ましく、3個以上有することがより好ましい。導電ペーストの揮発を防ぎ、スクリーン印刷性をより一層高める観点からは、上記チキソトロピック剤Aは、ポリオール化合物(多価アルコール)であることが好ましい。上記チキソトロピック剤Aは、水酸基を10個以下で有していてもよく、7個以下で有していてもよい。 The thixotropic agent A has at least one hydroxyl group. The thixotropic agent A may have one hydroxyl group, two hydroxyl groups, two or more hydroxyl groups, three or more hydroxyl groups, or three or more hydroxyl groups. or four or more. The thixotropic agent A may be a monohydric alcohol or a polyhydric alcohol. The thixotropic agent A may be a dihydric alcohol, a trihydric alcohol, or a tetrahydric alcohol. From the viewpoint of preventing volatilization of the conductive paste and further improving screen printability, the thixotropic agent A preferably has two or more hydroxyl groups, more preferably three or more. From the viewpoint of preventing volatilization of the conductive paste and further improving screen printability, the thixotropic agent A is preferably a polyol compound (polyhydric alcohol). The thixotropic agent A may have 10 or less hydroxyl groups, or may have 7 or less hydroxyl groups.

上記チキソトロピック剤Aとしては、メタノール、エタノール、プロパノール、N-オレオイルサルコシン、プリピレングリコール、プロパンジオール、ジエチレングリコール、グリセロール(グリセリン)、トリメチロールプロパン、1,2,4-ブタントリオール、ジグリセリン、及びポリグリセリン等が挙げられる。 Examples of the thixotropic agent A include methanol, ethanol, propanol, N-oleoylsarcosine, propylene glycol, propanediol, diethylene glycol, glycerol (glycerin), trimethylolpropane, 1,2,4-butanetriol, diglycerin, and polyglycerin.

導電ペーストの揮発を防ぎ、スクリーン印刷性をより一層高める観点からは、上記チキソトロピック剤Aは、グリセロール(グリセリン)、N-オレオイルサルコシン、又は1,2,4-ブタントリオールであることが好ましく、グリセロール(グリセリン)であることがより好ましい。 From the viewpoint of preventing volatilization of the conductive paste and further improving screen printability, the thixotropic agent A is preferably glycerol (glycerin), N-oleoylsarcosine, or 1,2,4-butanetriol. , glycerol (glycerin) is more preferred.

上記チキソトロピック剤Bは、25℃で固体であり、かつ上記チキソトロピック剤を25℃及び50%RHで24時間放置したときの、下記の重量増加率が0.2重量%以上である。 The thixotropic agent B is solid at 25° C., and has the following weight increase rate of 0.2% by weight or more when the thixotropic agent is left at 25° C. and 50% RH for 24 hours.

重量増加率(重量%)=(W2-W1)×100/W1
W1:放置前の上記チキソトロピック剤の重量
W2:放置後の上記チキソトロピック剤の重量
Weight increase rate (weight%) = (W2-W1) x 100/W1
W1: Weight of the above thixotropic agent before standing W2: Weight of the above thixotropic agent after standing

上記チキソトロピック剤Bは、25℃で固体である。具体的には、上記熱硬化性成分、及び上記フラックス付きはんだ粒子と混合されていない状態で、上記チキソトロピック剤B(チキソトロピック剤B単体)が、25℃で固体である。 The thixotropic agent B is solid at 25°C. Specifically, the thixotropic agent B (thixotropic agent B alone) is solid at 25° C. without being mixed with the thermosetting component and the fluxed solder particles.

上記導電ペーストでは、25℃の導電ペースト中で、上記チキソトロピック剤Bが固体であることが好ましい。上記導電ペーストでは、25℃の導電ペースト中で、上記チキソトロピック剤Bが固体で存在することが好ましい。 In the conductive paste, the thixotropic agent B is preferably solid in the conductive paste at 25°C. In the conductive paste, the thixotropic agent B is preferably present in solid form in the conductive paste at 25°C.

なお、上記チキソトロピック剤B(チキソトロピック剤B単体)が25℃で固体であるか否かについては、以下のように判断することができる。本明細書において、25℃で液体ではないチキソトロピック剤Bに関しては、25℃及び50%RHでチキソトロピック剤B単体を5分間静置したときに形状を保つチキソトロピック剤Bを、25℃で固体のチキソトロピック剤Bと定義する。また、25℃及び50%RHでチキソトロピック剤B単体を5分間静置したときに形状を保たないチキソトロピック剤Bを、25℃で半固体のチキソトロピック剤Bと定義する。なお、25℃で半固体のチキソトロピック剤Bは、25℃で固体のチキソトロピック剤Bに含まれない。 Note that whether or not the thixotropic agent B (thixotropic agent B alone) is solid at 25° C. can be determined as follows. In this specification, regarding thixotropic agent B that is not a liquid at 25°C, thixotropic agent B that maintains its shape when thixotropic agent B alone is allowed to stand for 5 minutes at 25°C and 50% RH is referred to as thixotropic agent B that is not liquid at 25°C. Defined as solid thixotropic agent B. In addition, thixotropic agent B that does not maintain its shape when thixotropic agent B alone is allowed to stand for 5 minutes at 25° C. and 50% RH is defined as thixotropic agent B that is semisolid at 25° C. Note that thixotropic agent B, which is semi-solid at 25°C, is not included in thixotropic agent B, which is solid at 25°C.

なお、上記チキソトロピック剤Bが25℃の導電ペースト中で固体であるか否かについては、以下のように判断することができる。本明細書において、25℃で液体ではないチキソトロピック剤Bに関しては、25℃及び50%RHでチキソトロピック剤Bを含む導電ペーストを5分間静置したときに形状を保つチキソトロピック剤Bを、25℃で固体のチキソトロピック剤Bと定義する。また、25℃及び50%RHでチキソトロピック剤Bを含む導電ペーストを5分間静置したときに形状を保たないチキソトロピック剤Bを、25℃で半固体のチキソトロピック剤Bと定義する。なお、25℃で半固体のチキソトロピック剤Bは、25℃で固体のチキソトロピック剤Bに含まれない。 Note that whether the thixotropic agent B is solid in the conductive paste at 25° C. can be determined as follows. In this specification, regarding thixotropic agent B that is not liquid at 25°C, thixotropic agent B that maintains its shape when a conductive paste containing thixotropic agent B is left standing for 5 minutes at 25°C and 50% RH, Thixotropic agent B is defined as solid at 25°C. Further, thixotropic agent B that does not retain its shape when a conductive paste containing thixotropic agent B is allowed to stand for 5 minutes at 25° C. and 50% RH is defined as thixotropic agent B that is semi-solid at 25° C. Note that thixotropic agent B, which is semi-solid at 25°C, is not included in thixotropic agent B, which is solid at 25°C.

上記チキソトロピック剤Bは、25℃及び50%RHで24時間放置したときに、重量が増加する。上記チキソトロピック剤Bを25℃及び50%RHで24時間放置したときに、放置後の上記チキソトロピック剤Bの重量は、放置前の上記チキソトロピック剤Bの重量よりも大きい。 The thixotropic agent B increases in weight when left for 24 hours at 25° C. and 50% RH. When the thixotropic agent B is left for 24 hours at 25° C. and 50% RH, the weight of the thixotropic agent B after being left is greater than the weight of the thixotropic agent B before being left.

フラックス性能を良好に補助し、電極上にはんだ粒子をより一層効率的に配置する観点からは、上記チキソトロピック剤Bは、吸水性又は吸湿性を有することが好ましく、吸湿性を有することがより好ましい。フラックス性能を良好に補助し、電極上にはんだ粒子をより一層効率的に配置する観点からは、上記チキソトロピック剤Bは、25℃及び50%RHで吸湿性を有することがさらに好ましい。 From the viewpoint of favorably assisting flux performance and arranging solder particles on the electrode more efficiently, the thixotropic agent B preferably has water absorption or hygroscopicity, and more preferably has hygroscopicity. preferable. From the viewpoint of favorably assisting flux performance and arranging solder particles on the electrode more efficiently, it is more preferable that the thixotropic agent B has hygroscopicity at 25° C. and 50% RH.

上記チキソトロピック剤Bの上記重量増加率は、0.2重量%以上である。上記チキソトロピック剤Bの上記重量増加率は、好ましくは0.3重量%以上、より好ましくは0.5重量%以上、さらに好ましくは1重量%以上であり、好ましくは10重量%未満、より好ましくは8重量%以下、さらに好ましくは5重量%以下である。上記チキソトロピック剤Bの重量増加率が、上記下限以上であると、フラックス性能を良好に補助し、電極上にはんだ粒子をより一層効率的に配置することができる。上記チキソトロピック剤Bの重量増加率が、上記上限以下又は上記上限未満であると、スクリーン印刷性をより一層高めることができる。フラックス性能を良好に補助し、電極上にはんだ粒子をより一層効率的に配置する観点からは、上記チキソトロピック剤Bが、25℃で固体であり、かつ上記重量増加率が1重量%以上であるチキソトロピック剤であることが特に好ましい。 The weight increase rate of the thixotropic agent B is 0.2% by weight or more. The weight increase rate of the thixotropic agent B is preferably 0.3% by weight or more, more preferably 0.5% by weight or more, even more preferably 1% by weight or more, and preferably less than 10% by weight, more preferably is 8% by weight or less, more preferably 5% by weight or less. When the weight increase rate of the thixotropic agent B is equal to or higher than the lower limit, the flux performance can be favorably assisted and the solder particles can be arranged on the electrode more efficiently. When the weight increase rate of the thixotropic agent B is below the above upper limit or below the above upper limit, screen printability can be further improved. From the viewpoint of favorably assisting flux performance and arranging solder particles on the electrode more efficiently, the thixotropic agent B is solid at 25° C. and has a weight increase rate of 1% by weight or more. Particularly preferred are certain thixotropic agents.

上記チキソトロピック剤Bの重量増加率は、以下の方法で測定することができる。チキソトロピック剤B10g(W1)を25℃及び0%RHのデシケータから取り出し、25℃及び50%RHで24時間放置したときの、放置後のチキソトロピック剤Bの重量(W2)を測定する。 The weight increase rate of the thixotropic agent B can be measured by the following method. Take out 10 g (W1) of thixotropic agent B from a desiccator at 25° C. and 0% RH, and leave it for 24 hours at 25° C. and 50% RH. The weight (W2) of thixotropic agent B after standing is measured.

上記チキソトロピック剤Bとしては、三フッ化ホウ素-モノエチルアミン錯体、ペンタエリスリトール、ソルビトール、マンニトール、ソルビタン、ジペンタエリスリトール、ショ糖、グルコース、マンノース、フルクトース、及びメチルグルコシド等が挙げられる。 Examples of the thixotropic agent B include boron trifluoride-monoethylamine complex, pentaerythritol, sorbitol, mannitol, sorbitan, dipentaerythritol, sucrose, glucose, mannose, fructose, and methyl glucoside.

電極上にはんだ粒子をより一層効率的に配置する観点からは、上記チキソトロピック剤Bは、三フッ化ホウ素-モノエチルアミン錯体、又はグルコースであることが好ましく、三フッ化ホウ素-モノエチルアミン錯体であることがより好ましい。 From the viewpoint of arranging solder particles on the electrode more efficiently, the thixotropic agent B is preferably a boron trifluoride-monoethylamine complex or glucose, and a boron trifluoride-monoethylamine complex. It is more preferable that there be.

(導電ペーストの製造方法)
本発明に係る導電ペーストの製造方法は、はんだ粒子と、上記はんだ粒子に担持されたフラックスとを備えるフラックス付きはんだ粒子を得る工程と、熱硬化性成分と、上記フラックス付きはんだ粒子とを混合して、導電ペーストを得る工程とを備える。本発明に係る導電ペーストの製造方法では、上記はんだ粒子の平均粒子径が、5.0μm以下である。本発明に係る導電ペーストの製造方法では、上記はんだ粒子に担持されたフラックスが、カルボン酸又はカルボン酸塩である。
(Method for manufacturing conductive paste)
The method for producing a conductive paste according to the present invention includes a step of obtaining fluxed solder particles comprising solder particles and a flux supported on the solder particles, and a step of mixing a thermosetting component and the fluxed solder particles. and obtaining a conductive paste. In the method for manufacturing a conductive paste according to the present invention, the average particle diameter of the solder particles is 5.0 μm or less. In the method for manufacturing a conductive paste according to the present invention, the flux supported on the solder particles is a carboxylic acid or a carboxylate salt.

本発明に係る導電ペーストの製造方法では、上記の構成が備えられているので、得られる導電ペーストの保存安定性を高めることができ、スクリーン印刷性を高めることができ、かつ、電極上にはんだ粒子を効率的に配置することができる。 Since the method for manufacturing a conductive paste according to the present invention has the above-mentioned configuration, it is possible to improve the storage stability of the conductive paste obtained, improve screen printability, and to apply solder on the electrode. Particles can be efficiently arranged.

また、本発明に係る導電ペーストでは、電極間の導電接続時に、複数のはんだ粒子(フラックス付きはんだ粒子)が、上下の対向した電極間に集まりやすく、複数のはんだ粒子を電極(ライン)上に配置することができる。また、複数のはんだ粒子の一部が、接続されてはならない横方向の電極間に配置され難く、接続されてはならない横方向の電極間に配置されるはんだ粒子の量をかなり少なくすることができる。結果として、本発明では、接続されるべき上下の電極間の導通信頼性を効果的に高めることができ、接続されてはならない隣接する横方向の電極間の絶縁信頼性を効果的に高めることができる。 In addition, in the conductive paste according to the present invention, multiple solder particles (solder particles with flux) tend to gather between the upper and lower opposing electrodes during conductive connection between the electrodes, and the multiple solder particles are placed on the electrodes (lines). can be placed. In addition, it is difficult for some of the plurality of solder particles to be placed between horizontal electrodes that should not be connected, and it is possible to considerably reduce the amount of solder particles that are placed between horizontal electrodes that should not be connected. can. As a result, the present invention can effectively increase the continuity reliability between the upper and lower electrodes that should be connected, and can effectively increase the insulation reliability between adjacent lateral electrodes that should not be connected. Can be done.

さらに、本発明では、電極間の位置ずれを防ぐことができる。本発明では、導電ペーストを上面に配置した第1の接続対象部材に、第2の接続対象部材を重ね合わせる際に、第1の接続対象部材の電極と第2の接続対象部材の電極とのアライメントがずれた状態でも、そのずれを補正して電極同士を接続させることができる(セルフアライメント効果)。 Furthermore, in the present invention, positional displacement between the electrodes can be prevented. In the present invention, when the second connection target member is superimposed on the first connection target member on which the conductive paste is disposed, the electrodes of the first connection target member and the electrodes of the second connection target member are overlapped. Even in a state where the alignment is misaligned, the misalignment can be corrected and the electrodes can be connected to each other (self-alignment effect).

本発明に係る導電ペーストの製造方法では、上記フラックス付きはんだ粒子、及び上記熱硬化性成分は、上述したフラックス付きはんだ粒子、及び上述した熱硬化性成分であることが好ましい。 In the method for producing a conductive paste according to the present invention, the fluxed solder particles and the thermosetting component are preferably the fluxed solder particles and the thermosetting component described above.

フラックスを上記はんだ粒子に担持させる方法(フラックス付きはんだ粒子の作製方法)としては、例えば、以下の方法が挙げられる。フラックスを溶解させた溶媒に、はんだ粒子を浸漬させる方法。溶媒中にはんだ粒子を浸漬し、該溶媒中でフラックスを化学反応により生成する方法。はんだ粒子とフラックスとを固相混合する方法。 Examples of the method for supporting flux on the solder particles (method for producing solder particles with flux) include the following method. A method in which solder particles are immersed in a solvent in which flux is dissolved. A method in which solder particles are immersed in a solvent and flux is generated in the solvent through a chemical reaction. A method of solid phase mixing of solder particles and flux.

上記熱硬化性成分と、上記フラックス付きはんだ粒子とを混合して、導電ペーストを得る工程において、上記熱硬化性成分と、上記フラックス付きはんだ粒子とを混合する方法は、特に限定されない。上記熱硬化性成分に上記フラックス付きはんだ粒子を分散させる方法としては、以下の方法が挙げられる。上記熱硬化性成分中に上記フラックス付きはんだ粒子を添加した後、プラネタリーミキサー等で混練して分散させる方法。上記フラックス付きはんだ粒子を水又は有機溶剤中にホモジナイザー等を用いて均一に分散させた後、上記熱硬化性成分中に添加し、プラネタリーミキサー等で混練して分散させる方法。上記熱硬化性成分を水又は有機溶剤等で希釈した後、上記フラックス付きはんだ粒子を添加し、プラネタリーミキサー等で混練して分散させる方法。 In the step of mixing the thermosetting component and the solder particles with flux to obtain a conductive paste, the method of mixing the thermosetting component and the solder particles with flux is not particularly limited. Examples of methods for dispersing the fluxed solder particles in the thermosetting component include the following method. A method in which the fluxed solder particles are added to the thermosetting component and then kneaded and dispersed using a planetary mixer or the like. A method in which the solder particles with flux are uniformly dispersed in water or an organic solvent using a homogenizer or the like, and then added to the thermosetting component and kneaded and dispersed using a planetary mixer or the like. A method of diluting the thermosetting component with water or an organic solvent, adding the fluxed solder particles, and kneading and dispersing with a planetary mixer or the like.

電極上にはんだ粒子をより一層効率的に配置する観点からは、上記導電ペーストを得る工程において、フラックスをさらに混合することが好ましい。すなわち、導電ペーストを得る工程において、上記熱硬化性成分と、上記フラックス付きはんだ粒子と、上記フラックスとを混合することが好ましい。上記熱硬化性成分と上記フラックス付きはんだ粒子と混合される上記フラックスは、上記フラックス付きはんだ粒子に含まれるフラックスとは別に混合されるフラックスである。上記フラックスは、上述したフラックスYであることが好ましい。上記熱硬化性成分と上記フラックス付きはんだ粒子と上記フラックスとの混合順序は特に限定されない。上記フラックスは、上記熱硬化性成分と、上記フラックス付きはんだ粒子とを混合する際に混合して用いられてもよく、上記熱硬化性成分と、上記フラックス付きはんだ粒子とを混合して得られた混合物に混合して用いられてもよい。上記フラックス付きはんだ粒子は、上記熱硬化性成分(及び必要に応じて上記フラックス)と混合される前に、作製されることが好ましい。 From the viewpoint of arranging solder particles on the electrodes more efficiently, it is preferable to further mix flux in the step of obtaining the conductive paste. That is, in the step of obtaining a conductive paste, it is preferable to mix the thermosetting component, the solder particles with flux, and the flux. The flux that is mixed with the thermosetting component and the solder particles with flux is a flux that is mixed separately from the flux contained in the solder particles with flux. The above-mentioned flux is preferably the above-mentioned flux Y. The order of mixing the thermosetting component, the solder particles with flux, and the flux is not particularly limited. The above-mentioned flux may be used in combination when mixing the above-mentioned thermosetting component and the above-mentioned solder particles with flux. It may also be used by mixing it into a mixture. Preferably, the fluxed solder particles are prepared before being mixed with the thermosetting component (and optionally the flux).

(接続構造体)
本発明に係る接続構造体は、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、上記第1の接続対象部材と、上記第2の接続対象部材とを接続している接続部とを備える。本発明に係る接続構造体では、上記接続部の材料が、上述した導電ペーストである。本発明に係る接続構造体では、上記第1の電極と上記第2の電極とが、上記接続部中のはんだ部により電気的に接続されている。
(connection structure)
The connection structure according to the present invention includes a first connection target member having a first electrode on its surface, a second connection target member having a second electrode on its surface, and the first connection target member, and a connecting portion connecting the second connection target member. In the connected structure according to the present invention, the material of the connection portion is the conductive paste described above. In the connected structure according to the present invention, the first electrode and the second electrode are electrically connected by a solder part in the connecting part.

電極間でのはんだ部の厚みは、好ましくは10μm以上、より好ましくは20μm以上であり、好ましくは100μm以下、より好ましくは80μm以下である。電極の表面上のはんだ濡れ面積(電極の露出した面積100%中のはんだが接している面積)は、好ましくは50%以上、より好ましくは70%以上であり、好ましくは100%以下である。 The thickness of the solder portion between the electrodes is preferably 10 μm or more, more preferably 20 μm or more, and preferably 100 μm or less, more preferably 80 μm or less. The solder wetted area on the surface of the electrode (the area in contact with the solder out of 100% of the exposed area of the electrode) is preferably 50% or more, more preferably 70% or more, and preferably 100% or less.

上記接続構造体の製造方法は特に限定されない。接続構造体の製造方法の一例としては、第1の接続対象部材と第2の接続対象部材との間に上記導電ペーストを配置し、積層体を得た後、該積層体を加熱する方法等が挙げられる。上記加熱の温度は、好ましくは230℃以上、より好ましくは250℃以上であり、好ましくは350℃以下、より好ましくは300℃以下である。上記加熱の温度が、上記下限以上及び上記上限以下であると、電極間の導通信頼性及び絶縁信頼性をより一層高めることができる。上記加熱時には、加圧を行ってもよく、加圧を行わなくてもよい。 The method for manufacturing the above-mentioned connected structure is not particularly limited. An example of a method for manufacturing a connected structure includes a method in which the conductive paste is placed between a first member to be connected and a second member to be connected, a laminate is obtained, and then the laminate is heated. can be mentioned. The heating temperature is preferably 230°C or higher, more preferably 250°C or higher, and preferably 350°C or lower, more preferably 300°C or lower. When the heating temperature is equal to or higher than the lower limit and lower than the upper limit, the reliability of conduction and insulation between the electrodes can be further improved. At the time of the heating, pressurization may or may not be applied.

以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る導電ペーストを用いて得られる接続構造体を模式的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing a connected structure obtained using a conductive paste according to an embodiment of the present invention.

図1に示す接続構造体1は、第1の接続対象部材2と、第2の接続対象部材3と、第1の接続対象部材2と第2の接続対象部材3とを接続している接続部4とを備える。接続部4は、上述した導電ペーストにより形成されている。本実施形態では、上記導電ペーストは、熱硬化性成分と、フラックス付きはんだ粒子とを含む。上記フラックス付きはんだ粒子は、はんだ粒子と、上記はんだ粒子に担持されたフラックスとを備える。上記熱硬化性成分は、熱硬化性化合物と熱硬化剤とを含む。 The connection structure 1 shown in FIG. 1 includes a first connection target member 2, a second connection target member 3, and a connection connecting the first connection target member 2 and the second connection target member 3. 4. The connecting portion 4 is formed of the above-mentioned conductive paste. In this embodiment, the conductive paste includes a thermosetting component and solder particles with flux. The solder particles with flux include solder particles and flux supported on the solder particles. The thermosetting component includes a thermosetting compound and a thermosetting agent.

接続部4は、複数のはんだ粒子(フラックス付きはんだ粒子)が集まり互いに接合したはんだ部4Aと、熱硬化性化合物が熱硬化された硬化物部4Bとを有する。 The connecting portion 4 includes a solder portion 4A in which a plurality of solder particles (solder particles with flux) are gathered and bonded to each other, and a cured material portion 4B in which a thermosetting compound is thermoset.

第1の接続対象部材2は表面(上面)に、複数の第1の電極2aを有する。第2の接続対象部材3は表面(下面)に、複数の第2の電極3aを有する。第1の電極2aと第2の電極3aとが、はんだ部4Aにより電気的に接続されている。従って、第1の接続対象部材2と第2の接続対象部材3とが、はんだ部4Aにより電気的に接続されている。なお、接続部4において、第1の電極2aと第2の電極3aとの間に集まったはんだ部4Aとは異なる領域(硬化物部4B部分)には、はんだ粒子は存在しない。はんだ部4Aとは異なる領域(硬化物部4B部分)には、はんだ部4Aと離れたはんだ粒子は存在しない。なお、少量であれば、第1の電極2aと第2の電極3aとの間に集まったはんだ部4Aとは異なる領域(硬化物部4B部分)に、はんだ粒子が存在していてもよい。 The first connection target member 2 has a plurality of first electrodes 2a on its surface (upper surface). The second connection target member 3 has a plurality of second electrodes 3a on the front surface (lower surface). The first electrode 2a and the second electrode 3a are electrically connected by a solder portion 4A. Therefore, the first connection target member 2 and the second connection target member 3 are electrically connected by the solder portion 4A. Note that, in the connecting portion 4, no solder particles are present in a region different from the solder portion 4A gathered between the first electrode 2a and the second electrode 3a (cured material portion 4B portion). In a region different from the solder portion 4A (cured material portion 4B portion), there are no solder particles separated from the solder portion 4A. Note that solder particles may be present in a region different from the solder portion 4A gathered between the first electrode 2a and the second electrode 3a (cured material portion 4B portion) as long as the amount is small.

図1に示すように、接続構造体1では、第1の電極2aと第2の電極3aとの間に、複数のはんだ粒子(フラックス付きはんだ粒子)が集まり、複数のはんだ粒子が溶融した後、はんだ粒子の溶融物が電極の表面を濡れ拡がった後に固化して、はんだ部4Aが形成されている。このため、はんだ部4Aと第1の電極2a、並びにはんだ部4Aと第2の電極3aとの接触面積が大きくなる。すなわち、はんだ粒子を用いることにより、外表面がニッケル、金又は銅等の金属である導電性粒子を用いた場合と比較して、はんだ部4Aと第1の電極2a、並びにはんだ部4Aと第2の電極3aとの接触面積が大きくなる。このことによっても、接続構造体1における導通信頼性及び接続信頼性が高くなる。なお、上記フラックスは、一般に、加熱により次第に失活する。 As shown in FIG. 1, in the connection structure 1, a plurality of solder particles (solder particles with flux) gather between the first electrode 2a and the second electrode 3a, and after the plurality of solder particles are melted, The solder portion 4A is formed by solidifying the melted solder particles after wetting and spreading the surface of the electrode. Therefore, the contact area between the solder portion 4A and the first electrode 2a and between the solder portion 4A and the second electrode 3a becomes large. That is, by using solder particles, the solder portion 4A and the first electrode 2a, as well as the solder portion 4A and the The contact area with the second electrode 3a becomes larger. This also increases the conduction reliability and connection reliability in the connection structure 1. Note that the above-mentioned flux is generally gradually deactivated by heating.

接続構造体1では、第1の電極2aと接続部4と第2の電極3aとの積層方向に第1の電極2aと第2の電極3aとの対向し合う部分をみたときに、第1の電極2aと第2の電極3aとの対向し合う部分の面積100%中の50%以上に、接続部4中のはんだ部4Aが配置されていることが好ましい。接続部4中のはんだ部4Aが、上記の好ましい態様を満足することで、導通信頼性をより一層高めることができる。 In the connection structure 1, when looking at the portion where the first electrode 2a and the second electrode 3a face each other in the stacking direction of the first electrode 2a, the connection portion 4, and the second electrode 3a, the first It is preferable that the solder portion 4A in the connecting portion 4 is disposed on 50% or more of the 100% area of the opposing portion of the electrode 2a and the second electrode 3a. When the solder portion 4A in the connection portion 4 satisfies the above-mentioned preferable aspects, the continuity reliability can be further improved.

上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の50%以上に、上記接続部中のはんだ部が配置されていることが好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の60%以上に、上記接続部中のはんだ部が配置されていることがより好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の70%以上に、上記接続部中のはんだ部が配置されていることがさらに好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の80%以上に、上記接続部中のはんだ部が配置されていることが特に好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の90%以上に、上記接続部中のはんだ部が配置されていることが最も好ましい。上記接続部中のはんだ部が、上記の好ましい態様を満足することで、導通信頼性をより一層高めることができる。 When looking at the opposing portions of the first electrode and the second electrode in the stacking direction of the first electrode, the connecting portion, and the second electrode, the first electrode and the second electrode It is preferable that the solder portion in the connection portion is disposed on 50% or more of the 100% area of the portion facing the second electrode. When looking at the opposing portions of the first electrode and the second electrode in the stacking direction of the first electrode, the connecting portion, and the second electrode, the first electrode and the second electrode It is more preferable that the solder portion in the connection portion is disposed on 60% or more of the 100% area of the portion facing the second electrode. When looking at the opposing portions of the first electrode and the second electrode in the stacking direction of the first electrode, the connecting portion, and the second electrode, the first electrode and the second electrode It is more preferable that the solder part in the connection part is disposed on 70% or more of the 100% area of the part facing the second electrode. When looking at the opposing portions of the first electrode and the second electrode in the stacking direction of the first electrode, the connecting portion, and the second electrode, the first electrode and the second electrode It is particularly preferable that the solder portion in the connection portion is disposed on 80% or more of the 100% area of the portion facing the second electrode. When looking at the opposing portions of the first electrode and the second electrode in the stacking direction of the first electrode, the connecting portion, and the second electrode, the first electrode and the second electrode It is most preferable that the solder part in the connection part is disposed on 90% or more of the 100% area of the part facing the second electrode. When the solder portion in the connection portion satisfies the preferred embodiments described above, conduction reliability can be further improved.

上記第1の電極と上記接続部と上記第2の電極との積層方向と直交する方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分に、上記接続部中のはんだ部の60%以上が配置されていることが好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向と直交する方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分に、上記接続部中のはんだ部の70%以上が配置されていることがより好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向と直交する方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分に、上記接続部中のはんだ部の90%以上が配置されていることがさらに好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向と直交する方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分に、上記接続部中のはんだ部の95%以上が配置されていることが特に好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向と直交する方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分に、上記接続部中のはんだ部の99%以上が配置されていることが最も好ましい。上記接続部中のはんだ部が、上記の好ましい態様を満足することで、導通信頼性をより一層高めることができる。 When the opposing portions of the first electrode and the second electrode are viewed in a direction perpendicular to the stacking direction of the first electrode, the connection portion, and the second electrode, the first It is preferable that 60% or more of the solder portion in the connection portion is disposed at the portion where the electrode and the second electrode face each other. When the opposing portions of the first electrode and the second electrode are viewed in a direction perpendicular to the stacking direction of the first electrode, the connection portion, and the second electrode, the first More preferably, 70% or more of the solder portion in the connection portion is disposed in a portion where the electrode and the second electrode face each other. When the opposing portions of the first electrode and the second electrode are viewed in a direction perpendicular to the stacking direction of the first electrode, the connection portion, and the second electrode, the first It is further preferable that 90% or more of the solder portion in the connection portion be disposed at a portion where the electrode and the second electrode face each other. When the opposing portions of the first electrode and the second electrode are viewed in a direction perpendicular to the stacking direction of the first electrode, the connection portion, and the second electrode, the first It is particularly preferable that 95% or more of the solder portion in the connection portion is disposed at the portion where the electrode and the second electrode face each other. When the opposing portions of the first electrode and the second electrode are viewed in a direction perpendicular to the stacking direction of the first electrode, the connection portion, and the second electrode, the first It is most preferable that 99% or more of the solder portion in the connecting portion is disposed at the portion where the electrode and the second electrode face each other. When the solder portion in the connection portion satisfies the preferred embodiments described above, conduction reliability can be further improved.

上記第1,第2の接続対象部材は、特に限定されない。上記第1,第2の接続対象部材としては、具体的には、半導体チップ、半導体パッケージ、LEDチップ、LEDパッケージ、コンデンサ及びダイオード等の電子部品、並びに樹脂フィルム、プリント基板、フレキシブルプリント基板、フレキシブルフラットケーブル、リジッドフレキシブル基板、ガラスエポキシ基板及びガラス基板等の回路基板等の電子部品等が挙げられる。上記第1,第2の接続対象部材は、電子部品であることが好ましい。 The first and second connection target members are not particularly limited. Specifically, the first and second connection target members include semiconductor chips, semiconductor packages, LED chips, LED packages, electronic components such as capacitors and diodes, resin films, printed circuit boards, flexible printed circuit boards, and flexible Examples include electronic components such as flat cables, rigid-flexible boards, circuit boards such as glass epoxy boards, and glass boards. It is preferable that the first and second connection target members are electronic components.

上記第1の接続対象部材及び上記第2の接続対象部材の内の少なくとも一方が、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板であることが好ましい。上記第2の接続対象部材が、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板であることが好ましい。樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル及びリジッドフレキシブル基板は、柔軟性が高く、比較的軽量であるという性質を有する。このような接続対象部材の接続に導電フィルムを用いた場合には、はんだ粒子が電極上に集まりにくい傾向がある。これに対して、導電ペーストを用いることで、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板を用いたとしても、はんだ粒子を電極上に効率的に集めることで、電極間の導通信頼性を十分に高めることができる。樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板を用いる場合に、半導体チップ等の他の接続対象部材を用いた場合と比べて、加圧を行わないことによる電極間の導通信頼性の向上効果がより一層効果的に得られる。 It is preferable that at least one of the first connection target member and the second connection target member is a resin film, a flexible printed circuit board, a flexible flat cable, or a rigid flexible circuit board. It is preferable that the second connection target member is a resin film, a flexible printed circuit board, a flexible flat cable, or a rigid flexible circuit board. Resin films, flexible printed circuit boards, flexible flat cables, and rigid-flexible circuit boards have the properties of being highly flexible and relatively lightweight. When a conductive film is used to connect such connection target members, solder particles tend to be difficult to collect on the electrodes. On the other hand, by using a conductive paste, even if a resin film, flexible printed circuit board, flexible flat cable, or rigid-flex board is used, the solder particles can be efficiently collected on the electrodes, ensuring continuity between the electrodes. You can fully enhance your sexuality. When using resin films, flexible printed circuit boards, flexible flat cables, or rigid-flex circuit boards, the reliability of conduction between electrodes can be improved by not applying pressure, compared to when using other connection objects such as semiconductor chips. The improvement effect can be obtained even more effectively.

上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極、銀電極、SUS電極、及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、錫電極、銀電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極は銅電極、又は銀電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。 Examples of the electrodes provided on the connection target member include metal electrodes such as gold electrodes, nickel electrodes, tin electrodes, aluminum electrodes, copper electrodes, molybdenum electrodes, silver electrodes, SUS electrodes, and tungsten electrodes. When the member to be connected is a flexible printed circuit board, the electrode is preferably a gold electrode, a tin electrode, a silver electrode, or a copper electrode. When the member to be connected is a glass substrate, the electrode is preferably a copper electrode or a silver electrode. In addition, when the said electrode is an aluminum electrode, it may be an electrode formed only with aluminum, and the electrode may be an electrode in which an aluminum layer is laminated|stacked on the surface of a metal oxide layer. Examples of the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal elements include Sn, Al, and Ga.

本発明に係る接続構造体では、上記第1の電極及び上記第2の電極は、エリアアレイ又はペリフェラルにて配置されていることが好ましい。上記第1の電極及び上記第2の電極が、エリアアレイ又はペリフェラルにて配置されている場合において、本発明の効果がより一層効果的に発揮される。上記エリアアレイとは、接続対象部材の電極が配置されている面にて、格子状に電極が配置されている構造のことである。上記ペリフェラルとは、接続対象部材の外周部に電極が配置されている構造のことである。電極が櫛型に並んでいる構造の場合は、櫛に垂直な方向に沿ってはんだ粒子が凝集すればよいのに対して、上記エリアアレイ又はペリフェラル構造では電極が配置されている面において、全面にて均一にはんだ粒子が凝集する必要がある。そのため、従来の方法では、はんだ量が不均一になりやすいのに対して、本発明の方法では、全面にて均一にはんだ粒子を凝集させることができる。 In the connected structure according to the present invention, it is preferable that the first electrode and the second electrode are arranged in an area array or a peripheral. The effects of the present invention are even more effectively exhibited when the first electrode and the second electrode are arranged in an area array or peripherally. The above-mentioned area array is a structure in which electrodes are arranged in a grid pattern on the surface of the connection target member on which the electrodes are arranged. The above-mentioned peripheral refers to a structure in which electrodes are arranged on the outer periphery of a member to be connected. In the case of a structure in which the electrodes are arranged in a comb shape, the solder particles only need to aggregate along the direction perpendicular to the comb, whereas in the above area array or peripheral structure, the solder particles aggregate on the entire surface on the surface where the electrodes are arranged. It is necessary for the solder particles to coagulate uniformly. Therefore, in the conventional method, the amount of solder tends to be uneven, whereas in the method of the present invention, solder particles can be uniformly aggregated over the entire surface.

以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。 Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples. The invention is not limited only to the following examples.

熱硬化性成分(熱硬化性化合物):
フェノールノボラック型エポキシ化合物(DOW社製「DEN431」)
ビスフェノールF型エポキシ化合物(DOW社製「DER354」)
Thermosetting component (thermosetting compound):
Phenol novolac type epoxy compound (“DEN431” manufactured by DOW)
Bisphenol F type epoxy compound (“DER354” manufactured by DOW)

フラックス付きはんだ粒子:
フラックス付きはんだ粒子1(以下の合成例1に従って作製)
フラックス付きはんだ粒子2(以下の合成例2に従って作製)
フラックス付きはんだ粒子3(以下の合成例3に従って作製)
Solder particles with flux:
Fluxed solder particles 1 (produced according to Synthesis Example 1 below)
Fluxed solder particles 2 (produced according to Synthesis Example 2 below)
Fluxed solder particles 3 (produced according to Synthesis Example 3 below)

(合成例1)
SnAgCuはんだ粒子(三井金属社製「Sn96.5Ag3.0Cu0.5 ST-3」、平均粒子径:3.0μm、融点:220℃、比重:7.4)と、フラックス(昭和化学工業社製「アジピン酸ベンジルアミン塩」、25℃で固体、平均粒子径:10μm、融点:180℃)とを用意した。アジピン酸ベンジルアミン塩を溶解させた溶液にSnAgCuはんだ粒子を浸漬させることで、はんだ粒子と、上記はんだ粒子に担持されたフラックスXとを備えるフラックス付きはんだ粒子1を得た。フラックス付きはんだ粒子1における比(フラックスXの平均粒子径/はんだ粒子の平均粒子径)は、3.3であった。
(Synthesis example 1)
SnAgCu solder particles (“Sn96.5Ag3.0Cu0.5 ST-3” manufactured by Mitsui Kinzoku Co., Ltd., average particle diameter: 3.0 μm, melting point: 220°C, specific gravity: 7.4) and flux (“Sn96.5Ag3.0Cu0.5 ST-3” manufactured by Mitsui Kinzoku Co., Ltd., average particle diameter: 3.0 μm, melting point: 220°C, specific gravity: 7.4) Adipic acid benzylamine salt, solid at 25°C, average particle size: 10 μm, melting point: 180°C) was prepared. By immersing SnAgCu solder particles in a solution in which benzylamine adipate salt was dissolved, fluxed solder particles 1 comprising solder particles and flux X supported on the solder particles were obtained. The ratio (average particle diameter of flux X/average particle diameter of solder particles) in solder particles 1 with flux was 3.3.

(合成例2)
SnBiはんだ粒子(三井金属社製「Sn42Bi58 ST-3」、平均粒子径:3.0μm、融点:138℃、比重:8.6)と、フラックス(昭和化学工業社製「アジピン酸ベンジルアミン塩」、25℃で固体、平均粒子径:10μm、融点:180℃)とを用意した。アジピン酸ベンジルアミン塩を溶解させた溶液にSnBiはんだ粒子を浸漬させることで、はんだ粒子と、上記はんだ粒子に担持されたフラックスXとを備えるフラックス付きはんだ粒子2を得た。フラックス付きはんだ粒子2における比(フラックスXの平均粒子径/はんだ粒子の平均粒子径)は、3.3であった。
(Synthesis example 2)
SnBi solder particles ("Sn42Bi58 ST-3" manufactured by Mitsui Kinzoku Co., Ltd., average particle diameter: 3.0 μm, melting point: 138 ° C., specific gravity: 8.6) and flux ("Adipate benzylamine salt" manufactured by Showa Chemical Industry Co., Ltd.) , solid at 25°C, average particle size: 10 μm, melting point: 180°C). By immersing SnBi solder particles in a solution in which benzylamine adipate salt was dissolved, solder particles 2 with flux comprising solder particles and flux X supported on the solder particles were obtained. The ratio (average particle diameter of flux X/average particle diameter of solder particles) in solder particles 2 with flux was 3.3.

(合成例3)
SnAgCuはんだ粒子(三井金属社製「Sn96.5Ag3.0Cu0.5 ST-3」、平均粒子径:3.0μm、融点:220℃、比重:7.4)と、フラックス(Wako社製「グルタル酸」、25℃で固体、平均粒子径:10μm、融点:98℃)とを用意した。グルタル酸を溶解させた溶液にSnAgCuはんだ粒子を浸漬させることで、はんだ粒子と、はんだ粒子に担持されたフラックスXとを備えるフラックス付きはんだ粒子3を得た。フラックス付きはんだ粒子3における比(フラックスXの平均粒子径/はんだ粒子の平均粒子径)は、3.3であった。
(Synthesis example 3)
SnAgCu solder particles (“Sn96.5Ag3.0Cu0.5 ST-3” manufactured by Mitsui Kinzoku Co., Ltd., average particle size: 3.0 μm, melting point: 220°C, specific gravity: 7.4) and flux (“Glutaric acid” manufactured by Wako Co., Ltd.) ", solid at 25°C, average particle size: 10 μm, melting point: 98°C) was prepared. By immersing SnAgCu solder particles in a solution in which glutaric acid was dissolved, fluxed solder particles 3 including solder particles and flux X supported on the solder particles were obtained. The ratio (average particle diameter of flux X/average particle diameter of solder particles) in solder particles 3 with flux was 3.3.

はんだ粒子:
はんだ粒子1(SnAgCuはんだ粒子、(三井金属社製「Sn96.5Ag3.0Cu0.5 ST-3」、平均粒子径:3.0μm、融点:220℃、比重:7.4)
はんだ粒子2(SnAgCuはんだ粒子、三井金属社製「Sn96.5Ag3.0Cu0.5 DS10」、平均粒子径:10.0μm、融点:220℃、比重:7.4)
Solder particles:
Solder particle 1 (SnAgCu solder particle, (Mitsui Kinzoku Co., Ltd. "Sn96.5Ag3.0Cu0.5 ST-3", average particle diameter: 3.0 μm, melting point: 220 ° C., specific gravity: 7.4)
Solder particles 2 (SnAgCu solder particles, "Sn96.5Ag3.0Cu0.5 DS10" manufactured by Mitsui Kinzoku, average particle diameter: 10.0 μm, melting point: 220 ° C., specific gravity: 7.4)

フラックス(はんだ粒子に担持されていないフラックス):
アジピン酸ベンジルアミン塩(昭和化学工業社製「アジピン酸ベンジルアミン塩」、25℃で固体、平均粒子径:10μm、融点:180℃)
オレイン酸(富士フイルム和光純薬社製「オレイン酸」、25℃で液体、沸点:223℃)
Flux (flux not supported by solder particles):
Adipic acid benzylamine salt (“Adipate benzylamine salt” manufactured by Showa Kagaku Kogyo Co., Ltd., solid at 25°C, average particle size: 10 μm, melting point: 180°C)
Oleic acid (Oleic acid manufactured by Fujifilm Wako Pure Chemical Industries, liquid at 25℃, boiling point: 223℃)

他の成分:
グリセロール(ナカライテスク社製「グリセロール」、25℃で液体、水酸基の数:3、沸点:290℃)
N-オレオイルサルコシン(TCI社製「N-オレオイルサルコシン」、25℃で液体、水酸基の数:1、沸点:197℃)
三フッ化ホウ素-モノエチルアミン錯体(TCI社製「三フッ化ホウ素-モノエチルアミン錯体」、25℃固体、25℃及び50%RHで吸湿性を有する、融点:85℃)
Other ingredients:
Glycerol (“Glycerol” manufactured by Nacalai Tesque, liquid at 25°C, number of hydroxyl groups: 3, boiling point: 290°C)
N-oleoylsarcosine (“N-oleoylsarcosine” manufactured by TCI, liquid at 25°C, number of hydroxyl groups: 1, boiling point: 197°C)
Boron trifluoride-monoethylamine complex (“Boron trifluoride-monoethylamine complex” manufactured by TCI, solid at 25°C, hygroscopic at 25°C and 50% RH, melting point: 85°C)

(重量増加率の測定)
TCI社製「三フッ化ホウ素-モノエチルアミン錯体」について、25℃及び50%RHで24時間放置したときに、放置後の三フッ化ホウ素-モノエチルアミン錯体の重量の、放置前の三フッ化ホウ素-モノエチルアミン錯体の重量に対する重量増加率を、上述した方法で測定した。三フッ化ホウ素-モノエチルアミン錯体の重量増加率は、1.0重量%~2.0重量%であった。
(Measurement of weight increase rate)
Regarding "Boron trifluoride-monoethylamine complex" manufactured by TCI, when left for 24 hours at 25°C and 50% RH, the weight of the boron trifluoride-monoethylamine complex after standing was compared to the trifluoride before standing. The weight increase rate with respect to the weight of the boron-monoethylamine complex was measured by the method described above. The weight increase rate of the boron trifluoride-monoethylamine complex was 1.0% to 2.0% by weight.

(実施例1~8及び比較例1~4)
(1)導電ペースト(異方性導電ペースト)の作製
下記の表1~3に示す成分を下記の表1~3に示す配合量で配合して、導電ペースト(異方性導電ペースト)を得た。
(Examples 1 to 8 and Comparative Examples 1 to 4)
(1) Preparation of conductive paste (anisotropic conductive paste) The components shown in Tables 1 to 3 below are mixed in the amounts shown in Tables 1 to 3 below to obtain a conductive paste (anisotropic conductive paste). Ta.

(2)接続構造体の作製
第1の接続対象部材として、L/S=50μm/50μmの銅電極(電極長さ:3mm、電極厚み:12μm)を表面に有するガラスエポキシ基板(材質:FR-4、厚み:0.6mm)を用意した。
(2) Preparation of connection structure As the first connection target member, a glass epoxy substrate (material: FR- 4. Thickness: 0.6 mm) was prepared.

第2の接続対象部材として、L/S=50μm/50μmの銅電極(電極長さ:3mm、電極厚み:12μm)を表面に有するフレキシブルプリント基板(材質:ポリイミド、厚み:0.1mm)を用意した。 As the second connection target member, a flexible printed circuit board (material: polyimide, thickness: 0.1 mm) with copper electrodes (electrode length: 3 mm, electrode thickness: 12 μm) with L/S = 50 μm/50 μm on the surface is prepared. did.

上記ガラスエポキシ基板の上面に、作製直後の導電ペースト(異方性導電ペースト)を厚み100μmとなるように塗工し、導電ペースト(異方性導電ペースト)層を形成した。次に、導電ペースト(異方性導電ペースト)層の上面にフレキシブルプリント基板を電極同士が対向するように積層した。導電ペースト(異方性導電ペースト)層には、上記フレキシブルプリント基板の重量が加わる。その状態から、導電ペースト(異方性導電ペースト)層の温度が、昇温開始から10秒後にはんだ粒子の融点となるように加熱した。さらに、昇温開始から15秒後に、導電ペースト(異方性導電ペースト)層の温度が250℃となるように加熱し、導電ペースト(異方性導電ペースト)層を硬化させ、接続構造体を得た。加熱時には、加圧を行わなかった。 A conductive paste (anisotropic conductive paste) immediately after preparation was applied to a thickness of 100 μm on the upper surface of the glass epoxy substrate to form a conductive paste (anisotropic conductive paste) layer. Next, a flexible printed circuit board was laminated on the upper surface of the conductive paste (anisotropic conductive paste) layer so that the electrodes faced each other. The weight of the flexible printed circuit board is added to the conductive paste (anisotropic conductive paste) layer. From this state, the conductive paste (anisotropic conductive paste) layer was heated so that the temperature reached the melting point of the solder particles 10 seconds after the start of temperature rise. Furthermore, 15 seconds after the start of temperature rise, the conductive paste (anisotropic conductive paste) layer is heated to a temperature of 250°C to harden the conductive paste (anisotropic conductive paste) layer, and the connected structure is formed. Obtained. No pressure was applied during heating.

(評価)
(1)保存安定性
作製直後の上記導電ペーストの25℃及び5rpmでの粘度(η25)と、作製直後の上記導電ペーストを25℃及び50%RHの条件で24時間保管した後の導電ペーストの25℃及び5rpmでの粘度(ηA)とを、上述した方法で測定し、比(ηA/η25)を計算した。保存安定性を、以下の基準で判定した。
(evaluation)
(1) Storage stability The viscosity (η25) at 25°C and 5 rpm of the above conductive paste immediately after preparation, and the viscosity (η25) of the above conductive paste after storing the above conductive paste immediately after preparation at 25°C and 50% RH for 24 hours. The viscosity (ηA) at 25° C. and 5 rpm was measured by the method described above, and the ratio (ηA/η25) was calculated. Storage stability was determined based on the following criteria.

[保存安定性の判定基準]
○○:比(ηA/η25)が、1.2以下
○:比(ηA/η25)が、1.2を超え1.5以下
×:比(ηA/η25)が、1.5を超える
[Criteria for storage stability]
○○: Ratio (ηA/η25) is 1.2 or less ○: Ratio (ηA/η25) is more than 1.2 and 1.5 or less ×: Ratio (ηA/η25) is more than 1.5

(2)スクリーン印刷性
得られた導電ペースト(異方性導電ペースト)について、開口部1箇所当たりの寸法が20μm×50μm、厚みが20μmのメタルマスクを用いて、スライドガラス上にスクリーン印刷を行った。印刷されたパターン50箇所について、印刷直後の印刷面をレーザー顕微鏡で観察し、スライドガラスに塗布された導電ペーストの体積を計算し、スライドガラスに塗布された導電ペーストの体積の、メタルマスクの開口部1箇所当たりの容積に対する割合X(%)を計算した。スクリーン印刷性を、以下の基準で判定した。
(2) Screen printing property The obtained conductive paste (anisotropic conductive paste) was screen printed on a glass slide using a metal mask with dimensions of 20 μm x 50 μm per opening and a thickness of 20 μm. Ta. For the 50 printed patterns, the printed surface immediately after printing was observed with a laser microscope, the volume of the conductive paste applied to the slide glass was calculated, and the opening of the metal mask was calculated based on the volume of the conductive paste applied to the slide glass. The ratio X (%) to the volume per part was calculated. Screen printability was evaluated based on the following criteria.

[スクリーン印刷性の判定基準]
○○:割合Xが、50%以上
○:割合Xが、30%以上50%未満
×:割合Xが、30%未満
[Criteria for determining screen printability]
○○: Proportion X is 50% or more ○: Proportion X is 30% or more and less than 50% ×: Proportion X is less than 30%

(3)はんだ粒子の配置精度
得られた接続構造体において、第1の電極と接続部と第2の電極との積層方向に第1の電極と第2の電極との対向し合う部分をみたときに、第1の電極と第2の電極との対向し合う部分の面積100%中の、接続部中のはんだ部が配置されている面積の割合Yを評価した。はんだ粒子の配置精度を以下の基準で判定した。
(3) Accuracy of placement of solder particles In the obtained connected structure, the portion where the first electrode and the second electrode face each other was observed in the stacking direction of the first electrode, the connecting portion, and the second electrode. At the same time, the ratio Y of the area where the solder part in the connection part is arranged to 100% of the area of the opposing part of the first electrode and the second electrode was evaluated. The placement accuracy of solder particles was judged based on the following criteria.

[はんだ粒子の配置精度の判定基準]
○○:割合Yが70%以上
○:割合Yが50%以上70%未満
×:割合Yが50%未満
[Criteria for determining solder particle placement accuracy]
○○: Proportion Y is 70% or more ○: Proportion Y is 50% or more and less than 70% ×: Proportion Y is less than 50%

結果を下記の表1~3に示す。 The results are shown in Tables 1 to 3 below.

Figure 2024022788000002
Figure 2024022788000002

Figure 2024022788000003
Figure 2024022788000003

Figure 2024022788000004
Figure 2024022788000004

1…接続構造体
2…第1の接続対象部材
2a…第1の電極
3…第2の接続対象部材
3a…第2の電極
4…接続部
4A…はんだ部
4B…硬化物部
1... Connection structure 2... First connection target member 2a... First electrode 3... Second connection target member 3a... Second electrode 4... Connection part 4A... Solder part 4B... Cured material part

Claims (7)

熱硬化性成分と、フラックス付きはんだ粒子とを含み、
前記フラックス付きはんだ粒子が、はんだ粒子と、前記はんだ粒子に担持されたフラックスとを備え、
前記はんだ粒子の平均粒子径が、5.0μm以下であり、
前記はんだ粒子に担持されたフラックスが、カルボン酸又はカルボン酸塩である、導電ペースト。
Contains a thermosetting component and solder particles with flux,
The solder particles with flux include solder particles and a flux supported on the solder particles,
The average particle diameter of the solder particles is 5.0 μm or less,
A conductive paste, wherein the flux supported on the solder particles is a carboxylic acid or a carboxylate salt.
前記はんだ粒子に担持されたフラックスの平均粒子径の、前記はんだ粒子の平均粒子径に対する比が、0.001以上10.0以下である、請求項1に記載の導電ペースト。 The conductive paste according to claim 1, wherein the ratio of the average particle diameter of the flux supported on the solder particles to the average particle diameter of the solder particles is 0.001 or more and 10.0 or less. 前記はんだ粒子に担持されたフラックスが、カルボン酸アミン塩である、請求項1又は2に記載の導電ペースト。 The conductive paste according to claim 1 or 2, wherein the flux supported on the solder particles is a carboxylic acid amine salt. 作製直後の前記導電ペーストを25℃及び50%RHの条件で24時間保管した後の前記導電ペーストの25℃及び5rpmでの粘度の、作製直後の前記導電ペーストの25℃及び5rpmでの粘度に対する比が、1.5以下である、請求項1~3のいずれか1項に記載の導電ペースト。 The viscosity of the conductive paste at 25 °C and 5 rpm after storing the conductive paste immediately after production for 24 hours at 25 °C and 50% RH versus the viscosity at 25 °C and 5 rpm of the conductive paste immediately after production The conductive paste according to any one of claims 1 to 3, wherein the ratio is 1.5 or less. はんだ粒子と、前記はんだ粒子に担持されたフラックスとを備えるフラックス付きはんだ粒子を得る工程と、
熱硬化性成分と、前記フラックス付きはんだ粒子とを混合して、導電ペーストを得る工程とを備え、
前記はんだ粒子の平均粒子径が、5.0μm以下であり、
前記はんだ粒子に担持されたフラックスが、カルボン酸又はカルボン酸塩である、導電ペーストの製造方法。
obtaining fluxed solder particles comprising solder particles and flux supported on the solder particles;
a step of mixing a thermosetting component and the fluxed solder particles to obtain a conductive paste,
The average particle diameter of the solder particles is 5.0 μm or less,
A method for producing a conductive paste, wherein the flux supported on the solder particles is a carboxylic acid or a carboxylate salt.
前記導電ペーストを得る工程において、フラックスをさらに混合する、請求項5に記載の導電ペーストの製造方法。 The method for manufacturing a conductive paste according to claim 5, further comprising mixing flux in the step of obtaining the conductive paste. 第1の電極を表面に有する第1の接続対象部材と、
第2の電極を表面に有する第2の接続対象部材と、
前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、
前記接続部の材料が、請求項1~4のいずれか1項に記載の導電ペーストであり、
前記第1の電極と前記第2の電極とが、前記接続部中のはんだ部により電気的に接続されている、接続構造体。
a first connection target member having a first electrode on its surface;
a second connection target member having a second electrode on its surface;
comprising a connection part connecting the first connection target member and the second connection target member,
The material of the connection part is the conductive paste according to any one of claims 1 to 4,
A connection structure in which the first electrode and the second electrode are electrically connected by a solder part in the connection part.
JP2022126132A 2022-08-08 2022-08-08 Conductive paste, method for producing conductive paste and connection structure Pending JP2024022788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022126132A JP2024022788A (en) 2022-08-08 2022-08-08 Conductive paste, method for producing conductive paste and connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022126132A JP2024022788A (en) 2022-08-08 2022-08-08 Conductive paste, method for producing conductive paste and connection structure

Publications (1)

Publication Number Publication Date
JP2024022788A true JP2024022788A (en) 2024-02-21

Family

ID=89930493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022126132A Pending JP2024022788A (en) 2022-08-08 2022-08-08 Conductive paste, method for producing conductive paste and connection structure

Country Status (1)

Country Link
JP (1) JP2024022788A (en)

Similar Documents

Publication Publication Date Title
JP5860191B1 (en) Conductive paste, connection structure, and manufacturing method of connection structure
JP7356217B2 (en) Conductive material, connected structure, and method for manufacturing connected structure
WO2018066368A1 (en) Conductive material, connection structure and method for producing connection structure
JP7184758B2 (en) Conductive material, method for storing conductive material, method for manufacturing conductive material, and method for manufacturing connection structure
JP7184759B2 (en) Conductive material, method for storing conductive material, method for manufacturing conductive material, and method for manufacturing connection structure
JP2023138947A (en) Conductive material, connection structure and method for producing connection structure
WO2020255874A1 (en) Electroconductive material, connection structure, and method for manufacturing connection structure
JP7332458B2 (en) Conductive material, connection structure, and method for manufacturing connection structure
JP7277289B2 (en) Conductive material, connection structure, and method for manufacturing connection structure
JP2018195525A (en) Conductive material, connection structure, and manufacturing method of connection structure
JP2024022788A (en) Conductive paste, method for producing conductive paste and connection structure
WO2024034516A1 (en) Electroconductive paste and connection structure
JP2024022787A (en) Conductive paste and connection structure
JP7421317B2 (en) Conductive film and connected structure
JP2020119955A (en) Connection structure, method for manufacturing connection structure, conductive material, and method for manufacturing conductive material
JP2019016595A (en) Conductive material, connection structure and method for producing connection structure
JP7271312B2 (en) Conductive material, connection structure, and method for manufacturing connection structure
JP7389657B2 (en) Conductive paste and connection structure
JP7372745B2 (en) Conductive material, connected structure, and method for manufacturing connected structure
JP7284699B2 (en) Conductive material, connection structure, and method for manufacturing connection structure
JP7303675B2 (en) Conductive material, connection structure, and method for manufacturing connection structure
JP7267685B2 (en) Conductive material, connection structure, and method for manufacturing connection structure
JP7316109B2 (en) Conductive material, connection structure, and method for manufacturing connection structure
TW202418301A (en) Conductive paste and connecting structure
JP2024010311A (en) Conductive material, connection structure, and method for manufacturing connection structure