JP2024012177A - Metal-organic framework coordinated with carboxylate ion having diphenyl methane skeleton - Google Patents

Metal-organic framework coordinated with carboxylate ion having diphenyl methane skeleton Download PDF

Info

Publication number
JP2024012177A
JP2024012177A JP2023115329A JP2023115329A JP2024012177A JP 2024012177 A JP2024012177 A JP 2024012177A JP 2023115329 A JP2023115329 A JP 2023115329A JP 2023115329 A JP2023115329 A JP 2023115329A JP 2024012177 A JP2024012177 A JP 2024012177A
Authority
JP
Japan
Prior art keywords
organic ligand
mmol
organic
metal
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023115329A
Other languages
Japanese (ja)
Inventor
真生 箕浦
Masanari Minoura
功 菅又
Isao Sugamata
翔 小林
Sho Kobayashi
智子 中江
Tomoko Nakae
松橋 泰典
Taisuke Matsuhashi
昭宏 白井
Akihiro Shirai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Publication of JP2024012177A publication Critical patent/JP2024012177A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel metal-organic framework having a gas storage function, and a gas storage agent and a gas storage method each using the same.
SOLUTION: A metal-organic framework includes a carboxylate ion represented by the formula (1) bound with a polyvalent metal ion. (R represents H, a hydroxy group, a C1-6 alkyl group or the like; X represents a hydroxy group, a C1-6 alkyl group or the like; n1-n4 each represent an integer of 0-4; p represents an integer of 1-3; L represents a single bond or the like).
SELECTED DRAWING: None
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、ジフェニルメタン骨格を有するカルボン酸イオンと多価金属イオンが結合してなる金属有機構造体、前記金属有機構造体を含むガス貯蔵剤、及び前記金属有機構造体にガスを接触させる工程を含むガスの貯蔵方法に関する。 The present invention provides a metal-organic structure formed by bonding a carboxylic acid ion having a diphenylmethane skeleton with a polyvalent metal ion, a gas storage agent containing the metal-organic structure, and a step of bringing a gas into contact with the metal-organic structure. This invention relates to a method for storing gas containing gas.

金属有機構造体(以下「MOF」ということがある。)は、金属イオンとそれらを連結する架橋性の有機配位子を組み合わせることで内部に空間(つまり細孔)を持つ高分子構造を有する固体状の物質であり、ガスの貯蔵や分離などの機能をもつ多孔性材料として、この十数年高い興味が持たれてきた。例えば、メタンテトラ(p-安息香酸)と硝酸銅(II)を、酸性条件下、ジメチルホルムアミドと水の混合溶媒中で加熱することにより、次の分子式(A)のMOFが得られることが報告されている。(式中:Lは、メタンテトラ(p-安息香酸)のカルボン酸イオンを示す。) A metal-organic framework (hereinafter sometimes referred to as "MOF") has a polymer structure with internal spaces (i.e., pores) created by combining metal ions and crosslinking organic ligands that connect them. It is a solid substance and has attracted great interest over the past decade as a porous material with functions such as gas storage and separation. For example, it has been reported that MOF with the following molecular formula (A) can be obtained by heating methane tetra(p-benzoic acid) and copper(II) nitrate in a mixed solvent of dimethylformamide and water under acidic conditions. has been done. (In the formula: L 1 represents a carboxylic acid ion of methane tetra(p-benzoic acid).)

[式1]

Figure 2024012177000001
[Formula 1]
Figure 2024012177000001

表面積は1560m/gで、水素、窒素等のガスを貯蔵できることが知られている(非特許文献1参照)。このような開発が行われるなか、金属有機構造体は、用いる金属種、配位子、反応条件により大きく構造が変化することが知られており、ガス貯蔵機能を有する新規な金属有機構造体の開発が更に求められている。 It has a surface area of 1560 m 2 /g and is known to be able to store gases such as hydrogen and nitrogen (see Non-Patent Document 1). While such development is being carried out, it is known that the structure of metal-organic frameworks changes greatly depending on the metal species, ligands, and reaction conditions used, and new metal-organic frameworks with gas storage functions are being developed. Further development is required.

Angew. Chem. Int. Ed. 2009, 48, pp9905-9908Angew. Chem. Int. Ed. 2009, 48, pp9905-9908

本発明は、ガス貯蔵機能を有する新規な金属有機構造体並びにそれを用いたガス貯蔵剤及びガス貯蔵方法を提供することを課題とする。 An object of the present invention is to provide a novel metal-organic structure having a gas storage function, a gas storage agent, and a gas storage method using the same.

本発明者らは、上記課題を解決すべく鋭意検討を行った結果、ジフェニルメタン骨格を有する特定のカルボン酸を有機配位子として得られる新規な金属有機構造体を見いだした。また、それらの新規な金属有機構造体には、高い水素貯蔵能力があることを見いだし、本発明を完成するに至った。 The present inventors conducted extensive studies to solve the above problems, and as a result, discovered a novel metal organic structure that can be obtained using a specific carboxylic acid having a diphenylmethane skeleton as an organic ligand. Furthermore, the inventors discovered that these novel metal-organic structures have a high hydrogen storage capacity, leading to the completion of the present invention.

すなわち、本発明は以下に示す事項により特定されるものである。
[1]式(1)で表されるカルボン酸イオンと多価金属イオンとが結合してなる金属有機構造体。
That is, the present invention is specified by the matters shown below.
[1] A metal-organic structure formed by bonding a carboxylic acid ion represented by formula (1) with a polyvalent metal ion.

Figure 2024012177000002
(式(1)中、
Rは、それぞれ独立に、水素原子、ヒドロキシ基、C1~6アルキル基、C1~6アルコキシ基又はハロゲノ基である。
Xは、それぞれ独立に、ヒドロキシ基、C1~6アルキル基、C1~6アルコキシ基又はハロゲノ基である。
n1、n2、n3及びn4は、それぞれ独立に、0~4のいずれかの整数である。
Xが2以上のとき、各Xは互いに同一でも異なっていてもよい。
pは、1~3のいずれかの整数である。
Lは、単結合又は2~4価の有機基である。)
Figure 2024012177000002
(In formula (1),
Each R is independently a hydrogen atom, a hydroxy group, a C1-6 alkyl group, a C1-6 alkoxy group, or a halogeno group.
Each X is independently a hydroxy group, a C1-6 alkyl group, a C1-6 alkoxy group, or a halogeno group.
n1, n2, n3 and n4 are each independently an integer of 0 to 4.
When X is 2 or more, each X may be the same or different from each other.
p is an integer of 1 to 3.
L is a single bond or a divalent to tetravalent organic group. )

[2]式(1)で表されるカルボン酸イオンが、式(2)で表されるカルボン酸イオンである上記[1]の金属有機構造体。 [2] The metal-organic structure of [1] above, wherein the carboxylic acid ion represented by formula (1) is a carboxylic acid ion represented by formula (2).

Figure 2024012177000003
(式(2)中、
Rは、それぞれ独立に、水素原子、ヒドロキシ基、C1~6アルキル基、C1~6アルコキシ基又はハロゲノ基である。
Xは、それぞれ独立に、ヒドロキシ基、C1~6アルキル基、C1~6アルコキシ基又はハロゲノ基である。
n1、n2、n3及びn4は、それぞれ独立に、0~4のいずれかの整数である。
Xが2以上のとき、各Xは互いに同一でも異なっていてもよい。
は、単結合又は2価の有機基である。)
Figure 2024012177000003
(In formula (2),
Each R is independently a hydrogen atom, a hydroxy group, a C1-6 alkyl group, a C1-6 alkoxy group, or a halogeno group.
Each X is independently a hydroxy group, a C1-6 alkyl group, a C1-6 alkoxy group, or a halogeno group.
n1, n2, n3 and n4 are each independently an integer of 0 to 4.
When X is 2 or more, each X may be the same or different from each other.
L a is a single bond or a divalent organic group. )

[3]多価金属イオンが、元素の周期表の第2族~第13族の金属からなる群から選ばれる少なくとも1種の金属イオンである上記[1]又は[2]の金属有機構造体。
[4]補助配位子を構成成分として更に含む上記[1]~[3]のいずれかに記載の金属有機構造体。
[5]上記[1]~[4]のいずれかの金属有機構造体を含むガス貯蔵剤。
[6]上記[1]~[4]のいずれかの金属有機構造体にガスを接触させる工程を含むガスの貯蔵方法。
[3] The metal-organic structure according to [1] or [2] above, wherein the polyvalent metal ion is at least one metal ion selected from the group consisting of metals from Groups 2 to 13 of the Periodic Table of the Elements. .
[4] The metal-organic structure according to any one of [1] to [3] above, further comprising an auxiliary ligand as a constituent component.
[5] A gas storage agent containing the metal-organic structure according to any one of [1] to [4] above.
[6] A method for storing a gas, which includes the step of bringing a gas into contact with the metal-organic structure according to any one of [1] to [4] above.

本発明の金属有機構造体は新規であり、水素、窒素等のガスを貯蔵することができる。 The metal-organic framework of the present invention is novel and capable of storing gases such as hydrogen and nitrogen.

本発明の金属有機構造体は、式(1)で表されるカルボン酸イオンと多価金属イオンとが結合してなる金属有機構造体である。 The metal-organic structure of the present invention is a metal-organic structure formed by bonding a carboxylic acid ion represented by formula (1) with a polyvalent metal ion.

Figure 2024012177000004
Figure 2024012177000004

式(1)中、Rは、それぞれ独立に、水素原子、ヒドロキシ基、C1~6アルキル基、C1~6アルコキシ基、またはハロゲノ基である。Xは、それぞれ独立に、ヒドロキシ基、C1~6アルキル基、C1~6アルコキシ基、またはハロゲノ基である。n1、n2、n3、及びn4は、それぞれ独立に、0~4のいずれかの整数である。Xが2以上のとき、各Xは互いに同一でも異なっていてもよい。pは、1~3のいずれかの整数である。Lは、単結合又は2~4価の有機基である。 In formula (1), each R is independently a hydrogen atom, a hydroxy group, a C1-6 alkyl group, a C1-6 alkoxy group, or a halogeno group. Each X is independently a hydroxy group, a C1-6 alkyl group, a C1-6 alkoxy group, or a halogeno group. n1, n2, n3, and n4 are each independently an integer of 0 to 4. When X is 2 or more, each X may be the same or different from each other. p is an integer of 1 to 3. L is a single bond or a divalent to tetravalent organic group.

RのC1~6アルキル基としては、直鎖でも、分岐鎖であってもよく、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、i-プロピル基、i-ブチル基、s-ブチル基、t-ブチル基、i-ペンチル基、ネオペンチル基、2-メチル-n-ブチル基、i-ヘキシル基等を挙げることができる。RのC1~6アルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、s-ブトキシ基、i-ブトキシ基、t-ブトキシ基等を挙げることができる。Rのハロゲノ基としては、フルオロ基、クロロ基、ブロモ基、イオド基等を挙げることができる。 The C1-6 alkyl group of R may be linear or branched, and may be a methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, i- Examples include propyl group, i-butyl group, s-butyl group, t-butyl group, i-pentyl group, neopentyl group, 2-methyl-n-butyl group, and i-hexyl group. Examples of the C1-6 alkoxy group for R include methoxy group, ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, s-butoxy group, i-butoxy group, t-butoxy group, etc. can. Examples of the halogeno group for R include a fluoro group, a chloro group, a bromo group, an iodo group, and the like.

XのC1~6アルキル基としては、直鎖でも、分岐鎖であってもよく、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、i-プロピル基、i-ブチル基、s-ブチル基、t-ブチル基、i-ペンチル基、ネオペンチル基、2-メチル-n-ブチル基、i-ヘキシル基等を挙げることができる。XのC1~6アルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、s-ブトキシ基、i-ブトキシ基、t-ブトキシ基等を挙げることができる。Xのハロゲノ基としては、フルオロ基、クロロ基、ブロモ基、イオド基等を挙げることができる。本願明細書における「C1~6」などの用語は、母核となる基の炭素原子数が1~6個などであることを表している。 The C1-6 alkyl group of Examples include propyl group, i-butyl group, s-butyl group, t-butyl group, i-pentyl group, neopentyl group, 2-methyl-n-butyl group, and i-hexyl group. Examples of the C1-6 alkoxy group of X include methoxy group, ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, s-butoxy group, i-butoxy group, t-butoxy group, etc. can. Examples of the halogeno group of X include a fluoro group, a chloro group, a bromo group, an iodo group, and the like. In the present specification, terms such as "C1-6" indicate that the number of carbon atoms in the group serving as a core is 1 to 6.

Lの2~4価の有機基としては、例えば、アルカンから誘導される2~4価の連結基、エテンから誘導される2~4価の連結基、アリールから誘導される2~4価の連結基、ヘテロアリールから誘導される2~4価の連結基等を挙げることができる。 Examples of the divalent to tetravalent organic group for L include a divalent to tetravalent linking group derived from an alkane, a divalent to tetravalent linking group derived from ethene, and a divalent to tetravalent linking group derived from aryl. Examples include linking groups, divalent to tetravalent linking groups derived from heteroaryl, and the like.

アルカンから誘導される2~4価の連結基とは、アルカンを母核として、アルカンを構成する炭素上の任意の水素2~4個を結合手に変換したものであり、具体的には、以下に示す連結基を例示することができる。なお、結合手とは、他の官能基と結合を形成することのできる電子が配置されている状態を意味し、炭素上に記載されている「-」は、結合手を表す。 A divalent to tetravalent linking group derived from an alkane is one in which 2 to 4 arbitrary hydrogen atoms on the carbon atoms constituting the alkane are converted into bonds using an alkane as a mother nucleus, and specifically, The following linking groups can be exemplified. Note that a bond means a state in which electrons that can form a bond with another functional group are arranged, and "-" written on a carbon represents a bond.

Figure 2024012177000005
Figure 2024012177000005

エテンから誘導される2~4価の連結基とは、エテンを母核として、アルカンを構成する炭素上の任意の水素2~4個を結合手に変換したものであり、具体的には、以下に示す連結基を例示することができる。 A divalent to tetravalent linking group derived from ethene is one in which 2 to 4 arbitrary hydrogen atoms on the carbon atoms constituting an alkane are converted into bonds using ethene as the mother nucleus, and specifically, The following linking groups can be exemplified.

Figure 2024012177000006
Figure 2024012177000006

アリールから誘導される2~4価の連結基とは、アリールを母核として、アリールを構成する炭素上の任意の水素2~4個を結合手に変換したものであり、具体的には、以下に示す連結基を例示することができる。 A divalent to tetravalent linking group derived from an aryl is one in which 2 to 4 arbitrary hydrogen atoms on the carbon atoms constituting the aryl are converted into bonds using the aryl as the core, and specifically, The following linking groups can be exemplified.

Figure 2024012177000007
Figure 2024012177000007

ヘテロアリールから誘導される2~4価の連結基とは、ヘテロアリールを母核として、ヘテロアリールを構成するヘテロ原子上又は炭素上の任意の水素2~4個を結合手に変換したものであり、具体的には、以下に示す連結基を例示することができる。 A divalent to tetravalent linking group derived from a heteroaryl is one in which 2 to 4 arbitrary hydrogen atoms on the hetero atom or carbon that constitute the heteroaryl are converted into a bond using the heteroaryl as the mother nucleus. Specifically, the following linking groups can be exemplified.

Figure 2024012177000008
Figure 2024012177000008

式(1)で表されるカルボン酸イオンとして具体的には、以下の式に表す化合物等を例示することができる。 Specific examples of the carboxylic acid ion represented by formula (1) include compounds represented by the following formula.

Figure 2024012177000009
Figure 2024012177000010
Figure 2024012177000011
Figure 2024012177000012
Figure 2024012177000009
Figure 2024012177000010
Figure 2024012177000011
Figure 2024012177000012

本発明の金属有機構造体は、式(2)で表されるカルボン酸イオンと多価金属イオンが結合してなる金属有機構造体であることが好ましい。式(2)で表されるカルボン酸イオンは、式(1)で表されるカルボン酸イオンにおいて、Lを単結合又は2価の有機基としたものである。 The metal-organic structure of the present invention is preferably a metal-organic structure formed by bonding a carboxylic acid ion represented by formula (2) with a polyvalent metal ion. The carboxylic acid ion represented by formula (2) is a carboxylic acid ion represented by formula (1) in which L is a single bond or a divalent organic group.

Figure 2024012177000013
Figure 2024012177000013

式(2)中、Rは、それぞれ独立に、水素原子、ヒドロキシ基、C1~6アルキル基、C1~6アルコキシ基又はハロゲノ基である。Xは、それぞれ独立に、ヒドロキシ基、C1~6アルキル基、C1~6アルコキシ基又はハロゲノ基である。n1、n2、n3及びn4は、それぞれ独立に、0~4のいずれかの整数である。Xが2以上のとき、各Xは互いに同一でも異なっていてもよい。Lは、単結合又は2価の有機基である。R及びXについては、式(1)の場合と同じである。Lの2価の有機基については、式(1)におけるLの2価の有機基と同じである。 In formula (2), each R is independently a hydrogen atom, a hydroxy group, a C1-6 alkyl group, a C1-6 alkoxy group, or a halogeno group. Each X is independently a hydroxy group, a C1-6 alkyl group, a C1-6 alkoxy group, or a halogeno group. n1, n2, n3 and n4 are each independently an integer of 0 to 4. When X is 2 or more, each X may be the same or different from each other. L a is a single bond or a divalent organic group. R and X are the same as in formula (1). The divalent organic group of L a is the same as the divalent organic group of L in formula (1).

本発明の金属有機構造体における多価金属イオンとしては、2価以上の金属のイオンであれば、特に制限されないが、元素周期表の第2族~第13族の金属からなる群から選ばれる少なくとも1種の金属のイオンが好ましく、Zn、Al、Cu、Zr、Ni、Co、Cr、Fe、Sc、Mo、Mn、Ti及びMgから選ばれる少なくとも1種の金属のイオンがより好ましい。本発明の金属有機構造体において、式(1)で表されるカルボン酸イオンと結合する多価金属イオンは、1種でもよく2種以上でもよい。 The polyvalent metal ion in the metal-organic structure of the present invention is not particularly limited as long as it is a divalent or higher metal ion, but is selected from the group consisting of metals from Groups 2 to 13 of the Periodic Table of Elements. Ions of at least one metal are preferred, and ions of at least one metal selected from Zn, Al, Cu, Zr, Ni, Co, Cr, Fe, Sc, Mo, Mn, Ti, and Mg are more preferred. In the metal-organic structure of the present invention, the number of polyvalent metal ions bonded to the carboxylic acid ion represented by formula (1) may be one type or two or more types.

これらの多価金属イオンは、種々の塩の形で供給される。金属塩として具体的には、硝酸亜鉛(Zn(NO・xHO)、硝酸チタン(Ti(NO・xHO)、硝酸コバルト(Co(NO・xHO)、硝酸鉄(III)(Fe(NO・xHO)、硝酸鉄(II)(Fe(NO・xHO)、硝酸ニッケル(II)(Ni(NO・xHO)、硝酸銅(II)(Cu(NO・xHO)、硝酸アルミニウム(III)(Al(NO・xHO)、硝酸マグネシウム(II)(Mg(NO・xHO);塩化亜鉛(ZnCl・xHO)、塩化チタン(TiCl・xHO)、塩化ジルコニウム(ZrCl・xHO)、塩化コバルト(CoCl・xHO)、塩化鉄(III)(FeCl・xHO)、塩化鉄(II)(FeCl・xHO)、塩化クロム(III)(CrCl・xHO)、塩化スカンジウム(III)(ScCl・xHO)、塩化マンガン(II)(MnCl・xHO);酢酸亜鉛(Zn(CHCOO)・xHO)、酢酸チタン(Ti(CHCOO)・xHO)、酢酸ジルコニウム(Zr(CHCOO)・xHO)、酢酸コバルト(Co(CHCOO)・xHO)、酢酸鉄(III)(Fe(CHCOO)・xHO)、酢酸鉄(II)(Fe(CHCOO)・xHO);硫酸亜鉛(ZnSO・xHO)、硫酸チタン(Ti(SO・xHO)、硫酸ジルコニウム(Zr(SO・xHO)、硫酸コバルト(CoSO・xHO)、硫酸鉄(III)(Fe(SO・xHO)、硫酸鉄(II)(FeSO・xHO)、硫酸マグネシウム(II)(MgSO・xHO);水酸化亜鉛(Zn(OH)・xHO)、水酸化チタン(Ti(OH)・xHO)、水酸化ジルコニウム(Zr(OH)・xHO)、水酸化コバルト(Co(OH)・xHO)、水酸化鉄(III)(Fe(OH)・xHO)、水酸化
鉄(II)(Fe(OH)・xHO);臭化亜鉛(ZnBr・xHO)、臭化チタン(TiBr・xHO)、臭化ジルコニウム(ZrBr・xHO)、臭化コバルト(CoBr・xHO)、臭化鉄(III)(FeBr・xHO)、臭化鉄(II)(FeBr・xHO);炭酸亜鉛(ZnCO・xHO)、炭酸コバルト(CoCO・xHO)、炭酸鉄(III)(Fe(CO・xHO);塩化酸化ジルコニウム(ZrOCl・xHO)、酢酸モリブデン(II)二量体((Mo(CHCOO))等が挙げられる。なお、xは、0~12の数である。これらは1種単独で、又は2種以上を混合して用いることができる。
These polyvalent metal ions are supplied in the form of various salts. Specifically, the metal salts include zinc nitrate (Zn(NO 3 ) 2.xH 2 O), titanium nitrate (Ti(NO 3 ) 4.xH 2 O), cobalt nitrate (Co(NO 3 ) 2.xH 2 O), iron(III) nitrate (Fe(NO 3 ) 3 ·xH 2 O), iron(II) nitrate (Fe(NO 3 ) 2 ·xH 2 O), nickel(II) nitrate (Ni(NO 3 ) 2.xH 2 O), copper (II) nitrate ( Cu (NO 3 ) 2.xH 2 O), aluminum (III) nitrate (Al(NO 3 ) 3.xH 2 O), magnesium nitrate (II) (Mg (NO 3 ) 2.xH 2 O); Zinc chloride (ZnCl 2.xH 2 O), titanium chloride (TiCl 4.xH 2 O), zirconium chloride (ZrCl 4.xH 2 O), cobalt chloride (CoCl 2 . xH 2 O), iron (III) chloride (FeCl 3 x H 2 O), iron (II) chloride (FeCl 2 x H 2 O), chromium (III) chloride (CrCl 3 x H 2 O), scandium chloride ( III) ( ScCl3.xH2O ), manganese(II) chloride (MnCl2.xH2O); zinc acetate ( Zn (CH3COO)2.xH2O ) , titanium acetate (Ti( CH3COO )) 4.xH 2 O), zirconium acetate (Zr(CH 3 COO) 4.xH 2 O), cobalt acetate (Co(CH 3 COO) 2.xH 2 O), iron(III) acetate (Fe(CH 3 COO) ) 3.xH 2 O), iron(II) acetate (Fe(CH 3 COO) 2.xH 2 O); zinc sulfate (ZnSO 4.xH 2 O), titanium sulfate (Ti(SO 4 ) 2.xH 2 O), zirconium sulfate (Zr(SO 4 ) 2.xH 2 O), cobalt sulfate (CoSO 4.xH 2 O), iron (III) sulfate (Fe 2 (SO 4 ) 3.xH 2 O), iron sulfate (II) (FeSO 4 x H 2 O), magnesium sulfate (II) (MgSO 4 x H 2 O); zinc hydroxide (Zn(OH) 2 x H 2 O), titanium hydroxide (Ti(OH) 4・xH 2 O), zirconium hydroxide (Zr(OH) 4.xH 2 O), cobalt hydroxide (Co(OH) 2.xH 2 O), iron (III) hydroxide (Fe(OH) 3.xH 2 O), iron(II) hydroxide (Fe(OH) 2.xH 2 O); zinc bromide (ZnBr 2.xH 2 O), titanium bromide (TiBr 4.xH 2 O), zirconium bromide ( ZrBr4.xH2O ), cobalt bromide ( CoBr2.xH2O ), iron ( III ) bromide ( FeBr3.xH2O ), iron ( II) bromide ( FeBr2.xH2O ); Zinc carbonate (ZnCO 3 .xH 2 O), cobalt carbonate (CoCO 3 .xH 2 O), iron (III) carbonate (Fe 2 (CO 3 ) 3 .xH 2 O); zirconium chloride oxide (ZrOCl 2 .xH 2 O), molybdenum (II) acetate dimer ((Mo(CH 3 COO) 2 ) 2 ), and the like. Note that x is a number from 0 to 12. These can be used alone or in combination of two or more.

本発明の金属有機構造体は、式(1)で表わされるカルボン酸イオン以外の有機配位子を補助配位子として含むことができる。金属有機構造体に補助配位子を含有させることで、金属有機構造体に高次構造を導入することができる。そのような補助配位子としては、テレフタル酸、フタル酸、イソフタル酸、5-シアノイソフタル酸、1,3,5-トリメシン酸、1,3,5-トリス(4-カルボキシフェニル)ベンゼン、4,4’-ジカルボキシビフェニル、3,5-ジカルボキシピリジン、2,3-ジカルボキシピラジン、1,3,5-トリス(4-カルボキシフェニル)ベンゼン、1,2,4,5-テトラキス(4-カルボキシフェニル)ベンゼン、9,10-アントラセンジカルボン酸、2,6-ナフタレンジカルボン酸、[1,1’:4’,1”]ターフェニル-3,3”,5,5”-テトラカルボン酸、ビフェニル-3,3”,5,5”-テトラカルボン酸、3,3’,5,5’-テトラカルボキシジフェニルメタン、1,3,5-トリス(4’-カルボキシ[1,1’-ビフェニル]-4-イル)ベンゼン、1,3,5-トリス(4-カルボキシフェニル)トリアジン、1,2-ビス(4-カルボキシ-3-ニトロフェニル)エテン、1,2-ビス(4-カルボキシ-3-アミノフェニル)エテン、trans,trans-ムコン酸、フマール酸、ベンゾイミダゾール、イミダゾール、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、ピラジン、4,4’-ジピリジル、1,2-ジ(4-ピリジル)エチレン、1,2-ジ(4-ピリジル)エタン、2,7-ジアザピレン、4,4’-アゾビスピリジン、1,5-ナフチリジン、フェナジン、2ビス(3-(4-ピリジル)-2,4-ペンタンジオナト)銅等が挙げられる。式(1)で表されるカルボン酸イオンと補助配位子を用いる場合の混合モル比は特に制限されない。 The metal-organic structure of the present invention can contain an organic ligand other than the carboxylic acid ion represented by formula (1) as an auxiliary ligand. By including an auxiliary ligand in the metal-organic structure, a higher-order structure can be introduced into the metal-organic structure. Such auxiliary ligands include terephthalic acid, phthalic acid, isophthalic acid, 5-cyanoisophthalic acid, 1,3,5-trimesic acid, 1,3,5-tris(4-carboxyphenyl)benzene, 4 , 4'-dicarboxybiphenyl, 3,5-dicarboxypyridine, 2,3-dicarboxypyrazine, 1,3,5-tris(4-carboxyphenyl)benzene, 1,2,4,5-tetrakis(4 -carboxyphenyl)benzene, 9,10-anthracenedicarboxylic acid, 2,6-naphthalene dicarboxylic acid, [1,1':4',1'']terphenyl-3,3'',5,5''-tetracarboxylic acid , biphenyl-3,3",5,5"-tetracarboxylic acid, 3,3',5,5'-tetracarboxydiphenylmethane, 1,3,5-tris(4'-carboxy[1,1'-biphenyl ]-4-yl)benzene, 1,3,5-tris(4-carboxyphenyl)triazine, 1,2-bis(4-carboxy-3-nitrophenyl)ethene, 1,2-bis(4-carboxy- 3-aminophenyl)ethene, trans,trans-muconic acid, fumaric acid, benzimidazole, imidazole, 1,4-diazabicyclo[2.2.2]octane (DABCO), pyrazine, 4,4'-dipyridyl, 1, 2-di(4-pyridyl)ethylene, 1,2-di(4-pyridyl)ethane, 2,7-diazapyrene, 4,4'-azobispyridine, 1,5-naphthyridine, phenazine, 2bis(3- (4-pyridyl)-2,4-pentanedionato) copper, etc. When using the carboxylic acid ion represented by formula (1) and the auxiliary ligand, the mixing molar ratio is not particularly limited.

本発明の金属有機構造体の製造方法として、特に制限されず、溶媒拡散法、溶媒撹拌法、水熱法等の溶液法、反応溶液にマイクロ波を照射して系全体を短時間に均一に加熱するマイクロ波法、反応容器に超音波を照射することにより、反応容器中で圧力の変化が繰り返し起こり、この圧力の変化により、溶媒が気泡を形成し崩壊するキャビテーションと呼ばれる現象がおき、その際に約5000K、10000barもの高エネルギー場が局所的に形成される結晶の各生成の反応場となる超音波法、溶媒を用いずに、金属イオン発生源と有機配位子を混合する固相合成法、結晶水程度の水を添加して金属イオン発生源と有機配位子を混合するLAG(liquid assisted grinding)法等のいずれの方法も用いることができる。 The method for producing the metal-organic structure of the present invention is not particularly limited, and may be a solution method such as a solvent diffusion method, a solvent stirring method, or a hydrothermal method, or by irradiating the reaction solution with microwaves to uniformly produce the entire system in a short time. In the microwave heating method, by irradiating the reaction container with ultrasonic waves, pressure changes occur repeatedly in the reaction container, and this pressure change causes a phenomenon called cavitation, in which the solvent forms bubbles and collapses. Ultrasonic method where a high energy field of about 5000K and 10000 bar is locally formed as a reaction field for each crystal formation, and solid phase which mixes metal ion source and organic ligand without using a solvent. Any method can be used, such as a synthetic method or a LAG (liquid assisted grinding) method in which a metal ion source and an organic ligand are mixed by adding water equivalent to crystallization water.

本発明の金属有機構造体の製造方法としては、例えば、金属イオンの発生源となる金属化合物と溶媒とを含有する第一溶液、式(1)で表されるカルボン酸イオン又はその前駆体であるカルボン酸と溶媒とを含有する第二溶液、及び、必要に応じて、補助配位子と溶媒とを含有する第三溶液をそれぞれ調製する工程と、第一溶液と、第二溶液及び第三溶液を混合して反応液を調製し、この反応液を加熱することで、金属有機構造体を得る工程と、を備える。第一~第三溶液は別々に調製する必要はなく、例えば、上記金属化合物、式(1)で表されるカルボン酸イオン又はその前駆体であるカルボン酸、補助配位子となる化合物、溶媒とを1度に混合して1つの溶液を調製してもよい。 The method for producing the metal-organic structure of the present invention includes, for example, a first solution containing a metal compound that is a source of metal ions and a solvent, a carboxylic acid ion represented by formula (1), or a precursor thereof. a step of preparing a second solution containing a certain carboxylic acid and a solvent, and a third solution containing an auxiliary ligand and a solvent as necessary; The method includes a step of preparing a reaction solution by mixing the three solutions, and heating the reaction solution to obtain a metal-organic structure. The first to third solutions do not need to be prepared separately, and include, for example, the above metal compound, the carboxylic acid ion represented by formula (1) or its precursor carboxylic acid, a compound serving as an auxiliary ligand, and a solvent. You may prepare one solution by mixing both at once.

上記金属化合物と式(1)で表されるカルボン酸イオン又はその前駆体であるカルボン酸との混合モル比は、得られてくる金属有機構造体の細孔サイズ、表面特性に応じて任意に選択することができるが、式(1)で表されるカルボン酸イオン又はその前駆体であるカルボン酸1モルに対して金属化合物を0.3モル以上用いるのが好ましく、さらに0.5モル以上、さらに1モル以上、さらに1.5モル以上、さらに2モル以上、さらに3モル以上、さらに4モル以上用いるのが好ましい。また、10モル以下用いるのが好ましい。 The mixing molar ratio of the above metal compound and the carboxylic acid ion represented by formula (1) or its precursor carboxylic acid can be arbitrarily determined depending on the pore size and surface characteristics of the metal-organic structure to be obtained. Although the metal compound can be selected, it is preferable to use 0.3 mol or more of the metal compound per 1 mol of the carboxylic acid ion represented by formula (1) or its precursor, and more preferably 0.5 mol or more. , more preferably 1 mol or more, further 1.5 mol or more, further 2 mol or more, further 3 mol or more, further preferably 4 mol or more. Moreover, it is preferable to use 10 mol or less.

反応液中の上記金属イオンの濃度は、20~400ミリモル/Lの範囲が好ましい。式(1)で表されるカルボン酸イオン又はその前駆体であるカルボン酸の反応液中の濃度は、3~200ミリモル/Lの範囲が好ましい。補助配位子の反応液中の濃度は、10~400ミリモル/Lであるのが好ましい。 The concentration of the metal ions in the reaction solution is preferably in the range of 20 to 400 mmol/L. The concentration of the carboxylic acid ion represented by formula (1) or its precursor carboxylic acid in the reaction solution is preferably in the range of 3 to 200 mmol/L. The concentration of the auxiliary ligand in the reaction solution is preferably 10 to 400 mmol/L.

用いる溶媒としては、特に限定されないが、N,N-ジメチルホルムアミド(以下「DMF」と記載することがある。)、N,N-ジエチルホルムアミド(以下「DEF」と記載することがある。)、N,N-ジメチルアセトアミド(以下「DMA」と記載することがある。)、N-メチル-2-ピロリドン(以下「NMP」と記載することがある。)、ジメチルスルホキシド(以下「DMSO」と記載することがある。)及び水からなる群より選ばれる1種又は2種以上を混合して用いることができる。また、これらの溶媒にメチルアルコール、エチルアルコール等のアルコールを混合して用いてもよい。また、適宜、ギ酸、酢酸、トリフルオロ酢酸、硝酸、テトラフルオロホウ酸、安息香酸等の有機酸又は無機酸、ブチルアミン、トリエチルアミン等の有機アミンなどを適宜添加することができる。 The solvent used is not particularly limited, but N,N-dimethylformamide (hereinafter sometimes referred to as "DMF"), N,N-diethylformamide (hereinafter sometimes referred to as "DEF"), N,N-dimethylacetamide (hereinafter sometimes referred to as "DMA"), N-methyl-2-pyrrolidone (hereinafter sometimes referred to as "NMP"), dimethyl sulfoxide (hereinafter referred to as "DMSO") ) and water, or a mixture of two or more thereof can be used. Furthermore, alcohols such as methyl alcohol and ethyl alcohol may be mixed with these solvents. Furthermore, organic or inorganic acids such as formic acid, acetic acid, trifluoroacetic acid, nitric acid, tetrafluoroboric acid, and benzoic acid, and organic amines such as butylamine and triethylamine can be added as appropriate.

反応液の加熱温度は、特に制限されないが、例えば、室温~200℃の範囲、50~190℃の範囲、80~160℃の範囲、90~130℃の範囲等を挙げることができる。また、本発明の金属有機構造体は、上記金属化合物、式(1)で表されるカルボン酸イオン又はその前駆体であるカルボン酸、必要に応じて補助配位子となる化合物を溶媒中で混合し、これを冷却して-78℃~室温で静置することにより製造することもできる。各成分の混合方法としては特に制限されず、例えば、金属イオンの発生源となる金属化合物と溶媒とを含有する第一溶液、式(1)で表されるカルボン酸イオン又はその前駆体であるカルボン酸と溶媒とを含有する第二溶液、及び、必要に応じて、補助配位子と溶媒とを含有する第三溶液をそれぞれ調製し、氷冷しながら第一溶液に第二溶液及び必要に応じて第三溶液を添加してもよい。 The heating temperature of the reaction solution is not particularly limited, and examples thereof include a range of room temperature to 200°C, a range of 50 to 190°C, a range of 80 to 160°C, a range of 90 to 130°C. In addition, the metal-organic structure of the present invention can be prepared by combining the metal compound, the carboxylic acid ion represented by formula (1) or its precursor carboxylic acid, and optionally a compound serving as an auxiliary ligand in a solvent. It can also be produced by mixing, cooling and standing at -78°C to room temperature. The method of mixing each component is not particularly limited, and examples thereof include a first solution containing a metal compound that is a source of metal ions and a solvent, a carboxylic acid ion represented by formula (1), or a precursor thereof. A second solution containing a carboxylic acid and a solvent and, if necessary, a third solution containing an auxiliary ligand and a solvent are respectively prepared, and the second solution and the necessary solution are added to the first solution while cooling on ice. A third solution may be added depending on the conditions.

本発明のガス貯蔵剤は、本発明の金属有機構造体を含む。本発明のガス貯蔵剤は、本発明の金属有機構造体のみからなっていてもよく、ガス貯蔵剤としての使用に支障をきたさない範囲で他の成分を含んでもよい。本発明のガス貯蔵剤の形状は特に制限されず、例えば、粉状、顆粒状、ペレット状等を挙げることができる。本発明の金属有機構造体は、水素、メタン、アセチレン、二酸化炭素、窒素等のガスを吸着または吸蔵することで、前記ガスを貯蔵することができる。本発明の金属有機構造体を用いたガスの貯蔵方法は、特に制限されないが、本発明の金属有機構造体とガスを接触させる方法が好ましく、接触させる方法は、特に制限されない。例えば、タンク中に、本発明の金属有機構造体を充填してガス貯蔵タンクとし、該タンク内にガスを流入する方法、タンクの内壁を構成する表面に本発明の金属有機構造体を担持させてガス貯蔵タンクとし、該タンク内にガスを流入する方法、タンクを本発明の金属有機構造体を含む材料で成形してガス貯蔵タンクとし、該タンク内にガスを流入する方法等を挙げることができる。 The gas storage agent of the present invention comprises the metal-organic framework of the present invention. The gas storage agent of the present invention may consist only of the metal-organic structure of the present invention, or may contain other components as long as they do not interfere with use as a gas storage agent. The shape of the gas storage agent of the present invention is not particularly limited, and examples thereof include powder, granule, and pellet shape. The metal-organic structure of the present invention can store gases such as hydrogen, methane, acetylene, carbon dioxide, and nitrogen by adsorbing or occluding the gases. The method for storing gas using the metal-organic structure of the present invention is not particularly limited, but a method of contacting the gas with the metal-organic structure of the present invention is preferable, and the method of contacting the gas is not particularly limited. For example, a method of filling a tank with the metal-organic structure of the present invention to form a gas storage tank and flowing gas into the tank, and a method of supporting the metal-organic structure of the present invention on the surface constituting the inner wall of the tank. Examples include a method of forming a gas storage tank by forming a gas storage tank and flowing gas into the tank, and a method of molding a tank with a material containing the metal-organic structure of the present invention to form a gas storage tank and flowing gas into the tank. Can be done.

以下、本発明の実施例を挙げて、本発明を具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。本発明の金属有機構造体を構成する式(1)で表されるカルボン酸イオンの前駆体となるカルボン酸として、以下の表1に示す有機配位子1~33を用いた。 Hereinafter, the present invention will be specifically explained with reference to Examples, but the technical scope of the present invention is not limited to these examples. Organic ligands 1 to 33 shown in Table 1 below were used as carboxylic acids serving as precursors of carboxylic acid ions represented by formula (1) constituting the metal-organic structure of the present invention.

Figure 2024012177000014
Figure 2024012177000015
Figure 2024012177000016
Figure 2024012177000017
Figure 2024012177000018
Figure 2024012177000019
Figure 2024012177000020
Figure 2024012177000021
Figure 2024012177000014
Figure 2024012177000015
Figure 2024012177000016
Figure 2024012177000017
Figure 2024012177000018
Figure 2024012177000019
Figure 2024012177000020
Figure 2024012177000021

[製造例1]有機配位子1の合成
国際公開WO00/20372の実施例1記載の方法と同様の方法で、有機配位子1を得た。
[Production Example 1] Synthesis of Organic Ligand 1 Organic Ligand 1 was obtained in the same manner as described in Example 1 of International Publication WO 00/20372.

[製造例2]有機配位子2の合成
2-(4-Bromophenyl)-1,3-dioxolane(4.0g,17.5mmol)のテトラヒドロフラン(THF)(50mL)溶液に窒素雰囲気で-78°Cで2.76Mのn-BuLiヘキサン溶液6.7mL(18.4mmol)をゆっくりと加え、同温度で1時間撹拌した。dimethyl terephthalate0.
85g(4.38mmol)のTHF(50mL)溶液を同温度で加え、ゆっくりと室温まで昇温しながら10時間撹拌した。溶液を水にあけ、酢酸エチルで抽出し、有機層を飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した。ろ過後、溶媒を減圧留去した。得られた残渣をアセトン50mLに溶解し、1N塩酸10mLを加え、2時間加熱還流下に撹拌した。溶媒を減圧留去し、酢酸エチルで抽出し、有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。ろ過後、有機溶媒を減圧留去した。得られた残渣を、ジオキサン100mL、水25mLに溶解し、KMnO4.2g(26.6mmol)を加え、室温で24時間撹拌した。溶液をセライトろ過後、溶媒を減圧留去し、残渣に濃塩酸を加え、溶液をpH3以下とした。析出した固体をろ過後、水で洗浄し、減圧下加熱乾燥し、有機配位子2を得た。
[Production Example 2] Synthesis of Organic Ligand 2 A solution of 2-(4-Bromophenyl)-1,3-dioxolane (4.0 g, 17.5 mmol) in tetrahydrofuran (THF) (50 mL) was heated at -78° in a nitrogen atmosphere. 6.7 mL (18.4 mmol) of a 2.76 M n-BuLi hexane solution was slowly added at C and stirred at the same temperature for 1 hour. dimethyl terephthalate0.
A solution of 85 g (4.38 mmol) in THF (50 mL) was added at the same temperature, and the mixture was stirred for 10 hours while slowly raising the temperature to room temperature. The solution was poured into water, extracted with ethyl acetate, and the organic layer was washed with saturated brine and dried over magnesium sulfate. After filtration, the solvent was distilled off under reduced pressure. The obtained residue was dissolved in 50 mL of acetone, 10 mL of 1N hydrochloric acid was added, and the mixture was stirred under heating under reflux for 2 hours. The solvent was distilled off under reduced pressure, extracted with ethyl acetate, and the organic layer was washed with saturated brine and dried over magnesium sulfate. After filtration, the organic solvent was distilled off under reduced pressure. The obtained residue was dissolved in 100 mL of dioxane and 25 mL of water, 4.2 g (26.6 mmol) of KMnO 4 was added, and the mixture was stirred at room temperature for 24 hours. After filtering the solution through Celite, the solvent was distilled off under reduced pressure, and concentrated hydrochloric acid was added to the residue to adjust the pH of the solution to 3 or less. The precipitated solid was filtered, washed with water, and dried under reduced pressure to obtain organic ligand 2.

[製造例3]有機配位子3の合成
得られた有機配位子2(1.0g、1.62mmol)のトリフルオロ酢酸溶液に、トリエチルシラン40mg(3.40mmol)を室温で加え、室温で10時間撹拌した。溶液を水にあけ、得られた固体をろ過後、水で洗浄した。得られた固体を10N水酸化ナトリウム水溶液に溶解後、溶液をジエチルエーテルで洗浄し、さらに濃塩酸を加え、溶液のpHを3以下とした。析出した固体をろ過後、水で洗浄し、減圧下に加熱乾燥し、有機配位子3を得た。
[Production Example 3] Synthesis of Organic Ligand 3 40 mg (3.40 mmol) of triethylsilane was added to a trifluoroacetic acid solution of the obtained organic ligand 2 (1.0 g, 1.62 mmol) at room temperature. The mixture was stirred for 10 hours. The solution was poured into water, and the resulting solid was filtered and washed with water. After dissolving the obtained solid in a 10N aqueous sodium hydroxide solution, the solution was washed with diethyl ether, and concentrated hydrochloric acid was added to adjust the pH of the solution to 3 or less. The precipitated solid was filtered, washed with water, and dried under reduced pressure to obtain organic ligand 3.

[製造例4]有機配位子4の合成
得られた有機配位子2のメタノール溶液に触媒量の濃硫酸を加え、還流下、10時間加熱撹拌した。溶媒を減圧留去し、酢酸エチルで抽出、有機層を飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した。ろ過後、溶媒を減圧留去した。得られた残渣をメタノールに溶解し、5N水酸化ナトリウム溶液(用いた有機配位子2に対して、20モル当量)を加え、室温で1010時間撹拌した。溶媒を減圧留去し、濃塩酸を加えて溶液のpHを3以下にした。析出した固体をろ過後、水で洗浄し、減圧下に加熱乾燥し、有機配位子4を得た。
[Production Example 4] Synthesis of Organic Ligand 4 A catalytic amount of concentrated sulfuric acid was added to a methanol solution of the obtained organic ligand 2, and the mixture was heated and stirred under reflux for 10 hours. The solvent was distilled off under reduced pressure, extracted with ethyl acetate, and the organic layer was washed with saturated brine and dried over magnesium sulfate. After filtration, the solvent was distilled off under reduced pressure. The obtained residue was dissolved in methanol, 5N sodium hydroxide solution (20 molar equivalents relative to the organic ligand 2 used) was added, and the mixture was stirred at room temperature for 1010 hours. The solvent was distilled off under reduced pressure, and concentrated hydrochloric acid was added to adjust the pH of the solution to 3 or less. The precipitated solid was filtered, washed with water, and dried under reduced pressure to obtain organic ligand 4.

[製造例5]有機配位子5の合成
dimethyl terephthalateの代わりに、dimethyl isophthalateを用いる以外は製造例2と同様に行い、有機配位子5を得た。
[Production Example 5] Synthesis of Organic Ligand 5 Organic ligand 5 was obtained in the same manner as Production Example 2 except that dimethyl isophthalate was used instead of dimethyl terephthalate.

[製造例6]有機配位子6の合成
有機配位子2の代わりに有機配位子5を用いる以外は製造例3と同様に行い、有機配位子6を得た。
[Production Example 6] Synthesis of Organic Ligand 6 Organic Ligand 6 was obtained in the same manner as Production Example 3 except that Organic Ligand 5 was used instead of Organic Ligand 2.

[製造例7]有機配位子7の合成
dimethyl terephthalateの代わりに、dimethyl 5-methylisophthalateを用いる以外は製造例2と同様に行い、有機配位子7を得た。
[Production Example 7] Synthesis of Organic Ligand 7 Organic ligand 7 was obtained in the same manner as Production Example 2 except that dimethyl 5-methylisophthalate was used instead of dimethyl terephthalate.

[製造例8]有機配位子8の合成
有機配位子2の代わりに有機配位子7を用いる以外は製造例3と同様に行い、有機配位子8を得た。
[Production Example 8] Synthesis of Organic Ligand 8 Organic Ligand 8 was obtained in the same manner as Production Example 3 except that Organic Ligand 7 was used instead of Organic Ligand 2.

[製造例9]有機配位子9の合成
dimethyl terephthalateの代わりに、dimethyl 5-methoxylisophthalateを用いる以外は製造例2と同様に行い、有機配位子9を得た。
[Production Example 9] Synthesis of Organic Ligand 9 Organic ligand 9 was obtained in the same manner as Production Example 2 except that dimethyl 5-methoxylisophthalate was used instead of dimethyl terephthalate.

[製造例10]有機配位子10の合成
有機配位子2の代わりに有機配位子13を用いる以外は製造例3と同様に行い、有機配位子10を得た。有機配位子13の合成方法は後述する。
[Production Example 10] Synthesis of Organic Ligand 10 Organic ligand 10 was obtained in the same manner as Production Example 3 except that organic ligand 13 was used instead of organic ligand 2. The method for synthesizing organic ligand 13 will be described later.

[製造例11]有機配位子11の合成
有機配位子2の代わりに有機配位子14を用いる以外は製造例3と同様に行い、有機配位子11を得た。有機配位子14の合成方法は後述する。
[Production Example 11] Synthesis of Organic Ligand 11 Organic ligand 11 was obtained in the same manner as Production Example 3 except that organic ligand 14 was used instead of organic ligand 2. The method for synthesizing organic ligand 14 will be described later.

[製造例12]有機配位子12の合成
有機配位子2の代わりに有機配位子15を用いる以外は製造例3と同様に行い、有機配位子12を得た。有機配位子15の合成方法は後述する。
[Production Example 12] Synthesis of Organic Ligand 12 Organic Ligand 12 was obtained in the same manner as Production Example 3 except that Organic Ligand 15 was used instead of Organic Ligand 2. The method for synthesizing organic ligand 15 will be described later.

[製造例13]有機配位子13の合成
dimethyl terephthalateの代わりに、dimethyl 2,5-dimethylterephthalateを用いる以外は製造例2と同様に行い、有機配位子13を得た。
[Production Example 13] Synthesis of Organic Ligand 13 Organic ligand 13 was obtained in the same manner as Production Example 2 except that dimethyl 2,5-dimethylterephthalate was used instead of dimethyl terephthalate.

[製造例14]有機配位子14の合成
dimethyl terephthalateの代わりに、dimethyl 2,5-diethylterephthalateを用いる以外は製造例2と同様に行い、有機配位子14を得た。
[Production Example 14] Synthesis of Organic Ligand 14 Organic ligand 14 was obtained in the same manner as Production Example 2 except that dimethyl 2,5-diethylterephthalate was used instead of dimethyl terephthalate.

[製造例15]有機配位子15の合成
dimethyl terephthalateの代わりに、dimethyl 2,5-di(1-propyl)terephthalateを用いる以外は製造例2と同様に行い、有機配位子15を得た。
[Production Example 15] Synthesis of Organic Ligand 15 Organic ligand 15 was obtained in the same manner as Production Example 2 except that dimethyl 2,5-di(1-propyl) terephthalate was used instead of dimethyl terephthalate. .

[製造例16]有機配位子16の合成
dimethyl terephthalateの代わりに、dimethyl 2,5-di(2-propyl)terephthalateを用いる以外は製造例2と同様に行い、有機配位子16を得た。
[Production Example 16] Synthesis of Organic Ligand 16 Organic ligand 16 was obtained in the same manner as Production Example 2 except that dimethyl 2,5-di(2-propyl) terephthalate was used instead of dimethyl terephthalate. .

[製造例17]有機配位子17の合成
有機配位子2の代わりに有機配位子16を用いる以外は製造例3と同様に行い、有機配位子17を得た。
[Production Example 17] Synthesis of Organic Ligand 17 Organic Ligand 17 was obtained in the same manner as Production Example 3 except that Organic Ligand 16 was used instead of Organic Ligand 2.

[製造例18]有機配位子18の合成
dimethyl terephthalateの代わりに、trimethyl 1,3,5-benzenetricarboxylateを用いる以外は製造例2と同様に行い、有機配位子18を得た。
[Production Example 18] Synthesis of Organic Ligand 18 Organic ligand 18 was obtained in the same manner as Production Example 2 except that trimethyl 1,3,5-benzenetricarboxylate was used instead of dimethyl terephthalate.

[製造例19]有機配位子19の合成
有機配位子2の代わりに有機配位子18を用いる以外は製造例3と同様に行い、有機配位子19を得た。
[Production Example 19] Synthesis of Organic Ligand 19 Organic ligand 19 was obtained in the same manner as Production Example 3 except that Organic Ligand 18 was used instead of Organic Ligand 2.

[製造例20]有機配位子20の合成
dimethyl terephthalateの代わりに、dimethyl 2,5-diethoxyterephthalateを用いる以外は製造例2と同様に行い、有機配位子20を得た。
[Production Example 20] Synthesis of Organic Ligand 20 Organic ligand 20 was obtained in the same manner as Production Example 2 except that dimethyl 2,5-diethoxyterephthalate was used instead of dimethyl terephthalate.

[製造例21]有機配位子21の合成
有機配位子2の代わりに有機配位子20を用いる以外は製造例3と同様に行い、有機配位子21を得た。
[Production Example 21] Synthesis of Organic Ligand 21 Organic Ligand 21 was obtained in the same manner as Production Example 3 except that Organic Ligand 20 was used instead of Organic Ligand 2.

[製造例22]有機配位子23の合成
dimethyl terephthalateの代わりに、dimethyl 2,5-di(n-propoxy)terephthalateを用いる以外は製造例2と同様に行い、有機配位子23を得た。
[Production Example 22] Synthesis of Organic Ligand 23 Organic ligand 23 was obtained in the same manner as Production Example 2 except that dimethyl 2,5-di(n-propoxy) terephthalate was used instead of dimethyl terephthalate. .

[製造例23]有機配位子22の合成
有機配位子2の代わりに有機配位子23を用いる以外は製造例3と同様に行い、有機配位子22を得た。
[Production Example 23] Synthesis of Organic Ligand 22 Organic Ligand 22 was obtained in the same manner as Production Example 3 except that Organic Ligand 23 was used instead of Organic Ligand 2.

[製造例24]有機配位子24の合成
dimethyl terephthalateの代わりに、dimethyl 2,5-dimethoxyterephthalateを用いる以外は製造例2と同様に行い、有機配位子24を得た。
[Production Example 24] Synthesis of Organic Ligand 24 Organic ligand 24 was obtained in the same manner as Production Example 2 except that dimethyl 2,5-dimethoxyterephthalate was used instead of dimethyl terephthalate.

[製造例25]有機配位子25の合成
有機配位子2の代わりに有機配位子24を用いる以外は製造例3と同様に行い、有機配位子25を得た。
[Production Example 25] Synthesis of Organic Ligand 25 Organic Ligand 25 was obtained in the same manner as Production Example 3 except that Organic Ligand 24 was used instead of Organic Ligand 2.

[製造例26]有機配位子26合成
dimethyl terephthalateの代わりに、dimethyl 2,5-diphenylterephthalateを用いる以外は製造例2と同様に行い、有機配位子26を得た。
[Production Example 26] Synthesis of Organic Ligand 26 Organic ligand 26 was obtained in the same manner as Production Example 2 except that dimethyl 2,5-diphenylterephthalate was used instead of dimethyl terephthalate.

[製造例27]有機配位子27合成
dimethyl terephthalateの代わりに、dimethyl 2,5-di(isopropoxy)terephthalateを用いる以外は製造例2と同様に行い、有機配位子27を得た。
[Production Example 27] Synthesis of Organic Ligand 27 Organic ligand 27 was obtained in the same manner as Production Example 2 except that dimethyl 2,5-di(isopropoxy) terephthalate was used instead of dimethyl terephthalate.

[製造例28]有機配位子28の合成
有機配位子2の代わりに有機配位子27を用いる以外は製造例3と同様に行い、有機配位子28を得た。
[Production Example 28] Synthesis of Organic Ligand 28 Organic Ligand 28 was obtained in the same manner as Production Example 3 except that Organic Ligand 27 was used instead of Organic Ligand 2.

[製造例29]有機配位子29の合成
dimethyl terephthalateの代わりに、dibutyl 4,4’-biphenyldicarboxylateを用いる以外は製造例2と同様に行い、有機配位子29を得た。
[Production Example 29] Synthesis of Organic Ligand 29 Organic ligand 29 was obtained in the same manner as Production Example 2 except that dibutyl 4,4'-biphenyl dicarboxylate was used instead of dimethyl terephthalate.

[製造例30]有機配位子30の合成
有機配位子2の代わりに有機配位子29を用いる以外は製造例3と同様に行い、有機配位子30を得た。
[Production Example 30] Synthesis of Organic Ligand 30 Organic ligand 30 was obtained in the same manner as Production Example 3 except that Organic Ligand 29 was used instead of Organic Ligand 2.

[製造例31]有機配位子31の合成
dimethyl terephthalateの代わりに、4,4’-bis(methoxycarbonyl)diphenyletherを用いる以外は製造例2と同様に行い、下記中間体Aを得た。
[Production Example 31] Synthesis of Organic Ligand 31 The following Intermediate A was obtained in the same manner as Production Example 2, except that 4,4'-bis (methoxycarbonyl) diphenylether was used instead of dimethyl terephthalate.

Figure 2024012177000022
Figure 2024012177000022

有機配位子2の代わりに中間体Aを用いる以外は製造例3と同様に行い、有機配位子31を得た。 Organic ligand 31 was obtained in the same manner as in Production Example 3 except that Intermediate A was used instead of organic ligand 2.

[製造例32]有機配位子32の合成
dimethyl terephthalateの代わりに、dimethyl 2,6-naphthalenedicarboxylateを用いる以外は製造例2と同様に行い、有機配位子32を得た。
[Production Example 32] Synthesis of Organic Ligand 32 Organic ligand 32 was obtained in the same manner as Production Example 2 except that dimethyl 2,6-naphthalene dicarboxylate was used instead of dimethyl terephthalate.

[製造例33]有機配位子33の合成
有機配位子2の代わりに有機配位子32を用いる以外は製造例3と同様に行い、有機配位子33を得た。
[Production Example 33] Synthesis of Organic Ligand 33 Organic ligand 33 was obtained in the same manner as Production Example 3 except that organic ligand 32 was used instead of organic ligand 2.

得られた有機配位子の1H-NMRデータを以下に示す。
有機配位子2
1HNMR(DMSO-d6) δ 12.94(brs, 4H), 7.88(d, 8H), 7.33(d, 8H), 7.16(s, 4H), 6.76(s,2H)
有機配位子3
1HNMR(DMSO-d6) δ 12.8(brs, 4H), 7.89(d, 8H), 7.24(d, 8H), 7.09(s, 4H), 5.79(s, 2H)
有機配位子4
1HNMR(DMSO-d6) δ 1.95(brs, 4H), 7.91(d, 8H). 7.50(d, 8H), 7.35(s, 4H), 2.94(s, 6H), 7.082(d, 4H), 6.715(brs, 2H)
有機配位子5
1HNMR(DMSO-d6) δ 12.885(brs, 4H), 7.831(d, 8H), 7.247(d, 9H), 7,203(s, 1H)
有機配位子6
1HNMR(DMSO-d6) δ 7.853(d, 8H), 7,290(m, 1H), 7.175(d, 8H), 6.984-6.960(m, 3H), 5.778(s, 2H)
有機配位子7
1HNMR(DMSO-d6) δ 7.822(d, 8H), 7.254(d, 8H), 6.943(s, 2H), 6.912(s, 1H), 6.664(s, 2H), 2.181(s, 3H)
有機配位子8
1HNMR(DMSO-d6) δ 12.863(brs, 4H), 7.860(d, 8H), 7.169(d, 8H), 6.796(s, 2H), 6.763(s, 1H), 6,723(s, 2H), 2.177(s, 3H)
有機配位子9
1HNMR(DMSO-d6) δ 7.821(d, 8H), 7.244(d, 8H),6.715(s, 3H), 6.614(s, 2H),3.587(s, 3H)
有機配位子10
1HNMR(DMSO-d6) δ 12.855(brs, 4H), 7.871(d, 8H), 7.177(d, 8H), 6.545(s, 2H), 5.840(s, 2H), 1.992(s, 6H)
有機配位子11
1HNMR(DMSO-d6) δ 12.886(brs, 4H), 7.886(d, 8H), 7.185(d, 8H), 6.618(s, 2H), 5.910(s, 2H), 2.408(q, 4H). 0.817(t, 6H)
有機配位子12
1HNMR(DMSO-d6) δ 12.869(brs, 4H), 7.879(d, 8H), 7.175(d, 8H), 6.609(s, 2H), 5.893(s, 2H), 2.375(t, 4H). 1.212(m, 4H), 0.671(t, 6H)
有機配位子13
1HNMR(DMSO-d6) δ 12.899(brs, 4H), 7.891(d, 8H), 7.341(d, 8H), 6.723(s, 2H), 6.404(s, 2H), 1.777(s, 6H)
有機配位子14
1HNMR(DMSO-d6) δ 12.908(brs, 4H), 7.889(d, 8H), 7.331(d, 8H), 6.769(s, 2H), 6.470(s, 2H), 2.223(q, 4H). 0.575(t, 6H)
有機配位子15
1HNMR(DMSO-d6) δ 12.913(brs, 4H), 7.894(d, 8H), 7.334(d, 8H), 6.77(s, 2H), 6.492(s, 2H), 2.207(t, 4H). 0.966(m, 4H), 0.448(t, 6H)
有機配位子16
1HNMR(DMSO-d6) δ 12.893(brs, 4H), 7.903(d, 8H), 7.325(d, 8H), 6.818(s, 2H), 6.463(s, 2H), 3.090(m, 2H), 0.540(t, 12H)
有機配位子17
1HNMR(DMSO-d6) δ 12.892(brs, 4H), 7.893(d, 8H), 7.175(d, 8H), 6.659(s, 2H), 6.004(s, 2H), 3.040(m, 2H), 0.766(t, 12H)
有機配位子18
1HNMR(DMSO-d6) δ 7.776(d, 12H), 7.187(d, 12H), 7.070(s, 1H), 6.652(s, 1H)
有機配位子19
1HNMR(DMSO-d6) δ 7.802(d, 12H), 7.085(d, 12H), 6.786(s, 3H), 5,717(s, 3H)
有機配位子20
1HNMR(DMSO-d6) δ 12.894(brs, 4H), 7.857(d, 8H), 7.379(d, 8H), 6.974(s, 2H), 6.233(s, 2H), 3.522(q, 4H), 0.661(t, 6H)
有機配位子21
1HNMR(DMSO-d6) δ 12.920(brs, 4H), 7.869(d, 8H), 7.217(d, 8H), 6.450(s, 2H), 5.877(s, 2H), 3.564(q, 4H), 0.948(t, 6H)
有機配位子22
1HNMR(DMSO-d6) δ 12.876(brs, 4H), 7.872(d, 8H), 7.211(d, 8H), 6.421(s, 2H), 5.882(s, 2H), 3.449(t, 6H), 1.372(m, 4H), 0.638(t, 6H)
有機配位子23
1HNMR(DMSO-d6) δ 12.857(brs, 4H), 7.876(d, 8H), 7.397(d, 8H), 7.003(s, 2H), 6.234(s, 2H), 4.112(t, 6H), 1.137(m, 4H), 0.477(t, 6H)
有機配位子24
1HNMR(DMSO-d6) δ 12.899brs, 4H), 7.861(d, 8H), 7.347(d, 8H), 6.976(s, 2H), 6.300(s, 2H), 3.203(s, 6H)
有機配位子25
1HNMR(DMSO-d6) δ 12.885(brs, 4H), 7.876(d, 8H), 7.212(d, 8H), 6.492(s, 2H), 5.911(s, 2H), 3.396(s, 6H)
有機配位子26
1HNMR(DMSO-d6) δ 12.649(brs, 4H), 7.702(d, 8H), 7.310(d, 8H), 6.90-6.80(m, 10H) 6.809(s, 2H), 6.693(s, 2H)
有機配位子27
1HNMR(DMSO-d6) δ 12.887(brs, 4H), 7.865(d, 8H), 7.375(d, 8H), 6.815(s, 2H), 6.130(s, 2H), 4.064(m, 2H), 0.708(d, 12H)
有機配位子28
1HNMR(DMSO-d6) δ 12.898(brs, 4H), 7.870(d, 8H), 7.202(d, 8H), 6.659(s, 2H), 6.004(s, 2H), 4.058(m, 2H), 0.853(d, 12H)
有機配位子29
1HNMR(DMSO-d6) δ 12.905(brs, 4H), 7.984(d, 8H), 7.620(d, 4H). 7.377(d, 8H), 7.267(d, 4H), 6.827(s, 2H)
有機配位子30
1HNMR(DMSO-d6) δ 12.873(brs, 4H), 7.898(d, 8H), 7.609(d, 4H). 7.269(d, 8H), 7.194(d, 4H), 5.854(s, 2H)
有機配位子31
1HNMR(DMSO-d6) δ 12.860(brs, 4H), 7.884(d, 8H), 7.235(d, 8H), 7.106(d, 4H), 6.971(d, 4H) 5.798(s, 2H)
有機配位子32
1HNMR(DMSO-d6) δ 12.906(brs, 4H), 7.891(d, 8H), 7.776(d, 2H), 7.611(s, 2H), 7.390-7.370(m. 10H) 6.914(s, 2H)
有機配位子33
1HNMR(DMSO-d6) δ 12.994(brs, 4H), 7.905(d, 8H), 7.7780(d, 2H), 7,542(s, 2H), 7,272(d, 10H), 5.973(s, 2H)
1H-NMR data of the obtained organic ligand is shown below.
organic ligand 2
1HNMR(DMSO-d6) δ 12.94(brs, 4H), 7.88(d, 8H), 7.33(d, 8H), 7.16(s, 4H), 6.76(s,2H)
organic ligand 3
1HNMR(DMSO-d6) δ 12.8(brs, 4H), 7.89(d, 8H), 7.24(d, 8H), 7.09(s, 4H), 5.79(s, 2H)
organic ligand 4
1HNMR(DMSO-d6) δ 1.95(brs, 4H), 7.91(d, 8H). 7.50(d, 8H), 7.35(s, 4H), 2.94(s, 6H), 7.082(d, 4H), 6.715 (brs, 2H)
organic ligand 5
1HNMR(DMSO-d6) δ 12.885(brs, 4H), 7.831(d, 8H), 7.247(d, 9H), 7,203(s, 1H)
organic ligand 6
1HNMR(DMSO-d6) δ 7.853(d, 8H), 7,290(m, 1H), 7.175(d, 8H), 6.984-6.960(m, 3H), 5.778(s, 2H)
organic ligand 7
1HNMR(DMSO-d6) δ 7.822(d, 8H), 7.254(d, 8H), 6.943(s, 2H), 6.912(s, 1H), 6.664(s, 2H), 2.181(s, 3H)
organic ligand 8
1HNMR(DMSO-d6) δ 12.863(brs, 4H), 7.860(d, 8H), 7.169(d, 8H), 6.796(s, 2H), 6.763(s, 1H), 6,723(s, 2H), 2.177 (s, 3H)
organic ligand 9
1HNMR(DMSO-d6) δ 7.821(d, 8H), 7.244(d, 8H),6.715(s, 3H), 6.614(s, 2H),3.587(s, 3H)
organic ligand 10
1HNMR(DMSO-d6) δ 12.855(brs, 4H), 7.871(d, 8H), 7.177(d, 8H), 6.545(s, 2H), 5.840(s, 2H), 1.992(s, 6H)
organic ligand 11
1HNMR(DMSO-d6) δ 12.886(brs, 4H), 7.886(d, 8H), 7.185(d, 8H), 6.618(s, 2H), 5.910(s, 2H), 2.408(q, 4H). 0.817 (t, 6H)
organic ligand 12
1HNMR(DMSO-d6) δ 12.869(brs, 4H), 7.879(d, 8H), 7.175(d, 8H), 6.609(s, 2H), 5.893(s, 2H), 2.375(t, 4H). 1.212 (m, 4H), 0.671(t, 6H)
organic ligand 13
1HNMR(DMSO-d6) δ 12.899(brs, 4H), 7.891(d, 8H), 7.341(d, 8H), 6.723(s, 2H), 6.404(s, 2H), 1.777(s, 6H)
organic ligand 14
1HNMR(DMSO-d6) δ 12.908(brs, 4H), 7.889(d, 8H), 7.331(d, 8H), 6.769(s, 2H), 6.470(s, 2H), 2.223(q, 4H). 0.575 (t, 6H)
organic ligand 15
1HNMR(DMSO-d6) δ 12.913(brs, 4H), 7.894(d, 8H), 7.334(d, 8H), 6.77(s, 2H), 6.492(s, 2H), 2.207(t, 4H). 0.966 (m, 4H), 0.448(t, 6H)
organic ligand 16
1HNMR(DMSO-d6) δ 12.893(brs, 4H), 7.903(d, 8H), 7.325(d, 8H), 6.818(s, 2H), 6.463(s, 2H), 3.090(m, 2H), 0.540 (t, 12H)
organic ligand 17
1HNMR(DMSO-d6) δ 12.892(brs, 4H), 7.893(d, 8H), 7.175(d, 8H), 6.659(s, 2H), 6.004(s, 2H), 3.040(m, 2H), 0.766 (t, 12H)
organic ligand 18
1HNMR(DMSO-d6) δ 7.776(d, 12H), 7.187(d, 12H), 7.070(s, 1H), 6.652(s, 1H)
organic ligand 19
1HNMR(DMSO-d6) δ 7.802(d, 12H), 7.085(d, 12H), 6.786(s, 3H), 5,717(s, 3H)
organic ligand 20
1HNMR(DMSO-d6) δ 12.894(brs, 4H), 7.857(d, 8H), 7.379(d, 8H), 6.974(s, 2H), 6.233(s, 2H), 3.522(q, 4H), 0.661 (t, 6H)
organic ligand 21
1HNMR(DMSO-d6) δ 12.920(brs, 4H), 7.869(d, 8H), 7.217(d, 8H), 6.450(s, 2H), 5.877(s, 2H), 3.564(q, 4H), 0.948 (t, 6H)
organic ligand 22
1HNMR(DMSO-d6) δ 12.876(brs, 4H), 7.872(d, 8H), 7.211(d, 8H), 6.421(s, 2H), 5.882(s, 2H), 3.449(t, 6H), 1.372 (m, 4H), 0.638(t, 6H)
organic ligand 23
1HNMR(DMSO-d6) δ 12.857(brs, 4H), 7.876(d, 8H), 7.397(d, 8H), 7.003(s, 2H), 6.234(s, 2H), 4.112(t, 6H), 1.137 (m, 4H), 0.477(t, 6H)
organic ligand 24
1HNMR(DMSO-d6) δ 12.899brs, 4H), 7.861(d, 8H), 7.347(d, 8H), 6.976(s, 2H), 6.300(s, 2H), 3.203(s, 6H)
organic ligand 25
1HNMR(DMSO-d6) δ 12.885(brs, 4H), 7.876(d, 8H), 7.212(d, 8H), 6.492(s, 2H), 5.911(s, 2H), 3.396(s, 6H)
organic ligand 26
1HNMR(DMSO-d6) δ 12.649(brs, 4H), 7.702(d, 8H), 7.310(d, 8H), 6.90-6.80(m, 10H) 6.809(s, 2H), 6.693(s, 2H)
organic ligand 27
1HNMR(DMSO-d6) δ 12.887(brs, 4H), 7.865(d, 8H), 7.375(d, 8H), 6.815(s, 2H), 6.130(s, 2H), 4.064(m, 2H), 0.708 (d, 12H)
organic ligand 28
1HNMR(DMSO-d6) δ 12.898(brs, 4H), 7.870(d, 8H), 7.202(d, 8H), 6.659(s, 2H), 6.004(s, 2H), 4.058(m, 2H), 0.853 (d, 12H)
organic ligand 29
1HNMR(DMSO-d6) δ 12.905(brs, 4H), 7.984(d, 8H), 7.620(d, 4H). 7.377(d, 8H), 7.267(d, 4H), 6.827(s, 2H)
organic ligand 30
1HNMR(DMSO-d6) δ 12.873(brs, 4H), 7.898(d, 8H), 7.609(d, 4H). 7.269(d, 8H), 7.194(d, 4H), 5.854(s, 2H)
organic ligand 31
1HNMR(DMSO-d6) δ 12.860(brs, 4H), 7.884(d, 8H), 7.235(d, 8H), 7.106(d, 4H), 6.971(d, 4H) 5.798(s, 2H)
organic ligand 32
1HNMR(DMSO-d6) δ 12.906(brs, 4H), 7.891(d, 8H), 7.776(d, 2H), 7.611(s, 2H), 7.390-7.370(m. 10H) 6.914(s, 2H)
organic ligand 33
1HNMR(DMSO-d6) δ 12.994(brs, 4H), 7.905(d, 8H), 7.7780(d, 2H), 7,542(s, 2H), 7,272(d, 10H), 5.973(s, 2H)

[実施例1]
有機配位子1(60mmg、0.118mmol)と金属塩としてAl(NO・9HO(177mg、0.472mmol)をDMF9.4mLに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で144時間加熱した。得られた溶液を遠心分離し、上澄みの溶媒をデカントし、固体を分離した。得られた固体にDMFを添加し、遠心分離で溶媒を分離する操作を3回繰り返して、固体を洗浄し、さらにDMF中に1晩浸漬した。さらに遠心分離して、溶媒を分離し、溶媒をクロロホルムに代えて、同様の洗浄作業を3回行い、クロロホルム中に1晩浸漬した。さらに遠心分離して、溶媒から固体を分離し、減圧下150℃で6時間加熱乾燥して目的とする金属有機構造体MOF1をオフホワイトの固体(48mg)として得た。
[Example 1]
Organic ligand 1 (60 mmg, 0.118 mmol) and metal salt Al(NO 3 ) 3.9H 2 O (177 mg, 0.472 mmol) were dissolved in 9.4 mL of DMF, filtered through a membrane filter, and placed in a sealed vial. The mixture was heated at 120° C. for 144 hours. The resulting solution was centrifuged, the supernatant solvent was decanted, and the solids were separated. The operation of adding DMF to the obtained solid and separating the solvent by centrifugation was repeated three times to wash the solid, and then immersed in DMF overnight. Further centrifugation was performed to separate the solvent, the same washing operation was performed three times by replacing the solvent with chloroform, and the sample was immersed in chloroform overnight. Further centrifugation was performed to separate the solid from the solvent, followed by heating and drying at 150° C. for 6 hours under reduced pressure to obtain the desired metal-organic framework MOF1 as an off-white solid (48 mg).

[実施例2]
溶媒としてDMF9.4mLにトリフルオロ酢酸0.5mLを添加した以外は、実施例1と同様に行いMOF2を白色の固体(42mg)として得た。
[Example 2]
The same procedure as in Example 1 was performed except that 0.5 mL of trifluoroacetic acid was added to 9.4 mL of DMF as a solvent to obtain MOF2 as a white solid (42 mg).

[実施例3]
有機配位子1(64.8mmg、0.127mmol)と金属塩としてAlCl・6HO(160mg、0.662mmol)をDMF28mLに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で24時間加熱する以外は実施例1と同様に行いMOF3を白色の固体(77mg)として得た。
[Example 3]
Organic ligand 1 (64.8 mmg, 0.127 mmol) and AlCl 3.6H 2 O (160 mg, 0.662 mmol) as a metal salt were dissolved in 28 mL of DMF, filtered through a membrane filter, and then heated at 120°C in a sealed vial. The same procedure as in Example 1 was carried out except that the mixture was heated for 24 hours to obtain MOF3 as a white solid (77 mg).

[実施例4]
金属塩としてCr(NO・9HO(188mg、0.472mmol)を用い、溶媒としてDMF24mL及びトリフルオロ酢酸1mLを用い、90℃で72時間、120℃で48時間加熱する以外は、実施例1と同様に行い、MOF4を暗緑色の固体(86mg)として得た。
[Example 4]
Using Cr(NO 3 ) 3.9H 2 O (188 mg, 0.472 mmol) as the metal salt, 24 mL of DMF and 1 mL of trifluoroacetic acid as the solvent, except heating at 90 °C for 72 hours and at 120 °C for 48 hours. The same procedure as in Example 1 was carried out to obtain MOF4 as a dark green solid (86 mg).

[実施例5]
有機配位子1(30mg、0.0558mmol)、金属塩としてCr(OAc)(54mg、0.235mmol)、溶媒としてDMF10mL及びトリフルオロ酢酸0.5mL用い、60℃で72時間加熱処理する以外は、実施例1と同様に行い、MOF5を暗緑色の固体(20mg)として得た。
[Example 5]
Organic ligand 1 (30 mg, 0.0558 mmol), Cr(OAc) 3 (54 mg, 0.235 mmol) as a metal salt, 10 mL of DMF and 0.5 mL of trifluoroacetic acid as a solvent, except for heat treatment at 60 ° C. for 72 hours. was carried out in the same manner as in Example 1 to obtain MOF5 as a dark green solid (20 mg).

[実施例6]
有機配位子1(150mg、0.3mmol)、金属塩としてCrCl・6HO(160mg、0.6mmol)、DMF3mLを用い、オートクレーブ中、190℃で72時間加熱処理する以外は、実施例1と同様に行い、MOF6を青緑色の固体(96mg)として得た。
[Example 6]
Example except that organic ligand 1 (150 mg, 0.3 mmol), CrCl 3 .6H 2 O (160 mg, 0.6 mmol) as a metal salt, and 3 mL of DMF were used and heat treated in an autoclave at 190° C. for 72 hours. The same procedure as in 1 was carried out to obtain MOF6 as a blue-green solid (96 mg).

[実施例7]
有機配位子1(60mg、0.118mmol)、金属塩としてCrCl・6HO(63mg、0.236mmol)、DMF2.4mLを用い、90℃で144時間加熱処理する以外は、実施例1と同様に行い、MOF7を暗緑色の固体(60mg)として得た。
[Example 7]
Example 1 except that organic ligand 1 (60 mg, 0.118 mmol), CrCl 3 .6H 2 O (63 mg, 0.236 mmol) as a metal salt, and 2.4 mL of DMF were used, and heat treatment was performed at 90° C. for 144 hours. In the same manner as above, MOF7 was obtained as a dark green solid (60 mg).

[実施例8]
有機配位子1(60mg、0.118mmol)、金属塩としてCrCl・6HO(24mg、0.0885mmol)、DMF3mLを用い、オートクレーブ中、190℃で72時間加熱処理する以外は、実施例1と同様に行い、MOF8を青緑色の固体(28mg)として得た。
[Example 8]
Example except that organic ligand 1 (60 mg, 0.118 mmol), CrCl 3 .6H 2 O (24 mg, 0.0885 mmol) as a metal salt, and 3 mL of DMF were used and heat-treated at 190° C. for 72 hours in an autoclave. The same procedure as in 1 was carried out to obtain MOF8 as a blue-green solid (28 mg).

[実施例9]
有機配位子1(60mg、0.118mmol)、金属塩としてCrCl・6HO(42mg、0.157mmol)、DMF4mLを用い、オートクレーブ中、190℃で36時間加熱処理する以外は、実施例1と同様に行い、MOF9を青緑色の固体(70mg)として得た。
[Example 9]
Example except that organic ligand 1 (60 mg, 0.118 mmol), CrCl 3 .6H 2 O (42 mg, 0.157 mmol) as a metal salt, and 4 mL of DMF were used and heat-treated at 190° C. for 36 hours in an autoclave. The same procedure as in 1 was carried out to obtain MOF9 as a blue-green solid (70 mg).

[実施例10]
金属塩としてCu(NO・3HO(110mg、0.472mmol)を用い、90℃で24時間加熱処理する以外は、実施例1と同様に行い、MOF10を青色の固体(54mg)として得た。
[Example 10]
The same procedure as in Example 1 was carried out except that Cu(NO 3 ) 2.3H 2 O (110 mg , 0.472 mmol) was used as the metal salt and heat treatment was performed at 90° C. for 24 hours, and MOF10 was converted into a blue solid (54 mg). obtained as.

[実施例11]
金属塩Cu(OAc)・HO(86mg、0.472mmol)のDMF1.2mLの溶液を氷冷し、有機配位子1(60mmg、0.118mmol)のDMF1.2mLの溶液を静かに添加した。金属塩の溶液と有機配位子1の溶液は2層に分離した。得られた2層の溶液を0℃で24時間静置した。固体が析出した溶液を実施例1と同様にして処理し、MOF11を青色の固体(66mg)として得た。
[Example 11]
A solution of metal salt Cu(OAc) 2 ·H 2 O (86 mg, 0.472 mmol) in DMF 1.2 mL was cooled on ice, and a solution of organic ligand 1 (60 mmg, 0.118 mmol) in DMF 1.2 mL was gently added. Added. The metal salt solution and the organic ligand 1 solution were separated into two layers. The resulting two-layer solution was allowed to stand at 0° C. for 24 hours. The solution in which the solid precipitated was treated in the same manner as in Example 1 to obtain MOF11 as a blue solid (66 mg).

[実施例12]
金属塩としてFe(NO・9HO(191mg、0.472mmol)をDMF24mL及びトリフルオロ酢酸1mLに溶解し、90℃で72時間、120℃で24時間加熱処理する以外は実施例1と同様に行い、MOF12を赤橙色の固体(74mg)として得た。
[Example 12]
Example 1 except that Fe(NO 3 ) 3.9H 2 O (191 mg, 0.472 mmol) as a metal salt was dissolved in 24 mL of DMF and 1 mL of trifluoroacetic acid, and heat treated at 90° C. for 72 hours and at 120° C. for 24 hours. In the same manner as above, MOF12 was obtained as a reddish-orange solid (74 mg).

[実施例13]
金属塩としてFe(NO・9HO(191mg、0.472mmol)をDMF24mLに溶解し、90℃で72時間、加熱処理する以外は実施例1と同様に行い、MOF13を暗緑色の固体(70mg)として得た。
[Example 13]
The same procedure as in Example 1 was carried out except that Fe(NO 3 ) 3.9H 2 O (191 mg , 0.472 mmol) as a metal salt was dissolved in 24 mL of DMF and heat treated at 90°C for 72 hours. Obtained as a solid (70mg).

[実施例14]
金属塩としてZn(NO・6HO(140mg、0.472mmol)、第2有機配位子として1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)(53mg)をDMF9.4mLに溶解し、60℃で72時間、加熱処理する以外は実施例1と同様に行い、MOF14を白色の固体(71mg)として得た。
[Example 14]
Zn(NO 3 ) 2.6H 2 O (140 mg, 0.472 mmol) as a metal salt and 1,4-diazabicyclo[2.2.2]octane (DABCO) (53 mg) as a second organic ligand were added in DMF9. The same procedure as in Example 1 was performed except that the solution was dissolved in 4 mL and heat-treated at 60° C. for 72 hours, to obtain MOF14 as a white solid (71 mg).

[実施例15]
金属塩としてZn(NO・6HO(140mg、0.472mmol)、第2有機配位子として1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)(53mg)をDMF10mL及びトリフルオロ酢酸0.5mLに溶解し、90℃で72時間、120℃で48時間、加熱処理する以外は実施例1と同様に行い、MOF15を白色の固体(94mg)として得た。
[Example 15]
Zn(NO 3 ) 2.6H 2 O (140 mg, 0.472 mmol) as a metal salt and 1,4-diazabicyclo[2.2.2]octane (DABCO) (53 mg) as a second organic ligand in 10 mL of DMF and The same procedure as in Example 1 was performed except that the solution was dissolved in 0.5 mL of trifluoroacetic acid and heated at 90° C. for 72 hours and at 120° C. for 48 hours, to obtain MOF15 as a white solid (94 mg).

[実施例16]
金属塩としてZn(NO・6HO(70mg、0.235mmol)、第2有機配位子として1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)(13mg)をDMF4.7mLに溶解し、オートクレーブ中190℃で24時間、加熱処理する以外は実施例1と同様に行い、MOF16を白色の固体(70mg)として得た。
[Example 16]
Zn(NO 3 ) 2.6H 2 O (70 mg, 0.235 mmol) as a metal salt and 1,4-diazabicyclo[2.2.2]octane (DABCO) (13 mg) as a second organic ligand were mixed in DMF4. The same procedure as in Example 1 was performed except that the solution was dissolved in 7 mL and heat-treated in an autoclave at 190° C. for 24 hours, to obtain MOF16 as a white solid (70 mg).

[実施例17]
金属塩Zn(OAc)・2HO(104mg、0.472mmol)のDMF1.2mLの溶液を氷冷し、有機配位子1(60mmg、0.118mmol)のDMF1.2mLの溶液を静かに添加した。金属塩の溶液と有機配位子1の溶液は2層に分離した。得られた2層の溶液を0℃で振盪した。得られた固体が析出した溶液を実施例1と同様にして処理し、MOF17を青色の固体(90mg)として得た。
[Example 17]
A solution of metal salt Zn(OAc) 2.2H 2 O ( 104 mg, 0.472 mmol) in DMF 1.2 mL was cooled on ice, and a solution of organic ligand 1 (60 mmg, 0.118 mmol) in DMF 1.2 mL was gently added. Added. The metal salt solution and the organic ligand 1 solution were separated into two layers. The resulting two-layer solution was shaken at 0°C. The solution in which the obtained solid was precipitated was treated in the same manner as in Example 1 to obtain MOF17 as a blue solid (90 mg).

[実施例18]
有機配位子1(150mmg、0.300mmol)と金属塩としてのZrCl(140mg、0.600mmol)をDMF4mL、酢酸0.5mL及び水0.06mLに溶解し、120℃で24時間加熱処理する以外は実施例1と同様に行い、MOF18を白色の固体(182mg)として得た。
[Example 18]
Organic ligand 1 (150 mmg, 0.300 mmol) and ZrCl 4 (140 mg, 0.600 mmol) as a metal salt are dissolved in 4 mL of DMF, 0.5 mL of acetic acid, and 0.06 mL of water, and heat treated at 120° C. for 24 hours. Except for this, the same procedure as in Example 1 was carried out to obtain MOF18 as a white solid (182 mg).

[実施例19]
有機配位子1(51mmg、0.1mmol)と金属塩としてAlCl・6HO(96mg、0.4mmol)をDMF10mLに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で140時間加熱する以外は実施例1と同様に行いMOF19を白色の固体(71mg)として得た。
[Example 19]
Organic ligand 1 (51 mmg, 0.1 mmol) and AlCl 3.6H 2 O (96 mg, 0.4 mmol) as a metal salt were dissolved in 10 mL of DMF, and after filtering with a membrane filter, the mixture was heated at 120 °C in a sealed vial at 140 °C. The same procedure as in Example 1 was carried out except for heating for a certain period of time, and MOF19 was obtained as a white solid (71 mg).

[実施例20]
有機配位子1(51mmg、0.1mmol)、金属塩としてZn(NO・6HO(119mg、0.4mmol)及び第2有機配位子として1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)(45mg)をジエチルホルムアミド(DEF)10mLに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、60℃で67時間加熱処理する以外は実施例1と同様に行い、MOF20を白色の固体(75mg)として得た。
[Example 20]
Organic ligand 1 (51 mmg, 0.1 mmol), Zn (NO 3 ) 2.6H 2 O (119 mg, 0.4 mmol) as the metal salt and 1,4-diazabicyclo[2.2 .2] Octane (DABCO) (45 mg) was dissolved in 10 mL of diethylformamide (DEF), filtered with a membrane filter, and then heated in a sealed vial at 60° C. for 67 hours, but in the same manner as in Example 1. MOF20 was obtained as a white solid (75 mg).

[実施例21]
有機配位子1(51mmg、0.1mmol)、金属塩としてZn(NO・6HO(119mg、0.4mmol)及び第2有機配位子として1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)(11mg)をジエチルホルムアミド(DEF)5mLに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、190℃で67時間加熱処理する以外は実施例1と同様に行い、MOF21を白色の固体(70mg)として得た。
[Example 21]
Organic ligand 1 (51 mmg, 0.1 mmol), Zn (NO 3 ) 2.6H 2 O (119 mg, 0.4 mmol) as the metal salt and 1,4-diazabicyclo[2.2 .2] Octane (DABCO) (11 mg) was dissolved in 5 mL of diethylformamide (DEF), filtered with a membrane filter, and then heated in a sealed vial at 190° C. for 67 hours, but in the same manner as in Example 1. MOF21 was obtained as a white solid (70mg).

実施例1~21で得られた金属有機構造体について、以下の方法でBET比表面積及び77K-大気圧における水素貯蔵量を測定した。その結果を表2に示す。
(BET比表面積測定及び水素貯蔵量測定)
BET比表面積及び77K-大気圧における水素貯蔵量の測定は、ガス吸着量測定装置Tristar-II(Micromeritics社製)を用いて行った。
BET比表面積は次の方法で算出した。金属有機構造体の50mg程度を、ガラスセルの内部に入れた。ガラスセルの内部は135℃の温度で真空まで減圧し、6時間乾燥させた。ガラスセルをガス吸着量測定装置に装着し、液体窒素入りの恒温槽に浸漬した。ガラスセルに含有される窒素の圧力を徐々に増加させた。ガラスセルの内部に導入された窒素の圧力が1.0×10Paとなるまで測定を行った。
77K常圧での水素貯蔵量は次の方法で算出した。窒素の測定後、水素へとガス種を変更し測定を行った。ガラスセルに含有される水素の圧力を徐々に増加させた。ガラスセルの内部に導入された水素の圧力が1.0×10Paとなるまで測定を行った。
Regarding the metal-organic structures obtained in Examples 1 to 21, the BET specific surface area and hydrogen storage amount at 77 K and atmospheric pressure were measured by the following method. The results are shown in Table 2.
(BET specific surface area measurement and hydrogen storage amount measurement)
The BET specific surface area and the hydrogen storage amount at 77 K and atmospheric pressure were measured using a gas adsorption measurement device Tristar-II (manufactured by Micromeritics).
The BET specific surface area was calculated by the following method. Approximately 50 mg of the metal-organic framework was placed inside the glass cell. The inside of the glass cell was evacuated to vacuum at a temperature of 135° C. and dried for 6 hours. The glass cell was attached to a gas adsorption measurement device and immersed in a constant temperature bath containing liquid nitrogen. The pressure of nitrogen contained in the glass cell was gradually increased. Measurement was performed until the pressure of nitrogen introduced into the glass cell reached 1.0×10 5 Pa.
The hydrogen storage amount at 77K normal pressure was calculated by the following method. After measuring nitrogen, the gas type was changed to hydrogen and measurements were taken. The pressure of hydrogen contained in the glass cell was gradually increased. Measurement was performed until the pressure of hydrogen introduced into the glass cell reached 1.0×10 5 Pa.

Figure 2024012177000023
Figure 2024012177000023

[実施例22]
有機配位子2(40mmg、0.0648mmol)と金属塩としてCu(NO・3HO(131mg、0.542mmol)のDMF2.1mL溶液を密閉したバイアル中、150℃で2時間加熱する以外は、実施例1と同様に行い、MOF22を青色の固体(31mg)として得た。
[Example 22]
A 2.1 mL DMF solution of organic ligand 2 (40 mmg, 0.0648 mmol) and metal salt Cu(NO 3 ) 2.3H 2 O (131 mg, 0.542 mmol) was heated at 150° C. for 2 hours in a sealed vial. The same procedure as in Example 1 was carried out except that MOF22 was obtained as a blue solid (31 mg).

[実施例23]
有機配位子2(41mmg、0.0656mmol)と金属塩としてCu(NO・3HO(96mg、0.392mmol)のDMA3.9mL溶液を密閉したバイアル中、115℃で24時間加熱する以外は、実施例1と同様に行い、MOF23を青色の固体(26mg)として得た。
[Example 23]
A 3.9 mL DMA solution of organic ligand 2 (41 mmg, 0.0656 mmol) and metal salt Cu(NO 3 ) 2.3H 2 O (96 mg, 0.392 mmol) was heated at 115° C. for 24 hours in a sealed vial. The same procedure as in Example 1 was carried out except that MOF23 was obtained as a blue solid (26 mg).

[実施例24]
DMA0.65mL用い、90℃で加熱する以外は、実施例23と同様に行いMOF24を青色の固体(21mg)として得た。
[Example 24]
The same procedure as in Example 23 was performed except that 0.65 mL of DMA was used and heating was performed at 90° C. to obtain MOF24 as a blue solid (21 mg).

[実施例25]
金属塩としてMnCl・4HO(67mg、0.341mmol)を用い、溶媒としてDMF1.3mLを用い、メンブランフィルターでろ過後、密閉したバイアル中、120℃で24時間加熱する以外は実施例22と同様に行い、MOF25をピンク色の固体(24mg)として得た。
[Example 25]
Example 22 except that MnCl 2 .4H 2 O (67 mg, 0.341 mmol) was used as the metal salt, 1.3 mL of DMF was used as the solvent, and after filtration with a membrane filter, heating was performed at 120° C. for 24 hours in a sealed vial. In the same manner as above, MOF25 was obtained as a pink solid (24 mg).

[実施例26]
金属塩としてZn(NO・6HO(154mg、0.518mmol)を用い、溶媒としてDMF1.7mLを用い、メンブランフィルターでろ過後、密閉したバイアル中、150℃で3時間加熱する以外は実施例22と同様に行い、MOF26を淡黄色の固体(27mg)として得た。
[Example 26]
Other than using Zn(NO 3 ) 2.6H 2 O (154 mg, 0.518 mmol) as the metal salt and 1.7 mL of DMF as the solvent, heating at 150 ° C. for 3 hours in a sealed vial after filtration with a membrane filter. was carried out in the same manner as in Example 22 to obtain MOF26 as a pale yellow solid (27 mg).

[実施例27]
有機配位子2(20mg、0.0323mmol)、第2有機配位子として4,4’ -ビピリジル(20mg、0.131mmol)、金属塩としてZn(NO・6HO(48mg、0.101mmol)のDMF0.33mL溶液を、密閉したバイアル中、70℃で96時間加熱する以外は実施例1と同様に行い、MOF27を白色の固体(10mg)として得た。
[Example 27]
Organic ligand 2 (20 mg, 0.0323 mmol), 4,4'-bipyridyl (20 mg, 0.131 mmol) as the second organic ligand, Zn(NO 3 ) 2.6H 2 O (48 mg, The same procedure as in Example 1 was performed except that a solution of 0.101 mmol) in 0.33 mL of DMF was heated at 70° C. for 96 hours in a sealed vial to obtain MOF27 as a white solid (10 mg).

[実施例28]
有機配位子2(59mg、0.0954mmol)、金属塩としてAl(NO・9HO(141mg、0.376mmol)のDMF8.1mL溶液を、密閉したバイアル中、120℃で72時間加熱する以外は実施例1と同様に行い、MOF28を黄色の固体(31mg)として得た。
[Example 28]
A solution of organic ligand 2 (59 mg, 0.0954 mmol) and Al(NO 3 ) 3.9H 2 O ( 141 mg, 0.376 mmol) as the metal salt in 8.1 mL of DMF was heated at 120° C. for 72 hours in a sealed vial. The same procedure as in Example 1 was performed except for heating, and MOF28 was obtained as a yellow solid (31 mg).

[実施例29]
有機配位子2(40mg、0.0647mmol)、金属塩としてZrCl(76mg、0.326mmol)、添加剤として安息香酸(397mg、3.25mmol)のDMF8.1mL溶液を、密閉したバイアル中、90℃で144時間、120℃で216時間加熱する以外は実施例1と同様に行い、MOF29を白色の固体(42mg)として得た。
[Example 29]
A DMF 8.1 mL solution of organic ligand 2 (40 mg, 0.0647 mmol), ZrCl 4 (76 mg, 0.326 mmol) as a metal salt, and benzoic acid (397 mg, 3.25 mmol) as an additive was added in a sealed vial. The same procedure as in Example 1 was performed except that heating was performed at 90° C. for 144 hours and at 120° C. for 216 hours, to obtain MOF29 as a white solid (42 mg).

実施例22~29で得られた金属有機構造体について、実施例1と同様の方法でBET比表面積及び77K-大気圧における水素貯蔵量を測定した。その結果を表3に示す。 Regarding the metal-organic structures obtained in Examples 22 to 29, the BET specific surface area and hydrogen storage amount at 77 K and atmospheric pressure were measured in the same manner as in Example 1. The results are shown in Table 3.

Figure 2024012177000024
Figure 2024012177000024

[実施例30]
有機配位子3(41mmg、0.0698mmol)と金属塩としてCu(NO・3HO(122mg、0.505mmol)のDMA6.8mL溶液を、密閉したバイアル中、90℃で4時間加熱した以外は、実施例1と同様に行い、MOF30を青色の固体(27mg)として得た。
[Example 30]
A 6.8 mL solution of organic ligand 3 (41 mmg, 0.0698 mmol) and Cu(NO 3 ) 2.3H 2 O as metal salt (122 mg, 0.505 mmol) in DMA was added in a sealed vial at 90° C. for 4 hours. The same procedure as in Example 1 was performed except for heating, and MOF30 was obtained as a blue solid (27 mg).

[実施例31]
120℃で4時間加熱する以外は、実施例30と同様に行い、MOF31を青色の固体(30mg)として得た。
[Example 31]
The same procedure as Example 30 was carried out except that heating was performed at 120° C. for 4 hours, and MOF31 was obtained as a blue solid (30 mg).

[実施例32]
有機配位子3(30mmg、0.0511mmol)と金属塩としてZn(NO・6HO(121mg、0.408mmol)を、DMF5.1mLに溶解し、メンブレンフィルターでろ過後、密閉したバイアル中、120℃で48時間加熱した以外は、実施例1と同様に行い、MOF32を白色の固体(20mg)として得た。
[Example 32]
Organic ligand 3 (30 mmg, 0.0511 mmol) and Zn(NO 3 ) 2.6H 2 O (121 mg, 0.408 mmol) as a metal salt were dissolved in 5.1 mL of DMF, filtered with a membrane filter, and then sealed. The same procedure as in Example 1 was carried out except that the mixture was heated at 120° C. for 48 hours in a vial to obtain MOF32 as a white solid (20 mg).

[実施例33]
有機配位子3(21mmg、0.0360mmol)と金属塩としてZrCl(40mg、0.171mmol)を、DMF6mLに溶解し、メンブレンフィルターでろ過後、密閉したバイアル中、90℃で24時間加熱した以外は、実施例1と同様に行い、MOF33を白色の固体(60mg)として得た。
[Example 33]
Organic ligand 3 (21 mmg, 0.0360 mmol) and ZrCl 4 (40 mg, 0.171 mmol) as a metal salt were dissolved in 6 mL of DMF, filtered through a membrane filter, and then heated at 90 °C for 24 hours in a sealed vial. Except for this, the same procedure as in Example 1 was carried out to obtain MOF33 as a white solid (60 mg).

実施例30~33で得られた金属有機構造体について、実施例1と同様の方法でBET比表面積及び77K-大気圧における水素貯蔵量を測定した。その結果を表4に示す。 Regarding the metal-organic structures obtained in Examples 30 to 33, the BET specific surface area and hydrogen storage amount at 77 K and atmospheric pressure were measured in the same manner as in Example 1. The results are shown in Table 4.

Figure 2024012177000025
Figure 2024012177000025

[実施例34]
有機配位子4(40mg、0.0619mmol)、金属塩としてCu(NO・3HO(75mg、0.310mmol)のDMA1.24mLの溶液を、密閉したバイアル中、120℃で48時間加熱した以外は、実施例1と同様に行い、MOF34を青色の固体(34mg)として得た。
[Example 34]
A solution of organic ligand 4 (40 mg, 0.0619 mmol), Cu(NO 3 ) 2.3H 2 O (75 mg, 0.310 mmol) as metal salt in 1.24 mL of DMA was heated at 120° C. for 48 hours in a sealed vial. The same procedure as in Example 1 was carried out except that heating was performed for a certain period of time, and MOF34 was obtained as a blue solid (34 mg).

[実施例35]
有機配位子4(50mg、0.0773mmol)、金属塩としてZn(NO・6HO(117mg、0.393mmol)、第2有機配位子としてDABCO(37mg、0.327mmol)のDMA1.85mLの溶液を、密閉したバイアル中、120℃で72時間加熱した以外は、実施例1と同様に行い、MOF35を白色の固体(47mg)として得た。
[Example 35]
Organic ligand 4 (50 mg, 0.0773 mmol), Zn(NO 3 ) 2.6H 2 O (117 mg, 0.393 mmol) as a metal salt, and DABCO (37 mg, 0.327 mmol) as a second organic ligand. The same procedure as in Example 1 was performed except that a solution of 1.85 mL of DMA was heated at 120° C. for 72 hours in a sealed vial to obtain MOF35 as a white solid (47 mg).

[実施例36]
有機配位子4(50mg、0.0773mmol)、金属塩としてZn(NO・6HO(117mg、0.387mmol)、第2有機配位子として4,4‘-ビピリジル(19mg、0.124mmol)のDMA1.75mLの溶液を、密閉したバイアル中、120℃で72時間加熱した以外は、実施例1と同様に行い、MOF36を白色の固体(17mg)として得た。
[Example 36]
Organic ligand 4 (50 mg, 0.0773 mmol), Zn( NO3 ) 2.6H2O (117 mg, 0.387 mmol) as a metal salt, 4,4'-bipyridyl (19 mg, Example 1 was repeated, except that a solution of 1.75 mL of DMA (0.124 mmol) was heated at 120° C. for 72 hours in a sealed vial to obtain MOF36 as a white solid (17 mg).

[実施例37]
有機配位子4(40mg、0.0619mmol)、金属塩としてZn(NO・6HO(92mg、0.309mmol)、第2有機配位子として1,2-ジ(4-ピリジル)エテン(57mg、0.311mmol)のDMA1.25mLの溶液を、密閉したバイアル中、120℃で22時間加熱した以外は、実施例1と同様に行い、MOF37を白色の固体(20mg)として得た。
[Example 37]
Organic ligand 4 (40 mg, 0.0619 mmol), Zn(NO 3 ) 2.6H 2 O (92 mg, 0.309 mmol) as the metal salt, 1,2-di(4-pyridyl) as the second organic ligand. ) Example 1 was repeated except that a solution of ethene (57 mg, 0.311 mmol) in 1.25 mL of DMA was heated at 120 °C for 22 hours in a sealed vial to obtain MOF37 as a white solid (20 mg). Ta.

[実施例38]
有機配位子4(40mg、0.0619mmol)、金属塩としてZn(NO・6HO(92mg、0.309mmol)、第2有機配位子として1,2-ジ(4-ピリジル)エタン(57mg、0.313mmol)のDMA1.25mLの溶液を、密閉したバイアル中、120℃で22時間加熱した以外は、実施例1と同様に行い、MOF38を白色の固体(33mg)として得た。
[Example 38]
Organic ligand 4 (40 mg, 0.0619 mmol), Zn(NO 3 ) 2.6H 2 O (92 mg, 0.309 mmol) as the metal salt, 1,2-di(4-pyridyl) as the second organic ligand. ) Example 1 was repeated except that a solution of ethane (57 mg, 0.313 mmol) in 1.25 mL of DMA was heated at 120 °C for 22 h in a sealed vial to obtain MOF38 as a white solid (33 mg). Ta.

実施例34~38で得られた金属有機構造体について、実施例1と同様の方法でBET比表面積及び77K-大気圧における水素貯蔵量を測定した。その結果を表5に示す。 Regarding the metal-organic structures obtained in Examples 34 to 38, the BET specific surface area and hydrogen storage amount at 77 K and atmospheric pressure were measured in the same manner as in Example 1. The results are shown in Table 5.

Figure 2024012177000026
Figure 2024012177000026

[実施例39]
有機配位子5(31mg、0.05mmol)と金属塩としてZn(NO・6HO(31mg、0.2mmol、有機配位子5のカルボン酸残基と当量)をDMF1mLに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で48時間加熱した以外は、実施例1と同様に行い、MOF39を白色の固体(30mg)として得た。
[Example 39]
Organic ligand 5 (31 mg, 0.05 mmol) and Zn(NO 3 ) 2.6H 2 O as a metal salt (31 mg, 0.2 mmol, equivalent to the carboxylic acid residue of organic ligand 5) were dissolved in 1 mL of DMF. The same procedure as in Example 1 was carried out, except that after filtration with a membrane filter, the mixture was heated at 120° C. for 48 hours in a sealed vial to obtain MOF39 as a white solid (30 mg).

[実施例40]
金属塩としてZn(OAc)・2HO(88mg、0.4mmol)のDMF1mL溶液に有機配位子5(62mg、0.1mmol)の1mLDMF溶液を添加し、密閉したバイアル中、90℃で24時間、120℃で96時間加熱した以外は、実施例1と同様に行い、MOF40を白色の固体(40mg)として得た。
[Example 40]
A 1 mL DMF solution of organic ligand 5 (62 mg, 0.1 mmol) was added to a 1 mL DMF solution of Zn(OAc) 2.2H 2 O (88 mg, 0.4 mmol) as a metal salt, and the mixture was heated at 90 °C in a sealed vial. The same procedure as in Example 1 was performed except that the mixture was heated at 120° C. for 24 hours and 96 hours to obtain MOF40 as a white solid (40 mg).

[実施例41]
有機配位子5(62mg、0.1mmol)と金属塩としてAl(NO・9HO(150mg、0.4mmol)をDMF2mL及びトリフルオロ酢酸0.02mLに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、70℃で96時間加熱した以外は、実施例1と同様に行い、MOF41を白色の固体(10mg)として得た。
[Example 41]
Organic ligand 5 (62 mg, 0.1 mmol) and metal salt Al(NO 3 ) 3.9H 2 O (150 mg, 0.4 mmol) were dissolved in 2 mL of DMF and 0.02 mL of trifluoroacetic acid, and filtered with a membrane filter. Thereafter, the same procedure as in Example 1 was performed except that the mixture was heated at 70° C. for 96 hours in a sealed vial to obtain MOF41 as a white solid (10 mg).

[実施例42]
金属塩としてFe(NO・9HO(162mg、0.4mmol)を用いる以外は、実施例41と同様に行い、MOF42を赤色の固体(10mg)として得た。
[Example 42]
The same procedure as Example 41 was performed except that Fe(NO 3 ) 3 ·9H 2 O (162 mg, 0.4 mmol) was used as the metal salt, and MOF42 was obtained as a red solid (10 mg).

実施例39~42で得られた金属有機構造体について、実施例1と同様の方法でBET比表面積及び77K-大気圧における水素貯蔵量を測定した。その結果を表6に示す。 Regarding the metal-organic structures obtained in Examples 39 to 42, the BET specific surface area and hydrogen storage amount at 77 K and atmospheric pressure were measured in the same manner as in Example 1. The results are shown in Table 6.

Figure 2024012177000027
Figure 2024012177000027

[実施例43]
有機配位子6(59mg、0.1mmol)を用いる以外は、実施例41と同様に行い、MOF43を白色の固体(10mg)として得た。
[Example 43]
The same procedure as Example 41 was performed except that organic ligand 6 (59 mg, 0.1 mmol) was used to obtain MOF43 as a white solid (10 mg).

[実施例44]
有機配位子6(29mg、0.05mmol)と金属塩としてCu(NO・3HO(48mg、0.2mmol)をDMA1mLに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で48時間加熱した以外は、実施例1と同様に行い、MOF44を青色の固体(30mg)として得た。
[Example 44]
Organic ligand 6 (29 mg, 0.05 mmol) and Cu(NO 3 ) 2.3H 2 O ( 48 mg, 0.2 mmol) as a metal salt were dissolved in 1 mL of DMA, and after filtering with a membrane filter, in a sealed vial. The same procedure as in Example 1 was performed except that heating was performed at 120° C. for 48 hours, and MOF44 was obtained as a blue solid (30 mg).

[実施例45]
溶媒としてDMA1mLに硝酸0.02mLをさらに添加した以外は、実施例44と同様に行い、MOF45を青色の固体(25mg)として得た。
[Example 45]
The same procedure as Example 44 was performed except that 0.02 mL of nitric acid was further added to 1 mL of DMA as a solvent, and MOF45 was obtained as a blue solid (25 mg).

[実施例46]
有機配位子6(59mg、0.1mmol)を用いる以外は、実施例42と同様に行い、MOF46を赤色の固体(20mg)として得た。
[Example 46]
The same procedure as Example 42 was performed except that organic ligand 6 (59 mg, 0.1 mmol) was used to obtain MOF46 as a red solid (20 mg).

実施例43~46で得られた金属有機構造体について、実施例1と同様の方法でBET比表面積及び77K-大気圧における水素貯蔵量を測定した。その結果を表7に示す。 Regarding the metal-organic structures obtained in Examples 43 to 46, the BET specific surface area and hydrogen storage amount at 77 K and atmospheric pressure were measured in the same manner as in Example 1. The results are shown in Table 7.

Figure 2024012177000028
Figure 2024012177000028

[実施例47]
有機配位子7(64mg、0.1mmol)と金属塩としてAl(NO・9HO(150mg、0.4mmol、有機配位子7中のカルボン酸残基と当量)をDMF10mLに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で48時間加熱した以外は、実施例1と同様に行い、MOF47を白色の固体(89mg)として得た。
[Example 47]
Organic ligand 7 (64 mg, 0.1 mmol) and Al(NO 3 ) 3.9H 2 O (150 mg, 0.4 mmol, equivalent to the carboxylic acid residue in organic ligand 7) as a metal salt were added to 10 mL of DMF. The same procedure as in Example 1 was performed except that the solution was dissolved, filtered through a membrane filter, and then heated at 120° C. for 48 hours in a sealed vial to obtain MOF47 as a white solid (89 mg).

[実施例48]
有機配位子8(60mg、1mmol)を用いる以外、実施例47と同様に行い、MOF48を白色の固体(89mg)を得た。
[Example 48]
The same procedure as Example 47 was carried out except that organic ligand 8 (60 mg, 1 mmol) was used to obtain MOF48 as a white solid (89 mg).

[実施例49]
金属塩としてZrCl(93mg)を用い、さらに溶媒としてDMF10mLに酢酸0.5mLを添加する以外、実施例48と同様に行い、MOF49を白色の固体(69mg)として得た。
[Example 49]
The same procedure as in Example 48 was performed except that ZrCl 4 (93 mg) was used as the metal salt and 0.5 mL of acetic acid was added to 10 mL of DMF as a solvent to obtain MOF49 as a white solid (69 mg).

[実施例50]
有機配位子9(64mg、0.1mmol)を用いる以外、実施例47と同様に行い、MOF50を白色の固体(52mg)として得た。
[Example 50]
The same procedure as Example 47 was carried out except that organic ligand 9 (64 mg, 0.1 mmol) was used to obtain MOF50 as a white solid (52 mg).

実施例47~50で得られた金属有機構造体について、実施例1と同様の方法でBET比表面積及び77K-大気圧における水素貯蔵量を測定した。その結果を表8に示す。 Regarding the metal-organic structures obtained in Examples 47 to 50, the BET specific surface area and hydrogen storage amount at 77 K and atmospheric pressure were measured in the same manner as in Example 1. The results are shown in Table 8.

Figure 2024012177000029
Figure 2024012177000029

[実施例51]
有機配位子10(61mg、0.1mmol)を用い、120℃で92時間加熱処理する以外は、実施例47と同様に行い、MOF51を白色の固体(38mg)として得た。
[Example 51]
The same procedure as in Example 47 was performed except that organic ligand 10 (61 mg, 0.1 mmol) was used and heat treatment was performed at 120° C. for 92 hours, to obtain MOF51 as a white solid (38 mg).

[実施例52]
金属塩としてCu(NO・3HO(97mg、0.4mmol)を用い、溶媒としてDMAを用いる以外は、実施例51と同様に行い、MOF52を青色の固体(54mg)を得た。
[Example 52]
The same procedure as Example 51 was performed except that Cu(NO 3 ) 2.3H 2 O (97 mg, 0.4 mmol) was used as the metal salt and DMA was used as the solvent, and MOF52 was obtained as a blue solid (54 mg). .

[実施例53]
金属塩としてFe(NO・9HO(161mg、0.4mmol)を用い、120℃で43時間加熱処理する以外、実施例51と同等に行い、MOF53を濃赤色の固体(61mg)を得た。
[Example 53]
The same procedure as Example 51 was carried out except that Fe( NO 3 ) 3.9H 2 O (161 mg, 0.4 mmol) was used as the metal salt and heat treatment was performed at 120° C. for 43 hours, and MOF53 was converted into a dark red solid (61 mg). I got it.

[実施例54]
金属塩としてZn(NO・6HO(119mg、0.4mmol)を用いる以外、実施例51と同等に行い、MOF54を白色の固体(73mg)を得た。
[Example 54]
The same procedure as in Example 51 was performed except that Zn(NO 3 ) 2.6H 2 O (119 mg, 0.4 mmol) was used as the metal salt, and MOF54 was obtained as a white solid (73 mg).

[実施例55]
金属塩としてZrCl(93mg、0.4mmol)を用い、さらに溶媒としてDMF10mLに酢酸0.5mLを添加する以外、実施例51と同等に行い、MOF55を白色の固体(81mg)として得た。
[Example 55]
The same procedure as in Example 51 was performed except that ZrCl 4 (93 mg, 0.4 mmol) was used as the metal salt and 0.5 mL of acetic acid was added to 10 mL of DMF as a solvent to obtain MOF55 as a white solid (81 mg).

[実施例56]
有機配位子10(61mg、0.1mmol)と金属塩としてAl(NO・9HO(150mg、0.4mmol、有機配位子10中のカルボン酸残基と当量)をDMF10mL及びギ酸1mlに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で43時間加熱した以外は、実施例1と同様に行い、MOF56を白色の固体(84mg)として得た。
[Example 56]
Organic ligand 10 (61 mg, 0.1 mmol) and Al(NO 3 ) 3.9H 2 O (150 mg, 0.4 mmol, equivalent to the carboxylic acid residue in organic ligand 10) as a metal salt were added in 10 mL of DMF and MOF56 was obtained as a white solid (84 mg) in the same manner as in Example 1, except that it was dissolved in 1 ml of formic acid, filtered through a membrane filter, and then heated at 120° C. for 43 hours in a sealed vial.

実施例51~56で得られた金属有機構造体について、実施例1と同様の方法でBET比表面積及び77K-大気圧における水素貯蔵量を測定した。その結果を表9に示す。 Regarding the metal-organic structures obtained in Examples 51 to 56, the BET specific surface area and hydrogen storage amount at 77 K and atmospheric pressure were measured in the same manner as in Example 1. The results are shown in Table 9.

Figure 2024012177000030
Figure 2024012177000030

[実施例57]
有機配位子11(64mg、0.1mmol)を用い、120℃で42時間加熱処理する以外、実施例51と同様に行い、MOF57を白色の固体(118mg)として得た。
[Example 57]
The same procedure as in Example 51 was performed except that organic ligand 11 (64 mg, 0.1 mmol) was used and heat treatment was performed at 120° C. for 42 hours to obtain MOF57 as a white solid (118 mg).

[実施例58]
有機配位子11(64mg、0.1mmol)を用い、120℃で42時間加熱処理する以外、実施例53と同様に行い、MOF58を濃赤色の固体(100mg)として得た。
[Example 58]
The same procedure as in Example 53 was performed except that organic ligand 11 (64 mg, 0.1 mmol) was used and heat treatment was performed at 120° C. for 42 hours to obtain MOF58 as a deep red solid (100 mg).

[実施例59]
有機配位子11(64mg、0.1mmol)を用い、120℃で42時間加熱処理する以外、実施例54と同様に行い、MOF59を白色の固体(50mg)として得た。
[Example 59]
The same procedure as in Example 54 was performed except that organic ligand 11 (64 mg, 0.1 mmol) was used and heat treatment was performed at 120° C. for 42 hours to obtain MOF59 as a white solid (50 mg).

[実施例60]
有機配位子11(64mg、0.1mmol)を用い、120℃で42時間加熱処理する以外、実施例55と同様に行い、MOF60を白色の固体(116mg)として得た。
[Example 60]
MOF60 was obtained as a white solid (116 mg) in the same manner as in Example 55, except that organic ligand 11 (64 mg, 0.1 mmol) was used and heat treated at 120° C. for 42 hours.

実施例57~60で得られた金属有機構造体について、実施例1と同様の方法でBET比表面積及び77K-大気圧における水素貯蔵量を測定した。その結果を表10に示す。 Regarding the metal-organic structures obtained in Examples 57 to 60, the BET specific surface area and hydrogen storage amount at 77 K and atmospheric pressure were measured in the same manner as in Example 1. The results are shown in Table 10.

Figure 2024012177000031
Figure 2024012177000031

[実施例61]
有機配位子12(67mg、0.1mmol)を用い、120℃で92時間加熱処理する以外、実施例51と同様に行い、MOF61を白色の固体(94mg)として得た。
[Example 61]
The same procedure as in Example 51 was performed except that organic ligand 12 (67 mg, 0.1 mmol) was used and heat treatment was performed at 120° C. for 92 hours to obtain MOF61 as a white solid (94 mg).

[実施例62]
有機配位子12(67mg、0.1mmol)を用い、120℃で92時間加熱処理する以外、実施例52と同様に行い、MOF62を青色の固体(56mg)として得た。
[Example 62]
The same procedure as in Example 52 was performed except that organic ligand 12 (67 mg, 0.1 mmol) was used and heat treatment was performed at 120° C. for 92 hours to obtain MOF62 as a blue solid (56 mg).

[実施例63]
有機配位子12(67mg、0.1mmol)を用い、120℃で42時間加熱処理する以外、実施例53と同様に行い、MOF63を濃赤色の固体(48mg)として得た。
[Example 63]
The same procedure as in Example 53 was performed except that organic ligand 12 (67 mg, 0.1 mmol) was used and heat treatment was performed at 120° C. for 42 hours to obtain MOF63 as a deep red solid (48 mg).

[実施例64]
有機配位子12(67mg、0.1mmol)を用い、120℃で91時間加熱処理する以外、実施例54と同様に行い、MOF64を白色の固体(103mg)として得た。
[Example 64]
The same procedure as in Example 54 was performed except that organic ligand 12 (67 mg, 0.1 mmol) was used and heat treatment was performed at 120° C. for 91 hours, to obtain MOF64 as a white solid (103 mg).

[実施例65]
有機配位子12(67mg、0.1mmol)を用い、120℃で90時間加熱処理する以外、実施例55と同様に行い、MOF65を白色の固体(103mg)として得た。
[Example 65]
The same procedure as in Example 55 was performed except that organic ligand 12 (67 mg, 0.1 mmol) was used and heat treatment was performed at 120° C. for 90 hours to obtain MOF65 as a white solid (103 mg).

実施例61~65で得られた金属有機構造体について、実施例1と同様の方法でBET比表面積及び77K-大気圧における水素貯蔵量を測定した。その結果を表11に示す。 Regarding the metal-organic structures obtained in Examples 61 to 65, the BET specific surface area and hydrogen storage amount at 77 K and atmospheric pressure were measured in the same manner as in Example 1. The results are shown in Table 11.

Figure 2024012177000032
Figure 2024012177000032

[実施例66]
有機配位子13(64mg、0.1mmol)を用い、120℃で42時間加熱処理する以外、実施例51と同様に行い、MOF66を白色の固体(83mg)として得た。
[Example 66]
The same procedure as in Example 51 was performed except that organic ligand 13 (64 mg, 0.1 mmol) was used and heat treatment was performed at 120° C. for 42 hours to obtain MOF66 as a white solid (83 mg).

[実施例67]
有機配位子13(64mg、0.1mmol)を用い、120℃で117時間加熱処理する以外、実施例52と同様に行い、MOF67を青色の固体(97mg)として得た。
[Example 67]
The same procedure as in Example 52 was performed except that organic ligand 13 (64 mg, 0.1 mmol) was used and heat treatment was performed at 120° C. for 117 hours to obtain MOF67 as a blue solid (97 mg).

[実施例68]
有機配位子13(64mg、0.1mmol)を用い、120℃で42時間加熱処理する以外、実施例53と同様に行い、MOF68を濃赤色の固体(94mg)として得た。
[Example 68]
The same procedure as in Example 53 was performed except that organic ligand 13 (64 mg, 0.1 mmol) was used and heat treatment was performed at 120° C. for 42 hours to obtain MOF68 as a deep red solid (94 mg).

[実施例69]
有機配位子13(64mg、0.1mmol)を用い、120℃で106時間加熱処理する以外、実施例54と同様に行い、MOF69を白色の固体(157mg)として得た。
[Example 69]
The same procedure as in Example 54 was performed except that organic ligand 13 (64 mg, 0.1 mmol) was used and heat treatment was performed at 120° C. for 106 hours, to obtain MOF69 as a white solid (157 mg).

[実施例70]
有機配位子13(65mg、0.1mmol)と金属塩としてAl(NO・9HO(150mg、0.4mmol、有機配位子13中のカルボン酸残基と当量)をDMF10mL及びギ酸1mlに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で115時間加熱した以外は、実施例1と同様に行い、MOF70を白色の固体(78mg)として得た。
[Example 70]
Organic ligand 13 (65 mg, 0.1 mmol) and Al(NO 3 ) 3.9H 2 O (150 mg, 0.4 mmol, equivalent to the carboxylic acid residue in organic ligand 13) as a metal salt were mixed in 10 mL of DMF and MOF70 was obtained as a white solid (78 mg) in the same manner as in Example 1, except that it was dissolved in 1 ml of formic acid, filtered through a membrane filter, and heated at 120° C. for 115 hours in a sealed vial.

[実施例71]
有機配位子13(65mg、0.1mmol)と金属塩としてAl(NO・9HO(150mg、0.4mmol、有機配位子13中のカルボン酸残基と当量)をDMF10mL及び濃塩酸0.05mlに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で68時間加熱した以外は、実施例1と同様に行い、MOF71を白色の固体(15.3mg)として得た。
[Example 71]
Organic ligand 13 (65 mg, 0.1 mmol) and Al(NO 3 ) 3.9H 2 O (150 mg, 0.4 mmol, equivalent to the carboxylic acid residue in organic ligand 13) as a metal salt were mixed in 10 mL of DMF and MOF71 was obtained as a white solid (15.3 mg) in the same manner as in Example 1, except that it was dissolved in 0.05 ml of concentrated hydrochloric acid, filtered through a membrane filter, and heated at 120°C for 68 hours in a sealed vial. Ta.

実施例66~71で得られた金属有機構造体について、実施例1と同様の方法でBET比表面積及び77K-大気圧における水素貯蔵量を測定した。その結果を表12に示す。 Regarding the metal-organic structures obtained in Examples 66 to 71, the BET specific surface area and hydrogen storage amount at 77 K and atmospheric pressure were measured in the same manner as in Example 1. The results are shown in Table 12.

Figure 2024012177000033
Figure 2024012177000033

[実施例72]
有機配位子14(67mg、0.1mmol)を用い、120℃で42時間加熱処理する以外、実施例51と同様に行い、MOF72を白色の固体(49mg)として得た。
[Example 72]
The same procedure as in Example 51 was performed except that organic ligand 14 (67 mg, 0.1 mmol) was used and heat treatment was performed at 120° C. for 42 hours to obtain MOF72 as a white solid (49 mg).

[実施例73]
有機配位子14(67mg、0.1mmol)を用い、120℃で42時間加熱処理する以外、実施例53と同様に行い、MOF73を濃赤色の固体(100mg)として得た。
[Example 73]
The same procedure as in Example 53 was performed except that organic ligand 14 (67 mg, 0.1 mmol) was used and heat treatment was performed at 120° C. for 42 hours to obtain MOF73 as a deep red solid (100 mg).

[実施例74]
有機配位子14(67mg、0.1mmol)を用い、120℃で105時間加熱処理する以外、実施例54と同様に行い、MOF74を白色の固体(118mg)として得た。
[Example 74]
The same procedure as in Example 54 was performed except that organic ligand 14 (67 mg, 0.1 mmol) was used and heat treatment was performed at 120° C. for 105 hours to obtain MOF74 as a white solid (118 mg).

[実施例75]
有機配位子14(67mg、0.1mmol)を用い、120℃で90時間加熱処理する以外、実施例55と同様に行い、MOF75を白色の固体(116mg)として得た。
[Example 75]
The same procedure as in Example 55 was performed except that organic ligand 14 (67 mg, 0.1 mmol) was used and heat treatment was performed at 120° C. for 90 hours to obtain MOF75 as a white solid (116 mg).

[実施例76]
有機配位子14(67mg、0.1mmol)と金属塩としてAl(NO・9HO(150mg、0.4mmol、有機配位子14中のカルボン酸残基と当量)をDMF10mL及び濃塩酸0.05mlに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で91時間加熱した以外は、実施例1と同様に行い、MOF76を白色の固体(25mg)として得た。
[Example 76]
Organic ligand 14 (67 mg, 0.1 mmol) and Al(NO 3 ) 3.9H 2 O (150 mg, 0.4 mmol, equivalent to the carboxylic acid residue in organic ligand 14) as a metal salt were mixed in 10 mL of DMF and The same procedure as in Example 1 was performed except that the solution was dissolved in 0.05 ml of concentrated hydrochloric acid, filtered through a membrane filter, and then heated at 120° C. for 91 hours in a sealed vial to obtain MOF76 as a white solid (25 mg).

実施例72~76で得られた金属有機構造体について、実施例1と同様の方法でBET比表面積及び77K-大気圧における水素貯蔵量を測定した。その結果を表13に示す。 Regarding the metal-organic structures obtained in Examples 72 to 76, the BET specific surface area and hydrogen storage amount at 77 K and atmospheric pressure were measured in the same manner as in Example 1. The results are shown in Table 13.

Figure 2024012177000034
Figure 2024012177000034

[実施例77]
有機配位子15(70mg、0.1mmol)を用い、120℃で42時間加熱処理する以外、実施例51と同様に行い、MOF77を白色の固体(52mg)として得た。
[Example 77]
The same procedure as in Example 51 was performed except that organic ligand 15 (70 mg, 0.1 mmol) was used and heat treatment was performed at 120° C. for 42 hours to obtain MOF77 as a white solid (52 mg).

[実施例78]
有機配位子15(70mg、0.1mmol)を用い、120℃で42時間加熱処理する以外、実施例53と同様に行い、MOF78を濃赤色の固体(75mg)として得た。
[Example 78]
The same procedure as in Example 53 was performed except that organic ligand 15 (70 mg, 0.1 mmol) was used and heat treatment was performed at 120° C. for 42 hours to obtain MOF78 as a deep red solid (75 mg).

[実施例79]
有機配位子15(70mg、0.1mmol)を用い、120℃で42時間加熱処理する以外、実施例54と同様に行い、MOF79を白色の固体(52mg)として得た。
[Example 79]
The same procedure as in Example 54 was performed except that organic ligand 15 (70 mg, 0.1 mmol) was used and heat treatment was performed at 120° C. for 42 hours to obtain MOF79 as a white solid (52 mg).

[実施例80]
有機配位子15(70mg、0.1mmol)を用い、120℃で42時間加熱処理する以外、実施例55と同様に行い、MOF80を白色の固体(128mg)として得た。
[Example 80]
The same procedure as in Example 55 was performed except that organic ligand 15 (70 mg, 0.1 mmol) was used and heat treatment was performed at 120° C. for 42 hours to obtain MOF80 as a white solid (128 mg).

実施例77~80で得られた金属有機構造体について、実施例1と同様の方法でBET比表面積及び77K-大気圧における水素貯蔵量を測定した。その結果を表14に示す。 Regarding the metal-organic structures obtained in Examples 77 to 80, the BET specific surface area and hydrogen storage amount at 77 K and atmospheric pressure were measured in the same manner as in Example 1. The results are shown in Table 14.

Figure 2024012177000035
Figure 2024012177000035

[実施例81]
有機配位子16(70mg、0.1mmol)を用い、120℃で42時間加熱処理する以外、実施例51と同様に行い、MOF81をオレンジ色の固体(10mg)として得た。
[Example 81]
The same procedure as in Example 51 was performed except that organic ligand 16 (70 mg, 0.1 mmol) was used and heat treatment was performed at 120° C. for 42 hours to obtain MOF81 as an orange solid (10 mg).

[実施例82]
有機配位子16(70mg、0.1mmol)を用い、120℃で91時間加熱処理する以外、実施例52と同様に行い、MOF82を青緑色の固体(12mg)として得た。
[Example 82]
The same procedure as in Example 52 was performed except that organic ligand 16 (70 mg, 0.1 mmol) was used and heat treatment was performed at 120° C. for 91 hours, to obtain MOF82 as a blue-green solid (12 mg).

[実施例83]
有機配位子16(70mg、0.1mmol)を用い、120℃で42時間加熱処理する以外、実施例53と同様に行い、MOF83をオレンジ色の固体(10mg)として得た。
[Example 83]
The same procedure as in Example 53 was performed except that organic ligand 16 (70 mg, 0.1 mmol) was used and heat treatment was performed at 120° C. for 42 hours to obtain MOF83 as an orange solid (10 mg).

[実施例84]
有機配位子16(70mg、0.1mmol)を用い、120℃で42時間加熱処理する以外、実施例54と同様に行い、MOF84を淡黄色の固体(68mg)として得た。
[Example 84]
The same procedure as in Example 54 was performed except that organic ligand 16 (70 mg, 0.1 mmol) was used and heat treatment was performed at 120° C. for 42 hours to obtain MOF84 as a pale yellow solid (68 mg).

[実施例85]
有機配位子16(70mg、0.1mmol)を用い、120℃で91時間加熱処理する以外、実施例55と同様に行い、MOF85を白色の固体(102mg)として得た。
[Example 85]
The same procedure as in Example 55 was performed except that organic ligand 16 (70 mg, 0.1 mmol) was used and heat treatment was performed at 120° C. for 91 hours, to obtain MOF85 as a white solid (102 mg).

実施例81~85で得られた金属有機構造体について、実施例1と同様の方法でBET比表面積及び77K-大気圧における水素貯蔵量を測定した。その結果を表15に示す。 Regarding the metal-organic structures obtained in Examples 81 to 85, the BET specific surface area and hydrogen storage amount at 77 K and atmospheric pressure were measured in the same manner as in Example 1. The results are shown in Table 15.

Figure 2024012177000036
Figure 2024012177000036

[実施例86]
有機配位子17(34mg、0.05mmol)を用い、120℃で44時間加熱処理する以外、実施例51と同様に行い、MOF86を淡黄色の固体(8mg)として得た。
[Example 86]
The same procedure as in Example 51 was performed except that organic ligand 17 (34 mg, 0.05 mmol) was used and heat treatment was performed at 120° C. for 44 hours, to obtain MOF86 as a pale yellow solid (8 mg).

[実施例87]
有機配位子17(67mg、0.1mmol)を用い、120℃で91時間加熱処理する以外、実施例52と同様に行い、MOF87を青色の固体(52mg)として得た。
[Example 87]
The same procedure as in Example 52 was performed except that organic ligand 17 (67 mg, 0.1 mmol) was used and heat treatment was performed at 120° C. for 91 hours, to obtain MOF87 as a blue solid (52 mg).

[実施例88]
有機配位子17(67mg、0.1mmol)を用い、120℃で44時間加熱処理する以外、実施例53と同様に行い、MOF88を茶色の固体(85mg)として得た。
[Example 88]
The same procedure as in Example 53 was performed except that organic ligand 17 (67 mg, 0.1 mmol) was used and heat treatment was performed at 120° C. for 44 hours to obtain MOF88 as a brown solid (85 mg).

[実施例89]
有機配位子17(34mg、0.05mmol)を用い、120℃で44時間加熱処理する以外、実施例54と同様に行い、MOF89を白色の固体(33mg)として得た。
[Example 89]
The same procedure as in Example 54 was performed except that organic ligand 17 (34 mg, 0.05 mmol) was used and heat treatment was performed at 120° C. for 44 hours to obtain MOF89 as a white solid (33 mg).

[実施例90]
有機配位子17(67mg、0.1mmol)を用い、120℃で91時間加熱処理する以外、実施例55と同様に行い、MOF90を白色の固体(99mg)として得た。
[Example 90]
The same procedure as in Example 55 was performed except that organic ligand 17 (67 mg, 0.1 mmol) was used and heat treatment was performed at 120° C. for 91 hours, to obtain MOF90 as a white solid (99 mg).

実施例86~90で得られた金属有機構造体について、実施例1と同様の方法でBET比表面積及び77K-大気圧における水素貯蔵量を測定した。その結果を表16に示す。 Regarding the metal-organic structures obtained in Examples 86 to 90, the BET specific surface area and hydrogen storage amount at 77 K and atmospheric pressure were measured in the same manner as in Example 1. The results are shown in Table 16.

Figure 2024012177000037
Figure 2024012177000037

[実施例91]
有機配位子18(37mg、0.04mmol)を用い、120℃で90時間加熱処理する以外、実施例51と同様に行い、MOF91を淡黄色の固体(26mg)として得た。
[Example 91]
The same procedure as in Example 51 was performed except that organic ligand 18 (37 mg, 0.04 mmol) was used and heat treatment was performed at 120° C. for 90 hours to obtain MOF91 as a pale yellow solid (26 mg).

[実施例92]
有機配位子19(42mg、0.05mmol)を用い、120℃で90時間加熱処理する以外、実施例51と同様に行い、MOF92を淡黄色の固体(40mg)として得た。
[Example 92]
The same procedure as in Example 51 was performed except that organic ligand 19 (42 mg, 0.05 mmol) was used and heat treatment was performed at 120° C. for 90 hours to obtain MOF92 as a pale yellow solid (40 mg).

[実施例93]
有機配位子19(84mg、0.1mmol)を用い、120℃で90時間加熱処理する以外、実施例53と同様に行い、MOF93を茶色の固体(50mg)として得た。
[Example 93]
The same procedure as in Example 53 was performed except that organic ligand 19 (84 mg, 0.1 mmol) was used and heat treatment was performed at 120° C. for 90 hours to obtain MOF93 as a brown solid (50 mg).

[実施例94]
有機配位子19(84mg、0.1mmol)を用い、120℃で44時間加熱処理する以外、実施例54と同様に行い、MOF94を白色の固体(130mg)として得た。
[Example 94]
The same procedure as in Example 54 was performed except that organic ligand 19 (84 mg, 0.1 mmol) was used and heat treatment was performed at 120° C. for 44 hours to obtain MOF94 as a white solid (130 mg).

実施例91~94で得られた金属有機構造体について、実施例1と同様の方法でBET比表面積及び77K-大気圧における水素貯蔵量を測定した。その結果を表17に示す。 Regarding the metal-organic structures obtained in Examples 91 to 94, the BET specific surface area and hydrogen storage amount at 77 K and atmospheric pressure were measured in the same manner as in Example 1. The results are shown in Table 17.

Figure 2024012177000038
Figure 2024012177000038

[実施例95]
有機配位子20(71mg、0.1mmol)と金属塩としてAl(NO・9HO(150mg、0.4mmol、有機配位子20中のカルボン酸残基と当量)をDMF10mLに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で67時間加熱した以外は、実施例1と同様に行い、MOF95を淡黄色の固体(76mg)として得た。
[Example 95]
Organic ligand 20 (71 mg, 0.1 mmol) and Al(NO 3 ) 3.9H 2 O (150 mg, 0.4 mmol, equivalent to the carboxylic acid residue in organic ligand 20) as a metal salt were added to 10 mL of DMF. The same procedure as in Example 1 was performed except that the solution was dissolved, filtered through a membrane filter, and then heated at 120° C. for 67 hours in a sealed vial to obtain MOF95 as a pale yellow solid (76 mg).

実施例95で得られた金属有機構造体について、実施例1と同様の方法でBET比表面積及び77K-大気圧における水素貯蔵量を測定した。その結果を表18に示す。 Regarding the metal-organic framework obtained in Example 95, the BET specific surface area and hydrogen storage amount at 77 K and atmospheric pressure were measured in the same manner as in Example 1. The results are shown in Table 18.

Figure 2024012177000039
Figure 2024012177000039

[実施例96]
有機配位子21(67mg、0.1mmol)と金属塩としてAl(NO・9HO(150mg、0.4mmol、有機配位子21中のカルボン酸残基と当量)をDMF10mLに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で5日間加熱した以外は、実施例1と同様に行い、MOF96を淡黄色の固体(76mg)として得た。
[Example 96]
Organic ligand 21 (67 mg, 0.1 mmol) and Al(NO 3 ) 3.9H 2 O (150 mg, 0.4 mmol, equivalent to the carboxylic acid residue in organic ligand 21) as a metal salt were added to 10 mL of DMF. The same procedure as in Example 1 was performed except that the solution was dissolved, filtered through a membrane filter, and then heated at 120° C. for 5 days in a sealed vial to obtain MOF96 as a pale yellow solid (76 mg).

[実施例97]
有機配位子21(67mg、0.1mmol)と金属塩としてZrCl(93mg、0.4mmol、有機配位子21中のカルボン酸残基と当量)をDMF10mL及び酢酸0.5mlに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で5日間加熱した以外は、実施例1と同様に行い、MOF97を白色の固体(76mg)として得た。
[Example 97]
Organic ligand 21 (67 mg, 0.1 mmol) and ZrCl 4 as a metal salt (93 mg, 0.4 mmol, equivalent to the carboxylic acid residue in organic ligand 21) were dissolved in 10 mL of DMF and 0.5 ml of acetic acid, The same procedure as in Example 1 was performed except that after filtration with a membrane filter, the mixture was heated at 120° C. for 5 days in a sealed vial to obtain MOF97 as a white solid (76 mg).

実施例96及び97で得られた金属有機構造体について、実施例1と同様の方法でBET比表面積及び77K-大気圧における水素貯蔵量を測定した。その結果を表19に示す。 Regarding the metal-organic structures obtained in Examples 96 and 97, the BET specific surface area and the hydrogen storage amount at 77 K and atmospheric pressure were measured in the same manner as in Example 1. The results are shown in Table 19.

Figure 2024012177000040
Figure 2024012177000040

[実施例98]
有機配位子22(70mg、0.1mmol)と金属塩としてAl(NO・9HO(150mg、0.4mmol、有機配位子22中のカルボン酸残基と当量)をDMF10mLに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で68時間加熱した以外は、実施例1と同様に行い、MOF98を淡黄色の固体(59mg)として得た。
[Example 98]
Organic ligand 22 (70 mg, 0.1 mmol) and Al(NO 3 ) 3.9H 2 O (150 mg, 0.4 mmol, equivalent to the carboxylic acid residue in organic ligand 22) as a metal salt were added to 10 mL of DMF. The same procedure as in Example 1 was performed except that the solution was dissolved, filtered through a membrane filter, and then heated at 120° C. for 68 hours in a sealed vial to obtain MOF98 as a pale yellow solid (59 mg).

[実施例99]
有機配位子22(70mg、0.1mmol)と金属塩としてZrCl(93mg、0.4mmol、有機配位子22中のカルボン酸残基と当量)をDMF10mL及び酢酸0.5mlに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で68時間加熱した以外は、実施例1と同様に行い、MOF99を白色の固体(79mg)として得た。
[Example 99]
Organic ligand 22 (70 mg, 0.1 mmol) and ZrCl 4 as a metal salt (93 mg, 0.4 mmol, equivalent to the carboxylic acid residue in organic ligand 22) were dissolved in 10 mL of DMF and 0.5 ml of acetic acid, The same procedure as in Example 1 was performed except that after filtration with a membrane filter, the mixture was heated at 120° C. for 68 hours in a sealed vial to obtain MOF99 as a white solid (79 mg).

実施例98及び99で得られた金属有機構造体について、実施例1と同様の方法でBET比表面積及び77K-大気圧における水素貯蔵量を測定した。その結果を表20に示す。 Regarding the metal-organic structures obtained in Examples 98 and 99, the BET specific surface area and hydrogen storage amount at 77 K and atmospheric pressure were measured in the same manner as in Example 1. The results are shown in Table 20.

Figure 2024012177000041
Figure 2024012177000041

[実施例100]
有機配位子23(74mg、0.1mmol)と金属塩としてAl(NO・9HO(150mg、0.4mmol、有機配位子23中のカルボン酸残基と当量)をDMF10mLに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で91時間加熱した以外は、実施例1と同様に行い、MOF100を白色の固体(93mg)として得た。
[Example 100]
Organic ligand 23 (74 mg, 0.1 mmol) and Al(NO 3 ) 3.9H 2 O (150 mg, 0.4 mmol, equivalent to the carboxylic acid residue in organic ligand 23) as a metal salt were added to 10 mL of DMF. The same procedure as in Example 1 was performed except that the solution was dissolved, filtered through a membrane filter, and then heated at 120° C. for 91 hours in a sealed vial to obtain MOF100 as a white solid (93 mg).

[実施例101]
有機配位子23(46mg、0.06mmol)と金属塩としてAlCl・6HO(58mg、0.24mmol、有機配位子23中のカルボン酸残基と当量)をDMF6mLに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で44時間加熱した以外は、実施例1と同様に行い、MOF101を白色の固体(24mg)として得た。
[Example 101]
Organic ligand 23 (46 mg, 0.06 mmol) and AlCl 3.6H 2 O (58 mg, 0.24 mmol, equivalent to the carboxylic acid residue in organic ligand 23) as a metal salt were dissolved in 6 mL of DMF, and the membrane was separated. The same procedure as in Example 1 was performed except that after filtration, the mixture was heated at 120° C. for 44 hours in a sealed vial to obtain MOF101 as a white solid (24 mg).

実施例100及び101で得られた金属有機構造体について、実施例1と同様の方法でBET比表面積及び77K-大気圧における水素貯蔵量を測定した。その結果を表21に示す。 Regarding the metal-organic structures obtained in Examples 100 and 101, the BET specific surface area and hydrogen storage amount at 77 K and atmospheric pressure were measured in the same manner as in Example 1. The results are shown in Table 21.

Figure 2024012177000042
Figure 2024012177000042

[実施例102]
有機配位子24(34mg、0.05mmol)と金属塩としてAl(NO・9HO(75mg、0.2mmol、有機配位子24中のカルボン酸残基と当量)をDMF5mLに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で67時間加熱した以外は、実施例1と同様に行い、MOF102を淡黄色の固体(45mg)として得た。
[Example 102]
Organic ligand 24 (34 mg, 0.05 mmol) and Al(NO 3 ) 3.9H 2 O (75 mg, 0.2 mmol, equivalent to the carboxylic acid residue in organic ligand 24) as a metal salt were added to 5 mL of DMF. The same procedure as in Example 1 was performed except that the solution was dissolved, filtered through a membrane filter, and then heated at 120° C. for 67 hours in a sealed vial to obtain MOF102 as a pale yellow solid (45 mg).

実施例102で得られた金属有機構造体について、実施例1と同様の方法でBET比表面積及び77K-大気圧における水素貯蔵量を測定した。その結果を表22に示す。 Regarding the metal-organic framework obtained in Example 102, the BET specific surface area and hydrogen storage amount at 77 K and atmospheric pressure were measured in the same manner as in Example 1. The results are shown in Table 22.

Figure 2024012177000043
Figure 2024012177000043

[実施例103]
有機配位子25(32mg、0.05mmol)と金属塩としてAl(NO・9HO(75mg、0.2mmol、有機配位子25中のカルボン酸残基と当量)をDMF5mLに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で42時間加熱した以外は、実施例1と同様に行い、MOF103を白色の固体(32mg)として得た。
[Example 103]
Organic ligand 25 (32 mg, 0.05 mmol) and Al(NO 3 ) 3.9H 2 O (75 mg, 0.2 mmol, equivalent to the carboxylic acid residue in organic ligand 25) as a metal salt were added to 5 mL of DMF. The same procedure as in Example 1 was performed except that the solution was dissolved, filtered through a membrane filter, and then heated at 120° C. for 42 hours in a sealed vial to obtain MOF103 as a white solid (32 mg).

[実施例104]
有機配位子25(32mg、0.05mmol)と金属塩としてCu(NO・3HO(49mg、0.2mmol、有機配位子25中のカルボン酸残基と当量)をDMA5mLに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で42時間加熱した以外は、実施例1と同様に行い、MOF104を青色の固体(18mg)として得た。
[Example 104]
Organic ligand 25 (32 mg, 0.05 mmol) and Cu(NO 2 ) 2.3H 2 O (49 mg, 0.2 mmol, equivalent to the carboxylic acid residue in organic ligand 25) as a metal salt were added to 5 mL of DMA. The same procedure as in Example 1 was performed except that the solution was dissolved, filtered through a membrane filter, and then heated at 120° C. for 42 hours in a sealed vial to obtain MOF104 as a blue solid (18 mg).

[実施例105]
有機配位子25(32mg、0.05mmol)と金属塩としてZn(NO・6HO(59mg、0.2mmol、有機配位子25中のカルボン酸残基と当量)をDMF5mLに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で42時間加熱した以外は、実施例1と同様に行い、MOF105を白色の固体(23mg)として得た。
[Example 105]
Organic ligand 25 (32 mg, 0.05 mmol) and Zn(NO 3 ) 2.6H 2 O (59 mg, 0.2 mmol, equivalent to the carboxylic acid residue in organic ligand 25) as a metal salt were added to 5 mL of DMF. The same procedure as in Example 1 was performed except that the solution was dissolved, filtered through a membrane filter, and then heated at 120° C. for 42 hours in a sealed vial to obtain MOF105 as a white solid (23 mg).

実施例103~105で得られた金属有機構造体について、実施例1と同様の方法でBET比表面積及び77K-大気圧における水素貯蔵量を測定した。その結果を表23に示す。 Regarding the metal-organic structures obtained in Examples 103 to 105, the BET specific surface area and hydrogen storage amount at 77 K and atmospheric pressure were measured in the same manner as in Example 1. The results are shown in Table 23.

Figure 2024012177000044
Figure 2024012177000044

[実施例106]
有機配位子26(39mg、0.05mmol)と金属塩としてAl(NO・9HO(75mg、0.2mmol、有機配位子26中のカルボン酸残基と当量)をDMF5mLに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で118時間加熱した以外は、実施例1と同様に行い、MOF106を白色の固体(24mg)として得た。
[Example 106]
Organic ligand 26 (39 mg, 0.05 mmol) and Al(NO 3 ) 3.9H 2 O (75 mg, 0.2 mmol, equivalent to the carboxylic acid residue in organic ligand 26) as a metal salt were added to 5 mL of DMF. The same procedure as in Example 1 was performed except that the solution was dissolved, filtered through a membrane filter, and then heated at 120° C. for 118 hours in a sealed vial to obtain MOF106 as a white solid (24 mg).

[実施例107]
有機配位子26(32mg、0.05mmol)と金属塩としてZn(NO・6HO(60mg、0.2mmol、有機配位子26中のカルボン酸残基と当量)をDMF5mLに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で118時間加熱した以外は、実施例1と同様に行い、MOF107を白色の固体(44mg)として得た。
[Example 107]
Organic ligand 26 (32 mg, 0.05 mmol) and Zn(NO 3 ) 2.6H 2 O (60 mg, 0.2 mmol, equivalent to the carboxylic acid residue in organic ligand 26) as a metal salt were added to 5 mL of DMF. The same procedure as in Example 1 was performed except that the solution was dissolved, filtered through a membrane filter, and then heated at 120° C. for 118 hours in a sealed vial to obtain MOF107 as a white solid (44 mg).

[実施例108]
有機配位子26(39mg、0.05mmol)と金属塩としてZrCl(47mg、0.2mmol、有機配位子26中のカルボン酸残基と当量)をDMF5mL及び酢酸0.25mlに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で118時間加熱した以外は、実施例1と同様に行い、MOF108を白色の固体(52mg)として得た。
[Example 108]
Organic ligand 26 (39 mg, 0.05 mmol) and ZrCl 4 as a metal salt (47 mg, 0.2 mmol, equivalent to the carboxylic acid residue in organic ligand 26) were dissolved in 5 mL of DMF and 0.25 ml of acetic acid, The same procedure as in Example 1 was performed except that after filtration with a membrane filter, the mixture was heated at 120° C. for 118 hours in a sealed vial to obtain MOF108 as a white solid (52 mg).

実施例106~108で得られた金属有機構造体について、実施例1と同様の方法でBET比表面積及び77K-大気圧における水素貯蔵量を測定した。その結果を表24に示す。 Regarding the metal-organic structures obtained in Examples 106 to 108, the BET specific surface area and hydrogen storage amount at 77 K and atmospheric pressure were measured in the same manner as in Example 1. The results are shown in Table 24.

Figure 2024012177000045
Figure 2024012177000045

[実施例109]
有機配位子27(74mg、0.1mmol)と金属塩としてAl(NO・9HO(150mg、0.4mmol、有機配位子27中のカルボン酸残基と当量)をDMF10mLに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で91時間加熱した以外は、実施例1と同様に行い、MOF109を白色の固体(80mg)として得た。
[Example 109]
Organic ligand 27 (74 mg, 0.1 mmol) and Al(NO 3 ) 3.9H 2 O (150 mg, 0.4 mmol, equivalent to the carboxylic acid residue in organic ligand 27) as a metal salt were added to 10 mL of DMF. The same procedure as in Example 1 was performed except that the solution was dissolved, filtered through a membrane filter, and then heated at 120° C. for 91 hours in a sealed vial to obtain MOF109 as a white solid (80 mg).

実施例109で得られた金属有機構造体について、実施例1と同様の方法でBET比表面積及び77K-大気圧における水素貯蔵量を測定した。その結果を表25に示す。 Regarding the metal-organic framework obtained in Example 109, the BET specific surface area and hydrogen storage amount at 77 K and atmospheric pressure were measured in the same manner as in Example 1. The results are shown in Table 25.

Figure 2024012177000046
Figure 2024012177000046

[実施例110]
有機配位子28(70mg、0.1mmol)と金属塩としてAl(NO・9HO(150mg、0.4mmol、有機配位子28中のカルボン酸残基と当量)をDMF5mLに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で91時間加熱した以外は、実施例1と同様に行い、MOF110を茶色の固体(80mg)として得た。
[Example 110]
Organic ligand 28 (70 mg, 0.1 mmol) and Al(NO 3 ) 3.9H 2 O (150 mg, 0.4 mmol, equivalent to the carboxylic acid residue in organic ligand 28) as a metal salt were added to 5 mL of DMF. The same procedure as in Example 1 was performed except that the solution was dissolved, filtered through a membrane filter, and then heated at 120° C. for 91 hours in a sealed vial to obtain MOF110 as a brown solid (80 mg).

[実施例111]
有機配位子28(70mg、0.1mmol)と金属塩としてZn(NO・6HO(118mg、0.4mmol、有機配位子28中のカルボン酸残基と当量)をDMF10mLに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で91時間加熱した以外は、実施例1と同様に行い、MOF111を淡黄色の固体(70mg)として得た。
[Example 111]
Organic ligand 28 (70 mg, 0.1 mmol) and Zn(NO 3 ) 2.6H 2 O (118 mg, 0.4 mmol, equivalent to the carboxylic acid residue in organic ligand 28) as a metal salt were added to 10 mL of DMF. The same procedure as in Example 1 was performed except that the solution was dissolved, filtered through a membrane filter, and then heated at 120° C. for 91 hours in a sealed vial to obtain MOF111 as a pale yellow solid (70 mg).

[実施例112]
有機配位子28(70mg、0.1mmol)と金属塩としてZrCl(94mg、0.4mmol、有機配位子28中のカルボン酸残基と当量)をDMF10mL及び酢酸0.5mlに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で163時間加熱した以外は、実施例1と同様に行い、MOF112を白色の固体(106mg)として得た。
[Example 112]
Organic ligand 28 (70 mg, 0.1 mmol) and ZrCl 4 as a metal salt (94 mg, 0.4 mmol, equivalent to the carboxylic acid residue in organic ligand 28) were dissolved in 10 mL of DMF and 0.5 ml of acetic acid, The same procedure as in Example 1 was performed except that after filtration with a membrane filter, the mixture was heated at 120° C. for 163 hours in a sealed vial to obtain MOF112 as a white solid (106 mg).

実施例110~112で得られた金属有機構造体について、実施例1と同様の方法でBET比表面積及び77K-大気圧における水素貯蔵量を測定した。その結果を表26に示す。 Regarding the metal-organic structures obtained in Examples 110 to 112, the BET specific surface area and hydrogen storage amount at 77 K and atmospheric pressure were measured in the same manner as in Example 1. The results are shown in Table 26.

Figure 2024012177000047
Figure 2024012177000047

[実施例113]
有機配位子29(64mg、0.09mmol)と金属塩としてAl(NO・9HO(135mg、0.36mmol、有機配位子29中のカルボン酸残基と当量)をDMF9mL及びギ酸1mLに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で115時間加熱した以外は、実施例1と同様に行い、MOF113を白色の固体(61mg)として得た。
[Example 113]
Organic ligand 29 (64 mg, 0.09 mmol) and Al(NO 3 ) 3.9H 2 O (135 mg, 0.36 mmol, equivalent to the carboxylic acid residue in organic ligand 29) as a metal salt were mixed in 9 mL of DMF and MOF113 was obtained as a white solid (61 mg) in the same manner as in Example 1, except that it was dissolved in 1 mL of formic acid, filtered through a membrane filter, and then heated at 120° C. for 115 hours in a sealed vial.

実施例113で得られた金属有機構造体について、実施例1と同様の方法でBET比表面積及び77K-大気圧における水素貯蔵量を測定した。その結果を表27に示す。 Regarding the metal-organic framework obtained in Example 113, the BET specific surface area and hydrogen storage amount at 77 K and atmospheric pressure were measured in the same manner as in Example 1. The results are shown in Table 27.

Figure 2024012177000048
Figure 2024012177000048

[実施例114]
有機配位子30(33mg、0.05mmol)と金属塩としてAl(NO・9HO(75mg、0.2mmol、有機配位子30中のカルボン酸残基と当量)をDMF5mLに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で67時間加熱した以外は、実施例1と同様に行い、MOF114を白色の固体(50mg)として得た。
[Example 114]
Organic ligand 30 (33 mg, 0.05 mmol) and Al(NO 3 ) 3.9H 2 O (75 mg, 0.2 mmol, equivalent to the carboxylic acid residue in organic ligand 30) as a metal salt were added to 5 mL of DMF. The same procedure as in Example 1 was performed except that the solution was dissolved, filtered through a membrane filter, and then heated at 120° C. for 67 hours in a sealed vial to obtain MOF114 as a white solid (50 mg).

[実施例115]
有機配位子30(52mg、0.08mmol)と金属塩としてAlCl・6HO(77mg、0.32mmol、有機配位子30中のカルボン酸残基と当量)をDMF8mLに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で44時間加熱した以外は、実施例1と同様に行い、MOF115を白色の固体(28mg)として得た。
[Example 115]
Organic ligand 30 (52 mg, 0.08 mmol) and AlCl 3.6H 2 O (77 mg, 0.32 mmol, equivalent to the carboxylic acid residue in organic ligand 30) as a metal salt were dissolved in 8 mL of DMF, and the membrane was separated. The same procedure as in Example 1 was performed except that after filtration, the mixture was heated at 120° C. for 44 hours in a sealed vial to obtain MOF115 as a white solid (28 mg).

実施例114~115で得られた金属有機構造体について、実施例1と同様の方法でBET比表面積及び77K-大気圧における水素貯蔵量を測定した。その結果を表28に示す。 Regarding the metal-organic structures obtained in Examples 114 and 115, the BET specific surface area and hydrogen storage amount at 77 K and atmospheric pressure were measured in the same manner as in Example 1. The results are shown in Table 28.

Figure 2024012177000049
Figure 2024012177000049

[実施例116]
有機配位子31(68mg、0.1mmol)と金属塩としてZrCl(94mg、0.4mmol、有機配位子31中のカルボン酸残基と当量)をDMF10mL及び酢酸0.5mlに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で116時間加熱した以外は、実施例1と同様に行い、MOF116を白色の固体(62mg)として得た。
[Example 116]
Organic ligand 31 (68 mg, 0.1 mmol) and ZrCl 4 as a metal salt (94 mg, 0.4 mmol, equivalent to the carboxylic acid residue in organic ligand 31) were dissolved in 10 mL of DMF and 0.5 ml of acetic acid, The same procedure as in Example 1 was performed except that after filtration with a membrane filter, the mixture was heated at 120° C. for 116 hours in a sealed vial to obtain MOF116 as a white solid (62 mg).

[実施例117]
有機配位子31(68mg、0.1mmol)と金属塩としてZrCl(94mg、0.4mmol、有機配位子31中のカルボン酸残基と当量)をDMF10mL及びギ酸1mLに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で91時間加熱した以外は、実施例1と同様に行い、MOF117を白色の固体(87mg)として得た。
[Example 117]
Organic ligand 31 (68 mg, 0.1 mmol) and ZrCl 4 as a metal salt (94 mg, 0.4 mmol, equivalent to the carboxylic acid residue in organic ligand 31) were dissolved in 10 mL of DMF and 1 mL of formic acid, and filtered through a membrane filter. After filtration, the same procedure as in Example 1 was performed except that the mixture was heated in a sealed vial at 120° C. for 91 hours to obtain MOF117 as a white solid (87 mg).

実施例116~117で得られた金属有機構造体について、実施例1と同様の方法でBET比表面積及び77K-大気圧における水素貯蔵量を測定した。その結果を表29に示す。 Regarding the metal-organic structures obtained in Examples 116 to 117, the BET specific surface area and hydrogen storage amount at 77 K and atmospheric pressure were measured in the same manner as in Example 1. The results are shown in Table 29.

Figure 2024012177000050
Figure 2024012177000050

[実施例118]
有機配位子32(67mg、0.1mmol)と金属塩としてAl(NO・9HO(150mg、0.4mmol、有機配位子32中のカルボン酸残基と当量)をDMF10mL及びギ酸1mLに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で92時間加熱した以外は、実施例1と同様に行い、MOF118を白色の固体(79mg)として得た。
[Example 118]
Organic ligand 32 (67 mg, 0.1 mmol) and Al(NO 3 ) 3.9H 2 O (150 mg, 0.4 mmol, equivalent to the carboxylic acid residue in organic ligand 32) as a metal salt were mixed in 10 mL of DMF and MOF118 was obtained as a white solid (79 mg) in the same manner as in Example 1, except that it was dissolved in 1 mL of formic acid, filtered through a membrane filter, and then heated at 120° C. for 92 hours in a sealed vial.

実施例118で得られた金属有機構造体について、実施例1と同様の方法でBET比表面積及び77K-大気圧における水素貯蔵量を測定した。その結果を表30に示す。 Regarding the metal-organic framework obtained in Example 118, the BET specific surface area and hydrogen storage amount at 77 K and atmospheric pressure were measured in the same manner as in Example 1. The results are shown in Table 30.

Figure 2024012177000051
Figure 2024012177000051

[実施例119]
有機配位子33(63mg、0.1mmol)と金属塩としてAl(NO・9HO(150mg、0.2mmol、有機配位子33中のカルボン酸残基と当量)をDMF10mLに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で91時間加熱した以外は、実施例1と同様に行い、MOF119を白色の固体(78mg)として得た。
[Example 119]
Organic ligand 33 (63 mg, 0.1 mmol) and Al(NO 3 ) 3.9H 2 O (150 mg, 0.2 mmol, equivalent to the carboxylic acid residue in organic ligand 33) as a metal salt were added to 10 mL of DMF. The same procedure as in Example 1 was performed except that the solution was dissolved, filtered through a membrane filter, and then heated at 120° C. for 91 hours in a sealed vial to obtain MOF119 as a white solid (78 mg).

[実施例120]
有機配位子33(40mg、0.06mmol)と金属塩としてAlCl・6HO(58mg、0.24mmol、有機配位子33中のカルボン酸残基と当量)をDMF10mLに溶解し、メンブランフィルターでろ過後、密閉したバイアル中、120℃で92時間加熱した以外は、実施例1と同様に行い、MOF120を白色の固体(39mg)として得た。
[Example 120]
Organic ligand 33 (40 mg, 0.06 mmol) and AlCl 3.6H 2 O (58 mg, 0.24 mmol, equivalent to the carboxylic acid residue in organic ligand 33) as a metal salt were dissolved in 10 mL of DMF, and the membrane was separated. The same procedure as in Example 1 was performed except that after filtration, the mixture was heated at 120° C. for 92 hours in a sealed vial to obtain MOF120 as a white solid (39 mg).

実施例119~120で得られた金属有機構造体について、実施例1と同様の方法でBET比表面積及び77K-大気圧における水素貯蔵量を測定した。その結果を表31に示す。 Regarding the metal-organic structures obtained in Examples 119 to 120, the BET specific surface area and hydrogen storage amount at 77 K and atmospheric pressure were measured in the same manner as in Example 1. The results are shown in Table 31.

Figure 2024012177000052
Figure 2024012177000052

本発明の金属有機構造体は、水素等のガスを実用的な水準で貯蔵できる。そのため、燃料電池等の水素を利用したエネルギー分野に好適に使用できる。
The metal-organic framework of the present invention can store gases such as hydrogen at a practical level. Therefore, it can be suitably used in energy fields that utilize hydrogen, such as fuel cells.

Claims (6)

式(1)で表されるカルボン酸イオンと多価金属イオンとが結合してなる金属有機構造体。
Figure 2024012177000053
(式(1)中、
Rは、それぞれ独立に、水素原子、ヒドロキシ基、C1~6アルキル基、C1~6アルコキシ基又はハロゲノ基である。
Xは、それぞれ独立に、ヒドロキシ基、C1~6アルキル基、C1~6アルコキシ基又はハロゲノ基である。
n1、n2、n3及びn4は、それぞれ独立に、0~4のいずれかの整数である。
Xが2以上のとき、各Xは互いに同一でも異なっていてもよい。
pは、1~3のいずれかの整数である。
Lは、単結合又は2~4価の有機基である。)
A metal-organic structure formed by bonding a carboxylic acid ion represented by formula (1) with a polyvalent metal ion.
Figure 2024012177000053
(In formula (1),
Each R is independently a hydrogen atom, a hydroxy group, a C1-6 alkyl group, a C1-6 alkoxy group, or a halogeno group.
Each X is independently a hydroxy group, a C1-6 alkyl group, a C1-6 alkoxy group, or a halogeno group.
n1, n2, n3 and n4 are each independently an integer of 0 to 4.
When X is 2 or more, each X may be the same or different from each other.
p is an integer of 1 to 3.
L is a single bond or a divalent to tetravalent organic group. )
式(1)で表されるカルボン酸イオンが、式(2)で表されるカルボン酸イオンである請求項1に記載の金属有機構造体。
Figure 2024012177000054
(式(2)中、
Rは、それぞれ独立に、水素原子、ヒドロキシ基、C1~6アルキル基、C1~6アルコキシ基又はハロゲノ基である。
Xは、それぞれ独立に、ヒドロキシ基、C1~6アルキル基、C1~6アルコキシ基又はハロゲノ基である。
n1、n2、n3及びn4は、それぞれ独立に、0~4のいずれかの整数である。
Xが2以上のとき、各Xは互いに同一でも異なっていてもよい。
は、単結合又は2価の有機基である。)
The metal-organic structure according to claim 1, wherein the carboxylic acid ion represented by formula (1) is a carboxylic acid ion represented by formula (2).
Figure 2024012177000054
(In formula (2),
Each R is independently a hydrogen atom, a hydroxy group, a C1-6 alkyl group, a C1-6 alkoxy group, or a halogeno group.
Each X is independently a hydroxy group, a C1-6 alkyl group, a C1-6 alkoxy group, or a halogeno group.
n1, n2, n3 and n4 are each independently an integer of 0 to 4.
When X is 2 or more, each X may be the same or different from each other.
L a is a single bond or a divalent organic group. )
多価金属イオンが、元素の周期表の第2族~第13族の金属からなる群から選ばれる少なくとも1種の金属イオンである請求項1又は2に記載の金属有機構造体。 3. The metal-organic structure according to claim 1, wherein the polyvalent metal ion is at least one metal ion selected from the group consisting of metals from Groups 2 to 13 of the Periodic Table of the Elements. 補助配位子を構成成分として更に含む請求項1~3のいずれかに記載の金属有機構造体。 The metal-organic framework according to any one of claims 1 to 3, further comprising an auxiliary ligand as a constituent component. 請求項1~4のいずれかに記載の金属有機構造体を含むガス貯蔵剤。 A gas storage agent comprising the metal-organic framework according to any one of claims 1 to 4. 請求項1~4のいずれかに記載の金属有機構造体にガスを接触させる工程を含むガスの貯蔵方法。
A method for storing gas, comprising the step of bringing a gas into contact with the metal-organic structure according to any one of claims 1 to 4.
JP2023115329A 2022-07-14 2023-07-13 Metal-organic framework coordinated with carboxylate ion having diphenyl methane skeleton Pending JP2024012177A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022113387 2022-07-14
JP2022113387 2022-07-14

Publications (1)

Publication Number Publication Date
JP2024012177A true JP2024012177A (en) 2024-01-25

Family

ID=89622410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023115329A Pending JP2024012177A (en) 2022-07-14 2023-07-13 Metal-organic framework coordinated with carboxylate ion having diphenyl methane skeleton

Country Status (1)

Country Link
JP (1) JP2024012177A (en)

Similar Documents

Publication Publication Date Title
Dhakshinamoorthy et al. Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts
Xu et al. Exchange reactions in metal-organic frameworks: New advances
Chen et al. Highly efficient visible-light-driven CO 2 reduction to formate by a new anthracene-based zirconium MOF via dual catalytic routes
Li et al. Post-synthetic modification of a two-dimensional metal–organic framework via photodimerization enables highly selective luminescent sensing of aluminum (III)
Lin et al. The coordination chemistry of cyclohexanepolycarboxylate ligands. Structures, conformation and functions
WO2017210874A1 (en) Imperfect mofs (imofs) material, preparation and use in catalysis, sorption and separation
Fordham et al. Lanthanide metal-organic frameworks: syntheses, properties, and potential applications
KR100695473B1 (en) A new preparation method of porous coordination polymer compounds composed of zinc ion and carboxylates
JP2016155879A (en) Method of hydro-thermally producing metal-organic structure-type crystalline porous aluminum carboxylate
JP5305278B2 (en) Porous metal complex, method for producing porous metal complex, adsorbent, separation material, gas adsorbent and hydrogen adsorbent
Song et al. Chiral porous metal-organic frameworks with dual active sites for sequential asymmetric catalysis
Jacobsen et al. Systematic investigations of the transition between framework topologies in Ce/Zr-MOFs
JP2014166971A (en) Porous polymer metal complex, gas adsorbent, gas separation apparatus and gas storage apparatus using the same
Li et al. Two organic–inorganic hybrid polyoxovanadates as reusable catalysts for Knoevenagel condensation
Xu et al. Effect of arrangement of functional groups on stability and gas adsorption properties in two regioisomeric copper bent diisophthalate frameworks
Varnaseri et al. Size and function influence study on enhanced catalytic performance of a cooperative MOF for mild, green and fast C–C bond formation
KR20150136459A (en) Method for preparing single crystalline hollow metal-organic frameworks
Pang et al. Vacancies in metal− organic frameworks: formation, arrangement, and functions
JP5880193B2 (en) Method for producing composite catalyst of porous metal complex and inorganic catalyst material
KR20150117535A (en) Method for preparing single crystalline hollow metal-organic frameworks
TW202136196A (en) Metal-organic framework with carboxylic acid ion having terphenyl skeleton as ligand
Yin et al. Syntheses, structures, luminescence and CO2 gas adsorption properties of four three-dimensional heterobimetallic metal–organic frameworks
CN110283332B (en) Metal coordination polymer and preparation method and application thereof
JP2024012177A (en) Metal-organic framework coordinated with carboxylate ion having diphenyl methane skeleton
JP2013112660A (en) Porous metal complex, method for producing porous metal complex, and gas occlusion material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230718