JP2024021877A - Food preservation method, food transport method, and food transporter - Google Patents

Food preservation method, food transport method, and food transporter Download PDF

Info

Publication number
JP2024021877A
JP2024021877A JP2022125026A JP2022125026A JP2024021877A JP 2024021877 A JP2024021877 A JP 2024021877A JP 2022125026 A JP2022125026 A JP 2022125026A JP 2022125026 A JP2022125026 A JP 2022125026A JP 2024021877 A JP2024021877 A JP 2024021877A
Authority
JP
Japan
Prior art keywords
food
electric field
storage
storage chamber
package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022125026A
Other languages
Japanese (ja)
Other versions
JP7266937B1 (en
Inventor
哲史 黒田
Tetsushi Kuroda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Corp
Sumisho Global Logistics Co Ltd
Original Assignee
Sumitomo Corp
Sumisho Global Logistics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Corp, Sumisho Global Logistics Co Ltd filed Critical Sumitomo Corp
Priority to JP2022125026A priority Critical patent/JP7266937B1/en
Priority to JP2023065914A priority patent/JP2024022466A/en
Application granted granted Critical
Publication of JP7266937B1 publication Critical patent/JP7266937B1/en
Publication of JP2024021877A publication Critical patent/JP2024021877A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)
  • Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of preservation and packaging for importing, exporting and moving objects that can reduce a risk of food spoilage while also reducing a risk of food freezing in the process.
SOLUTION: An example of a preservation method according to one embodiment of the present disclosure is a method for preserving at least one kind or one form of food, the method comprising: (1) a storage preparation step of preparing a storage equipped with a storage chamber and an electric field forming unit for forming an electric field in the storage chamber; (2) a food packaging step of forming a food package by covering the food with a packaging material and then performing a process for increasing a degree of vacuum inside the packaging material, or preparing the formed food package; and (3) an electric field cooling process for storing the food package in the storage chamber, forming an electric field in the storage chamber and cooling the storage chamber, thereby keeping at least a part of the food in a chilled state.
SELECTED DRAWING: Figure 2
COPYRIGHT: (C)2024,JPO&INPIT

Description

本開示の実施形態は、食品保管方法、食品保管装置、及び食品輸送体に関する。 Embodiments of the present disclosure relate to food storage methods, food storage devices, and food transporters.

昨今の世界的な生鮮食料品等(以下まとめて「食品」という)の需要の高まりがあり、且つ、その中で冷凍していない商品は高付加価値で需要が高く、従って、チルド状態又はそれに近い状態を維持しつつその鮮度を長く保つ技術が注目されている。例えば特許文献1には、食品が保持される収容庫と、その内部に配置される電極と、電極に電圧を印加する電源とを備える電場技術を用いた冷凍庫が記載されている。この冷凍庫では、電源からの電圧の印加により、収容庫の内部に静電界が形成されるように構成されている。 In recent years, demand for fresh foods (hereinafter collectively referred to as "food") has been increasing worldwide, and unfrozen products are in high demand due to their high added value. Technology that maintains freshness for a long time while maintaining similar conditions is attracting attention. For example, Patent Document 1 describes a freezer using electric field technology that includes a storage container in which food is held, electrodes arranged inside the storage container, and a power source that applies voltage to the electrodes. This freezer is configured so that an electrostatic field is formed inside the storage by applying a voltage from a power source.

特開2001-204428号公報JP2001-204428A

ところで、食品の鮮度保持のためには、腐敗の原因となる食品中の細菌の増殖を抑制することが重要である。そのためには、特に、生産直後の細菌数が極力少ない状態を維持することが非常に重要と考えられ、食品の生産地から消費地までの輸送環境を改善するべく、特許文献1に記載されたような電場技術を活用する取り組みが提案又は模索されつつある。 By the way, in order to maintain the freshness of foods, it is important to suppress the growth of bacteria in foods that cause spoilage. To this end, it is considered to be particularly important to maintain a state in which the number of bacteria is as low as possible immediately after production. Efforts to utilize such electric field technology are being proposed or explored.

一方、電場技術を用いた食品の鮮度保持効果(賞味期限)は、食品の保管温度と密接に関わっており、氷点下よりも低い温度帯(0℃未満)で食品を可能な限り凍らせずに保管することが、経時的な菌数の増加の抑制に寄与すると推察される。 On the other hand, the effect of preserving food freshness (best before date) using electric field technology is closely related to the storage temperature of the food, and the food must be stored in a temperature range below freezing (below 0°C) as much as possible without freezing. It is presumed that storage contributes to suppressing the increase in the number of bacteria over time.

しかし、長距離の海上輸送のように輸送時間が長くなればなるほど、食品の商品価値が毀損される可能性が高まる。例えば、鮮度保持効果を最大化するために、凍結しないぎりぎりの温度で管理しようとすると、外的要因(外気温や食品の個体差、輸送日数(長いほど凍結し易くなる。)、収容庫内の積載量の多寡等)に起因して、凍結又は凍結に近い状態になってしまい、食品本来の商品価値の毀損を招くおそれがある。つまり、電場技術を用いた従来の食品保管及び輸送技術では、非凍結状態を確実に維持しにくいという難点がある。 However, the longer the transportation time, such as long-distance sea transportation, the greater the possibility that the commercial value of the food product will be damaged. For example, in order to maximize the freshness preservation effect, if you try to maintain the temperature as low as possible without freezing, external factors such as outside temperature, individual differences in food, the number of days it takes to transport (the longer it is, the more likely it is to freeze), (e.g., the amount of food loaded), the food may become frozen or nearly frozen, which may damage the original product value of the food. In other words, conventional food storage and transportation technology using electric field technology has the disadvantage that it is difficult to reliably maintain an unfrozen state.

一方、凍結のリスクが少ない保守的な(比較的高温の)温度帯で管理した場合には、腐敗や凍結に至らずに輸送することができたとしても、食品中の細菌数が比較的多くなり、賞味期限が短くなってしまう。こうなると、その食品を輸入地で販売する事業者は、そのような商品を再度凍結させて冷凍品として流通させざるを得なくなる。この場合でも、食品本来の商品価値が毀損されてしまう上に、冷凍コストの発生、冷凍過程による温室効果ガスの発生、及び、場合によっては食品廃棄の発生(フードロス)といった問題につながってしまう。従って、電場技術を用いた従来の食品保管及び輸送技術は、未だに十分に実用化されていないのが実情である。 On the other hand, if the food is managed at a conservative (relatively high) temperature range with little risk of freezing, the number of bacteria in the food will be relatively high even if the food can be transported without spoiling or freezing. This shortens the expiration date. When this happens, businesses that sell the food in the country of import have no choice but to refreeze such products and distribute them as frozen products. Even in this case, the original commercial value of the food is damaged, and it also leads to problems such as the generation of freezing costs, the generation of greenhouse gases due to the freezing process, and, in some cases, the generation of food waste (food loss). Therefore, the reality is that conventional food storage and transportation technology using electric field technology has not yet been fully put into practical use.

そこで、本発明は、かかる事情に鑑みてなされたものであり、チルド状態又はそれに近い状態を維持して食品の鮮度保持効果の最大化を追求して食品の腐敗リスクを軽減しつつ、その際の食品の凍結リスクをも低減することが可能な食品保管方法、食品輸送方法、及び食品輸送体を提供することを目的とする。 Therefore, the present invention has been made in view of the above circumstances, and aims to maximize the effect of preserving the freshness of food by maintaining it in a chilled state or a state close to it, thereby reducing the risk of food spoilage. An object of the present invention is to provide a food storage method, a food transportation method, and a food transporter that can reduce the risk of food freezing.

本開示の一実施形態による食品保管方法の一例は、少なくとも1種類又は1形態の食品を保管する方法であって、(1)収容室、及び、該収容室内に電場を形成するための電場形成部を備える収容庫を準備(用意)する収容庫準備工程と、(2)包装材で前記食品を被覆した後に前記包装材の内部の真空度を高める処理を行うことにより食品包装体を形成する、又は、形成された該食品包装体を準備(用意)する食品包装工程と、(3)前記食品包装体を前記収容室内に収容し、該収容室内に電場を形成し、該収容室内を冷却することにより、前記食品の少なくとも一部をチルド状態に保持する電場冷却工程と、を含む。 An example of a food storage method according to an embodiment of the present disclosure is a method for storing at least one type or type of food, which includes: (1) a storage chamber; and an electric field for forming an electric field in the storage chamber; and (2) forming a food package by covering the food with a packaging material and then performing a process to increase the degree of vacuum inside the packaging material. or a food packaging step of preparing the formed food package; (3) accommodating the food package in the housing chamber, forming an electric field in the housing chamber, and cooling the housing chamber; and an electric field cooling step of maintaining at least a portion of the food in a chilled state.

また、本開示の一実施形態による食品輸送方法の一例は、本開示による食品保管方法を用い、前記電場冷却工程を実施しながら前記食品を輸送する。 Moreover, an example of the food transportation method according to an embodiment of the present disclosure uses the food storage method according to the present disclosure, and transports the food while performing the electric field cooling step.

さらに、本開示の一実施形態による食品輸送体の一例は、少なくとも1種類又は1形態の食品を含んで輸送されるものであって、収容室、及び、該収容室内に電場を形成するための電場形成部を備える収容庫と、前記食品を被覆し、且つ内部の真空度を高めることにより形成された食品包装体とを備え、前記食品包装体が収容された前記収容室内に電場が形成され、かつ、該収容室内が冷却された状態で、前記食品の少なくとも一部がチルド状態に保持されている。 Furthermore, an example of a food transporter according to an embodiment of the present disclosure includes at least one type or one form of food and is transported, and includes a storage chamber and an electric field for forming an electric field in the storage chamber. The storage chamber includes an electric field forming section and a food package formed by covering the food and increasing the degree of vacuum inside, and an electric field is formed in the storage chamber in which the food package is accommodated. and at least a portion of the food is kept in a chilled state with the inside of the storage chamber being cooled.

本開示の一実施形態に係る収容庫の一例の概略構成を示す斜視図である。FIG. 1 is a perspective view showing a schematic configuration of an example of a storage shed according to an embodiment of the present disclosure. 図1におけるII-II線に沿った断面図である。2 is a sectional view taken along line II-II in FIG. 1. FIG. 図1におけるIII-III線に沿った断面図である。2 is a sectional view taken along line III-III in FIG. 1. FIG. 本開示の一実施形態に係る収容庫に食品包装体を収容して保管し、かつ、その状態で食品包装体を輸送する手順の一例を示すフロー図である。FIG. 2 is a flow diagram showing an example of a procedure for accommodating and storing a food package in a storage warehouse according to an embodiment of the present disclosure, and transporting the food package in that state.

以下、本開示の一例に係る実施形態について、図面を参照して説明する。但し、以下に説明する実施形態は、あくまでも例示であり、以下に明示しない種々の変形や技術の適用を排除する意図ではない。すなわち、本開示の一例は、その趣旨を逸脱しない範囲で種々変形して実施することができる。また、本開示の実施形態に基づいて、当業者が創造性のある行為を必要とせずに得られる他の実施形態は、いずれも本開示の保護範囲に含まれる。さらに、本開示において、例えば1つの「工程」、「ステップ」、「部」、「体」、「室」、「装置」、「機」、「器」、「手段」、「機構」、「システム」、及びそれらの一部や全部の機能や構成が、それらの2つ以上によって実現されてもよく、或いは、それらの2つ以上が、1つによって実現されてもよい。 Hereinafter, embodiments according to an example of the present disclosure will be described with reference to the drawings. However, the embodiments described below are merely examples, and are not intended to exclude the application of various modifications and techniques not explicitly described below. That is, an example of the present disclosure can be implemented with various modifications without departing from the spirit thereof. In addition, any other embodiments that can be obtained by a person skilled in the art based on the embodiments of the present disclosure without requiring any creative action are included in the protection scope of the present disclosure. Further, in the present disclosure, for example, one "process", "step", "part", "body", "chamber", "device", "machine", "vessel", "means", "mechanism", " system, and some or all of the functions and configurations thereof may be realized by two or more of them, or two or more of them may be realized by one.

[食品保管に用いられる収容庫及び食品輸送体の構成例]
図1は、本開示の一実施形態に係る収容庫の一例の概略構成を示す斜視図であり、図2は、図1におけるII-II線に沿った断面図であり、図3は、図1におけるIII-III線に沿った断面構造である。なお、図1~図3においては、説明の便宜上、鉛直上下方向を、それぞれ、矢印Z1,Z2で示し、水平方向を矢印X及びYで示す。
[Example of configuration of storage space and food transporter used for food storage]
FIG. 1 is a perspective view showing a schematic configuration of an example of a storage warehouse according to an embodiment of the present disclosure, FIG. 2 is a sectional view taken along line II-II in FIG. 1, and FIG. 1. This is a cross-sectional structure taken along line III-III in No. 1. In FIGS. 1 to 3, for convenience of explanation, vertical directions are indicated by arrows Z1 and Z2, and horizontal directions are indicated by arrows X and Y.

コンテナ10(収容庫)は、食品を冷却保管する機能を有し、固定型コンテナとして使用されてもよく、食品を冷却保管した状態で輸送するための輸送(移動)用コンテナとして使用することもできる。固定型コンテナとしては、食品の加工工場や建屋等の屋内に設置される形態や、それ自体が倉庫として機能する形態が挙げられる。また、輸送用コンテナとしては、船舶に積み込まれる海上輸送用コンテナの他、飛行機、車両等の移動体に積み込まれるコンテナ等が挙げられる。 The container 10 (housing) has a function of storing food in a cooled state, and may be used as a fixed container, or as a transportation (moving) container for transporting food in a cooled state. can. Examples of fixed containers include those that are installed indoors in food processing plants and buildings, and those that function as warehouses themselves. In addition, examples of the shipping container include containers for marine transportation that are loaded onto ships, containers that are loaded onto moving bodies such as airplanes, vehicles, and the like.

図1に示すように、コンテナ10は、食品を内部に収容可能な本体20を備えている。本体20は、正面に開口部を有する矩形箱状に形成された箱体40と、箱体40の正面の開口部を閉塞する一対の扉部50とを有している。箱体40及び扉部50は、例えばアルミニウムやステンレス鋼等の金属材料により形成されるとともに、電気的に接地されている。 As shown in FIG. 1, the container 10 includes a main body 20 that can accommodate food therein. The main body 20 has a box 40 formed in a rectangular box shape with an opening on the front, and a pair of doors 50 that close the opening on the front of the box 40. The box body 40 and the door portion 50 are made of a metal material such as aluminum or stainless steel, and are electrically grounded.

また、図2に示すように、箱体40及び扉部50のそれぞれの内面により囲まれる空間は、本体20の内部空間であり、かつ、段ボール箱等の外容器Bに収納された食品包装体Fが収容される多段構成の収容室S10を画成している。さらに、箱体40及び扉部50のそれぞれの内部には、コンテナ10の冷却性能を高めるために、収容室S10からコンテナ10の外部への熱伝達を抑制するための断熱材が埋め込まれている。またさらに、図1に示す一対の扉部50は、箱体40に対して開閉自在に連結されている。コンテナ10では、扉部50の開閉により、収容室S10への食品包装体Fの出し入れを行うことが可能となる。また、扉部50を閉じることにより、収容室S10が閉空間となり、収容室S10の内部、及び、そこに収容された食品包装体Fが冷却状態で保持される。 Further, as shown in FIG. 2, the space surrounded by the inner surfaces of the box body 40 and the door portion 50 is an internal space of the main body 20, and a food package housed in an outer container B such as a cardboard box A storage chamber S10 having a multi-stage structure is defined in which F is stored. Furthermore, a heat insulating material is embedded inside each of the box body 40 and the door part 50 to suppress heat transfer from the storage chamber S10 to the outside of the container 10 in order to improve the cooling performance of the container 10. . Furthermore, the pair of door sections 50 shown in FIG. 1 are connected to the box body 40 so as to be openable and closable. In the container 10, by opening and closing the door portion 50, it is possible to take food packages F into and out of the storage chamber S10. Further, by closing the door portion 50, the storage chamber S10 becomes a closed space, and the inside of the storage chamber S10 and the food package F accommodated therein are maintained in a cooled state.

一方、図3に示されるように、コンテナ10は、本体20の例えば背部に内蔵される冷却装置30を更に備えている。冷却装置30は、収容庫本体20の内部又は外部に設けられた電源(図示せず)に接続されており、電力供給によって駆動され、収容室S10の内部に冷風を供給して冷却する。具体的には、冷却装置30は、収容室S10内に開口する吸入口31及び吹出口32を有している。冷却装置30は、吸入口31を介して収容室S10内の空気を吸入するとともに、吸入した空気を冷却して吹出口32から収容室S10の内部に吹き出すことにより、収容室S10内を冷却する。このように、本実施形態のコンテナ10は、冷却装置30により収容室S10内の温度を調整することが可能な、いわゆるリーファーコンテナである。 On the other hand, as shown in FIG. 3, the container 10 further includes a cooling device 30 built in, for example, the back of the main body 20. The cooling device 30 is connected to a power source (not shown) provided inside or outside the storage main body 20, is driven by the power supply, and cools the storage chamber S10 by supplying cold air to the inside. Specifically, the cooling device 30 has an inlet 31 and an outlet 32 that open into the storage chamber S10. The cooling device 30 sucks air in the storage chamber S10 through the suction port 31, cools the sucked air, and blows it out from the blow-off port 32 into the storage chamber S10, thereby cooling the inside of the storage chamber S10. . In this way, the container 10 of this embodiment is a so-called reefer container in which the temperature within the storage chamber S10 can be adjusted by the cooling device 30.

また、図2及び図3に示すように、コンテナ10は、収容庫本体20の上壁部41の内側付近に配置された電場形成部60を更に備える。この電場形成部60は、絶縁部材61と、上記電源(図示せず)に接続された電極部材62とを備えている。これにより、電場形成部60は、電力供給によって駆動され、収容室S10の内部に電場を形成する。また、電場形成部60の左右方向Xの一端部及び他端部は、それぞれ、収容庫本体20の側壁部42,43の上方に設けられる載置部81,82上に載置され、また、奥行き方向Yに延在している。 Further, as shown in FIGS. 2 and 3, the container 10 further includes an electric field forming section 60 disposed near the inside of the upper wall section 41 of the storage main body 20. The electric field forming section 60 includes an insulating member 61 and an electrode member 62 connected to the power source (not shown). Thereby, the electric field forming unit 60 is driven by the power supply and forms an electric field inside the storage chamber S10. Further, one end and the other end in the left-right direction X of the electric field forming part 60 are placed on placing parts 81 and 82 provided above the side walls 42 and 43 of the storage main body 20, respectively, and It extends in the depth direction Y.

これらの載置部81,82の種類は、特に限定されず、電気的な絶縁性を有する絶縁材料(例えば樹脂)でもよく、或いは、鉄やステンレス等の導電性材料により形成することができる。さらに、載置部81,82は、それぞれ、側壁部42,43に固定される部位810,820と、電場形成部60の一端部が載置される部位811,821とを有しており、ともにX方向断面がL字状をなす、いわゆるL字状アングル部材として構成されている。 The types of these mounting parts 81 and 82 are not particularly limited, and may be made of an electrically insulating material (for example, resin) or a conductive material such as iron or stainless steel. Furthermore, the placing parts 81 and 82 have parts 810 and 820 fixed to the side walls 42 and 43, respectively, and parts 811 and 821 on which one end part of the electric field forming part 60 is placed, Both are configured as so-called L-shaped angle members whose X-direction cross sections are L-shaped.

また、食品包装体Fに含まれる「食品」としては、特に制限されず、例えば、牛肉や豚肉等の食肉、魚や貝等の魚介類、鶏卵、魚卵、牛乳やチーズ等の乳製品、小麦粉やそば粉等の穀物の粉体から作られる麺類、いちごやりんご等の果物、キャベツやトマト等の野菜、及び、それらの加工食品が挙げられる。これらのなかでも、牛肉や豚肉等の食肉、魚や貝等の魚介類、鶏卵、魚卵、牛乳やチーズ等の乳製品等の動物性食品は、長期の保管や輸送における鮮度保持効果が特に渇望される食品であり、本開示に係るコンテナ10に収容される食品包装体Fに包含される対象として好適である。 In addition, the "food" included in the food package F is not particularly limited, and includes, for example, meat such as beef and pork, seafood such as fish and shellfish, chicken eggs, fish eggs, dairy products such as milk and cheese, and flour. Examples include noodles made from grain powder such as buckwheat flour, fruits such as strawberries and apples, vegetables such as cabbage and tomatoes, and processed foods thereof. Among these, animal foods such as meat such as beef and pork, seafood such as fish and shellfish, dairy products such as chicken eggs, fish eggs, and milk and cheese are particularly in need of freshness retention effects during long-term storage and transportation. It is suitable as a target to be included in the food package F housed in the container 10 according to the present disclosure.

さらに、食品包装体Fは、それらの少なくとも1種類又は1形態の食品が、熱収縮性及び高真空性を有する包装材で被覆されたものである(図2参照)。なお、ここでの食品の「形態」としては、例えば、同じ種類でも、性状、形状、産地、産生時期、真空シュリンクラッピングの状態等が異なることが挙げられる。また、「包装材」は、食品用の真空パック(梱包材)の一種である。このような「包装材」によって被覆された食品包装体Fとしては、熱収縮性フィルムを含む包装材で食品が被覆されて真空シュリンクラッピングされることにより形成されたものが好ましく例示される。なお、食品包装体Fのラッピング状態に関しては、同一種類の食品の全てが同一のラッピング状態を必ずしも有している必要はなく、同一種類の食品のそれぞれが異なるラッピング状態を有していても良い。 Furthermore, the food package F is one in which at least one type or one form of the food is covered with a packaging material having heat shrinkability and high vacuum properties (see FIG. 2). Note that the "form" of the food here includes, for example, that even if the food is of the same type, the property, shape, production area, production period, vacuum shrink wrapping state, etc. are different. Moreover, "packaging material" is a type of vacuum pack (packing material) for food. A preferred example of a food package F covered with such a "packaging material" is one formed by covering a food product with a packaging material containing a heat-shrinkable film and vacuum shrink-wrapping the food. In addition, regarding the wrapping state of the food package F, it is not necessary that all of the same type of food necessarily have the same wrapping state, and each of the same type of food may have a different wrapping state. .

また、「真空シュリンクラッピング」とは、食品を包含した包装材の内部を減圧(真空引き)しながら、又は、全体を減圧(真空)環境下において包装材を加熱し、熱収縮性フィルムの熱収縮により、その食品を密封ラッピングする手法である。ここで、包装材に含まれる「熱収縮性フィルム」は、特に制限されず、熱収縮温度(例えば70~110℃)における熱収縮時の収縮率が1~70%であり、所定の引張弾性率を有するフィルムが挙げられる。また、熱収縮性フィルムは、延伸されていても延伸されていなくてもよい。さらに、熱収縮性フィルムの種類として、より具体的には、公知の熱可塑性樹脂によるフィルムを使用でき、例えば、ポリエチレン、ポリプロピレン、ポリエステル、エチレン酢酸ビニル共重合、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリ塩化ビニル、ポリスチレン、耐衝撃性ポリスチレン(HIPS)等が挙げられる。また、熱収縮性フィルムを構成する樹脂中に、適宜の顔料、充填剤、染料、熱安定剤、酸化防止剤、可塑剤、帯電防止剤等の各種添加剤が添加されていてもよい。さらに、ここでの包装材は、熱収縮性フィルムに非熱収縮性フィルムが積層された複合フィルムであってもよい。この非熱収縮性のフィルムも特に制限されず、組み合わせて使用される熱収縮性フィルムよりも、同温度での熱収縮率が低いものであれば制限されず、例えば、70~110℃の加熱温度における熱収縮率が1%未満であるものが挙げられる。 In addition, "vacuum shrink wrapping" refers to heating the packaging material while reducing the pressure (vacuum) inside the packaging material containing the food, or in a reduced pressure (vacuum) environment. This is a method of sealing and wrapping the food by shrinking it. Here, the "heat-shrinkable film" included in the packaging material is not particularly limited, and has a shrinkage rate of 1-70% at a heat-shrinking temperature (for example, 70-110°C), and has a predetermined tensile elasticity. Examples include films having a certain ratio. Further, the heat-shrinkable film may or may not be stretched. Furthermore, as the type of heat-shrinkable film, more specifically, films made of known thermoplastic resins can be used, such as polyethylene, polypropylene, polyester, ethylene-vinyl acetate copolymer, polyethylene succinate, polybutylene succinate, Examples include polyvinyl chloride, polystyrene, high impact polystyrene (HIPS), and the like. Furthermore, various additives such as appropriate pigments, fillers, dyes, heat stabilizers, antioxidants, plasticizers, and antistatic agents may be added to the resin constituting the heat-shrinkable film. Furthermore, the packaging material here may be a composite film in which a heat-shrinkable film and a non-heat-shrinkable film are laminated. This non-heat-shrinkable film is also not particularly limited, as long as it has a lower heat-shrinkage rate at the same temperature than the heat-shrinkable film used in combination, for example, heating at 70 to 110°C. Examples include those having a thermal shrinkage rate of less than 1%.

[食品保管方法及び食品輸送方法の実施手順例]
図4は、図1及び図2に示すコンテナ10に食品包装体Fを収容して保管し、かつ、その状態で食品包装体Fを輸送する手順の一例を示すフロー図である。
[Example of implementation procedure for food storage method and food transportation method]
FIG. 4 is a flowchart showing an example of a procedure for accommodating and storing the food package F in the container 10 shown in FIGS. 1 and 2 and transporting the food package F in this state.

ステップSP1では、食品包装体Fをコンテナ10の収容室S10に収容するため、図1及び図2に示すコンテナ10を、食品包装体Fの積載(荷積み)場所に設置する(収容庫準備工程)。それと前後して、又は、並行して、ステップSP2では、熱収縮性フィルムを含む包装材等で食品を被覆して真空シュリンクラッピングすることにより、高真空性を有する食品包装体Fを形成する、或いは、そのように形成された食品包装体Fを、その積載(荷積み)場所付近に移載する(食品包装工程)。 In step SP1, in order to accommodate the food packages F in the storage chamber S10 of the container 10, the container 10 shown in FIGS. 1 and 2 is installed at a loading location for the food packages F (accommodation preparation step). ). Before or after that, or in parallel, in step SP2, a food package F having high vacuum properties is formed by covering the food with a packaging material containing a heat-shrinkable film and performing vacuum shrink wrapping. Alternatively, the food packaging body F thus formed is transferred to the vicinity of its loading (loading) location (food packaging process).

次いで、ステップSP3では、食品包装体Fを、収容室S10の内部に収容する。このとき、食品包装体Fは、収容室S10の内部における適宜の場所に保持することができ、例えば、図2に示すように、収容室S10の内部に多段に構成された棚を設け、その食品包装体Fの冷却及び温度管理に適した場所を選定することができる。次に、ステップSP4では、電源(図示せず)から電場形成部60の電極部材62に所定の高電圧を印加することにより、収容室S10の内部に電場を形成する。その際、電極部材62に印加される高電圧は、例えば、時間の経過に伴って周期的に大きさや向きが変化する交番(交流)電圧であってもよいし、時間の経過に伴って大きさや向きが変化しない一定(直流)電圧であってもよい。電極部材62に印加される電圧は、任意の大きさに設定可能であるが、例えば数百V~数万Vの高電圧に設定される。また、電極部材62に印加される交番電圧の周波数は、任意の周波数に設定可能である。なお、電極部材62に印加される高電圧が交番(交流)電圧である場合、上記印加電圧は実効電圧として表され得る。それと前後して、又は、並行して、ステップSP5では、電源(図示せず)から冷却装置30に所定の電力を供給することにより、収容室S10の内部に冷風を供給し、収容室S10の内部を、食品包装体F内の食品の少なくとも一部が凍結寸前の状態(チルド状態)となるように冷却し、その状態を保持する。なお、食品の少なくとも一部とは、一つの食品内の少なくとも一部分、あるいは複数の食品のうちの少なくとも一つの食品を示す。また、凍結寸前の状態には、例えば半冷凍や半解凍のような状態や、若干表面が固くなっている状態、あるいは指で押せば1mm~2mm凹むような完全凍結ではないものの、その一歩手前(解凍の初期段階)等が含まれる。ステップSP3,SP4,SP5から、「電場冷却工程」が構成される。 Next, in step SP3, the food package F is stored inside the storage chamber S10. At this time, the food package F can be held at an appropriate location inside the storage chamber S10. For example, as shown in FIG. A location suitable for cooling and temperature control of the food package F can be selected. Next, in step SP4, a predetermined high voltage is applied from a power source (not shown) to the electrode member 62 of the electric field forming section 60 to form an electric field inside the storage chamber S10. At this time, the high voltage applied to the electrode member 62 may be, for example, an alternating current (alternating current) voltage whose magnitude and direction change periodically as time passes, or a It may be a constant (DC) voltage that does not change the direction of the sheath. The voltage applied to the electrode member 62 can be set to any level, but is set to a high voltage of, for example, several hundred volts to several tens of thousands of volts. Further, the frequency of the alternating voltage applied to the electrode member 62 can be set to any frequency. Note that when the high voltage applied to the electrode member 62 is an alternating current (AC) voltage, the applied voltage can be expressed as an effective voltage. Before or after that, or in parallel, in step SP5, a predetermined power is supplied from a power source (not shown) to the cooling device 30 to supply cold air to the inside of the storage chamber S10. The inside is cooled so that at least a portion of the food inside the food package F is on the verge of freezing (chilled state), and this state is maintained. Note that at least a portion of food refers to at least a portion of one food, or at least one of a plurality of foods. In addition, the state on the verge of freezing includes, for example, a state that is half-frozen or half-thawed, a state where the surface is slightly hardened, or a state where the surface is not completely frozen but is one step away from freezing, such as a dent of 1 mm to 2 mm when pressed with your finger. (initial stage of thawing), etc. Steps SP3, SP4, and SP5 constitute an "electric field cooling step."

そして、ステップSP6において、上述のとおり収容室S10の内部に電場を形成し、かつ、収容室S10の内部を冷却した状態で、コンテナ10を船舶、飛行機、車両、鉄道等の移動体に荷積み(積載)し、目的地まで輸送する。このとおり、図2に示すように収容室S10の内部に食品包装体Fが収容され、かつ、冷却された状態のコンテナ10は、食品包装体Fを含めて本開示の「食品輸送体」の一例に相当する。 Then, in step SP6, an electric field is formed inside the storage chamber S10 as described above, and the container 10 is loaded onto a moving object such as a ship, an airplane, a vehicle, or a railway, while the inside of the storage chamber S10 is cooled. (load) and transport to the destination. As shown in FIG. 2, the container 10 in which the food package F is housed inside the storage chamber S10 and is in a cooled state is a "food transporter" of the present disclosure, including the food package F. This corresponds to an example.

このように構成されたコンテナ10を用いた食品保管方法、食品輸送方法、及び食品輸送体によれば、食品を熱収縮性及び高真空性を有する包装材で真空シュリンクラッピングした食品包装体Fとして、電場環境に保持することにより、真空シュリンクラッピングを施さない場合(脱気パックや非シュリンク真空パック等)に比して、食品の非凍結温度を更に低下させることができる。このような非凍結温度の更なる低下は、電場環境による効果に加え、真空シュリンクラッピングの場合、食品が接触する空気量及びその気中水分量が低減されるので、水の凝固点(0℃)以下での凍結自体がより生じ難くなることが要因の一つとして推察される(但し、作用はこれに限定されない。)。これにより、食品をチルド状態で凍らせずにより安定的に保持することができるので、腐敗の原因である食品中の細菌の増殖を更に抑制して、食品の鮮度を長期に亘って保持することが可能となる。 According to the food storage method, food transport method, and food transporter using the container 10 configured as described above, food can be vacuum shrink-wrapped with a packaging material having heat shrinkability and high vacuum properties as a food package F. By maintaining the food in an electric field environment, the non-freezing temperature of the food can be further lowered compared to cases where vacuum shrink wrapping is not performed (e.g., deaerated packs, non-shrink vacuum packs, etc.). This further reduction in the non-freezing temperature is due to the effect of the electric field environment, and in the case of vacuum shrink wrapping, the amount of air that comes into contact with the food and the amount of moisture in the air are reduced, so the freezing point of water (0°C) is reduced. One of the factors is presumed to be that freezing itself becomes more difficult to occur (however, the effect is not limited to this). This allows food to be kept more stably in a chilled state without freezing, further suppressing the growth of bacteria in food that causes spoilage and preserving the freshness of food over a long period of time. becomes possible.

このとおり、本開示によれば、食品の腐敗リスク及び凍結リスクを低減することができるので、真空シュリンクラッピングを施さない場合に比して、食品の可食期間をより延長することができる。よって、従来は実現し得なかった、例えば、遠方生産地から航空輸送されていた生鮮食品を海上輸送すること、及び、従来冷凍されていた食品をチルド状態のまま輸送するといったような全く新規の輸送方法が実現可能となる。さらに、これらにより、食品の長期間の流通が可能となるので、廃棄されてしまう食品量(フードロス)を削減することができ、消費者に対する食品の安価な安定供給に資することができる。また、食品が冷凍されてしまった場合に必要となる解凍作業に起因する作業性及び歩留りの低下を抑止することができる。しかも、航空輸送を、物流コストがより安価な海上輸送へ転換することにより、食品の調達価格を大幅に削減することができ、また、輸送によるCO2ガスの排出量の削減にも寄与することができる。また、食品の生産時点から所定時間経過した後に図4に示されるステップSP3、ステップSP4、又は、ステップSP5を開始することで、食品を敢えて熟成させた後に保管又は輸送を開始することも可能である。なお、輸送後に熟成をさせてもよい。 As described above, according to the present disclosure, the risk of food spoilage and the risk of freezing can be reduced, so the edible period of food can be extended more than when vacuum shrink wrapping is not performed. Therefore, we are now able to implement completely new initiatives that were previously impossible to achieve, such as transporting fresh foods that were previously transported by air from distant production areas by sea, and transporting foods that were previously frozen in a chilled state. The transportation method becomes feasible. Furthermore, these allow food to be distributed for a long period of time, thereby reducing the amount of wasted food (food loss) and contributing to the stable supply of food to consumers at low prices. Further, it is possible to prevent a decrease in work efficiency and yield due to thawing work that is required when food is frozen. Moreover, by switching from air transport to sea transport, which has lower logistics costs, it is possible to significantly reduce food procurement prices, and also contribute to reducing CO2 gas emissions from transport. Can be done. Furthermore, by starting step SP3, step SP4, or step SP5 shown in FIG. 4 after a predetermined time has elapsed from the time of food production, it is also possible to intentionally ripen the food before starting storage or transportation. be. Note that the product may be aged after transportation.

この点について、更に具体的に述べれば、例えば、現状、外国産の食肉や液卵のなかには、需給バランスによって商品としての競争力が高い安価な調達価格及び高品質な食品が存在するものの、輸送距離が長い国へ輸出するには、冷凍輸送によるしかなかったことが重大な課題であった。これに対し、本開示によれば、長期間のチルド輸送が可能となるので、この問題が解消され得るという大きな利点がある。また、例えば、サーモンのセミドレス(内臓のみ取り出された状態のもの)のような魚介類は、発泡スチロール容器に裸の食品を入れて氷漬けとして、しかも航空輸送されているのが現状である。これに対し、本開示によれば、通常の輸送よりも低温度帯でのチルド状態で鮮度を維持したまま長時間の輸送が可能となるので、新たな需要を喚起し、また、商品競争力を格段に高めることができる。 To be more specific about this point, for example, at present, some foreign meat and liquid eggs have low procurement prices and high quality that are highly competitive due to the balance of supply and demand, but transport A major issue was that refrigerated transport was the only way to export to countries over long distances. On the other hand, according to the present disclosure, it is possible to carry out chilled transportation for a long period of time, so there is a great advantage that this problem can be solved. In addition, for example, seafood such as semi-dressed salmon (with only the internal organs removed) is currently being transported by air in a Styrofoam container packed with ice. In contrast, according to the present disclosure, it is possible to transport for a long time while maintaining freshness in a chilled state at a lower temperature than normal transport, which will stimulate new demand and improve product competitiveness. can be significantly increased.

[変形例1]
以上のとおり、本開示によれば、食品の長期間の鮮度保持による輸送が可能であることから、食品の腐敗を抑えた状態で、乳酸菌の産生作用を奏する電場環境にその食品を長時間保持し得る。また、鮮度を維持しつつ食品を長期間保存することが可能なため、すなわち可食期間を延ばすことが可能なため、食品中の遊離グルタミン酸を増加させることも可能である。結果的に、食品中の遊離グルタミン酸の増加による食品の旨味の向上、及び、食品中の乳酸菌の増加による更なる腐敗進行の遅延をも実現することができる。換言すれば、本開示によれば、乳酸菌以外の食品腐敗を引き起こす細菌が活動できない低温度帯での食品保管及び輸送が可能になるので、そのような一般的な細菌に占める乳酸菌の割合が増加し、食品の鮮度維持効果を高めることができる。
[Modification 1]
As described above, according to the present disclosure, it is possible to transport food by keeping it fresh for a long period of time, and therefore, food can be kept for a long time in an electric field environment that produces lactic acid bacteria while suppressing food spoilage. It is possible. Furthermore, since it is possible to preserve food for a long period of time while maintaining its freshness, that is, it is possible to extend the edible period, it is also possible to increase the amount of free glutamic acid in the food. As a result, it is possible to improve the flavor of the food by increasing the amount of free glutamic acid in the food, and to further delay the progress of spoilage by increasing the number of lactic acid bacteria in the food. In other words, according to the present disclosure, food can be stored and transported in a low temperature zone where bacteria that cause food spoilage other than lactic acid bacteria cannot be active, thereby increasing the proportion of lactic acid bacteria among such common bacteria. This can enhance the effect of maintaining food freshness.

また、そこで、この観点からすれば、変形例1として、ステップSP3,SP4,SP5から構成される電場冷却工程(を実施した状態の保管又は輸送)を、一日以上実施することが好ましく、2週間以上実施することが更に好ましく、数か月(例えば1ヶ月又は2ヶ月)以上実施することが特に好ましい。この実施期間の好適な上限は、需給バランスによる供給タイミング、輸送距離、季節等を考慮して適宜設定することができる。 From this point of view, it is preferable that the electric field cooling step (storage or transportation in the state in which it has been carried out) consisting of steps SP3, SP4, and SP5 is carried out for at least one day as modification 1. It is more preferable to carry out the process for a week or more, and it is particularly preferable to carry out the process for several months (for example, 1 month or 2 months) or more. A suitable upper limit for this implementation period can be set as appropriate in consideration of supply timing based on supply and demand balance, transportation distance, season, etc.

[変形例2]
変形例2として、ステップSP3(食品包装体Fの収容室S10への収容)、ステップSP4(収容室S10内の電場形成)、又は、ステップSP5(収容室内の冷却)を、食品の生産(屠殺又は屠畜処理等、及び、神経締め、活き締め、又は氷締め処理等)直後に開始、あるいは食品の生産時点から所定時間以内に開始することが有効である。所定時間は、好ましくは5日に、好ましくは48時間に、更に好ましくは24時間に、特に好ましくは1時間に設定されることが好適である。なお、この開始までの期間の好適な下限は、食品の生産からステップSP2(食品包装体Fの形成又は準備)の終了までの時間に依拠して変動し得る。このように構成すれば、食品の生産直後の比較的早い経過時間における急激な細菌数の増加を抑制することができ、このような食品の冷却保持開始時の細菌数の初期値を低減させ得るので、長時間の鮮度保持効果を一層高めることができる。
[Modification 2]
As a second modification, step SP3 (accommodating the food package F in the storage chamber S10), step SP4 (formation of an electric field in the storage chamber S10), or step SP5 (cooling in the storage chamber) is replaced with food production (slaughter). It is effective to start the process immediately after (or slaughter processing, etc., and nerve tightening, live tightening, or ice tightening processing, etc.) or within a predetermined time from the time of food production. The predetermined time is preferably set to 5 days, preferably 48 hours, more preferably 24 hours, and particularly preferably 1 hour. Note that the preferable lower limit of the period up to this start may vary depending on the time from the production of the food to the end of step SP2 (formation or preparation of the food package F). With this configuration, it is possible to suppress a rapid increase in the number of bacteria in a relatively short period of time immediately after food production, and it is possible to reduce the initial value of the number of bacteria at the start of cooling and holding such food. Therefore, the long-term freshness retention effect can be further enhanced.

[変形例3]
コンテナ10のように本体20の例えば背部に冷却装置30が内蔵される場合、また、外部温度や断熱材性能等の外部要因に起因して、収容室S10の内部空間を均一の温度に冷却することは、実際のところ難しく、収容室S10内には冷却温度のばらつきが生じ得る。また、食品の種類や形態の相違に起因して、好適なチルド状態を実現できる温度も異なる可能性がある。
[Modification 3]
When the cooling device 30 is built in, for example, the back of the main body 20 like the container 10, the internal space of the storage chamber S10 is cooled to a uniform temperature due to external factors such as the external temperature and the performance of the insulation material. This is actually difficult, and variations in cooling temperature may occur within the storage chamber S10. Further, due to differences in the type and form of food, the temperature at which a suitable chilled state can be achieved may also differ.

そこで、変形例3として、食品包装体Fを収容室S10内に収容していない状態で(例えば、実際の食品包装体Fの保管や輸送に先立って)、又は、食品包装体Fを収容室S10内に収容した状態(ステップSP3の実施中)で、収容室S10内に電場を形成し(ステップSP4)、収容室S10内を冷却(ステップSP5)したときの収容室S10内の温度分布を計測する温度計測工程を実施してもよい。そして、温度計測工程で計測された収容室S10内の温度分布と、食品包装体Fに包装された食品の種類又は形態とに基づいて、収容室S10内における食品包装体Fの収容位置を決定(最適化)してもよい。この場合、収容室S10内の内壁や図2に示すような棚板における複数箇所に温度センサを設置したり、或いは、収容室S10内の空間温度分布を計測することができる位置に温度センサを3次元的に配置したりすることができる。また、それらの温度センサによる温度計測値を収集するためのデータロガー等をコンテナ10の内部又は外部に設けてもよい。 Therefore, as a third modification, the food package F is not housed in the storage chamber S10 (for example, prior to actual storage or transportation of the food package F), or the food package F is stored in the storage chamber S10. The temperature distribution inside the storage chamber S10 is calculated when an electric field is formed in the storage chamber S10 (step SP4) and the inside of the storage chamber S10 is cooled (step SP5) while the storage chamber S10 is housed in the storage chamber S10 (during step SP3). You may carry out the temperature measurement process of measuring. Then, the storage position of the food package F in the storage chamber S10 is determined based on the temperature distribution in the storage chamber S10 measured in the temperature measurement step and the type or form of the food packaged in the food package F. (optimization). In this case, temperature sensors may be installed at multiple locations on the inner wall of the storage chamber S10 or on the shelf board as shown in FIG. 2, or temperature sensors may be installed at positions where the spatial temperature distribution within the storage chamber S10 can be measured. It can be arranged three-dimensionally. Further, a data logger or the like may be provided inside or outside the container 10 to collect temperature measurements by these temperature sensors.

このように構成すれば、温度計測工程を予め実施した場合、収容室S10内の実際の温度分布(ばらつき)を予測することができるので、食品の種類や形態に応じて、好適なチルド状態を実現できる温度を示す場所に目的の食品包装体Fを配置することができる。換言すれば、収容室S10内の温度のばらつきを利用して、様々な種類や形態の食品を同一のコンテナ10内に好適な冷却温度状態で混載することが可能となる。なお、この場合、温度センサやデータロガーは、食品包装体Fの実際の保管及び輸送時には設置したままでもよく、取り外しておいてもよい。一方、温度計測工程を食品包装体Fの実際の保管又は輸送時に実施する場合、保管及び輸送中の温度分布の履歴データを取得して、その後の運用や商品提供時期の調整、及び、必要に応じて冷却装置30の出力調整に供することができる。 With this configuration, if the temperature measurement process is performed in advance, the actual temperature distribution (variation) in the storage chamber S10 can be predicted, so a suitable chilled state can be set depending on the type and form of the food. The desired food package F can be placed at a location that exhibits an achievable temperature. In other words, by utilizing the temperature variations within the storage chamber S10, it is possible to mix and load various types and forms of foods in the same container 10 at a suitable cooling temperature. In this case, the temperature sensor and data logger may remain installed during actual storage and transportation of the food package F, or may be removed. On the other hand, when the temperature measurement process is carried out during the actual storage or transportation of the food package F, the historical data of temperature distribution during storage and transportation is acquired, and subsequent operations and adjustment of product delivery timing, as well as necessary The output of the cooling device 30 can be adjusted accordingly.

[変形例4]
変形例5として、電場冷却工程では、食品の冷却温度を増大させる媒体(水等)を収容室S10内に配置しない構成が好ましい。例えば、食品の好適な冷却温度が-(マイナス)数℃以下の場合、従来の生鮮品の輸送時のように、通常は保冷剤として使用される氷(凝固点0℃)や雪状氷(凝固点-1℃)等に食品包装体Fが接すると、チルド状態から凍結状態へ遷移し易くなることが発明者らにより確認されている。その要因は、食品の周囲の水分量が増加し、過冷却解除のきっかけとなる氷結晶が食品表面に付着し易くなるためであると考えられている。したがって、食品包装体Fに保冷剤を接触させないことが望ましい。
[Modification 4]
As a fifth modification, in the electric field cooling step, it is preferable that a medium (such as water) that increases the cooling temperature of the food is not placed in the storage chamber S10. For example, if the suitable cooling temperature for food is - (minus) several degrees Celsius or lower, ice (freezing point: 0°C) or snow ice (freezing point: The inventors have confirmed that when the food package F comes into contact with temperatures such as -1° C., the transition from the chilled state to the frozen state is likely to occur. The reason for this is thought to be that the amount of moisture around the food increases, making it easier for ice crystals, which triggers the release of supercooling, to adhere to the food surface. Therefore, it is desirable that the food package F is not brought into contact with the cold pack.

[変形例5]
変形例5として、図4に示されるステップSP6の工程でコンテナ10を船舶等の移動体に荷積み(積載)して目的地まで輸送する際に、食品包装体F内の食品が凍結により固くなることがある。仮に食品が固くなった場合には、目的地に到着する輸送途上や、目的地への到着後に、コンテナ10の設定温度を所定温度に上げて電場をかけて解凍することでより良い状態(一度も凍っていないチルドに近い状態)に戻すことができる。これは、電場環境で凍結しても食品の細胞破壊が生じ難いため、また電場環境で解凍する際に解凍過程で食品の細胞破壊が生じ難いためである。なお、所定温度は氷点下でもよいし、氷点下よりも高い温度でもよい。電場解凍のタイミングは、目的地到着前でなくてもよい。また、電場解凍することで、スピーディーに高品質なチルド状態を再現できる。
[Modification 5]
As a fifth modification, when the container 10 is loaded onto a moving body such as a ship and transported to the destination in step SP6 shown in FIG. 4, the food inside the food package F becomes hard due to freezing. It may happen. If the food becomes hard, you can defrost it to a better state (once It is possible to return it to a state close to chilled (not frozen). This is because food cells are less likely to be destroyed when frozen in an electric field environment, and also because food cells are less likely to be destroyed during the thawing process when thawed in an electric field environment. Note that the predetermined temperature may be below the freezing point or may be a temperature higher than the freezing point. The timing of electric field decompression does not have to be before arrival at the destination. In addition, by defrosting with an electric field, a high-quality chilled state can be quickly reproduced.

(実施例1~14)
食品として、複数の店舗で市販されている生の豚肩ロース肉を用い、熱収縮性フィルムを含む包装材(例えばシールドエアージャパン合同会社製の「CT304」、ムルチバック社製の「ムルチバック」、クライオバック社製のフィルム)で、その食品を被覆し、ラッピング装置(例えば株式会社平井カンパニー製の「ターボバック」、株式会社古川製作所製の真空包装機)で真空シュリンクラッピングすることにより、食品包装体Fとしての検体を形成した。この検体をコンテナ10と同様の構成を有するコンテナの収容室内に収容し、電極部材に7000Vの電圧を印加して電場を形成し、かつ、収容室内を冷却した状態で所定期間保持した後、コンテナから取り出した。そして、取り出し直後の検体を指圧し、そのときの検体の凹み量から、用いた食品の凍結の程度を観察した。各実施例の食品保管条件(収容室内の冷却設定温度、保管日数、検体重量、包装種類、検体設置場所、検体設置数、及び、その設置場所の平均温度計測値)、並びに、観察結果を表1及び表2にまとめて示す。
(Examples 1 to 14)
As a food product, raw pork shoulder loin, which is commercially available at multiple stores, is used, and packaging materials containing heat-shrinkable film (for example, "CT304" manufactured by Sealed Air Japan LLC, "Multibag" manufactured by Multivac Co., Ltd.) are used. By covering the food with a film made by Cryovac, Inc.) and vacuum shrink-wrapping it with a wrapping device (for example, "Turbovac" made by Hirai Company, Ltd., a vacuum packaging machine made by Furukawa Seisakusho Co., Ltd.), the food is A specimen as package F was formed. This specimen is housed in a storage chamber of a container having the same configuration as the container 10, a voltage of 7000 V is applied to the electrode member to form an electric field, and the inside of the storage chamber is kept cooled for a predetermined period of time. I took it out. Immediately after taking out the sample, the sample was pressed with finger pressure, and the degree of freezing of the food used was observed from the amount of dent in the sample at that time. The food storage conditions for each example (cooling temperature setting in the storage chamber, number of storage days, sample weight, packaging type, sample installation location, number of samples installed, and average temperature measurement value at the installation location) and observation results are shown. 1 and Table 2.

(比較例1~9)
実施例1~14で用いた包装材に代えて、包装材(例えばクリロン化成株式会社製の「ハイラミナーNXS」)を用いてラッピング装置(例えば株式会社古川製作所製の真空包装機)で真空非シュリンクラッピングすることにより、検体を形成したこと以外は、実施例1~14と同様にして、食品の凍結の程度を観察した。各比較例の食品保管条件(収容室内の冷却設定温度、保管日数、検体重量、包装種類、検体設置場所、検体設置数、及び、その設置場所の平均温度計測値)、並びに、観察結果を表3にまとめて示す。
(Comparative Examples 1 to 9)
Instead of the packaging materials used in Examples 1 to 14, a packaging material (for example, "Hilaminar NXS" manufactured by Krylon Kasei Co., Ltd.) is used to vacuum non-shrink with a wrapping machine (for example, a vacuum packaging machine manufactured by Furukawa Seisakusho Co., Ltd.). The degree of freezing of the food was observed in the same manner as in Examples 1 to 14, except that the specimen was formed by wrapping. The food storage conditions for each comparative example (cooling temperature setting in the storage chamber, number of days of storage, sample weight, packaging type, sample installation location, number of samples installed, and average temperature measurement at the installation location) and observation results are shown. They are summarized in 3.

なお、表1~表3中、検体設置場所を示す「(1)~(3)」、及び、観察結果を示す凡例「〇、△、×」が表す意味は、以下のとおりである。
場所(1):収容室内の中央部中段
場所(2):収容室内の冷却装置30側の下段
場所(3):収容室内の冷却装置30側の中段
観察結果〇:2mm以上の凹み~完全な非凍結(チルド)状態
観察結果△:1mm以上2mm未満の凹み
観察結果×:1mm未満~完全な凍結状態
In addition, in Tables 1 to 3, the meanings of "(1) to (3)" indicating the specimen installation location and the legends "〇, △, ×" indicating the observation results are as follows.
Location (1): Middle section in the center of the containment chamber Location (2): Lower section on the cooling device 30 side of the containment chamber Location (3): Middle section on the cooling device 30 side of the containment chamber Observation results: dents of 2 mm or more - complete Non-frozen (chilled) state Observation result △: Dent of 1 mm or more and less than 2 mm Observation result ×: Less than 1 mm to completely frozen state

表1~表3に示す観察結果より、本開示の構成に係る実施例1~14の食品保管方法によれば、収容室内に温度分布が生じているものの、10日間~約30日間の保管期間中、約-4℃~-5℃の収容室内温度において、検体の食品が完全に凍結することなく、その少なくとも一部又は全部において、チルド状態が保持されていたことが確認された。一方、比較例1~9の食品保管方法によれば、同じく収容室内に温度分布が生じているものの、14日間~約30日間の保管期間中、約-4℃~-5℃の収容室内温度において、検体の食品は完全に凍結又はほぼ凍結した状態となったことが確認された。これらの結果より、本開示による食品保管方法によれば、電場環境における食品の非凍結温度を有意に低下させ得ることが理解される。 From the observation results shown in Tables 1 to 3, according to the food storage methods of Examples 1 to 14 according to the configuration of the present disclosure, although there is a temperature distribution in the storage chamber, the storage period is from 10 days to about 30 days. It was confirmed that at least part or all of the sample food was maintained in a chilled state at a temperature in the storage room of about -4°C to -5°C, without completely freezing. On the other hand, according to the food storage methods of Comparative Examples 1 to 9, although there is a temperature distribution in the storage chamber, the temperature in the storage room is about -4°C to -5°C during the storage period of 14 days to about 30 days. It was confirmed that the sample food was completely frozen or almost frozen. From these results, it is understood that the food storage method according to the present disclosure can significantly lower the non-freezing temperature of food in an electric field environment.

(比較例10及び11並びに実施例15及び16)
生の豚肩ロース肉及び生の豚バラ肉を複数準備し、まず、それらの屠畜直後の細菌数(一般生菌数)を測定した。次に、比較例10及び11として、生の豚肩ロース肉及び生の豚バラ肉を任意に複数選定し、それら検体群を、熱収縮性フィルムを含む包装材(例えばシールドエアージャパン合同会社製の「CT304」、ムルチバック社製の「ムルチバック」、クライオバック社製のフィルム)で個別に被覆し、ラッピング装置(例えば株式会社平井カンパニー製の「ターボバック」、株式会社古川製作所製の真空包装機)で真空シュリンクラッピングすることにより、食品包装体Fとしての検体を複数形成した。そして、これらの検体を、電場環境を有しない(非電場環境の)冷凍倉庫において、0℃の環境下でそのまま所定期間保管し、保管直後の細菌数(一般生菌数)を再度測定した。
(Comparative Examples 10 and 11 and Examples 15 and 16)
A plurality of raw pork shoulder loin meats and raw pork belly meats were prepared, and first, the number of bacteria (general viable bacterial count) was measured immediately after slaughtering them. Next, as Comparative Examples 10 and 11, a plurality of raw pork shoulder loin meats and raw pork belly meats were arbitrarily selected, and these sample groups were placed in a packaging material containing a heat-shrinkable film (for example, manufactured by Sealed Air Japan LLC). ``CT304'' manufactured by Multivac, ``Multivac'' manufactured by Cryovac, Inc.), and wrapped with wrapping equipment (for example, ``Turbovac'' manufactured by Hirai Company, Ltd., vacuum manufactured by Furukawa Seisakusho Co., Ltd.). A plurality of specimens as food packaging bodies F were formed by vacuum shrink wrapping using a packaging machine. These specimens were then stored for a predetermined period of time in a 0°C environment in a frozen warehouse that does not have an electric field environment (non-electric field environment), and the number of bacteria (general viable bacteria count) was measured again immediately after storage.

また、実施例15及び16として、比較例10及び11とは異なる検体群を選定し、それらの検体を、上記冷凍倉庫に代えて、コンテナ10と同様の構成を有するコンテナの収容室内に収容し、電極部材に7000Vの電圧を印加して電場を形成し、かつ、収容室内を-3.2℃に冷却した状態で所定期間保管したこと以外は、比較例10及び11と同様に、細菌数(一般生菌数)を再度測定した。 In addition, as Examples 15 and 16, a sample group different from Comparative Examples 10 and 11 was selected, and these samples were stored in a storage chamber of a container having the same configuration as container 10 instead of the above-mentioned frozen warehouse. , the number of bacteria was determined in the same manner as Comparative Examples 10 and 11, except that a voltage of 7000 V was applied to the electrode member to form an electric field, and the storage chamber was kept cooled to -3.2°C for a predetermined period of time. (general viable bacteria count) was measured again.

これらの食品保管条件、及び、細菌数の推移を表4にまとめて示す。それらの結果より、検体を真空シュリンクラッピングしたものの非電場環境で保管した比較例10及び11では、何れの部位の検体も、保管後の細菌数は、屠畜直後に比して約105倍に増加していたのに対し、電場環境で保管した実施例15及び16では、何れの部位の検体も、保管後の細菌数は、屠畜直後に比して約103倍未満の増加に抑えられていたことが確認された。これらの結果より、真空シュリンクラッピングと電場環境での食品保管の優位性が理解される。 These food storage conditions and changes in bacterial counts are summarized in Table 4. From these results, in Comparative Examples 10 and 11, in which the specimens were vacuum shrink-wrapped but stored in a non-electric field environment, the number of bacteria after storage was about 10 5 times that of the specimens immediately after slaughter in all parts of the specimens. On the other hand, in Examples 15 and 16, which were stored in an electric field environment, the number of bacteria after storage increased by less than about 10 3 times compared to immediately after slaughter for the samples from all parts. It was confirmed that it had been suppressed. These results demonstrate the advantages of vacuum shrink wrapping and food storage in an electric field environment.

(比較例12並びに実施例17)
比較例12として、上記の比較例10,11と同様に作成された食品包装体Fの検体をコンテナ10内において-3.2℃の収容室内温度で53日間保管したときのチルド品の割合を測定した。また、実施例17として、上記の実施例15,16と同様に作成された食品包装体Fの検体をコンテナ10内において-3.2℃の収容室内温度で63日間保管したときのチルド品の割合を測定した。これらの食品条件、保管条件、及びチルド品の割合を表5にまとめて示す。表5に示されるように、比較例12に示されるシュリンクが施されていない食品包装体Fよりも、実施例17に示される真空シュリンクラッピングが施された食品包装体Fの方がチルド品の割合が大きい、すなわち凍結し難いことが理解される。
(Comparative Example 12 and Example 17)
As Comparative Example 12, the proportion of chilled products was calculated when a sample of food package F prepared in the same manner as Comparative Examples 10 and 11 above was stored in a container 10 at a room temperature of -3.2°C for 53 days. It was measured. In addition, as Example 17, when a sample of food package F prepared in the same manner as in Examples 15 and 16 above was stored in a container 10 at a storage room temperature of -3.2°C for 63 days, the results of chilled products were shown. The proportion was measured. These food conditions, storage conditions, and percentage of chilled products are summarized in Table 5. As shown in Table 5, the food package F subjected to vacuum shrink wrapping shown in Example 17 is more suitable for chilled products than the food package F shown in Comparative Example 12 which is not subjected to shrink wrapping. It is understood that the proportion is large, that is, it is difficult to freeze.

(比較例13並びに実施例18~20)
比較例13として、冷凍状態の豚バラ肉を非電場環境で解凍した際の一般生菌数の推移を測定した。実施例18として、冷凍状態の豚バラ肉をコンテナ10内において-3℃前後の電場環境で30日間保管した後、コンテナ10から取り出して0℃の非電場環境で保管した際の一般生菌数の推移を測定した。実施例19として、電場環境の保管日数を63日に設定したこと以外は実施例18と同一の条件で一般生菌数の推移を測定した。実施例20として、電場環境の保管日数を53日に設定したこと以外は実施例18と同一の条件で一般生菌数の推移を測定した。
(Comparative Example 13 and Examples 18 to 20)
As Comparative Example 13, the change in the number of general viable bacteria was measured when frozen pork belly was thawed in a non-electric field environment. As Example 18, after storing frozen pork belly in a container 10 in an electric field environment of around -3°C for 30 days, it was taken out from the container 10 and stored in a non-electric field environment at 0°C. We measured the changes in As Example 19, the change in the number of general viable bacteria was measured under the same conditions as Example 18, except that the number of storage days in the electric field environment was set to 63 days. As Example 20, the change in the number of viable bacteria was measured under the same conditions as Example 18, except that the number of storage days in the electric field environment was set to 53 days.

なお、表6において、比較例13の経過日数は、冷凍状態の豚バラ肉を解凍した日からの経過日数を示す。実施例18~20の経過日数は、冷凍状態の豚バラ肉をコンテナ10内から取り出した日からの経過日数を示す。
表6に示されるように、電場環境下で保管されていない比較例13では経過日数が約15日目で一般生菌数が740万まで上昇する。これに対して、一旦電場環境で保管された実施例18では経過日数が20日目でも一般生菌数が48万であり、またそれ以降も50日目までは一般生菌数が数十万の値に維持されるため、比較例13と比較すると一般生菌数の増加が抑制されている。同様に、実施例19,20でも比較例13と比較すると一般生菌数の増加が抑制されている。このように、一旦電場環境で保管すれば、解凍する際の一般生菌数の増加が抑えられることが理解される。
In Table 6, the number of days that have passed in Comparative Example 13 indicates the number of days that have passed since the day when the frozen pork belly was thawed. The number of days that have passed in Examples 18 to 20 indicates the number of days that have passed since the day when the frozen pork belly was taken out from the container 10.
As shown in Table 6, in Comparative Example 13, which was not stored in an electric field environment, the number of viable bacteria increased to 7.4 million after about 15 days. On the other hand, in Example 18, which was once stored in an electric field environment, the number of general viable bacteria was 480,000 even after the 20th day, and even after that, the number of general viable bacteria was several hundred thousand until the 50th day. , the increase in the number of viable bacteria is suppressed compared to Comparative Example 13. Similarly, in Examples 19 and 20, when compared with Comparative Example 13, the increase in the number of viable bacteria was suppressed. In this way, it is understood that once stored in an electric field environment, the increase in the number of viable bacteria during thawing can be suppressed.

以上、本開示の一例としての上記実施形態、変形例、及び実施例等について詳細に説明してきたが、上述したとおり、前述した説明はあらゆる点において本開示の一例を示すに過ぎず、本開示の範囲を逸脱することなく種々の改良や変形を行うことができることはいうまでもない。また、上記実施形態等は、部分的に置換、削除、又は組み合わせて構成することも可能である。 As mentioned above, the above embodiments, modifications, examples, etc. as examples of the present disclosure have been described in detail, but as described above, the above descriptions merely show examples of the present disclosure in all respects, and the present disclosure It goes without saying that various improvements and modifications can be made without departing from the scope of the invention. Furthermore, the above embodiments can be partially replaced, deleted, or combined.

例えば、図4に示される、収容室S10の内部に電場を形成するステップSP4の工程と、収容室S10の内部を冷却するステップSP5の工程とを時間差を設けて実行してもよい。
コンテナ10の内部に収容される食品包装体Fの総積載量、及び一つの外容器B当たりの食品包装体Fの収容数や総重量等に関しては適宜増減させることが可能である。
For example, the step SP4 of forming an electric field inside the storage chamber S10 and the step SP5 of cooling the inside of the storage chamber S10, shown in FIG. 4, may be performed with a time difference.
The total loading amount of food packages F accommodated inside the container 10, the number of food packages F accommodated per one outer container B, the total weight, etc. can be increased or decreased as appropriate.

図4に示されるステップSP2の工程に対して食品包装体Fに対して施す処理としては、真空シュリンクラッピングに限らず、食品包装体Fの内部の真空度を高める処理であれば任意の処理を採用することができる。なお、食品包装体Fの内部の真空度を高める処理とは、食品包装体Fの内部の圧力を大気圧よりも低くする処理である。このような処理としては、例えば食品包装体Fの内部から空気を引き抜く、いわゆる脱気処理を行うことにより、シュリンクラッピングを行うことなく食品包装体Fの内部を高真空にする処理を用いることができる。このようなシュリンクラッピングを伴わない真空パックや脱気パックを用いた場合でも、上記実施形態に類似の作用及び効果を得ることは可能である。
なお、魚介類等の水産物(例えばサーモン)のセミドレスのように現状、真空パックが施されずに裸の状態で輸送及び保管されているものに関しては、非シュリンク真空パックを用いることができる。また、豚肉等の畜肉に関しては、ルーズな真空パックではなく、敢えて真空シュリンクラッピングを用いることが望ましい。
The process to be applied to the food package F in step SP2 shown in FIG. 4 is not limited to vacuum shrink wrapping, but any process that increases the degree of vacuum inside the food package F can be used. Can be adopted. Note that the process of increasing the degree of vacuum inside the food package F is a process of making the pressure inside the food package F lower than atmospheric pressure. As such a process, for example, a process can be used in which the inside of the food package F is made into a high vacuum without performing shrink wrapping by pulling out air from the inside of the food package F, a so-called deaeration process. can. Even when using a vacuum pack or a deaeration pack that does not involve shrink wrapping, it is possible to obtain functions and effects similar to those of the above embodiment.
Note that non-shrink vacuum packs can be used for semi-dressed marine products such as seafood (for example, salmon) that are currently transported and stored in a naked state without being vacuum packed. Furthermore, for livestock meat such as pork, it is desirable to use vacuum shrink wrapping rather than loose vacuum packaging.

食品を包装材により被覆して食品包装体Fを作る際に、食品に対して乳酸菌を塗布してもよい。例えば、乳酸菌が塗布された食品を包装材により包装した後、当該包装材に対して真空シュリンクラッピング、真空パック、又は脱気パックを施すことにより食品包装体Fを作成してもよい。なお、食品に対して乳酸菌を塗布する場合には、包装材に対して真空シュリンクラッピング又は非真空シュリンクラッピングを施さなくてもよく、単に乳酸菌が塗布された食品を包装材により包装したものを食品包装体Fとして用いてもよい。また、図4に示されるフローにおいて、収容室S10の内部に電場を形成するステップSP4の工程を削除して、食品包装体Fを収容室S10へ収容した後(ステップSP3)、収容室S10内の冷却のみを行って(ステップSP5)、コンテナ10の荷積み及び輸送を行ってもよい(ステップSP6)。 When covering food with a packaging material to produce food packaging F, lactic acid bacteria may be applied to the food. For example, the food package F may be created by packaging a food coated with lactic acid bacteria with a packaging material and then subjecting the packaging material to vacuum shrink wrapping, vacuum packing, or deaeration packing. In addition, when applying lactic acid bacteria to food, it is not necessary to apply vacuum shrink wrapping or non-vacuum shrink wrapping to the packaging material, and simply wrap the food coated with lactic acid bacteria in the packaging material. It may also be used as a package F. In addition, in the flow shown in FIG. 4, the process of step SP4 of forming an electric field inside the storage chamber S10 is deleted, and after storing the food package F in the storage chamber S10 (step SP3), The container 10 may be only cooled (step SP5) and then loaded and transported (step SP6).

10…コンテナ(収容庫)、S10…収容室、20…収容庫本体、30…冷却装置、40…箱体、41…上壁部、42,43…側壁部、50…扉部、60…電場形成部、61…絶縁部材、62…電極部材、81,82…載置部、810,811,820,821…部位、B…外容器、F…食品包装体、S10…収容室。 DESCRIPTION OF SYMBOLS 10... Container (accommodation), S10... Storage room, 20... Storage main body, 30... Cooling device, 40... Box body, 41... Top wall part, 42, 43... Side wall part, 50... Door part, 60... Electric field Formation part, 61... Insulating member, 62... Electrode member, 81, 82... Placement part, 810, 811, 820, 821... Site, B... Outer container, F... Food package, S10... Storage chamber.

Claims (11)

少なくとも1種類又は1形態の食品を保管する食品保管方法であって、
収容室、及び、該収容室内に電場を形成するための電場形成部を備える収容庫を準備する収容庫準備工程と、
包装材で前記食品を被覆した後に前記包装材の内部の真空度を高める処理を行うことにより食品包装体を形成する、又は、形成された該食品包装体を準備する食品包装工程と、
前記食品包装体を前記収容室内に収容し、該収容室内に電場を形成し、該収容室内を冷却することにより、前記食品の少なくとも一部をチルド状態に保持する電場冷却工程と、
を含む食品保管方法。
A food storage method for storing at least one type or form of food, the method comprising:
A storage preparation step of preparing a storage chamber including a storage chamber and an electric field forming section for forming an electric field in the storage chamber;
A food packaging step of forming a food package by covering the food with a packaging material and then performing a process to increase the degree of vacuum inside the packaging material, or preparing the formed food package;
an electric field cooling step of storing the food package in the storage chamber, forming an electric field in the storage chamber, and cooling the inside of the storage chamber to maintain at least a portion of the food in a chilled state;
food storage methods including;
前記食品包装工程では、熱収縮性フィルムを含む包装材で前記食品を被覆して真空シュリンクラッピングすることにより、前記食品包装体を形成する、
請求項1記載の食品保管方法。
In the food packaging step, the food package is formed by covering the food with a packaging material including a heat-shrinkable film and performing vacuum shrink wrapping.
The food storage method according to claim 1.
前記食品包装工程では、前記包装材の内部の真空度を高める処理として、前記食品を被覆した前記包装材の内部を高真空にする処理を行う
請求項1記載の食品保管方法。
2. The food storage method according to claim 1, wherein in the food packaging step, as a process for increasing the degree of vacuum inside the packaging material, the interior of the packaging material covering the food is made into a high vacuum.
前記食品包装工程では、前記包装材の内部の真空度を高める処理として、前記食品を被覆した前記包装材の内部から空気を引き抜く処理を行う
請求項1記載の食品保管方法。
2. The food storage method according to claim 1, wherein in the food packaging step, a process of increasing the degree of vacuum inside the packaging material includes a process of extracting air from the inside of the packaging material covering the food.
前記食品包装体を前記収容室内に収容していない状態で、又は、前記食品包装体を前記収容室内に収容した状態で、該収容室内に電場を形成し、該収容室内を冷却したときの前記収容室内の温度分布を計測する温度計測工程を含む、
請求項1記載の食品保管方法。
When the food package is not housed in the housing chamber or the food package is housed in the housing chamber, an electric field is formed in the housing chamber to cool the housing chamber. Including a temperature measurement process to measure the temperature distribution inside the containment chamber.
The food storage method according to claim 1.
前記電場冷却工程では、前記温度計測工程で計測された前記収容室内の温度分布と、前記食品の種類又は形態とに基づいて、前記収容室内における前記食品包装体の収容位置を決定する、
請求項5記載の食品保管方法。
In the electric field cooling step, the storage position of the food package in the storage chamber is determined based on the temperature distribution in the storage chamber measured in the temperature measurement step and the type or form of the food.
The food storage method according to claim 5.
前記電場冷却工程では、保冷剤に接触させずに前記食品包装体を前記収容室内に収容する、
請求項1記載の食品保管方法。
In the electric field cooling step, the food package is housed in the storage chamber without contacting the cold pack.
The food storage method according to claim 1.
前記電場冷却工程を、1日以上実施する、
請求項1記載の食品保管方法。
carrying out the electric field cooling step for one day or more;
The food storage method according to claim 1.
前記電場冷却工程における前記食品包装体の前記収容室内への収容、該収容室内の電場形成、又は、該収容室内の冷却を、前記食品の生産直後から5日以内に開始する、
請求項1記載の食品保管方法。
In the electric field cooling step, housing the food package in the storage chamber, forming an electric field in the storage chamber, or cooling the storage chamber starts within 5 days immediately after production of the food.
The food storage method according to claim 1.
請求項1乃至9の何れか一項に記載の食品保管方法を用い、前記電場冷却工程を実施しながら前記食品を輸送する、
食品輸送方法。
Transporting the food while performing the electric field cooling step using the food storage method according to any one of claims 1 to 9.
Food transportation methods.
少なくとも1種類又は1形態の食品を含んで輸送される食品輸送体であって、
収容室、及び、該収容室内に電場を形成するための電場形成部を備える収容庫と、
前記食品を被覆し、且つ内部の真空度を高めることにより形成された食品包装体と、
を備え、
前記食品包装体が収容された前記収容室内に電場が形成され、かつ、該収容室内が冷却された状態で、前記食品の少なくとも一部がチルド状態に保持された、
食品輸送体。
A food transporter that contains at least one type or form of food and is transported,
a storage chamber, and a storage chamber including an electric field forming section for forming an electric field in the storage chamber;
A food package formed by covering the food and increasing the degree of vacuum inside;
Equipped with
An electric field is formed in the housing chamber in which the food package is housed, and at least a portion of the food is maintained in a chilled state with the interior of the housing chamber being cooled.
food transporter.
JP2022125026A 2022-08-04 2022-08-04 Food storage method, food transport method, food transporter Active JP7266937B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022125026A JP7266937B1 (en) 2022-08-04 2022-08-04 Food storage method, food transport method, food transporter
JP2023065914A JP2024022466A (en) 2022-08-04 2023-04-13 Food preservation method, food transport method, and food transporter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022125026A JP7266937B1 (en) 2022-08-04 2022-08-04 Food storage method, food transport method, food transporter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023065914A Division JP2024022466A (en) 2022-08-04 2023-04-13 Food preservation method, food transport method, and food transporter

Publications (2)

Publication Number Publication Date
JP7266937B1 JP7266937B1 (en) 2023-05-01
JP2024021877A true JP2024021877A (en) 2024-02-16

Family

ID=86239451

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2022125026A Active JP7266937B1 (en) 2022-08-04 2022-08-04 Food storage method, food transport method, food transporter
JP2023065914A Pending JP2024022466A (en) 2022-08-04 2023-04-13 Food preservation method, food transport method, and food transporter

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023065914A Pending JP2024022466A (en) 2022-08-04 2023-04-13 Food preservation method, food transport method, and food transporter

Country Status (1)

Country Link
JP (2) JP7266937B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001204428A (en) * 2000-01-21 2001-07-31 Prima Meat Packers Ltd Method and apparatus for producing pork increased in amino acid
JP2005110643A (en) * 2003-10-10 2005-04-28 Pokka Corp Processed food in hermetically sealed container, storage procedure and storage apparatus therefor
JP2010263884A (en) * 2009-04-12 2010-11-25 Sunworld Kawamura:Kk Method for preserving food and biological material
JP7091536B1 (en) * 2021-09-15 2022-06-27 住友商事株式会社 Containment vault
JP7091537B1 (en) * 2021-10-12 2022-06-27 住友商事株式会社 Containment vault

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001204428A (en) * 2000-01-21 2001-07-31 Prima Meat Packers Ltd Method and apparatus for producing pork increased in amino acid
JP2005110643A (en) * 2003-10-10 2005-04-28 Pokka Corp Processed food in hermetically sealed container, storage procedure and storage apparatus therefor
JP2010263884A (en) * 2009-04-12 2010-11-25 Sunworld Kawamura:Kk Method for preserving food and biological material
JP7091536B1 (en) * 2021-09-15 2022-06-27 住友商事株式会社 Containment vault
JP7091537B1 (en) * 2021-10-12 2022-06-27 住友商事株式会社 Containment vault

Also Published As

Publication number Publication date
JP7266937B1 (en) 2023-05-01
JP2024022466A (en) 2024-02-16

Similar Documents

Publication Publication Date Title
US20020012724A1 (en) Process for the filleting, treating, packaging, freezing, and thawing of varying types of tuna and other pelagic species
US5269149A (en) Method for long range transcontinental and transoceanic transport of fresh chilled meat
Valtýsdóttir et al. Guidelines for precooling of fresh fish during processing and choice of packaging with respect to temperature control in cold chains
CN104823011B (en) Electric field processing device and electric field treatment method
Khadatkar et al. Cryofreezing and cryofreezer
Ishevskiy et al. Freezing as a method of food preservation
AU2001262531A1 (en) Methods and apparatus for freezing tissue
JP2024021877A (en) Food preservation method, food transport method, and food transporter
Tuan Pham Refrigeration in food preservation and processing
JP3939245B2 (en) Fish distribution method and package for live distribution
JP7329121B1 (en) containment vault
JP7284335B1 (en) method and container
KR101965600B1 (en) Method for double packaging of manufactured sauce
ES2300860T3 (en) PROCEDURE FOR THE CONDITIONING AND CONSERVATION OF LONG-TERM WITHOUT COLD CHAIN, OF CARNIC PRODUCTS.
Magnussen et al. Freezing of fish
Rosmini et al. Operational processes for frozen red meat
EP3667208B1 (en) Process for shelf-life extension of fish
JPH078192B2 (en) How to keep seafood alive with an anhydrous bear
Valtýsdóttir The effects of different precooling techniques and improved packaging design on fresh fish temperature control
IE20190200A1 (en) Process for shelf-life extension of fish
IES20190201A2 (en) Process for the shelf-life extension of fish
JP5086000B2 (en) Method for producing frozen sushi package
JP2004081183A (en) Method related to export and import of processed food product
JPH08149947A (en) Preserving method of raw edible meats
Gigiel et al. Controlling temperature during distribution and retail

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221013

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20221013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230413

R150 Certificate of patent or registration of utility model

Ref document number: 7266937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117