JP2024020841A - conductive composition - Google Patents

conductive composition Download PDF

Info

Publication number
JP2024020841A
JP2024020841A JP2022123333A JP2022123333A JP2024020841A JP 2024020841 A JP2024020841 A JP 2024020841A JP 2022123333 A JP2022123333 A JP 2022123333A JP 2022123333 A JP2022123333 A JP 2022123333A JP 2024020841 A JP2024020841 A JP 2024020841A
Authority
JP
Japan
Prior art keywords
mass
diglycidyl ether
conductive
conductive composition
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022123333A
Other languages
Japanese (ja)
Inventor
安宣 田上
Yasunobu Tagami
碧 合田
Midori Aida
真紀 加藤
Masanori Kato
和宏 久保田
Kazuhiro Kubota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp filed Critical NOF Corp
Priority to JP2022123333A priority Critical patent/JP2024020841A/en
Publication of JP2024020841A publication Critical patent/JP2024020841A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

To provide a conductive composition that has low surface dryness when applied to a substrate, has low temperature dependence of viscosity in a low temperature region, and can form a cured product that is highly conductive.SOLUTION: A conductive composition (A) contains a diglycidyl ether represented by the general formula (1) in the figure, (B) a phenolic resin, and (C) conductive particles. The content of the component (A) is 0.2 to 38 mass%, the content of the component (B) is 0.05 to 32 mass%, and the content of the component (C) is 60 to 99 mass%, based on 100 mass% of the total of the components (A) to (C) on a solid content basis. In the general formula (1), m represents the average number of moles of oxytrimethylene groups added, and is a real number from 2 to 90.SELECTED DRAWING: None

Description

本発明は、導電性組成物に関し、特に、ポリトリメチレングリコール構造を有するジグリシジルエーテルとフェノール樹脂をバインダーとする導電性組成物に関する。 The present invention relates to a conductive composition, and particularly to a conductive composition containing a diglycidyl ether having a polytrimethylene glycol structure and a phenol resin as a binder.

古くから、エポキシ樹脂とフェノール樹脂を組み合わせた熱硬化性樹脂組成物がバインダーとして様々な用途で用いられている。エポキシ樹脂とフェノール樹脂を組み合わせた熱硬化性樹脂組成物は電気的且つ機械特性に優れる、また、基材への密着性に優れるといった特徴がある。なかでも銅系の導電性組成物用のバインダーとしてよく用いられており、他の樹脂系に比べて酸化防止性が高いことから高導電性が発現できるといった特徴がある。 Thermosetting resin compositions that are a combination of epoxy resins and phenolic resins have been used as binders for various purposes since ancient times. A thermosetting resin composition that is a combination of an epoxy resin and a phenol resin has excellent electrical and mechanical properties, as well as excellent adhesion to a substrate. Among them, it is often used as a binder for copper-based conductive compositions, and has a characteristic that it can exhibit high conductivity due to its high antioxidant properties compared to other resin systems.

銅粒子のバインダーとして上述のエポキシ樹脂とフェノール樹脂を組み合わせた熱硬化性樹脂組成物を使用する場合、導電性に優れるペースト(導電性組成物)が得られる一方で、例えば当該ペーストを基材に塗布した際に、大気中での表面乾燥が著しく激しいという特異的な現象が生じる。この表面乾燥は銅ペーストを加熱硬化させる際、表面に乾燥した膜が形成されることで銅ペーストの内部に残存する溶剤の揮発を著しく阻害し、硬化膜中や銅ペースト或いは硬化膜と基材の界面にボイドを形成し、密着力や導電性の低下につながるという問題がある。 When using a thermosetting resin composition that combines the above-mentioned epoxy resin and phenol resin as a binder for copper particles, a paste with excellent conductivity (conductive composition) can be obtained. When applied, a unique phenomenon occurs in which the surface dries extremely rapidly in the atmosphere. When the copper paste is heated and cured, this surface drying forms a dry film on the surface, which significantly inhibits the volatilization of the solvent remaining inside the copper paste, and causes damage to the inside of the cured film, the copper paste, or the cured film and the base material. There is a problem in that voids are formed at the interface, leading to a decrease in adhesion and conductivity.

特許文献1には、特定のモノカルボン酸と特定のビピリジン誘導体をそれぞれ所定範囲の含有率になるように組み合わせて用いることで、前述のペーストの表面乾燥を抑制し大気中での可使時間を伸ばす方法について開示されている。 Patent Document 1 discloses that by using a combination of a specific monocarboxylic acid and a specific bipyridine derivative at a content within a predetermined range, the above-mentioned surface drying of the paste can be suppressed and the pot life in the atmosphere can be increased. A method of stretching is disclosed.

また近年、デバイスの軽量化やウェアラブル(wearable)化などの影響からポリエチレンテレフタレート(PET)などの耐熱性の低いプラスチック基材が筐体として増えてきており、導電性組成物に対して低温(例えばプラスチック基材のガラス転移温度よりも低い温度)で硬化させたいというニーズが増えてきており、導電性組成物の低温硬化の改良が進んできている。その一方、低温硬化タイプの導電性組成物は、ポットライフが短く常温で徐々に硬化が進むため、使用直前まで冷凍庫などの低温保管庫で保管する必要がある。しかし、低温保管庫から出した導電性組成物は冷えた状態では粘度が高く、スクリーン印刷などで塗布を行う際に、つまりやカスレの原因となりデバイス作製時の歩留りの悪化につながるといった問題がある。 In addition, in recent years, plastic base materials with low heat resistance such as polyethylene terephthalate (PET) have been increasingly used as housings due to the effects of devices becoming lighter and more wearable. There is an increasing need for curing at a temperature lower than the glass transition temperature of the plastic base material, and improvements in low-temperature curing of conductive compositions are progressing. On the other hand, low-temperature curing type conductive compositions have a short pot life and harden gradually at room temperature, so they must be stored in a low-temperature storage such as a freezer until just before use. However, the conductive composition removed from low-temperature storage has a high viscosity when it is cold, and when it is applied by screen printing, it causes clogging and smearing, leading to a decrease in yield when manufacturing devices. .

特許文献2には、粘度調整剤としてポリエチレングリコールとヘキサメチレンジイソシアネートとジアリルアミンとの反応物を顔料ペーストに添加することで低温での温度依存性が改善されることが開示されている。 Patent Document 2 discloses that temperature dependence at low temperatures is improved by adding a reaction product of polyethylene glycol, hexamethylene diisocyanate, and diallylamine to a pigment paste as a viscosity modifier.

しかしながら、特許文献1、2には、例えば基材に塗布した際に表面乾燥性が少なく、さらに低温領域での粘度の温度依存性が低く、さらに、硬化物が高導電性である導電性ペースト(導電性組成物)というものは記載されておらず、そのような特性を有する導電性組成物の開発が望まれていた。 However, Patent Documents 1 and 2 disclose, for example, a conductive paste that has low surface drying properties when applied to a base material, has low temperature dependence of viscosity in a low temperature range, and has a highly conductive cured product. (Conductive composition) is not described, and development of a conductive composition having such characteristics has been desired.

特開2021-57185号公報JP2021-57185A 特開平11-199854号公報Japanese Unexamined Patent Publication No. 11-199854

上述した背景から、本発明の目的は、例えば基材に塗布した際の表面乾燥性が少なく、さらに低温領域での粘度の温度依存性が低く、さらに、硬化物が高導電性である導電性組成物を提供することにある。 From the above-mentioned background, the object of the present invention is to provide a conductive material that has low surface drying properties when applied to a substrate, has low temperature dependence of viscosity in a low temperature range, and has a highly conductive cured product. An object of the present invention is to provide a composition.

本発明者は上述した課題を鑑み、種々検討した結果、導電性粒子を含む導電性組成物において、特定のポリトリメチレングリコール構造を有するジグリシジルエーテルとフェノール樹脂をバインダーとして組み合わせて用いることで、上記課題を解決することができることを見出した。 In view of the above-mentioned problems, the present inventor conducted various studies and found that, in a conductive composition containing conductive particles, by using a diglycidyl ether having a specific polytrimethylene glycol structure and a phenol resin in combination as a binder, It has been found that the above problems can be solved.

すなわち本発明は以下の導電性組成物に関するものである。 That is, the present invention relates to the following conductive composition.

(A)下記一般式(1)で示されるジグリシジルエーテル、
(B)フェノール樹脂、
(C)導電性粒子、を含有し、
固形分基準で成分(A)~(C)の合計100質量%に対して、成分(A)の含有率が0.2~38質量%、成分(B)の含有率が0.05~32質量%、成分(C)の含有率が60~99質量%である、導電性組成物。
(A) diglycidyl ether represented by the following general formula (1),
(B) Phenol resin,
(C) containing conductive particles;
The content of component (A) is 0.2 to 38 mass %, and the content of component (B) is 0.05 to 32 mass %, based on the solid content of 100 mass % in total of components (A) to (C). A conductive composition in which the content of component (C) is 60 to 99% by mass.

Figure 2024020841000001
Figure 2024020841000001

(一般式(1)中、mはオキシトリメチレン基の平均付加モル数を表し、2~90の実数である。) (In general formula (1), m represents the average number of added moles of oxytrimethylene groups and is a real number from 2 to 90.)

本発明によれば、例えば基材に塗布した際に表面乾燥性が少なく、さらに低温領域での粘度の温度依存性が低く、さらに、硬化物が高導電性である導電性組成物を提供することができる。 According to the present invention, there is provided a conductive composition that has low surface drying properties when applied to a substrate, has low temperature dependence of viscosity in a low temperature range, and has a highly conductive cured product. be able to.

以下、本発明の実施形態を説明するが、本発明はこれに限定されない。 Embodiments of the present invention will be described below, but the present invention is not limited thereto.

本発明の実施形態に係る導電性組成物は、(A)下記一般式(1)で示されるジグリシジルエーテル(以下、ポリトリメチレングリコールジグリシジルエーテルと称する場合がある。)、(B)フェノール樹脂、(C)導電性粒子、を含有する。そして、固形分基準で成分(A)~(C)の合計100質量%に対して、成分(A)の含有率が0.2~38質量%、成分(B)の含有率が0.05~32質量%、成分(C)の含有率が60~99質量%である。 The conductive composition according to the embodiment of the present invention includes (A) diglycidyl ether represented by the following general formula (1) (hereinafter sometimes referred to as polytrimethylene glycol diglycidyl ether), (B) phenol. Contains resin and (C) conductive particles. The content of component (A) is 0.2 to 38% by mass and the content of component (B) is 0.05% by mass based on the total of 100% by mass of components (A) to (C) on a solid content basis. ~32% by weight, and the content of component (C) is 60~99% by weight.

Figure 2024020841000002
Figure 2024020841000002

(一般式(1)中、mはオキシトリメチレン基の平均付加モル数を表し、2~90の実数である。) (In general formula (1), m represents the average number of added moles of oxytrimethylene groups and is a real number from 2 to 90.)

以下、導電性組成物に含まれる各成分について説明する。 Each component contained in the conductive composition will be explained below.

[ポリトリメチレングリコールジグリシジルエーテル(成分(A))]
ポリトリメチレングリコールジグリシジルエーテルは、前述の一般式(1)で示されるジグリシジルエーテルを用いる。
[Polytrimethylene glycol diglycidyl ether (component (A))]
As the polytrimethylene glycol diglycidyl ether, diglycidyl ether represented by the above-mentioned general formula (1) is used.

一般式(1)中、mは、オキシトリメチレン基の平均付加モル数を表し、2~90の実数である。導電性組成物の硬化物の導電性の観点からは、mは5~50の実数が好ましく、5~40の実数がさらに好ましく、5~25の実数がより特に好ましく、5~10の実数が最も好ましい。 In the general formula (1), m represents the average number of added moles of oxytrimethylene groups, and is a real number from 2 to 90. From the viewpoint of the conductivity of the cured product of the conductive composition, m is preferably a real number of 5 to 50, more preferably a real number of 5 to 40, even more preferably a real number of 5 to 25, and a real number of 5 to 10. Most preferred.

ポリトリメチレングリコールジグリシジルエーテルのエポキシ当量は、低温硬化時における導電性組成物の硬化物の導電性の観点から、200~1500g/eq.が好ましく、200~1200g/eq.がより好ましい The epoxy equivalent of polytrimethylene glycol diglycidyl ether is 200 to 1500 g/eq. from the viewpoint of conductivity of the cured product of the conductive composition during low-temperature curing. is preferably 200 to 1200 g/eq. is more preferable

ここでエポキシ当量とは、1当量のエポキシ基を含む化合物の質量を示しており、JIS K7236に準拠した方法で測定し、算出することが可能である。 Here, the epoxy equivalent refers to the mass of a compound containing 1 equivalent of epoxy group, and can be measured and calculated by a method based on JIS K7236.

ポリトリメチレングリコールジグリシジルエーテルの粘度は、ハンドリング性の観点から、25℃において1~100000mPa・sが好ましく、25~10000mPa・sがより好ましく、50~1000mPa・sがさらに好ましい。粘度は、JIS Z 8803に準拠して測定することができる。また、ポリトリメチレングリコールジグリシジルエーテルの重量平均分子量は、粘度への影響の観点から、50~6000が好ましい。重量平均分子量は、テトラヒドロフラン(THF)を展開溶媒とするGPCにより、ポリエチレングリコール換算で測定することができる。 From the viewpoint of handling properties, the viscosity of polytrimethylene glycol diglycidyl ether is preferably 1 to 100,000 mPa·s, more preferably 25 to 10,000 mPa·s, and even more preferably 50 to 1,000 mPa·s at 25°C. Viscosity can be measured according to JIS Z 8803. Further, the weight average molecular weight of polytrimethylene glycol diglycidyl ether is preferably 50 to 6,000 from the viewpoint of influence on viscosity. The weight average molecular weight can be measured in terms of polyethylene glycol by GPC using tetrahydrofuran (THF) as a developing solvent.

ポリトリメチレングリコールジグリシジルエーテルは一般式(1)で示される特定のmの値のものを単独で用いても良く、また、mの値の異なる2種類以上を併用しても良い。 As the polytrimethylene glycol diglycidyl ether, one having a specific value of m represented by the general formula (1) may be used alone, or two or more types having different values of m may be used in combination.

ポリトリメチレングリコールジグリシジルエーテルの含有量は、導電性の確保と表面乾燥性の抑制と粘度の温度依存性の抑制の観点から、成分(A)~(C)の合計100質量%に対して、固形分基準で、0.2~38質量%であり、好ましくは0.2~20質量%であり、より好ましくは0.5~10質量%であり、さらに好ましくは1~5質量%である。 The content of polytrimethylene glycol diglycidyl ether is determined based on the total 100% by mass of components (A) to (C) from the viewpoint of ensuring conductivity, suppressing surface dryness, and suppressing temperature dependence of viscosity. , based on solid content, from 0.2 to 38% by mass, preferably from 0.2 to 20% by mass, more preferably from 0.5 to 10% by mass, even more preferably from 1 to 5% by mass. be.

[ポリトリメチレングリコールジグリシジルエーテルの製造方法]
前述のポリトリメチレングリコールジグリシジルエーテルは、例えば所定のポリトリメチレングリコールへのエピクロロヒドリンの付加閉環反応によって得ることができる。
[Production method of polytrimethylene glycol diglycidyl ether]
The aforementioned polytrimethylene glycol diglycidyl ether can be obtained, for example, by ring-addition reaction of epichlorohydrin to a predetermined polytrimethylene glycol.

具体的には、所定の平均付加モル数のポリトリメチレングリコールとエピクロロヒドリンを、硫酸、三フッ化ホウ素エチルエーテル、四塩化錫などの酸性触媒、または第四級アンモニウム塩類、第四級ボスホニウム塩類、クラウンエーテル類などの相関移動触媒の存在下で反応させることでクロルヒドリンエーテルの中間体を形成させたのち、次いで、このクロルヒドリンエーテル体を水酸化ナトリウム等の脱ハロゲン化水素剤と反応させて閉環する二段階法と呼ばれる方法などで、一般式(1)で示されるポリトリメチレングリコールジグリシジルエーテルを得ることができる。所定の平均付加モル数のポリトリメチレングリコールは、定法に従って調製することができるが、市販品を用いることもできる。 Specifically, polytrimethylene glycol and epichlorohydrin having a predetermined average number of added moles are combined with an acidic catalyst such as sulfuric acid, boron trifluoride ethyl ether, tin tetrachloride, or quaternary ammonium salts, quaternary After forming a chlorohydrin ether intermediate by reacting in the presence of a phase transfer catalyst such as bosphonium salts or crown ethers, this chlorohydrin ether is then subjected to dehydrohalogenation using sodium hydroxide, etc. The polytrimethylene glycol diglycidyl ether represented by the general formula (1) can be obtained by a method called a two-step method in which ring closure is performed by reacting with a compound. Polytrimethylene glycol having a predetermined average number of added moles can be prepared according to a conventional method, but commercially available products can also be used.

ポリトリメチレングリコールは、重量平均分子量が2000程度までは加温することで液体であることから、無溶剤で行うこともできるが、溶剤を使用することで粘度を下げることができるため、撹拌機の性能にあわせて行うことも可能である。しかし、溶剤が入っている場合、最終生成物中に溶剤が若干残る可能性があるため無溶剤で実施することが好ましい。 Polytrimethylene glycol becomes a liquid when heated until its weight average molecular weight is around 2000, so it can be processed without a solvent, but the viscosity can be lowered by using a solvent, so a stirrer is required. It is also possible to do this in accordance with the performance of However, if a solvent is present, there is a possibility that some amount of the solvent may remain in the final product, so it is preferable to carry out the process without a solvent.

溶剤は、反応を阻害しないものでない限りは、特に制限されない。使用可能な溶剤としては、例えば、トルエンやキシレンなどの芳香族炭化水素溶媒やノルマルヘキサンやシクロヘキサン、メチルシクロヘキサンなどの炭化水素溶媒;ジクロロメタンやクロロホルムなどのハロゲン化炭化水素溶媒;ジエチルエーテルやテトラヒドロフランなどのエーテル系溶媒;アセトン、エチルメチルケトン、4-メチル-2-ペンタノンなどのケトン系溶媒;ジメチルスルホキシドなどのスルホキシド系溶媒;水などを挙げることができる。 The solvent is not particularly limited as long as it does not inhibit the reaction. Usable solvents include, for example, aromatic hydrocarbon solvents such as toluene and xylene; hydrocarbon solvents such as n-hexane, cyclohexane, and methylcyclohexane; halogenated hydrocarbon solvents such as dichloromethane and chloroform; and diethyl ether and tetrahydrofuran. Examples include ether solvents; ketone solvents such as acetone, ethylmethylketone, and 4-methyl-2-pentanone; sulfoxide solvents such as dimethyl sulfoxide; and water.

反応温度や反応時間は適宜決定すればよい。例えば、反応温度は高めれば反応を促進することができるが、高すぎると付加反応等によるゲル化が生じるおそれがある。そのため、具体的な反応温度としては20℃以上、120℃以下程度とすることができる。溶媒を用いる場合は、還流操作を行ってもよく、ディーンスターク装置を用いても良い。 The reaction temperature and reaction time may be determined as appropriate. For example, if the reaction temperature is raised, the reaction can be promoted, but if it is too high, gelation due to addition reaction or the like may occur. Therefore, the specific reaction temperature can be about 20°C or higher and 120°C or lower. When a solvent is used, a reflux operation may be performed or a Dean-Stark apparatus may be used.

反応時間に関しては、反応が終了するまで行えばよく、具体的には1時間以上40時間程度とすることができる。反応の進行は、薄層クロマトグラフィーやガスクロマトグラフィーなどで追跡することができる。 Regarding the reaction time, it is sufficient to carry out the reaction until the reaction is completed, and specifically, it can be set to 1 hour or more and about 40 hours. The progress of the reaction can be monitored by thin layer chromatography, gas chromatography, or the like.

反応終了後には触媒残渣、塩類、不純物等が含まれているため、通常の後処理をすればよい。具体的には、ポリトリメチレングリコールジグリシジルエーテルと混和しない水や、トルエンなどの溶剤を加えたうえで、溶剤側へ不純物の抽出除去を行い精製した後、溶媒の留去を行えばよい。その他にもカラムクロマトグラフィーなどの一般的な精製法での除去も可能である。 After the reaction is completed, catalyst residues, salts, impurities, etc. are contained, so normal post-treatment may be performed. Specifically, water that is immiscible with polytrimethylene glycol diglycidyl ether or a solvent such as toluene may be added, impurities may be extracted and removed from the solvent side for purification, and then the solvent may be distilled off. In addition, removal by general purification methods such as column chromatography is also possible.

得られたポリトリメチレングリコールジグリシジルエーテルは、例えば、エポキシ当量と重量平均分子量により特定が可能である。 The obtained polytrimethylene glycol diglycidyl ether can be specified, for example, by its epoxy equivalent and weight average molecular weight.

[フェノール樹脂(成分(B))]
フェノール樹脂は、フェノール性水酸基を含有する化合物を酸又はアルカリ触媒下でホルムアルデヒドなどのアルデヒド類と反応させて得られる樹脂であればよい。分子量は、特に限定はないが、重量平均分子量で2000~20000であるのが好ましい。重量平均分子量がこの範囲であれば、硬化後の膜強度が十分に得られ、また硬化速度も適度な範囲であり、ハンドリング性も良好である。また、硬化速度と粘度のバランスの観点からは、フェノール樹脂の重量平均分子量は、3000~15000が好ましく、より好ましくは3500~12000である。なお、重量平均分子量はゲルパーミエーションクロマトグラフィー(GPC)を用いてポリエチレン換算で求めることができる。
[Phenol resin (component (B))]
The phenol resin may be any resin obtained by reacting a compound containing a phenolic hydroxyl group with an aldehyde such as formaldehyde under an acid or alkali catalyst. The molecular weight is not particularly limited, but it is preferably 2,000 to 20,000 in terms of weight average molecular weight. When the weight average molecular weight is within this range, sufficient film strength after curing can be obtained, the curing rate is also within an appropriate range, and handling properties are also good. Further, from the viewpoint of the balance between curing speed and viscosity, the weight average molecular weight of the phenol resin is preferably 3,000 to 15,000, more preferably 3,500 to 12,000. Note that the weight average molecular weight can be determined in terms of polyethylene using gel permeation chromatography (GPC).

フェノール性水酸基化合物にはフェノール、ピラゾール、ハイドロキノンなど様々あるが、フェノール構造のものが架橋性の観点から好ましい。アルデヒド類は、ホルムアルデヒドが好ましい。フェノール樹脂としては、ノボラック型フェノール樹脂が好ましい。 There are various phenolic hydroxyl compounds such as phenol, pyrazole, and hydroquinone, but those having a phenol structure are preferred from the viewpoint of crosslinking properties. The aldehyde is preferably formaldehyde. As the phenol resin, a novolac type phenol resin is preferable.

フェノール樹脂は、導電性の観点から、成分(A)~(C)の合計100質量%に対して、固形分基準で、0.05~32質量%であり、好ましくは0.05~20質量%であり、より好ましくは0.5~10質量%であり、さらに好ましくは、1~5質量%である。
[導電性粒子(成分(C))]
From the viewpoint of conductivity, the phenol resin is 0.05 to 32 mass%, preferably 0.05 to 20 mass%, based on solid content, based on the total 100 mass% of components (A) to (C). %, more preferably 0.5 to 10% by weight, still more preferably 1 to 5% by weight.
[Conductive particles (component (C))]

導電性粒子は、導電性を有する粒子であればよく、例えば、金、銀、銅、カーボン、ニッケルなどの導電性を有する粒子を用いることができる。この中でも銅粒子は、銅のみからなっていてもよいが、銀や白金などの銅以外の金属、金属酸化物、金属硫化物を更に含有していてもよい。銅粒子が銅以外の金属、金属酸化物、金属硫化物を更に含有する場合、銅粒子中の銅の質量比率は50質量%以上とすることが好ましい。また、銅粒子は表面層や突起物が形成された形状であってもよい。 The conductive particles may be any conductive particles, and for example, conductive particles such as gold, silver, copper, carbon, nickel, etc. can be used. Among these, the copper particles may be made of only copper, but may also contain metals other than copper, such as silver or platinum, metal oxides, and metal sulfides. When the copper particles further contain a metal other than copper, a metal oxide, or a metal sulfide, the mass ratio of copper in the copper particles is preferably 50% by mass or more. Further, the copper particles may have a shape in which a surface layer or protrusions are formed.

導電性粒子は市販のものをそのまま用いても良いが、耐酸化性の向上などを目的に、表面を被覆した表面被覆導電性粒子を用いることが好ましい。中でも、アミン化合物により表面を被覆した表面被覆導電性粒子を用いることが好ましく、下記式(2)で表されるアミン化合物により表面が被覆された表面被覆導電性粒子を用いることがより好ましい。 Although commercially available conductive particles may be used as they are, it is preferable to use surface-coated conductive particles whose surfaces are coated for the purpose of improving oxidation resistance. Among them, it is preferable to use surface-coated conductive particles whose surfaces are coated with an amine compound, and it is more preferable to use surface-coated conductive particles whose surfaces are coated with an amine compound represented by the following formula (2).

Figure 2024020841000003
Figure 2024020841000003

(式(2)中、mは0~3の整数、nは0~2の整数であり、n=0のとき、mは0~3の何れかであり、n=1又はn=2のとき、mは1~3の何れかである。) (In formula (2), m is an integer of 0 to 3, n is an integer of 0 to 2, and when n=0, m is any one of 0 to 3, and when n=1 or n=2 , m is any one from 1 to 3.)

上記式(2)で表されるアミン化合物などのアミン化合物で表面を被覆した表面被覆導電性粒子は、より良好な耐酸化性を得る観点から、脂肪族モノカルボン酸でさらに被覆された表面被覆導電性粒子とすることが好ましい。 Surface-coated conductive particles whose surfaces are coated with an amine compound such as the amine compound represented by the above formula (2) are further coated with an aliphatic monocarboxylic acid from the viewpoint of obtaining better oxidation resistance. It is preferable to use conductive particles.

これにより導電性粒子表面は、アミン化合物により形成された第1被覆層と、脂肪族モノカルボン酸により形成された第2被覆層とで被覆される。好ましくは、第1被覆層は導電性粒子表面に形成され、第2被覆層は第1被覆層上に形成される。 As a result, the surface of the conductive particles is coated with a first coating layer made of an amine compound and a second coating layer made of an aliphatic monocarboxylic acid. Preferably, the first coating layer is formed on the surface of the conductive particle, and the second coating layer is formed on the first coating layer.

第2被覆層を形成する脂肪族モノカルボン酸としては、炭素数8~24の脂肪族モノカルボン酸が好ましい。該脂肪族モノカルボン酸としては、例えば、直鎖飽和脂肪族モノカルボン酸、直鎖不飽和脂肪族モノカルボン酸、分岐飽和脂肪族モノカルボン酸、分岐不飽和脂肪族モノカルボン酸が挙げられる。 The aliphatic monocarboxylic acid forming the second coating layer is preferably an aliphatic monocarboxylic acid having 8 to 24 carbon atoms. Examples of the aliphatic monocarboxylic acids include linear saturated aliphatic monocarboxylic acids, linear unsaturated aliphatic monocarboxylic acids, branched saturated aliphatic monocarboxylic acids, and branched unsaturated aliphatic monocarboxylic acids.

炭素数8~24の直鎖飽和脂肪族モノカルボン酸としては、例えば、カプリル酸、ペラルゴン酸、カプリン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、マルガリン酸、ステアリン酸、ノナデシル酸、アラキジン酸などが挙げられる。炭素数8~24の直鎖不飽和脂肪族モノカルボン酸としては、例えば、ミリストレイン酸、パルミトレイン酸、ペトロセリン酸、オレイン酸などが挙げられる。炭素数8~24の分岐飽和脂肪族モノカルボン酸としては、例えば、2-エチルヘキサン酸などが挙げられる。 Examples of linear saturated aliphatic monocarboxylic acids having 8 to 24 carbon atoms include caprylic acid, pelargonic acid, capric acid, undecylic acid, lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, and stearin. acid, nonadecylic acid, arachidic acid, etc. Examples of the linear unsaturated aliphatic monocarboxylic acid having 8 to 24 carbon atoms include myristoleic acid, palmitoleic acid, petroselic acid, and oleic acid. Examples of the branched saturated aliphatic monocarboxylic acid having 8 to 24 carbon atoms include 2-ethylhexanoic acid.

上記脂肪族モノカルボン酸として、上記化合物から選ばれる一種を単独で使用し、または二種以上を併用することもできる。 As the aliphatic monocarboxylic acid, one type selected from the above compounds can be used alone, or two or more types can be used in combination.

表面被覆導電性粒子を製造する方法は特に限定されない。アミン化合物で表面を被覆した表面被覆導電性粒子を得る方法としては、例えば、導電性粒子を例えば塩化アンモニウム水溶液などにより洗浄した後、該洗浄後の導電性粒子をアミン化合物の溶液中に添加し、必要に応じて加熱する方法、導電性粒子を例えば塩化アンモニウムとアミン化合物を含む溶液に添加し、必要に応じて加熱する方法などが挙げられる。 The method for producing surface-coated conductive particles is not particularly limited. As a method for obtaining surface-coated conductive particles whose surfaces are coated with an amine compound, for example, the conductive particles are washed with, for example, an aqueous ammonium chloride solution, and then the washed conductive particles are added to a solution of the amine compound. , a method of heating as necessary, and a method of adding conductive particles to a solution containing, for example, ammonium chloride and an amine compound and heating as necessary.

アミン化合物により形成された第1被覆層と、脂肪族モノカルボン酸により形成された第2被覆層とで被覆された表面被覆導電性粒子の製造方法としては、例えば、アミン化合物で表面を被覆した表面被覆導電性粒子を、脂肪族モノカルボン酸の溶液に添加する方法が挙げられる。なお、脂肪族モノカルボン酸の溶液に添加した後に、必要に応じて、加熱してもよい。 As a method for producing surface-coated conductive particles coated with a first coating layer formed of an amine compound and a second coating layer formed of an aliphatic monocarboxylic acid, for example, A method of adding surface-coated conductive particles to a solution of an aliphatic monocarboxylic acid may be mentioned. In addition, after adding to the aliphatic monocarboxylic acid solution, heating may be performed as necessary.

導電性粒子の平均粒径(D50)については、特に限定されないが、成分(C)としての導電性粒子を含有する導電性組成物をインクジェット印刷やスクリーン印刷などの各種印刷方法において良好に印刷可能とするためには、導電性粒子の平均粒径(D50)を制御することが好ましい。具体的には、導電性粒子の平均粒径(D50)は、5nm~20μmであることが好ましく、10nm~10μmであることがより好ましい。なお、導電性粒子の平均粒径(D50)は、レーザー回折・散乱式粒度分布測定装置(マイクロトラック・ベル株式会社製、マイクロトラックMT3000II)により測定することができる。 The average particle diameter (D50) of the conductive particles is not particularly limited, but the conductive composition containing the conductive particles as component (C) can be printed well in various printing methods such as inkjet printing and screen printing. In order to achieve this, it is preferable to control the average particle diameter (D50) of the conductive particles. Specifically, the average particle diameter (D50) of the conductive particles is preferably 5 nm to 20 μm, more preferably 10 nm to 10 μm. The average particle diameter (D50) of the conductive particles can be measured using a laser diffraction/scattering particle size distribution analyzer (Microtrac MT3000II, manufactured by Microtrac Bell Co., Ltd.).

導電性粒子のBET比表面積は0.05~400m/gであることが好ましく、0.1~200m/gであることがより好ましい。導電性粒子のBET比表面積は、比表面積測定装置(ユアサアイオニクス株式会社製、モノソーブ)を用いてBET1点法により測定することができる。 The BET specific surface area of the conductive particles is preferably 0.05 to 400 m 2 /g, more preferably 0.1 to 200 m 2 /g. The BET specific surface area of the conductive particles can be measured by the BET one-point method using a specific surface area measuring device (Monosorb, manufactured by Yuasa Ionics Co., Ltd.).

導電性粒子の形状やアスペクト比(粒子の長径と短径との比)に特に制限はなく、球状、多面体状、扁平状、板状、フレーク状、薄片状、棒状、樹枝状、ファイバー状等の各種形状のものを用いることができる。導電性粒子は、構成成分、平均粒径、形状、アスペクト比等の異なるもの中から選ばれる一種を単独で使用し、または二種以上を併用することもできる。 There are no particular restrictions on the shape or aspect ratio (ratio of the major axis to the minor axis of the particles) of the conductive particles, and they may be spherical, polyhedral, flat, plate-shaped, flaky, flaky, rod-shaped, dendritic, fibrous, etc. Various shapes can be used. As the conductive particles, one type selected from those having different constituent components, average particle size, shape, aspect ratio, etc. can be used alone, or two or more types can be used in combination.

成分(C)の含有量は、導電性の観点から、固形分基準で、成分(A)~(C)の合計100質量%に対して、60~99質量%であり、好ましくは80~96質量%であり、より好ましくは85~95質量%である。 From the viewpoint of conductivity, the content of component (C) is 60 to 99% by mass, preferably 80 to 96% by mass, based on the solid content, based on the total of 100% by mass of components (A) to (C). % by mass, more preferably 85 to 95% by mass.

導電性組成物には、前述の成分(A)~(C)以外に、後述する硬化促進剤(成分(D))、溶剤(成分(E))、その他の成分を含むことができる。 In addition to the above-mentioned components (A) to (C), the conductive composition can contain a curing accelerator (component (D)), a solvent (component (E)), and other components described below.

[硬化促進剤(成分(D))]
導電性組成物は、硬化促進剤を含んでいてもよい。硬化促進剤は、公知のエポキシ樹脂をフェノール系硬化剤により硬化させるための公知の硬化促進剤を用いることができ、例えば3級アミン化合物、4級アンモニウム塩、イミダゾール類、尿素化合物、ホスフィン化合物、ホスホニウム塩などを挙げることができる。具体的には、例えば、トリエチルアミン、トリエチレンジアミン、ベンジルジメチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)又はその塩(より具体的にはフェノール塩、オクチル酸塩(2-エチルヘキサン酸塩)、p-トルエンスルホン酸塩、ギ酸塩、テトラフェニルボレート塩など)、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)又はその塩(例えば、フェノール塩、オクチル酸塩(2-エチルヘキサン酸塩)、p-トルエンスルホン酸塩、ギ酸塩、テトラフェニルボレート塩など)、トリフェニルホスフィンなどのホスフィン類、テトラフェニルホスホニウムテトラ(p-トリル)ボレートなどのホスホニウム化合物、オクチル酸亜鉛やオクチル酸スズなどの有機金属塩、金属キレートなどが挙げられる。硬化促進剤は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
[Curing accelerator (component (D))]
The conductive composition may contain a curing accelerator. As the curing accelerator, a known curing accelerator for curing a known epoxy resin with a phenolic curing agent can be used, such as tertiary amine compounds, quaternary ammonium salts, imidazoles, urea compounds, phosphine compounds, Examples include phosphonium salts. Specifically, for example, triethylamine, triethylenediamine, benzyldimethylamine, 2,4,6-tris(dimethylaminomethyl)phenol, 1,8-diazabicyclo[5.4.0]undecene-7 (DBU) or its like. salts (more specifically phenol salts, octylate (2-ethylhexanoate), p-toluenesulfonate, formate, tetraphenylborate salts, etc.), 1,5-diazabicyclo[4.3.0 ] Nonene-5 (DBN) or its salts (e.g., phenol salt, octylate (2-ethylhexanoate), p-toluenesulfonate, formate, tetraphenylborate salt, etc.), triphenylphosphine, etc. Examples include phosphines, phosphonium compounds such as tetraphenylphosphonium tetra(p-tolyl)borate, organic metal salts such as zinc octylate and tin octylate, and metal chelates. One type of curing accelerator can be used alone, or two or more types can be used in combination.

硬化促進剤を用いる場合、その含有量は、成分(A)と成分(B)の合計100質量部(固形分基準)に対して、0.05~10質量部が好ましく、0.1~5質量部がより好ましい。硬化促進剤の含有量が上記範囲であれば、硬化促進効果が十分であり、硬化物の経時的な色相変化が起こらない。 When using a curing accelerator, its content is preferably 0.05 to 10 parts by mass, and preferably 0.1 to 5 parts by mass, based on a total of 100 parts by mass (solid content basis) of component (A) and component (B). Parts by mass are more preferred. When the content of the curing accelerator is within the above range, the curing accelerating effect is sufficient and the hue of the cured product does not change over time.

[溶剤(成分(E))]
導電性組成物は、揮発性成分として、溶剤を含有してもよい。溶剤としては、例えば、本技術分野において通常用いられる有機溶剤を用いることができる。例えば、グリコールエーテル類、非エーテル系アルコール類、エステル類、ケトン類、テルペン類、その他炭化水素類等が挙げられる。グリコールエーテル類としては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテートなどが挙げられる。非エーテル系アルコール類としては、メチルアルコール、エチルアルコール、イソプロピルアルコール、シクロヘキサノールが挙げられる。エステル類としては、乳酸エチル、乳酸ブチル、酢酸メチル、酢酸エチル、酢酸ブチル、メチルメトキシプロピオネート、エチルエトキシプロピオネート、シュウ酸ジエチル、およびマロン酸ジエチル等が挙げられる。ケトン類としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、およびシクロヘキサノン等が挙げられる。テルペン類としては、テレピン油、テレピネオール、ボルネオール、およびα-ピネンなどが挙げられる。また、溶剤はハンドリング性の観点から、希釈剤として樹脂に含有させて使用しても良い。溶剤は、1種単独で用いてもよいし、2種以上組み合わせて用いることができる。
[Solvent (component (E))]
The conductive composition may contain a solvent as a volatile component. As the solvent, for example, organic solvents commonly used in this technical field can be used. Examples include glycol ethers, non-ether alcohols, esters, ketones, terpenes, and other hydrocarbons. Examples of glycol ethers include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, and diethylene glycol monoethyl ether acetate. Examples of non-ether alcohols include methyl alcohol, ethyl alcohol, isopropyl alcohol, and cyclohexanol. Examples of the esters include ethyl lactate, butyl lactate, methyl acetate, ethyl acetate, butyl acetate, methyl methoxypropionate, ethyl ethoxypropionate, diethyl oxalate, and diethyl malonate. Examples of ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. Examples of terpenes include turpentine oil, terpineol, borneol, and α-pinene. Further, from the viewpoint of handling properties, the solvent may be used as a diluent in the resin. The solvents may be used alone or in combination of two or more.

溶剤の含有量は(A)成分と(B)成分の合計100質量部(固形分基準)に対して、0~250質量部が好ましく、より好ましくは20~100質量部である。尚、前述の(A)~(D)成分及び後述する任意成分であるその他の成分に溶剤が含まれる場合は、これを考慮する。 The content of the solvent is preferably 0 to 250 parts by weight, more preferably 20 to 100 parts by weight, based on a total of 100 parts by weight (based on solid content) of components (A) and (B). In addition, if a solvent is included in the above-mentioned components (A) to (D) and other optional components described later, this should be taken into consideration.

[その他の成分]
導電性組成物は、必要に応じて各種公知の分散剤、酸化防止剤、界面活性剤、充填剤、難燃剤、カップリング剤、消泡剤、滑剤などのその他添加剤を、導電性の確保可能な範囲で配合してもよい。
[Other ingredients]
The conductive composition may contain various known additives such as dispersants, antioxidants, surfactants, fillers, flame retardants, coupling agents, antifoaming agents, and lubricants as necessary to ensure conductivity. They may be blended within the possible range.

導電性組成物は、加熱することで硬化して導電性をもつ硬化物を形成する樹脂組成物である。導電性組成物は、液状であり、ダイコーター、インクジェットプリンタ、スクリーン印刷機、グラビアオフセット印刷機、パッド印刷機など各種塗工機を用いて容易にパターニングすることができる。この場合の導電性組成物の25℃における粘度は、例えば500mPa・s以上300Pa・s以下が好ましい。25℃で液状且つ均一であることが好ましい。導電性組成物は、低温領域での粘度の温度依存性が低く、特に冷蔵庫や冷凍庫などの保冷庫から取り出した後、常温に戻る中低温において、従来の導電性組成物よりも流動性を有しているが、常温と同様の流動性をもつことが好ましい。 The conductive composition is a resin composition that is cured by heating to form a cured product having conductivity. The conductive composition is liquid and can be easily patterned using various coating machines such as a die coater, an inkjet printer, a screen printer, a gravure offset printer, and a pad printer. In this case, the viscosity of the conductive composition at 25° C. is preferably, for example, 500 mPa·s or more and 300 Pa·s or less. Preferably, it is liquid and homogeneous at 25°C. Conductive compositions have low temperature dependence of viscosity in low-temperature ranges, and have more fluidity than conventional conductive compositions, especially at medium-low temperatures where they return to room temperature after being taken out of a cold storage such as a refrigerator or freezer. However, it is preferable to have fluidity similar to that at room temperature.

また、導電性組成物は、例えば基材に塗布した際に、大気中での表面乾燥性が従来のものより少なくなっているが、乾燥の影響を受けないことが好ましい。導電性組成物の表面の乾燥が早い場合、熱硬化時に表面に乾燥した被覆膜が直ちに形成され、導電性組成物の内部に残存する溶剤の外部への揮発を阻害し、内部にボイドが多数残留することになる。このボイドの発生は硬化膜の欠陥原因や導電性低下につながる。 Furthermore, when the conductive composition is applied to a substrate, for example, the surface drying property in the atmosphere is lower than that of conventional compositions, but it is preferable that the conductive composition is not affected by drying. If the surface of the conductive composition dries quickly, a dry coating film is immediately formed on the surface during heat curing, inhibiting the volatilization of the solvent remaining inside the conductive composition to the outside, and creating voids inside. Many will remain. The generation of these voids leads to defects in the cured film and a decrease in conductivity.

導電性組成物は、導電性微粒子及びバインダーを所定の含有率で含むため、その硬化物は従来より高導電性であるが、その硬化物の導電性がより高いことが望ましく、一般的な電子デバイスを駆動させる観点から、例えば、その体積抵抗率は100μΩ・cm以下が望ましい。また、硬化物の耐マイグレーションに優れることが好ましい。 Since the conductive composition contains conductive fine particles and a binder at a predetermined content rate, the cured product thereof has higher conductivity than before, but it is desirable that the cured product has higher conductivity. From the viewpoint of driving the device, the volume resistivity is preferably 100 μΩ·cm or less, for example. Further, it is preferable that the cured product has excellent migration resistance.

以下、実施例と比較例により本発明の実施形態をより具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

〔ジグリシジルエーテルのエポキシ当量の測定〕
後述する実施例1~3、比較例1~5で得られたジグリシジルエーテル3gをジメチルホルムアミド(DMF)で希釈溶解させた後、0.2N塩酸DMF溶液を加え1時間放置した。その後、ブロモフェノールブルー指示薬を加えた後に、0.2N水酸化カリウムエタノール溶液で滴定し、オキシラン酸素量からエポキシ当量を算出した。
[Measurement of epoxy equivalent of diglycidyl ether]
After diluting and dissolving 3 g of diglycidyl ether obtained in Examples 1 to 3 and Comparative Examples 1 to 5, which will be described later, in dimethylformamide (DMF), a 0.2N hydrochloric acid DMF solution was added and left for 1 hour. Then, after adding a bromophenol blue indicator, titration was performed with a 0.2N potassium hydroxide ethanol solution, and the epoxy equivalent was calculated from the amount of oxirane oxygen.

〔ジグリシジルエーテルの粘度の測定〕
後述する実施例1~3、比較例1~5で得られたジグリシジルエーテルについて、コーン・プレート型のE型粘度計(東機産業株式会社製)を用いて25℃で5分後の粘度の値を読み取った。
[Measurement of viscosity of diglycidyl ether]
The viscosity of the diglycidyl ethers obtained in Examples 1 to 3 and Comparative Examples 1 to 5 described below after 5 minutes at 25°C using a cone-plate type E-type viscometer (manufactured by Toki Sangyo Co., Ltd.) The value was read.

〔ジグリシジルエーテルの平均付加モル数の測定〕
後述する実施例1~3、比較例1~4で得られたジグリシジルエーテルについて、テトラヒドロフラン(THF)を展開溶媒とする、GPC(ゲル浸透クロマトグラフィー、島津製作所製)により測定を行い、ポリエチレングリコール換算で重量平均分子量を求め、平均付加モル数を算出した。
[Measurement of average number of added moles of diglycidyl ether]
The diglycidyl ethers obtained in Examples 1 to 3 and Comparative Examples 1 to 4, which will be described later, were measured by GPC (gel permeation chromatography, manufactured by Shimadzu Corporation) using tetrahydrofuran (THF) as a developing solvent, and polyethylene glycol The weight average molecular weight was determined in terms of conversion, and the average number of added moles was calculated.

〔実施例1〕
<ポリトリメチレングリコールジグリシジルエーテル((A-1)成分)の合成>
滴下漏斗、撹拌翼、温度計を付した5Lの5つ口フラスコに、ポリトリメチレングリコール[ALLESSA社製、Velvetol H-500〔分子量500〕]1500g、エピクロロヒドリン[ダイソー社製、エピクロロヒドリン]1650g、テトラメチルアンモニウムクロリド65%水溶液13.5gを仕込み、60℃まで昇温した。その後、48%水酸化ナトリウム水溶液560gを3時間かけて滴下した。その後、55℃で5時間加熱攪拌をおこなった。その後、常温まで冷却した後、水750gをフラスコに滴下し、10分間攪拌した後、5Lの分液漏斗に移送し30分間静置した。分層が確認できた後、下層の水層を排出させた。次に、水を300g添加し混和させた後30分間静置した。分層が確認できた後、上層の水層を分取した。同様の操作を追加で3回繰り返した。その後、フラスコに戻した後、水を減圧留去(80℃×50torr(6.7kPa)×6h)し、ポリトリメチレングリコールジグリシジルエーテル(A-1)を収率72%で得た。エポキシ当量は360g/eq.で、重量平均分子量は650で、25℃での粘度は137mPa・sであった。また、一般式(1)中の平均付加モル数mは、9であった。
[Example 1]
<Synthesis of polytrimethylene glycol diglycidyl ether ((A-1) component)>
In a 5L five-necked flask equipped with a dropping funnel, a stirring blade, and a thermometer, 1500 g of polytrimethylene glycol [Velvetol H-500 [molecular weight 500], manufactured by ALLESSA Co., Ltd., and 1500 g of epichlorohydrin [manufactured by Daiso Co., Ltd., Epichloro hydrin] and 13.5 g of a 65% aqueous solution of tetramethylammonium chloride were charged, and the temperature was raised to 60°C. Thereafter, 560 g of a 48% aqueous sodium hydroxide solution was added dropwise over 3 hours. Thereafter, heating and stirring were performed at 55° C. for 5 hours. Thereafter, after cooling to room temperature, 750 g of water was added dropwise to the flask, and after stirring for 10 minutes, the flask was transferred to a 5 L separatory funnel and left to stand for 30 minutes. After confirming the separation of the layers, the lower aqueous layer was discharged. Next, 300 g of water was added and mixed, and then left to stand for 30 minutes. After confirming the separation of the layers, the upper aqueous layer was separated. The same operation was repeated three additional times. Thereafter, after returning to the flask, water was distilled off under reduced pressure (80° C. x 50 torr (6.7 kPa) x 6 hours) to obtain polytrimethylene glycol diglycidyl ether (A-1) in a yield of 72%. Epoxy equivalent is 360g/eq. The weight average molecular weight was 650, and the viscosity at 25°C was 137 mPa·s. Further, the average number of added moles m in the general formula (1) was 9.

<表面被覆銅粒子(B-1)の製造>
水1000gに対し塩化アンモニウム50gを溶解した塩化アンモニウム水溶液を調製した。銅粒子a[三井金属鉱業(株)製「1200Y」;粒径(D50)2μm、BET比表面積0.40m/g、形状:球状]300gを、塩化アンモニウム水溶液に添加し、窒素バブリング下、30℃で60分間攪拌した。撹拌は、メカニカルスターラーを使用し、回転数150rpmで実施した。以下、撹拌は同様の撹拌装置を使用して同じ回転数で行った。撹拌終了後、5C濾紙の桐山ロートを用いて減圧濾過にて銅粒子を濾別し、つづいて、桐山ロート上で1500gの水により銅粒子の洗浄を2回行った。洗浄した銅粒子を、40質量%のジエチレントリアミン水溶液2500gに添加し、窒素バブリンクをしながら60℃下で1時間加熱撹拌を行った。撹拌を止めて5分間静置した後、上澄み液約2000gを抜き取って除去した。つづいて、沈殿物に洗浄用溶剤としてイソプロパノール2000gを添加し、30℃で3分間撹拌を行った。撹拌を止めて5分間静置した後、上澄み液約2000gを抜き取って除去し、その後、2質量%のラウリン酸イソプロパノール溶液2500gを添加した後、30℃で30分間攪拌した。
<Manufacture of surface-coated copper particles (B-1)>
An ammonium chloride aqueous solution was prepared by dissolving 50 g of ammonium chloride in 1000 g of water. 300 g of copper particles a [Mitsui Kinzoku Mining Co., Ltd. "1200Y"; particle size (D50) 2 μm, BET specific surface area 0.40 m 2 /g, shape: spherical] were added to an ammonium chloride aqueous solution, and under nitrogen bubbling, The mixture was stirred at 30°C for 60 minutes. Stirring was performed using a mechanical stirrer at a rotation speed of 150 rpm. Hereinafter, stirring was performed using the same stirring device at the same rotation speed. After the stirring was completed, the copper particles were filtered out by vacuum filtration using a Kiriyama funnel made of 5C filter paper, and then the copper particles were washed twice with 1500 g of water on the Kiriyama funnel. The washed copper particles were added to 2,500 g of a 40% by mass diethylenetriamine aqueous solution, and heated and stirred at 60° C. for 1 hour under nitrogen bubbling. After the stirring was stopped and the mixture was allowed to stand for 5 minutes, about 2000 g of supernatant liquid was drawn out and removed. Subsequently, 2000 g of isopropanol was added to the precipitate as a cleaning solvent, and the mixture was stirred at 30° C. for 3 minutes. After stopping the stirring and allowing the mixture to stand for 5 minutes, about 2000 g of the supernatant liquid was extracted and removed, and then 2500 g of a 2% by mass lauric acid isopropanol solution was added, followed by stirring at 30° C. for 30 minutes.

撹拌終了後、5C濾紙の桐山ロートを用いて減圧濾過にて銅粒子を濾別した。得られた銅粒子を25℃で3時間減圧乾燥することにより、表面被覆銅粒子(B-1)を得た。 After the stirring was completed, copper particles were removed by vacuum filtration using a Kiriyama funnel made of 5C filter paper. The obtained copper particles were dried under reduced pressure at 25° C. for 3 hours to obtain surface-coated copper particles (B-1).

<導電性組成物の調製>
得られたポリトリメチレングリコールジグリシジルエーテル(A-1)を3.3質量部(固形分基準)、フェノール樹脂(群栄化学株式会社製、PSF-2803、ノボラック型フェノール樹脂、重量平均分子量:12000)を3.3質量部(固形分基準)、表面処理銅粉(B-1)を87.8質量部、硬化促進剤として有機酸塩系塩基触媒である4級アンモニウム塩(サンアプロ株式会社製、U-CAT SA102、DBUの2-エチルヘキサン酸塩)を0.2質量部(固形分基準)、分散剤としてNAA(登録商標)-122(日油株式会社製、ラウリン酸)、酸化防止剤としてN,N’-ビス(2-ヒドロキシベンジリデン)エチレンジアミン(Salen)、溶剤としてジエチレングリコールモノエチルエーテルアセテート(ECA)を3.3質量部、配合した後、容器攪拌型プラネタリーミキサーを用いて2000rpmで1分間攪拌した後、3本ロールミルで混錬することで、導電性組成物を得た。
<Preparation of conductive composition>
3.3 parts by mass (solid content basis) of the obtained polytrimethylene glycol diglycidyl ether (A-1), phenol resin (manufactured by Gunei Chemical Co., Ltd., PSF-2803, novolak type phenol resin, weight average molecular weight: 12,000) (based on solid content), 87.8 parts by mass of surface-treated copper powder (B-1), and a quaternary ammonium salt (organic acid base catalyst) as a curing accelerator (San-Apro Co., Ltd. 0.2 parts by mass (based on solid content) of U-CAT SA102, DBU (2-ethylhexanoate), NAA (registered trademark)-122 (manufactured by NOF Corporation, lauric acid) as a dispersant, oxidation After blending 3.3 parts by mass of N,N'-bis(2-hydroxybenzylidene)ethylenediamine (Salen) as an inhibitor and 3.3 parts by mass of diethylene glycol monoethyl ether acetate (ECA) as a solvent, a container stirring type planetary mixer was used. After stirring at 2000 rpm for 1 minute, the mixture was kneaded in a three-roll mill to obtain a conductive composition.

[実施例2]
<ポリトリメチレングリコールジグリシジルエーテル((A-2)成分)の合成>
ポリトリメチレングリコール[ALLESSA社製、Velvetol H-500〔分子量500〕]1500gを、ポリトリメチレングリコール[ALLESSA社製、Velvetol H-1000〔分子量1000〕]750gに変えた以外は、(A-1)成分の場合と同様に合成し、収率69%でポリトリメチレングリコールジグリシジルエーテル(A-2)を得た。エポキシ当量は620g/eq.で、重量平均分子量1100で、25℃での粘度は260mPa・sであった。また、一般式(1)中の平均付加モル数mは、17であった。
[Example 2]
<Synthesis of polytrimethylene glycol diglycidyl ether ((A-2) component)>
(A-1) except that 1500 g of polytrimethylene glycol [Velvetol H-500 [molecular weight 500], manufactured by ALLESSA Co., Ltd. was changed to 750 g of polytrimethylene glycol [Velvetol H-1000 [molecular weight 1000], manufactured by ALLESSA Co., Ltd. ), polytrimethylene glycol diglycidyl ether (A-2) was obtained in a yield of 69%. Epoxy equivalent is 620g/eq. The weight average molecular weight was 1100, and the viscosity at 25°C was 260 mPa·s. Further, the average number of added moles m in the general formula (1) was 17.

<導電性組成物の調製>
ポリトリメチレングリコールジグリシジルエーテル(A-1)に替えて、ポリトリメチレングリコールジグリシジルエーテル(A-2)を用いた以外は実施例1と同様にして、導電性組成物を得た。
<Preparation of conductive composition>
A conductive composition was obtained in the same manner as in Example 1, except that polytrimethylene glycol diglycidyl ether (A-2) was used instead of polytrimethylene glycol diglycidyl ether (A-1).

[実施例3]
<ポリトリメチレングリコールジグリシジルエーテル((A-3)成分)の合成>
ポリトリメチレングリコール[ALLESSA社製、Velvetol H-500〔分子量500〕]1500gを、ポリトリメチレングリコール[ALLESSA社製、Velvetol H-2000〔分子量2000〕]375gに変えた以外は、(A-1)成分の場合と同様に合成し、収率71%でポリトリメチレングリコールジグリシジルエーテル(A-3)を得た。エポキシ当量は1160g/eq.で、重量平均分子量は2100で、25℃での粘度は415mPa・sであった。また、一般式(1)中の平均付加モル数mは、34であった。
[Example 3]
<Synthesis of polytrimethylene glycol diglycidyl ether (component (A-3))>
(A-1) except that 1500 g of polytrimethylene glycol [Velvetol H-500 [molecular weight 500], manufactured by ALLESSA Co., Ltd. was changed to 375 g of polytrimethylene glycol [Velvetol H-2000 [molecular weight 2000], manufactured by ALLESSA Co., Ltd. ), polytrimethylene glycol diglycidyl ether (A-3) was obtained in a yield of 71%. Epoxy equivalent is 1160g/eq. The weight average molecular weight was 2100, and the viscosity at 25°C was 415 mPa·s. Further, the average number of added moles m in the general formula (1) was 34.

<導電性組成物の調製>
ポリトリメチレングリコールジグリシジルエーテル(A-1)に替えて、ポリトリメチレングリコールジグリシジルエーテル(A-3)を用いた以外は実施例1と同様にして、導電性組成物を得た。
<Preparation of conductive composition>
A conductive composition was obtained in the same manner as in Example 1, except that polytrimethylene glycol diglycidyl ether (A-3) was used instead of polytrimethylene glycol diglycidyl ether (A-1).

[比較例1]
<導電性組成物の調製>
ポリトリメチレングリコールジグリシジルエーテル(A-1)に替えて、ポリエチレングリコールジグリシジルエーテル(A’-1)[日油株式会社製、エピオール(登録商標) E-1000]を用いた以外は実施例1と同様にして、導電性組成物を得た。尚、(A’-1)のエポキシ当量は580g/eq.で、重量平均分子量は1300で、25℃での粘度は58mPa・sであり、オキシエチレン単位の平均付加モル数は23であった。
[Comparative example 1]
<Preparation of conductive composition>
Examples except that polyethylene glycol diglycidyl ether (A'-1) [Epiol (registered trademark) E-1000, manufactured by NOF Corporation] was used instead of polytrimethylene glycol diglycidyl ether (A-1). A conductive composition was obtained in the same manner as in Example 1. In addition, the epoxy equivalent of (A'-1) is 580 g/eq. The weight average molecular weight was 1300, the viscosity at 25° C. was 58 mPa·s, and the average number of added moles of oxyethylene units was 23.

〔比較例2〕
<ポリプロピレングリコールジグリシジルエーテル((A’-2)成分)の合成>
ポリトリメチレングリコール[ALLESSA社製、Velvetol H-500〔分子量500〕]1500gをポリプロピレングリコール[日油株式会社製、ユニオール(登録商標)D-1000〔分子量1000〕]750gに変えた以外は、(A-1)成分の場合と同様に合成し、収率65%でポリプロピレングリコールジグリシジルエーテル(A’-2)を得た。(A’-2)のエポキシ当量は600g/eq.で、重量平均分子量は1100で、25℃での粘度は190mPa・sであった。また、(A’-2)中のプロピレングリコールに基づく構成単位の平均付加モル数は17であった。
[Comparative example 2]
<Synthesis of polypropylene glycol diglycidyl ether ((A'-2) component)>
Except that 1500 g of polytrimethylene glycol [manufactured by ALLESSA, Velvetol H-500 [molecular weight 500]] was replaced with 750 g of polypropylene glycol [manufactured by NOF Corporation, Uniol (registered trademark) D-1000 [molecular weight 1000]]. Polypropylene glycol diglycidyl ether (A'-2) was synthesized in the same manner as for component A-1) in a yield of 65%. The epoxy equivalent of (A'-2) is 600 g/eq. The weight average molecular weight was 1100, and the viscosity at 25°C was 190 mPa·s. Further, the average number of moles added of the propylene glycol-based structural unit in (A'-2) was 17.

<導電性組成物の調製>
ポリトリメチレングリコールジグリシジルエーテル(A-1)に替えて、ポリプロピレングリコールジグリシジルエーテル(A’-2)を用いた以外は実施例1と同様にして、導電性組成物を得た。
<Preparation of conductive composition>
A conductive composition was obtained in the same manner as in Example 1, except that polypropylene glycol diglycidyl ether (A'-2) was used instead of polytrimethylene glycol diglycidyl ether (A-1).

〔比較例3〕
<ポリテトラメチレングリコールジグリシジルエーテル((A’-3)成分)の合成>
ポリトリメチレングリコール[ALLESSA社製、Velvetol H-500〔分子量500〕]1500gをポリテトラメチレングリコール[三菱化学製、PTMG1000〔分子量1000〕]750gに変えた以外は、(A-1)成分の場合と同様に合成し、収率66%でポリテトラメチレングリコールジグリシジルエーテル(A’-3)を得た。(A’-3)のエポキシ当量は610g/eq.で、重量平均分子量は1100で、25℃での粘度は390mPa・sであった。また、(A’-3)中のオキシテトラメチレン単位の平均付加モル数は14であった。
[Comparative example 3]
<Synthesis of polytetramethylene glycol diglycidyl ether ((A'-3) component)>
For component (A-1), except that 1500 g of polytrimethylene glycol [manufactured by ALLESSA, Velvetol H-500 [molecular weight 500]] was changed to 750 g of polytetramethylene glycol [manufactured by Mitsubishi Chemical, PTMG1000 [molecular weight 1000]] Polytetramethylene glycol diglycidyl ether (A'-3) was obtained in a yield of 66%. The epoxy equivalent of (A'-3) is 610 g/eq. The weight average molecular weight was 1100, and the viscosity at 25°C was 390 mPa·s. Further, the average number of moles of oxytetramethylene units added in (A'-3) was 14.

<導電性組成物の調製の調製>
ポリトリメチレングリコールジグリシジルエーテル(A-1)に替えて、ポリテトラメチレングリコールジグリシジルエーテル(A’-3)を用いた以外は実施例1と同様にして、導電性組成物の調製物を得た。
<Preparation of conductive composition>
A conductive composition was prepared in the same manner as in Example 1 except that polytetramethylene glycol diglycidyl ether (A'-3) was used instead of polytrimethylene glycol diglycidyl ether (A-1). Obtained.

〔比較例4〕
<導電性組成物の調製>
ポリトリメチレングリコールジグリシジルエーテル(A-1)に替えて、ジグリシジルエーテル(A’-4)[三菱ケミカル株式会社製、jER(登録商標)828、ビスフェノールA型エポキシ樹脂、エポキシ当量:190g/eq.、粘度:13Pa・s(25℃)、重量平均分子量:370]を用いた以外は実施例1と同様にして、導電性組成物を得た。
[Comparative example 4]
<Preparation of conductive composition>
Instead of polytrimethylene glycol diglycidyl ether (A-1), diglycidyl ether (A'-4) [manufactured by Mitsubishi Chemical Corporation, jER (registered trademark) 828, bisphenol A type epoxy resin, epoxy equivalent: 190 g/ An electrically conductive composition was obtained in the same manner as in Example 1, except that the following was used.

〔比較例5〕
<導電性組成物の調製の調製>
ポリトリメチレングリコールジグリシジルエーテル(A-1)とノボラック型フェノール樹脂(群栄化学株式会社製、PSF-2803)に替えて自己縮合型フェノール樹脂(群栄化学株式会社製、PL-5203、レゾール型フェノール樹脂)を用いた以外は実施例1と同様にして、導電性組成物の調製物を得た。
[Comparative example 5]
<Preparation of conductive composition>
Polytrimethylene glycol diglycidyl ether (A-1) and a self-condensing phenol resin (manufactured by Gun-ei Chemical Co., Ltd., PL-5203, resol A conductive composition was prepared in the same manner as in Example 1, except that a phenolic resin (type phenolic resin) was used.

[評価]
[常温と低温時の粘度比]
E型粘度計で実施例1~3及び比較例1~5で得られた導電性組成物の粘度を25℃(常温)と15℃(低温)で回転速度5rpmで測定した。得られた15℃の粘度(η(15℃))を25℃の粘度(η(25℃))で割ったものを粘度比とし以下の基準で評価した。
◎:η(15℃)/η(25℃)<1.1
○:1.1≦η(15℃)/η(25℃)<1.8
×:1.8≦η(15℃)/η(25℃)
[evaluation]
[Viscosity ratio at room temperature and low temperature]
The viscosity of the conductive compositions obtained in Examples 1 to 3 and Comparative Examples 1 to 5 was measured using an E-type viscometer at 25° C. (normal temperature) and 15° C. (low temperature) at a rotation speed of 5 rpm. The obtained viscosity at 15° C. (η (15° C.)) was divided by the viscosity at 25° C. (η (25° C.)), which was defined as the viscosity ratio, and was evaluated based on the following criteria.
◎: η(15℃)/η(25℃)<1.1
○: 1.1≦η(15℃)/η(25℃)<1.8
×: 1.8≦η(15℃)/η(25℃)

[表面乾燥性]
実施例1~3及び比較例1~5で得られた導電性組成物を、スライドガラス上に幅1cm長さ3cm厚さ50μmで塗布した後、6h後に150℃、15minで硬化させた。その後、ガラス面を裏側から観察し、ボイドの有無を目視により確認した。評価基準は以下のとおりである。
○:ボイド無し
×:ボイド有り
[Surface drying property]
The conductive compositions obtained in Examples 1 to 3 and Comparative Examples 1 to 5 were applied onto a slide glass in a width of 1 cm, length of 3 cm, and thickness of 50 μm, and after 6 hours, they were cured at 150° C. for 15 minutes. Thereafter, the glass surface was observed from the back side, and the presence or absence of voids was visually confirmed. The evaluation criteria are as follows.
○: No void ×: With void

[導電性]
配合物をスライドガラス上に幅1cm長さ3cm厚さ50μmで塗布した後、150℃15minで硬化させた後、4探針法で体積抵抗率を測定した。評価基準は下記のとおりである。
○:<100μΩ・cm
×:≧100μΩ・cm
[Conductivity]
The composition was applied onto a slide glass in a width of 1 cm, length of 3 cm, and thickness of 50 μm, and after curing at 150° C. for 15 minutes, the volume resistivity was measured using a four-probe method. The evaluation criteria are as follows.
○:<100μΩ・cm
×: ≧100μΩ・cm

実施例1~3及び比較例1~5の配合及び評価結果を表1に示す。表1中、評価の欄の括弧内の数値は測定値を示す。 The formulations and evaluation results of Examples 1 to 3 and Comparative Examples 1 to 5 are shown in Table 1. In Table 1, the numerical values in parentheses in the evaluation column indicate measured values.

Figure 2024020841000004
Figure 2024020841000004

上記結果から、ポリトリメチレングリコールジグリシジルエーテル(A-1~A-3)とフェノール樹脂と導電性粒子(B-1)を所定の含有率で含む導電性組成物は、ガラス基材に塗布した際の表面乾燥性が少なく、さらに低温領域での粘度の温度依存性が低く、さらに、硬化物が高導電性であり、配線材料や接合材料として好適である。 From the above results, the conductive composition containing polytrimethylene glycol diglycidyl ether (A-1 to A-3), phenol resin, and conductive particles (B-1) at a predetermined content can be applied to a glass substrate. It has low surface drying properties when cured, has low temperature dependence of viscosity in low temperature ranges, and has a highly conductive cured product, making it suitable for wiring materials and bonding materials.

Claims (1)

(A)下記一般式(1)で示されるジグリシジルエーテル、
(B)フェノール樹脂、
(C)導電性粒子、を含有し、
固形分基準で成分(A)~(C)の合計100質量%に対して、成分(A)の含有率が0.2~38質量%、成分(B)の含有率が0.05~32質量%、成分(C)の含有率が60~99質量%である、導電性組成物。
Figure 2024020841000005
(一般式(1)中、mはオキシトリメチレン基の平均付加モル数を表し、2~90の実数である。)
(A) diglycidyl ether represented by the following general formula (1),
(B) Phenol resin,
(C) containing conductive particles;
The content of component (A) is 0.2 to 38 mass %, and the content of component (B) is 0.05 to 32 mass %, based on the solid content of 100 mass % in total of components (A) to (C). A conductive composition in which the content of component (C) is 60 to 99% by mass.
Figure 2024020841000005
(In general formula (1), m represents the average number of added moles of oxytrimethylene groups and is a real number from 2 to 90.)
JP2022123333A 2022-08-02 2022-08-02 conductive composition Pending JP2024020841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022123333A JP2024020841A (en) 2022-08-02 2022-08-02 conductive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022123333A JP2024020841A (en) 2022-08-02 2022-08-02 conductive composition

Publications (1)

Publication Number Publication Date
JP2024020841A true JP2024020841A (en) 2024-02-15

Family

ID=89854184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022123333A Pending JP2024020841A (en) 2022-08-02 2022-08-02 conductive composition

Country Status (1)

Country Link
JP (1) JP2024020841A (en)

Similar Documents

Publication Publication Date Title
KR100832628B1 (en) Conductive paste
JP6140189B2 (en) Conductive paste and manufacturing method thereof
JP5400801B2 (en) Conductive paste for external electrode, multilayer ceramic electronic component having external electrode formed using the same, and method for manufacturing multilayer ceramic electronic component
JP5045803B2 (en) Conductive composition and solar battery cell
US10717806B2 (en) Packaging material and film
JP2660937B2 (en) Copper conductive composition
JP2009070677A (en) Heat curing type conductive paste
JP5979237B2 (en) Conductive adhesive
WO2018139463A1 (en) Electrically conductive composition
JP7185289B2 (en) Electromagnetic wave shielding spray coating agent
TW201708438A (en) Nano-metal ink and process for producing metal film using same
JP2024020841A (en) conductive composition
JP4224771B2 (en) Conductive paste
WO2018216739A1 (en) Electroconductive composition
JP6361843B1 (en) Conductive composition
JP7147488B2 (en) conductive composition
JPH08176521A (en) Electroconductive adhesive
JP2023105371A (en) Diglycidyl ether and epoxy resin composition
JP2004127537A (en) Conductive thermosetting resin composition for electrode formation
JP7276052B2 (en) conductive composition
JP7264662B2 (en) conductive composition
JP2017130357A (en) Conductive paste and method for manufacturing cured body of conductive paste
JP2017130355A (en) Conductive paste, cured body of conductive paste, and method for manufacturing cured body of conductive paste
JP2013021019A (en) Conductive paste and multilayer wiring board
TW202219986A (en) Conductive composition