JP2014166971A - Porous polymer metal complex, gas adsorbent, gas separation apparatus and gas storage apparatus using the same - Google Patents

Porous polymer metal complex, gas adsorbent, gas separation apparatus and gas storage apparatus using the same Download PDF

Info

Publication number
JP2014166971A
JP2014166971A JP2013040005A JP2013040005A JP2014166971A JP 2014166971 A JP2014166971 A JP 2014166971A JP 2013040005 A JP2013040005 A JP 2013040005A JP 2013040005 A JP2013040005 A JP 2013040005A JP 2014166971 A JP2014166971 A JP 2014166971A
Authority
JP
Japan
Prior art keywords
gas
metal complex
porous polymer
polymer metal
bpy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013040005A
Other languages
Japanese (ja)
Other versions
JP5988896B2 (en
Inventor
Hiroshi Kajiro
洋 上代
Hirokazu Tamai
宏和 玉井
Koichi Nose
幸一 能勢
Susumu Kitagawa
進 北川
Ryotaro Matsuda
亮太郎 松田
Hiroshi Sato
弘志 佐藤
Hyung Joon Jeon
亨濬 全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Nippon Steel Corp
Original Assignee
Kyoto University
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Nippon Steel and Sumitomo Metal Corp filed Critical Kyoto University
Priority to JP2013040005A priority Critical patent/JP5988896B2/en
Publication of JP2014166971A publication Critical patent/JP2014166971A/en
Application granted granted Critical
Publication of JP5988896B2 publication Critical patent/JP5988896B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

PROBLEM TO BE SOLVED: To provide a novel porous polymer metal complex, a gas adsorbent having excellent property using the same, and a gas storage apparatus and a gas separation apparatus each housing the gas adsorbent having the excellent property.SOLUTION: There is provided the porous polymer metal complex which is represented by the following formula (1), [Zn(bpy)X](1) ( in the formula, bpy is 4,4'-bipyridine, X is a an isophthalic acid anion having a perfluoroalkyl group having 1 to 8 carbon atoms as a substituent at 5-position, n is one showing such a property that many constituent units consisting of Zn(bpy)X aggregate and a value of n is not limited specifically, and in which a zinc ion is at tetracoordinated state coordinated by three monodentate carboxyl groups and a nitrogen atom of one 4,4'-bipyridine molecule, and a whole network structure has a three-dimensional network structure corresponding to a so-called BCT skeleton in a classification of zeolite. There are also provided a use of the porous polymer metal complex as a gas adsorbent, a gas separation apparatus and a gas storage apparatus each using the gas adsorbent.

Description

本発明は多孔性高分子金属錯体及びガス吸着材としての利用ならびにこれを用いたガス分離装置およびガス貯蔵装置に関する。   The present invention relates to use as a porous polymer metal complex and a gas adsorbing material, and a gas separation device and a gas storage device using the same.

ガス吸着材は、加圧貯蔵や液化貯蔵に比べて、低圧で大量のガスを貯蔵しうる特性を有する。このため、近年、ガス吸着材を用いたガス貯蔵装置やガス分離装置の開発が盛んである。ガス吸着材としては、活性炭やゼオライトなどが知られている。また最近は多孔性高分子金属錯体にガスを吸蔵させる方法も提案されている(特許文献1、非特許文献1参照)。   The gas adsorbent has a characteristic of storing a large amount of gas at a low pressure as compared with pressurized storage and liquefied storage. For this reason, in recent years, development of a gas storage device and a gas separation device using a gas adsorbent has been active. As the gas adsorbent, activated carbon, zeolite and the like are known. Recently, a method of occluding gas in a porous polymer metal complex has also been proposed (see Patent Document 1 and Non-Patent Document 1).

多孔性高分子金属錯体は、金属イオンと有機配位子から得られる結晶性固体で、種々の金属イオン、有機配位子の組み合わせおよび骨格構造の多様性から、様々なガス吸着特性を発現する可能性を秘めている。しかしながら、これらの従来提案されてきたガス吸着材は、ガス吸着量や作業性などの点で充分に満足できるものとはいえず、より優れた特性を有するガス吸着材の開発が所望されている。   Porous polymer metal complexes are crystalline solids obtained from metal ions and organic ligands, and exhibit various gas adsorption properties due to the variety of metal ions, combinations of organic ligands and the variety of skeletal structures. It has potential. However, these conventionally proposed gas adsorbents are not sufficiently satisfactory in terms of the amount of gas adsorption and workability, and the development of gas adsorbents with better characteristics is desired. .

ガス吸着性を有する多孔性高分子金属錯体の開発する手段として、ガス吸着材として広く利用されているゼオライト様の骨格を模倣する手段がある。特にイミダゾールおよびその類似分子を用いて、膨大な数のゼオライト様骨格を有する多孔性高分子金属錯体が合成され、その機能が報告されている(特許文献2、非特許文献2,3,4)。このように、ゼオライト様骨格を多孔性高分子金属錯体で模倣する手法は、機能性材料開発のために優れている事は明らかであるが、ゼオライト様骨格を多孔性高分子金属錯体で模倣した実例は、有機配位子としてイミダゾールまたはイミダゾール誘導体を使用した物がほとんどである。イミダゾールは、窒素2個と炭素3個からなる、5員環化合物であり、その直径は炭素原子6個を含むベンゼン環よりもさらに小さい。イミダゾールは、2個の窒素原子で金属イオンに配位しているが、この架橋部位の長さがイミダゾールよりも大きな有機配位子が利用できれば、金属イオンー有機配位子で形成される細孔の大きさがより大きくなり、より多量のガスを吸着出来る可能性があるが、架橋部位の長さがイミダゾールよりも大きな有機配位子で形成されるゼオライト様骨格を有する多孔性高分子金属錯体の例はほとんど知られていない。また、多孔性高分子金属錯体の機能は、構成している配位子に影響を受けるため、複数の配位子を用る事ができれば、より多様な機能を創成できる可能性があるが、複数の配位子でゼオライト様骨格を有する多孔性高分子金属錯体を合成した例は非常に少ない。ゼオライト様骨格を有する多孔性高分子金属錯体を合成した例において、ガス吸着特性が検討されている(特許文献3、4)。これらは、二酸化炭素、メタン、トルエンの吸着量が多く、これらの貯蔵材として優れている事が開示されているが、ガス種ごとの吸着性の差が不明なため、ガス分離材としての特性が不明であり、また上記三種以外のガスに対する特性も不明である。   As a means for developing a porous polymer metal complex having gas adsorbability, there is a means for imitating a zeolite-like skeleton widely used as a gas adsorbent. In particular, using imidazole and its similar molecules, porous polymer metal complexes having a huge number of zeolite-like skeletons were synthesized, and their functions have been reported (Patent Document 2, Non-Patent Documents 2, 3, and 4). . Thus, it is clear that the method of imitating a zeolite-like skeleton with a porous polymer metal complex is clearly superior for the development of functional materials, but the zeolite-like skeleton was imitated with a porous polymer metal complex. Most examples use imidazole or imidazole derivatives as organic ligands. Imidazole is a 5-membered ring compound consisting of 2 nitrogens and 3 carbons, and its diameter is even smaller than that of a benzene ring containing 6 carbon atoms. Imidazole is coordinated to a metal ion by two nitrogen atoms, but if an organic ligand whose cross-linking site is longer than imidazole can be used, pores formed by the metal ion-organic ligand Porous polymer metal complex having a zeolite-like skeleton formed of an organic ligand with a longer cross-linking site length than imidazole There are few known examples. In addition, since the function of the porous polymer metal complex is affected by the ligands that are composed, if more than one ligand can be used, more diverse functions may be created. There are very few examples of synthesizing porous polymer metal complexes having a zeolite-like skeleton with a plurality of ligands. In an example in which a porous polymer metal complex having a zeolite-like skeleton is synthesized, gas adsorption characteristics have been studied (Patent Documents 3 and 4). These have been disclosed that they have a large amount of adsorption of carbon dioxide, methane, and toluene, and are excellent as storage materials for these. Is unknown, and characteristics for gases other than the above three types are also unknown.

多孔体のガス吸着特性を制御するためにふっ素原子を導入する試みが行われている(非特許文献5ー8)。ふっ素の材料への一般的な影響として、摺動性、撥水性などは知られているが、ふっ素を導入した多孔性高分子金属錯体ではふっ素原子による水素の吸着特性の向上が述べられている。これらは、前記のふっ素原子が惹起する物性とは一致せず、またふっ素原子導入が水素の吸着特性を向上させる原理も詳しくは記載されておらず、すなわち、ふっ素原子の導入が多孔性高分子金属錯体のガス吸着特性にどのような影響を及ぼすかははっきりとはわかっていない。また、前記のゼオライト様骨格を有する多孔性高分子金属錯体を合成した例(特許文献3,4)の化合物にもふっ素原子を含む多孔性高分子金属錯体の合成や物性に関しては記載されていない。   Attempts have been made to introduce fluorine atoms in order to control the gas adsorption characteristics of the porous body (Non-patent Documents 5-8). As a general influence on fluorine materials, slidability and water repellency are known, but in porous polymer metal complexes into which fluorine has been introduced, improvement of hydrogen adsorption properties by fluorine atoms is described. . These do not coincide with the physical properties caused by the above-mentioned fluorine atoms, and the principle by which the introduction of fluorine atoms improves the hydrogen adsorption characteristics is not described in detail. That is, the introduction of fluorine atoms is a porous polymer. It is not clear how it affects the gas adsorption properties of metal complexes. In addition, the compound of the example of synthesizing the porous polymer metal complex having the zeolite-like skeleton (Patent Documents 3 and 4) does not describe the synthesis or physical properties of the porous polymer metal complex containing a fluorine atom. .

特開2000-109493号公報JP 2000-109493 A 特表2009-528251号公報Special table 2009-528251 特開2011-37794号公報JP 2011-37794 A 特開2012-17268号公報JP 2012-17268 A

北川進、集積型金属錯体、講談社サイエンティフィク、2001年214-218頁Susumu Kitagawa, Integrated Metal Complex, Kodansha Scientific, 2001, pages 214-218 Yaghiら、Science (2008)939Yaghi et al., Science (2008) 939 Yaghiら、Nature 453 (2008) 207Yaghi et al., Nature 453 (2008) 207 Yaghiら、J. Am. Chem. Soc., 2009, 131, 3875Yaghi et al., J. Am. Chem. Soc., 2009, 131, 3875 Omaryら、J. Am. Chem. Soc., 2007, 129, 15454Omary et al., J. Am. Chem. Soc., 2007, 129, 15454 Omaryら、Angew. Chem. Int. Ed.2009, 48, 2500Omary et al., Angew. Chem. Int. Ed. 2009, 48, 2500 Liら、J. Am. Chem. Soc., 2004, 126, 1308Li et al., J. Am. Chem. Soc., 2004, 126, 1308 Fereyら、J. Am. Chem. Soc., 2010, 132, 1127-1136Ferey et al., J. Am. Chem. Soc., 2010, 132, 1127-1136

本発明は、ゼオライト様骨格を有する新規な多孔性高分子金属錯体及びこれを用いた優れた特性を有するガス吸着材を提供することである。また本発明は、前記特性を有するガス吸着材を内部に収容してなるガス貯蔵装置およびガス分離装置を併せて提供することを目的とする。   The present invention is to provide a novel porous polymer metal complex having a zeolite-like skeleton and a gas adsorbent having excellent properties using the same. Another object of the present invention is to provide a gas storage device and a gas separation device that contain a gas adsorbent having the above-mentioned characteristics.

本発明者らは、前述のような問題点を解決すべく、鋭意研究を積み重ねた結果、5位に
特定の置換基を有するイソフタル酸誘導体、4,4'-ビピリジン(bpy)及び亜鉛イオンの反応で得られる多孔性高分子金属錯体は、ゼオライトの分類でいうところのいわゆるBCT骨格を有しており、種々のガスを多量に吸着する事を見いだし、本発明を完成するに至った。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that isophthalic acid derivatives having a specific substituent at the 5-position, 4,4′-bipyridine (bpy), and zinc ions. The porous polymer metal complex obtained by the reaction has a so-called BCT skeleton in the category of zeolite, and has found that a large amount of various gases are adsorbed to complete the present invention.

すなわち、本発明は、BCT型の基本骨格を有し、5位に置換基を有するイソフタル酸誘導体と4,4'-ビピリジン(bpy)と亜鉛イオンからなる多孔性高分子金属錯体であり、本材料のガス吸蔵材料としての利用及び本ガス吸着材を内部に収容してなるガス貯蔵装置およびガス分離装置に関する発明である。   That is, the present invention is a porous polymer metal complex comprising an isophthalic acid derivative having a BCT-type basic skeleton and a substituent at the 5-position, 4,4′-bipyridine (bpy), and a zinc ion. The invention relates to the use of a material as a gas storage material and a gas storage device and a gas separation device in which the gas adsorbent is housed.

すなわち本発明は下記にある。
(1) 下記式(1)
[Zn(bpy)X]n (1)
(式中、bpyは4,4'-ビピリジン、Xは5位に炭素数1から8であるパーフルオロアルキル基を置換基として有するイソフタル酸誘導体イオンである。nは、Zn(bpy)Xから成る構成単位が多数集合しているという特性を示すもので、nの大きさは特に限定されない。)
で表され、
亜鉛イオンが3個の1座配位のカルボキシル基、1個のbpy分子の窒素原子により配位された4配位状態にあり、さらに全体のネットワーク構造が、ゼオライトの分類でいわゆるBCT骨格に相当する三次元ネットワーク構造を有している多孔性高分子金属錯体。
That is, the present invention is as follows.
(1) The following formula (1)
[Zn (bpy) X] n (1)
(Wherein bpy is 4,4′-bipyridine, X is an isophthalic acid derivative ion having a perfluoroalkyl group having 1 to 8 carbon atoms as a substituent at the 5-position. N is from Zn (bpy) X. It shows the characteristic that a large number of constituent units are assembled, and the size of n is not particularly limited.)
Represented by
The zinc ion is in a four-coordinate state coordinated by three monodentate carboxyl groups and a nitrogen atom of one bpy molecule, and the entire network structure corresponds to a so-called BCT skeleton in the classification of zeolite. A porous polymer metal complex having a three-dimensional network structure.

(2) Xの前記置換基が、CF3,C25,n−C37,n−C49,n−C511基から選ばれるものである上記(1)に記載の多孔性高分子金属錯体。 (2) In the above (1), the substituent of X is selected from CF 3 , C 2 F 5 , n-C 3 F 7 , n-C 4 F 9 and n-C 5 F 11 groups. The porous polymer metal complex described.

(3) 上記に記載の多孔性高分子金属錯体を含むガス吸着材。   (3) A gas adsorbent comprising the porous polymer metal complex described above.

(4) 上記(1)−(3)に記載のガス吸着材を用いるガス分離装置。   (4) A gas separation device using the gas adsorbent according to (1) to (3) above.

(5) 上記(4)に記載のガス吸着材を用いるガス貯蔵装置。   (5) A gas storage device using the gas adsorbent according to (4).

本発明の多孔性高分子金属錯体は多量のガスを吸蔵、放出し、かつ、ガスの選択的吸着を行うことが可能である。また本発明の多孔性高分子金属錯体からなるガス吸蔵材料を内部に収容してなるガス貯蔵装置およびガス分離装置を製造することが可能になる。   The porous polymer metal complex of the present invention can occlude and release a large amount of gas, and can perform selective gas adsorption. Further, it becomes possible to manufacture a gas storage device and a gas separation device in which a gas storage material made of the porous polymer metal complex of the present invention is housed.

本発明の多孔性高分子金属錯体は、また例えば、圧力スイング吸着方式(以下「PSA方式」と略記)のガス分離装置として使用すれば、非常に効率良いガス分離が可能である。また、圧力変化に要する時間を短縮でき、省エネルギーにも寄与する。さらに、ガス分離装置の小型化にも寄与しうるため、高純度ガスを製品として販売する際のコスト競争力を高めることができることは勿論、自社工場内部で高純度ガスを用いる場合であっても、高純度ガスを必要とする設備に要するコストを削減できるため、結局最終製品の製造コストを削減する効果を有する。   When the porous polymer metal complex of the present invention is used, for example, as a gas separation device of a pressure swing adsorption method (hereinafter abbreviated as “PSA method”), very efficient gas separation is possible. In addition, the time required for pressure change can be shortened, contributing to energy saving. Furthermore, since it can contribute to the miniaturization of the gas separation device, it is possible to increase the cost competitiveness when selling high-purity gas as a product. Since the cost required for the equipment that requires high purity gas can be reduced, the manufacturing cost of the final product can be reduced.

本発明の多孔性高分子金属錯体の他の用途としては、ガス貯蔵装置が挙げられる。本発明のガス吸着材をガス貯蔵装置(業務用ガスタンク、民生用ガスタンク、車両用燃料タンクなど)に適用した場合には、搬送中や保存中の圧力を劇的に低減させることが可能である。搬送時や保存中のガス圧力を減少させ得ることに起因する効果としては、形状自由度の向上がまず挙げられる。従来のガス貯蔵装置においては、保存中の圧力を維持しなくてはガス吸着量を高く維持できない。しかしながら、本発明のガス貯蔵装置においては、圧力を低下させても充分なガス吸着量を維持できる。   Another application of the porous polymer metal complex of the present invention is a gas storage device. When the gas adsorbent of the present invention is applied to a gas storage device (business gas tank, consumer gas tank, vehicle fuel tank, etc.), it is possible to dramatically reduce the pressure during transportation and storage. . As an effect resulting from the ability to reduce the gas pressure during transportation or storage, firstly, improvement in the degree of freedom of shape can be mentioned. In the conventional gas storage device, the gas adsorption amount cannot be maintained high unless the pressure during storage is maintained. However, in the gas storage device of the present invention, a sufficient gas adsorption amount can be maintained even if the pressure is lowered.

ガス分離装置やガス貯蔵装置に適用する場合における、容器形状や容器材質、ガスバルブの種類などに関しては、特に特別の装置を用いなくてもよく、ガス分離装置やガス貯蔵装置に用いられているものを用いることが可能である。ただし、各種装置の改良を排除するものではなく、いかなる装置を用いたとしても、本発明の多孔性高分子金属錯体を用いている限りにおいて、本発明の技術的範囲に包含されるものである。   When applied to a gas separation device or gas storage device, there is no need to use a special device for the shape of the container, the material of the container, the type of gas valve, etc., and those used in the gas separation device and gas storage device Can be used. However, the improvement of various devices is not excluded, and any device is included in the technical scope of the present invention as long as the porous polymer metal complex of the present invention is used. .

本発明の多孔性高分子金属錯体のBCT構造を結晶学上のc軸から見た図である。It is the figure which looked at the BCT structure of the porous polymer metal complex of this invention from the c-axis on crystallography. 図1の本発明の多孔性高分子金属錯体のBCT構造の一部(小さい細孔部分)の部分拡大図を示す。FIG. 2 shows a partially enlarged view of a part (small pore part) of the BCT structure of the porous polymer metal complex of the present invention shown in FIG. 1. 図1の多孔性高分子金属錯体のBCT構造を結晶学上のa軸から見た図(対称性の関係上、b軸から見た構造も本a軸から見た構造と同一である)を示す。Fig. 1 shows the BCT structure of the porous polymer metal complex of Fig. 1 as seen from the crystallographic a-axis (because of symmetry, the structure seen from the b-axis is the same as the one seen from the a-axis). Show. 図1の本発明の多孔性高分子金属錯体のBCT構造の図2と異なる他の部分の部分拡大図を示す。FIG. 3 shows a partially enlarged view of another part different from FIG. 2 of the BCT structure of the porous polymer metal complex of the present invention in FIG. 1. 図1の化合物の亜鉛イオンが3個のカルボキシル基の酸素原子と、1個の窒素原子と配位結合した4配位構造を拡大して示す。1 is an enlarged view of a four-coordinate structure in which the zinc ion of the compound in FIG. 1 is coordinated with three oxygen atoms of a carboxyl group and one nitrogen atom. ゼオライトのBCT骨格のモデル図を示す。The model figure of the BCT frame | skeleton of a zeolite is shown. 実施例1で製造した単結晶から得られた構造により、ふっ素原子の存在状況を示す。大小二種類の細孔のうち、直径が大きい細孔のみにふっ素原子が存在し、大きい細孔の内部がふっ素原子で覆われているのがわかる。The presence of fluorine atoms is shown by the structure obtained from the single crystal produced in Example 1. It can be seen that fluorine atoms exist only in pores with a large diameter among the two types of large and small pores, and the inside of the large pores is covered with fluorine atoms. 実施例1で製造した単結晶を元にシミュレートした粉末X線パターンおよび実施例1で製造した粉末を粉末X線装置により測定した粉末X線回折チャートを示す。The powder X-ray pattern simulated based on the single crystal manufactured in Example 1 and the powder X-ray diffraction chart which measured the powder manufactured in Example 1 with the powder X-ray apparatus are shown. 実施例2で製造した単結晶を元にシミュレートした粉末X線パターンおよび実施例1で製造した粉末を粉末X線装置により測定した粉末X線回折チャートを示す。The powder X-ray pattern simulated based on the single crystal manufactured in Example 2 and the powder X-ray diffraction chart which measured the powder manufactured in Example 1 with the powder X-ray apparatus are shown. 実施例3で製造した単結晶を元にシミュレートした粉末X線パターンおよび実施例1で製造した粉末を粉末X線装置により測定した粉末X線回折チャートを示す。The powder X-ray pattern simulated based on the single crystal manufactured in Example 3 and the powder X-ray diffraction chart which measured the powder manufactured in Example 1 with the powder X-ray apparatus are shown. 実施例4で製造した単結晶を元にシミュレートした粉末X線パターンおよび実施例1で製造した粉末を粉末X線装置により測定した粉末X線回折チャートを示す。The powder X-ray pattern simulated based on the single crystal manufactured in Example 4, and the powder X-ray diffraction chart which measured the powder manufactured in Example 1 with the powder X-ray apparatus are shown. 比較例1で製造した単結晶を元にシミュレートした粉末X線パターンおよび実施例1で製造した粉末を粉末X線装置により測定した粉末X線回折チャートを示す。The powder X-ray pattern simulated based on the single crystal manufactured in the comparative example 1 and the powder X-ray diffraction chart which measured the powder manufactured in Example 1 with the powder X-ray apparatus are shown. 比較例2で製造した単結晶を元にシミュレートした粉末X線パターンおよび実施例1で製造した粉末を粉末X線装置により測定した粉末X線回折チャートを示す。The powder X-ray pattern which simulated the powder manufactured in the comparative example 2 based on the single crystal based on the single crystal manufactured in Example 1, and the powder manufactured in Example 1 with the powder X-ray apparatus is shown. 実施例1で得られた多孔性高分子金属錯体の吸着等温線を示す。The adsorption isotherm of the porous polymer metal complex obtained in Example 1 is shown.

本発明の多孔性高分子金属錯体は、下記式(1)で表され、かつ図1〜6で示されるいわゆるゼオライトのBCT骨格を有する多孔性高分子金属錯体である。
[Zn(bpy)X]n (1)
(式中、bpyは4,4'-ビピリジン、Xは5位に炭素数1から8であるパーフルオロアルキル基を置換基として有するイソフタル酸誘導体イオンである。nは、Zn(bpy)Xから成る構成単位が多数集合しているという特性を示すもので、nの大きさは特に限定されない。)
The porous polymer metal complex of the present invention is a porous polymer metal complex having the so-called zeolite BCT skeleton represented by the following formula (1) and shown in FIGS.
[Zn (bpy) X] n (1)
(Wherein bpy is 4,4′-bipyridine, X is an isophthalic acid derivative ion having a perfluoroalkyl group having 1 to 8 carbon atoms as a substituent at the 5-position. N is from Zn (bpy) X. It shows the characteristic that a large number of constituent units are assembled, and the size of n is not particularly limited.)

以下に、実施例1で製造した単結晶を単結晶測定装置(極微小結晶用単結晶構造解析装置)にて測定し、得られた回折像を解析ソフトウエアを使用して解析して確認された結晶構造(BCTネットワーク)を用いて、本発明の多孔性高分子金属錯体のBCT骨格構造を示す。   In the following, the single crystal produced in Example 1 is measured with a single crystal measurement device (single crystal structure analysis device for ultrafine crystals), and the obtained diffraction image is analyzed and confirmed using analysis software. The BCT skeleton structure of the porous polymer metal complex of the present invention is shown using the crystal structure (BCT network).

図1に本発明の多孔性高分子金属錯体のBCT骨格構造を結晶学的上のc軸から見た図、図2にその一部(小さい細孔部分)の拡大図、図3に多孔性高分子金属錯体のBCT骨格構造を結晶学的上のa軸から見た図(対称性の関係から、b軸から見ても同一構造を有している)、図4に亜鉛の4配位状態、図5にc軸から見た図の他の一部(大きな細孔のイソフタル酸によって構成された辺の部分)の拡大図を示す。これらの図において、黒は亜鉛イオン、灰色は炭素原子、薄い灰色は窒素原子、濃い灰色は酸素原子であるが、テレフタル酸の5位の置換基および水素原子は見易さのために省略している。   FIG. 1 is a view of the BCT skeleton structure of the porous polymer metal complex of the present invention as seen from the crystallographic c-axis, FIG. 2 is an enlarged view of a part (small pore portion), and FIG. 3 is porous. Fig. 4 shows the BCT skeleton structure of the polymer metal complex as seen from the crystallographic a-axis (the same structure is seen from the b-axis due to symmetry). FIG. 5 shows an enlarged view of the other part (the part of the side constituted by the large pore isophthalic acid) as seen from the c-axis in FIG. In these figures, black is a zinc ion, gray is a carbon atom, light gray is a nitrogen atom, and dark gray is an oxygen atom, but the terephthalic acid 5-position substituent and hydrogen atom are omitted for the sake of clarity. ing.

図1を参照すると、c軸から見た図では、大きな細孔と小さな細孔からなるネットワーク構造が形成されている。大きな細孔は、イソフタル酸のみの辺と、イソフタル酸とbpyから構成される辺があり、これらの辺が交互に並ぶことで8角形を形成している。小さな細孔はイソフタル酸とbpyから構成される辺による4角形を形成している。   Referring to FIG. 1, in the diagram viewed from the c-axis, a network structure composed of large pores and small pores is formed. The large pore has a side composed of only isophthalic acid and a side composed of isophthalic acid and bpy, and these sides are alternately arranged to form an octagon. The small pores form a quadrilateral with sides composed of isophthalic acid and bpy.

図2はc軸から見た小さな細孔の部分を拡大した図である。図3に示したa軸から見た図を参照すると、対称性の関係からb軸から見てもa軸からと同一構造を有しているが、4つの角の亜鉛イオンに対してイソフタル酸から構成される辺とbpyから構成される辺が交互に並んで形成される4角形が、c軸方向(図1,2の図に対して垂直方向)に交互に並んでいるために、c軸方向から見た図1,2では小さな細孔はイソフタル酸とbpyから構成される辺による4角形を形成しているように見えることが理解される。   FIG. 2 is an enlarged view of a small pore portion viewed from the c-axis. Referring to the diagram viewed from the a-axis shown in FIG. 3, it has the same structure as the a-axis even when viewed from the b-axis because of symmetry, but it has isophthalic acid for four corner zinc ions. Since the quadrangle formed by alternately arranging the sides constituted by bpy and the sides constituted by bpy are alternately arranged in the c-axis direction (perpendicular to the drawings of FIGS. 1 and 2), c In FIGS. 1 and 2 as viewed from the axial direction, it is understood that the small pores appear to form a quadrilateral with sides composed of isophthalic acid and bpy.

図4は、図1では、大きな細孔のイソフタル酸のみから構成される辺の部分の拡大図である。   FIG. 4 is an enlarged view of a side portion composed only of large pore isophthalic acid in FIG.

図5に、細孔の角にある亜鉛イオンの結合状態を示す。亜鉛イオンが3個の1座配位のカルボキシル基、1個のbpyの窒素原子により配位された4配位構造であることが示されている。ただし、カルボキシル基の酸素が亜鉛イオンに配位しているかどうかは、酸素と亜鉛の結合距離の定義により変わりうる。4配位構造に於いては配位していないとみなす1座配位のカルボキシル基の配位していない酸素原子は、亜鉛イオンの近傍に存在しているため、本配位構造は、5配位とみなす事も可能である。いずれにせよこのような配位構造を通じて亜鉛イオンbpy及びイソフタル酸類により連結されることで、図1に示すような、いわゆるゼオライトのBCT骨格構造が形成される。   FIG. 5 shows the binding state of zinc ions at the corners of the pores. It is shown that the zinc ion has a tetracoordinate structure coordinated by three monodentate carboxyl groups and one bpy nitrogen atom. However, whether the oxygen of the carboxyl group is coordinated to the zinc ion can vary depending on the definition of the bond distance between oxygen and zinc. In the tetracoordinate structure, an oxygen atom that is not coordinated by a monodentate carboxyl group that is regarded as not coordinated is present in the vicinity of the zinc ion. It can also be regarded as coordination. In any case, a so-called BCT framework structure of zeolite as shown in FIG. 1 is formed by being linked by zinc ions bpy and isophthalic acids through such a coordination structure.

このように、本多孔性高分子金属錯体は、図1〜5で示される三次元構造を有している。なお、これらの図は、いずれも分子ネットワーク構造の一部を切り抜いた物であり、実際は無限格子である。   Thus, this porous polymer metal complex has the three-dimensional structure shown in FIGS. These figures are all cut out of a part of the molecular network structure, and are actually infinite lattices.

図6に、いわゆるゼオライトのBCT骨格をモデル的に示す(国際ゼオライト学会のHPから引用)。図1〜5に示されたネットワーク構造は、本BCT骨格と同一構造を有している事がわかる。   FIG. 6 schematically shows a so-called BCT framework of zeolite (quoted from HP of the International Zeolite Society). It can be seen that the network structure shown in FIGS. 1 to 5 has the same structure as the present BCT skeleton.

図7(a)および図7(b)に、本発明の実施例3で製造した多孔性高分子金属錯体におけるテレフタル酸の5位の置換基を加えた図1のc軸方向およびa軸方向から見た構造を示し、置換基に存在するふっ素原子の分布状況を示す。ふっ素原子を黒、それ以外の原子を灰色で示す。ふっ素原子は、大きい細孔の細孔壁を覆うように存在し、小さい細孔には存在しないという、特殊な分布を示している。そして、大きい細孔の内部はふっ素原子で覆われていることが見られる。   FIG. 7 (a) and FIG. 7 (b) are the c-axis direction and a-axis direction of FIG. 1 with the addition of the 5-position substituent of terephthalic acid in the porous polymer metal complex produced in Example 3 of the present invention. This shows the structure seen from, and shows the distribution of fluorine atoms present in the substituent. Fluorine atoms are shown in black, and other atoms are shown in gray. Fluorine atoms are present so as to cover the pore walls of large pores, and do not exist in small pores. It can be seen that the inside of the large pore is covered with fluorine atoms.

図8に実施例1で製造した単結晶を元にシミュレートした粉末X線パターン(下段)および実施例1で製造した粉末を粉末X線装置により測定した粉末X線回折チャート(上段)を示す。二つのパターンはよい一致を示しており、実施例1で得られた単結晶と粉末が同一物質であることを示している。   FIG. 8 shows a powder X-ray pattern (lower stage) simulated based on the single crystal produced in Example 1 and a powder X-ray diffraction chart (upper stage) obtained by measuring the powder produced in Example 1 with a powder X-ray apparatus. . The two patterns are in good agreement, indicating that the single crystal and powder obtained in Example 1 are the same substance.

本発明の化合物の基本構造は、亜鉛イオンとbpy分子と、5位に置換基を有するイソフタル酸から形成される図1〜7に示す上記の所謂BCTネットワーク構造を有している。ここで重要なのはネットワークのトポロジーであり、個々の結合角は、本化合物が柔軟性を有するが故に、必ずしも常に図と同一の結合角を有するとは限らない。   The basic structure of the compound of the present invention has the above-mentioned so-called BCT network structure shown in FIGS. 1 to 7 formed from zinc ions, bpy molecules, and isophthalic acid having a substituent at the 5-position. What is important here is the topology of the network, and the individual bond angles do not always have the same bond angles as in the figure, because the compound is flexible.

本発明の多孔性高分子金属錯体は多孔体であるため、水やアルコールやエーテルなどの有機分子に触れると孔内に水や有機溶媒を含有し、たとえば式(2)
[Zn(bpy)X]n(G)m (2)
(式中、bpyは4,4'-ビピリジン、Xは5位に置換基を有するイソフタル酸誘導体イオンである。Gは後述のような合成で使用した溶媒分子や空気中の水分子を表す。nは、Zn(bpy)Xから成る構成単位が多数集合しているという特性を示すもので、nの大きさは特に限定されない。mは亜鉛イオン1に対して0.2から6である。)
であるような複合錯体に変化する場合がある。
Since the porous polymer metal complex of the present invention is a porous body, when it comes into contact with organic molecules such as water, alcohol or ether, it contains water or an organic solvent in the pore.
[Zn (bpy) X] n (G) m (2)
(In the formula, bpy is 4,4′-bipyridine, X is an isophthalic acid derivative ion having a substituent at the 5-position. G represents a solvent molecule or a water molecule in the air used in the synthesis as described later. n represents a characteristic that a large number of structural units composed of Zn (bpy) X are assembled, and the size of n is not particularly limited, and m is 0.2 to 6 with respect to zinc ion 1. )
It may change to a complex complex such as

しかし、これらの複合錯体中の水やアルコール、エーテルなどの有機分子は、多孔性高分子金属錯体に弱く結合しているだけであり、ガス吸着材として利用する際の減圧乾燥などの前処理によって除かれ、元の式(1)で表される錯体に戻る。そのため、式(2)で表されるような錯体であっても、本質的には本発明の多孔性高分子金属錯体と同一物と見なすことができる。   However, organic molecules such as water, alcohol, and ether in these complex complexes are only weakly bonded to the porous polymer metal complex, and are pretreated by vacuum treatment when used as a gas adsorbent. It is removed and it returns to the complex represented by the original formula (1). Therefore, even a complex represented by the formula (2) can be regarded as essentially the same as the porous polymer metal complex of the present invention.

本発明の方法では、式(1)で表される化合物は、亜鉛塩、bpy、5位に置換基を有するイソフタル酸を溶媒に溶かして溶液状態で混合することで製造できる。   In the method of the present invention, the compound represented by the formula (1) can be produced by dissolving a zinc salt, bpy, and isophthalic acid having a substituent at the 5-position in a solvent and mixing in a solution state.

溶媒としては、アルコールなどのプロトン系溶媒とジメチルホルムアミドなどのホルムアミドルの混合溶媒を利用すると良好な結果が得られる。アルコールなどのプロトン系溶媒及びジメチルアミドなどのホルムアミド類は亜鉛塩をよく溶解し、さらに亜鉛イオンや対イオンに配位結合や水素結合することで亜鉛塩を安定化し、配位子との急速な反応を抑制することで、副反応を抑制する。アルコールの例としてはメタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノールなどの脂肪族系1価アルコール及びエチレングリコールなどの脂肪族系2価アルコール類を例示できる。安価でかつニ亜鉛塩の溶解性が高いという点でメタノール、エタノール、1−プロパノール、2−プロパノール、エチレングリコールが好ましい。またこれらのアルコールは単独で用いてもよいし、複数を混合使用してもよい。ホルムアミド類の例としては、ジメチルホルムアミド、ジエチルホルムアミド、ジブチルホルムアミド、ジメチルアセトアミドなどが例示出来る。亜鉛塩の溶解性が高いという点で、ジメチルホルムアミド、ジエチルホルムアミドが好ましい。   Good results can be obtained by using a mixed solvent of a protonic solvent such as alcohol and formamide such as dimethylformamide as the solvent. Protonic solvents such as alcohol and formamides such as dimethylamide dissolve zinc salts well, and also stabilize zinc salts by coordination and hydrogen bonding to zinc ions and counter ions. By suppressing the reaction, side reactions are suppressed. Examples of alcohols include aliphatic monohydric alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol and 2-butanol, and aliphatic dihydric alcohols such as ethylene glycol. Methanol, ethanol, 1-propanol, 2-propanol, and ethylene glycol are preferable in that they are inexpensive and have high solubility of the zinc salt. These alcohols may be used alone or in combination. Examples of formamides include dimethylformamide, diethylformamide, dibutylformamide, dimethylacetamide and the like. Dimethylformamide and diethylformamide are preferable in that the solubility of the zinc salt is high.

アルコール類とジメチルホルムアミド類の混合比率は1:100〜100:0(体積比)で任意である。配位子、亜鉛塩の両方の溶解性が高まり、副生成物の発生を抑制出来るという点で、混合比率は90:10〜10:90(体積比)、反応を加速できるという観点から80:20〜20:80(体積比)が好ましい。   The mixing ratio of alcohols and dimethylformamides is arbitrary from 1: 100 to 100: 0 (volume ratio). From the viewpoint that the solubility of both the ligand and the zinc salt is enhanced and the generation of by-products can be suppressed, the mixing ratio is 90:10 to 10:90 (volume ratio), and the reaction can be accelerated. 20-20: 80 (volume ratio) is preferable.

溶媒として前記のアルコール類やホルムアミド類の混合溶媒に別種の有機溶媒を混合して使用することも好ましい。混合比率は1:100〜100:0(体積比)で任意である。アルコール類とジメチルホルムアミド類、他の有機溶媒に対する混合比率を30%以上にすることが、亜鉛塩および配位子の溶解性を向上させる観点から好ましい。   It is also preferable to use a mixed organic solvent mixed with the above-mentioned alcohol or formamide as a solvent. The mixing ratio is arbitrary from 1: 100 to 100: 0 (volume ratio). It is preferable from the viewpoint of improving the solubility of the zinc salt and the ligand that the mixing ratio with respect to the alcohols, dimethylformamides and other organic solvents is 30% or more.

用いる有機溶媒としては、極性の高い溶媒が溶解性に優れるという点で好ましく、具体的にはテトラヒドロフラン、アセトニトリル、ジオキサン、アセトン、ジメチルスルホキシドなどが挙げられる。   As the organic solvent to be used, a highly polar solvent is preferable from the viewpoint of excellent solubility, and specific examples include tetrahydrofuran, acetonitrile, dioxane, acetone, dimethyl sulfoxide and the like.

本発明の方法で使用する亜鉛塩としては、2価の亜鉛イオンを含有している塩類であればよく、溶媒への溶解性が高いという点で、硝酸亜鉛、酢酸亜鉛、硫酸亜鉛、ぎ酸亜鉛、塩化亜鉛、臭化亜鉛が好ましく、反応性が高いという点で、硝酸亜鉛、硫酸亜鉛が特に好ましい。   The zinc salt used in the method of the present invention may be a salt containing a divalent zinc ion, and zinc nitrate, zinc acetate, zinc sulfate, formic acid in terms of high solubility in a solvent. Zinc, zinc chloride, and zinc bromide are preferable, and zinc nitrate and zinc sulfate are particularly preferable in terms of high reactivity.

以下、5位に置換基を有するイソフタル酸に関して説明する。
5位の置換基としては直鎖状または枝分かれのある炭素数1から8であるパーフルオロアルキル基であればよいが、特にガス分離特性が優れる点で、CF3,C25,n−C37,n−C49,n−C511基が好ましい。5位に置換基を有するイソフタル酸の合成方法としては、たとえば、柴崎ら、Chem. Asian J. 2006, 1, 314 - 321を参照することができる。
Hereinafter, isophthalic acid having a substituent at the 5-position will be described.
The substituent at the 5-position may be a linear or branched perfluoroalkyl group having 1 to 8 carbon atoms, but CF 3 , C 2 F 5 , n- is particularly preferable in terms of excellent gas separation characteristics. C 3 F 7 , n-C 4 F 9 and n-C 5 F 11 groups are preferred. As a method for synthesizing isophthalic acid having a substituent at the 5-position, for example, Shibasaki et al., Chem. Asian J. 2006, 1, 314-321 can be referred to.

本発明の方法では、反応促進剤として塩基を添加することも可能である。塩基は、配位子のカルボキシル基を陰イオンに変換する事で、反応を加速すると推定される。塩基としてはたとえば無機塩基として水酸化リチウム、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウムなどが例示できる。有機塩基としては、トリエチルアミン、ジエチルイソプロピルアミン、2,6−ルチジンなどが例示出来る。反応加速性が高いという点で、水酸化リチウム、炭酸ナトリウム、水酸化ナトリウムが好ましい。添加量としては、使用するイソフタル酸の総モルに対し、反応の加速効果が顕著であるという点で好ましくは0.1〜6.0モル、副反応少ないという点でさらに好ましくは0.5から4.0モルである。   In the method of the present invention, a base can be added as a reaction accelerator. The base is presumed to accelerate the reaction by converting the carboxyl group of the ligand into an anion. Examples of the base include lithium hydroxide, sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide and the like as inorganic bases. Examples of the organic base include triethylamine, diethylisopropylamine, 2,6-lutidine and the like. Lithium hydroxide, sodium carbonate, and sodium hydroxide are preferable in terms of high reaction acceleration. The addition amount is preferably 0.1 to 6.0 mol in terms of the effect of accelerating the reaction with respect to the total moles of isophthalic acid used, and more preferably 0.5 to less in terms of side reactions. 4.0 moles.

亜鉛塩の溶液および配位子を反応させるに当たり、亜鉛塩および配位子を容器に装填した後、溶媒を添加する方法以外に、亜鉛塩、配位子をそれぞれ別個に溶液として調製した後、これらの溶液を混合してもよい。溶液の混合方法は、亜鉛塩溶液に配位子溶液を添加しても、その逆でもよい。また、混合法としては、必ずしも溶液で行う必要はなく、例えば、亜鉛塩溶液に固体の配位子を投入し、同時に溶媒を入れる方法や、反応容器に亜鉛塩を装填した後に、配位子の固体または溶液を注入し、さらに亜鉛塩を溶かすための溶液を注入するなど、最終的に反応が実質的に溶媒中で起こる方法であれば、種々の方法が可能である。ただし、亜鉛塩の溶液と配位子の溶液を滴下混合する方法が、工業的には最も操作が簡便であり、好ましい。また、ゼオライト様骨格の形成の為に、金属イオン、配位子を速やかに均一に混合するために、上記方法のいずれを取る場合であっても、攪拌しながら溶液を混合する事が好ましい。ここで、本発明において撹拌するとは、磁気攪拌機やメカニカル攪拌機などを用いて、棒・板・プロペラ状の攪拌子を槽内で一定速度・一方向に回転することで、溶液の均一性を高める、化学反応に一般的な操作を示す。よって、実質的に溶液が攪拌されていればよいが、効率のよい反応の為には、反応容器の直径の1/100〜2/1の長さを持つ攪拌子を用い、1回転/分以上3000回転以下、好ましくは10回転/分以上2000回転以下で攪拌するのが好ましい。本攪拌操作は、特に反応の初期段階に、金属イオンと配位子の分子レベルでの均一性を高めることを目的にしている為、反応の初期の攪拌が好ましい。反応の初期とは、金属イオンと配位子が混合されて20分以内、副反応抑制の観点から好ましくは10分以内である。攪拌時間は、1分以上、副反応抑制の観点から好ましくは50分以上である。反応の初期段階での溶液の均一性を高めることを目的としているため、攪拌は、上記の時間以上実施していればよく、すなわち、所定時間後に攪拌を停止しても、継続してもかまわない。   In the reaction of the zinc salt solution and the ligand, after the zinc salt and the ligand are charged into the container, the zinc salt and the ligand are separately prepared as solutions, in addition to the method of adding the solvent, These solutions may be mixed. The method of mixing the solution may be adding the ligand solution to the zinc salt solution or vice versa. In addition, the mixing method is not necessarily performed in a solution. For example, a method of adding a solid ligand to a zinc salt solution and simultaneously adding a solvent, or after charging a zinc salt into a reaction vessel, Various methods are possible as long as the reaction finally occurs substantially in a solvent, such as by injecting a solid or solution of the above, and further injecting a solution for dissolving the zinc salt. However, the method of dropping and mixing the zinc salt solution and the ligand solution is industrially the most convenient and preferable. In addition, in order to form a zeolite-like skeleton, in order to quickly and uniformly mix metal ions and ligands, it is preferable to mix the solution with stirring in any of the above methods. Here, stirring in the present invention means using a magnetic stirrer, a mechanical stirrer, or the like to rotate a bar, plate, or propeller-shaped stirrer in a tank at a constant speed in one direction, thereby increasing the uniformity of the solution. Shows general operations in chemical reactions. Therefore, it is sufficient that the solution is substantially stirred, but for efficient reaction, a stirrer having a length of 1/100 to 2/1 of the diameter of the reaction vessel is used. It is preferable to stir at 3000 rpm or less, preferably 10 rpm / min or more and 2000 rpm or less. This stirring operation is intended to increase the uniformity of the metal ions and ligands at the molecular level, particularly in the initial stage of the reaction, and therefore the initial stirring of the reaction is preferable. The initial stage of the reaction is within 20 minutes after the metal ion and the ligand are mixed, and preferably within 10 minutes from the viewpoint of suppressing side reactions. The stirring time is 1 minute or longer, and preferably 50 minutes or longer from the viewpoint of suppressing side reactions. Since the aim is to improve the uniformity of the solution in the initial stage of the reaction, the stirring may be performed for the above time or more, that is, the stirring may be stopped or continued after a predetermined time. Absent.

溶液の濃度は、金属塩溶液は80mmol/L〜2mol/L、好ましくは40mmol/L〜4mol/Lであり、配位子の有機溶液は80mmol/L〜2mol/L、好ましくは60mmol/L〜3mol/Lである。これより低い濃度で反応を行っても目的物は得られるが、製造効率が低下するため好ましくない。また、これより高い濃度では、吸着能が低下するため好ましくない。   The concentration of the solution is 80 mmol / L to 2 mol / L, preferably 40 mmol / L to 4 mol / L for the metal salt solution, and 80 mmol / L to 2 mol / L, preferably 60 mmol / L to the organic solution of the ligand. 3 mol / L. Even if the reaction is carried out at a concentration lower than this, the desired product can be obtained, but this is not preferable because the production efficiency is lowered. On the other hand, a concentration higher than this is not preferable because the adsorption ability is lowered.

反応温度は−20〜180℃、好ましくは25〜150℃である。これ以下の低温で行うと、原料の溶解度が下がるため好ましくない。オートクレーブなどを用いて、TMTMより高温で反応を行うことも可能であるが、加熱などのエネルギーコストの割には、収率は向上しないため実質的な意味はない。 The reaction temperature is -20 to 180 ° C, preferably 25 to 150 ° C. If it is carried out at a lower temperature than this, the solubility of the raw material is lowered, which is not preferable. Although it is possible to carry out the reaction at a temperature higher than that of TMTM using an autoclave or the like, there is no substantial meaning for the energy cost such as heating because the yield does not improve.

本発明の反応で用いられる亜鉛塩とbpyと5位に置換基を有するイソフタル酸類の混合比率は、金属:二種の配位子の合計で1:5〜5:1のモル比、好ましくは1:3〜3:3のモル比の範囲内である。これ以外の範囲では、目的物の収率が低下し、また、未反応の原料が残留して、目的物の取り出しが困難となる。また、bpyと置換イソフタル酸の混合比は、1:5〜5:1のモル比、好ましくは1:3〜3:1のモル比の範囲内である。これ以外の範囲では、目的物の収率が低下し、また、未反応の原料が残留して、目的物の取り出しが困難となる。   The mixing ratio of zinc salt used in the reaction of the present invention, bpy, and isophthalic acid having a substituent at the 5-position is a molar ratio of 1: 5 to 5: 1 in total of metal: two kinds of ligands, preferably Within a molar ratio range of 1: 3 to 3: 3. In other ranges, the yield of the target product decreases, and unreacted raw materials remain, making it difficult to take out the target product. The mixing ratio of bpy and substituted isophthalic acid is within the range of 1: 5 to 5: 1 molar ratio, preferably 1: 3 to 3: 1. In other ranges, the yield of the target product decreases, and unreacted raw materials remain, making it difficult to take out the target product.

反応は通常のガラスライニングのSUS製の反応容器および機械式攪拌機を使用して行うことができる。反応終了後は濾過、乾燥を行うことで目的物質と原料の分離を行い、純度の高い目的物質を製造することが可能である。   The reaction can be carried out using an ordinary glass-lined SUS reaction vessel and a mechanical stirrer. After completion of the reaction, the target substance and raw material can be separated by filtration and drying to produce a target substance with high purity.

上記の反応により得られた多孔性高分子金属錯体が目的とするBCTネットワークを有しているかどうかは、単結晶X線結晶解析により得られた反射を解析することで確認することが出来る。また粉末X線解析の反射パターンによっても確認出来る。上記の反応により得られた多孔性高分子金属錯体が多孔質であるかどうかは、熱重量分析(TGA)により確認することが可能である。たとえば、窒素気流下(流量=50mL/分)で、昇温速度=5℃/分の測定で、温度範囲が室温〜200℃までの重量減が5%以上であるかどうかで確認出来る。上記の反応により得られた多孔性高分子金属錯体のガス吸着能は、市販のガス吸着装置を用いて測定が可能である。   Whether the porous polymer metal complex obtained by the above reaction has the target BCT network can be confirmed by analyzing the reflection obtained by single crystal X-ray crystal analysis. It can also be confirmed by the reflection pattern of powder X-ray analysis. Whether or not the porous polymer metal complex obtained by the above reaction is porous can be confirmed by thermogravimetric analysis (TGA). For example, under a nitrogen stream (flow rate = 50 mL / min), the temperature increase rate can be measured by measuring at 5 ° C./min, whether the weight loss from the temperature range of room temperature to 200 ° C. is 5% or more. The gas adsorption ability of the porous polymer metal complex obtained by the above reaction can be measured using a commercially available gas adsorption apparatus.

本発明の多孔性高分子金属錯体は、原料として複数種のイソフタル酸類を混合使用して、使用した複数種のイソフタル酸類を含有する多孔性高分子金属錯体を合成する、いわゆる固溶体型の多孔性高分子金属錯体を形成する事が可能であることが確認された。この際、混合して使用する複数種のイソフタル酸類の少なくとも一種類は、パーフルオロアルキル基を5位に有している必要があり、これの含有率は5%以上、好ましくは20%以上である。   The porous polymer metal complex of the present invention is a so-called solid solution type porous material that synthesizes a porous polymer metal complex containing a plurality of types of isophthalic acids by using a mixture of a plurality of types of isophthalic acids as a raw material. It was confirmed that a polymer metal complex can be formed. At this time, at least one kind of a plurality of types of isophthalic acids to be used in combination needs to have a perfluoroalkyl group at the 5-position, and the content thereof is 5% or more, preferably 20% or more. is there.

本発明の多孔性高分子金属錯体は、図7に示したとおり、ふっ素原子で表面が覆われた大きな細孔とふっ素原子が存在しない小さい細孔という、大きさ、化学的性質が全く異なる二種類の細孔が存在する。本発明によれば、理論に拘束されるわけではないが、分極率の大きなふっ素原子が存在する大きな細孔には、二酸化炭素、酸素、一酸化炭素など、小さな細孔には窒素が吸着されやすく、結果として、二酸化炭素、酸素、一酸化炭素などの吸着量が多く、窒素の吸着量が小さいという特異的な性質が生じると推定される。   As shown in FIG. 7, the porous polymer metal complex of the present invention has two completely different sizes and chemical properties: a large pore whose surface is covered with fluorine atoms and a small pore where no fluorine atoms are present. There are types of pores. According to the present invention, although not limited by theory, nitrogen is adsorbed to small pores such as carbon dioxide, oxygen, and carbon monoxide in large pores where fluorine atoms having a high polarizability exist. As a result, it is presumed that a specific property that a large amount of carbon dioxide, oxygen, carbon monoxide or the like is adsorbed and a small amount of nitrogen is adsorbed occurs.

多孔性高分子金属錯体の調製方法は種々の条件があり、一義的に決定できるものではないが、ここでは実施例に基づき説明する。
なお、官能基が5位に置換したふっ素原子を含有するイソフタル酸類は、以下の文献を参考に合成した。
柴崎ら、Chem. Asian J. 2006, 1, 314 - 321
また、粉末X線回折測定には、ブルカーAX(株)社製粉末X線装置DISCOVER D8 with GADDSを用いた。
The preparation method of the porous polymer metal complex has various conditions and cannot be uniquely determined, but here, it will be described based on examples.
In addition, isophthalic acids containing a fluorine atom having a functional group substituted at the 5-position were synthesized with reference to the following documents.
Shibasaki et al., Chem. Asian J. 2006, 1, 314-321
For powder X-ray diffraction measurement, a powder X-ray apparatus DISCOVER D8 with GADDS manufactured by Bruker AX Co., Ltd. was used.

実施例1
硝酸亜鉛3水和物0.02ミリモルをジメチルホルムアミド5mLに溶解した。5−ノルマルウンデカフルオロペンチルイソフタル酸(5位にノルマルC511基を有するイソフタル酸)0.02ミリモルおよびbpy0.02ミリモルをエタノール5mLに溶解し、直径3センチのガラス溶液にいれ、直径1センチの攪拌子を入れ、磁気攪拌機により溶液を200rpmで攪拌しながら、前述の亜鉛塩のDMF溶液を加え、室温でさらに1時間攪拌した。そののち、溶液を直径5ミリのガラス試験管に移し、蓋をして、80℃で3日間加熱した。得られた針状の単結晶を大気に暴露させないようにパラトンにてコーティングした後、(株)リガク社製単結晶測定装置(極微小結晶用単結晶構造解析装置VariMax、MoK・線(λ=0.71069Å))にて測定し(照射時間32秒、d=45ミリ、2θ=−20°,温度=−170℃)、得られた回折像をリガク(株)製解析ソフトウエア「CrystalStructure」を使用して解析し、図7に示すようにいわゆるBCTネットワーク構造を有していることを確認した(a=32.50, b=32.50, c=9.23; α=90、β=90, γ=90; 空間群=I4mm))。解析により、細孔内に存在する溶媒(前述の式(2)のG=ゲスト分子)の存在が明らかになったが、図の見やすさの為に図7からは削除した。
Example 1
0.02 mmol of zinc nitrate trihydrate was dissolved in 5 mL of dimethylformamide. 0.02 mmol of 5- normal undecafluoropentylisophthalic acid (isophthalic acid having a normal C 5 F 11 group at the 5-position) and 0.02 mmol of bpy were dissolved in 5 mL of ethanol, and placed in a glass solution having a diameter of 3 cm. A 1-cm stir bar was added, the above-described zinc salt DMF solution was added while stirring the solution at 200 rpm with a magnetic stirrer, and the mixture was further stirred at room temperature for 1 hour. After that, the solution was transferred to a 5 mm diameter glass test tube, capped and heated at 80 ° C. for 3 days. The obtained needle-shaped single crystal was coated with Palaton so as not to be exposed to the atmosphere, and then a single crystal measuring device manufactured by Rigaku Co., Ltd. 0.71069 mm)) (irradiation time 32 seconds, d = 45 mm, 2θ = −20 °, temperature = −170 ° C.), and the obtained diffraction image was analyzed by Rigaku Corporation's analysis software “CrystalStructure”. Was confirmed to have a so-called BCT network structure as shown in FIG. 7 (a = 32.50, b = 32.50, c = 9.23; α = 90, β = 90, γ = 90; space group = I 4 mm)). Analysis revealed the presence of the solvent present in the pores (G in the above formula (2) = guest molecule), but it was deleted from FIG. 7 for ease of viewing.

また硝酸亜鉛3水和物1ミリモル、5−ノルマルウンデカフルオロペンチルイソフタル酸(5位にノルマルCF11基を有するイソフタル酸)1ミリモルおよびbpy1ミリモルをエタノール50mLとジメチルホルムアミド50mLの混合溶媒に溶解し、ただちに直径3センチのガラス溶液にいれ、直径0.7センチの攪拌子を入れ、磁気攪拌機により溶液を100rpmで攪拌しながら80℃で3日間加熱した。得られた粉末を濾過し、エタノールで洗浄し、真空乾燥し、白色の粉末79mgを得た。この粉末を、ブルカーAX(株)社製粉末X線装置DISCOVER D8 with GADDSにより測定した結果(CuKα(λ =1.54Å)、2θ=4〜40、室温にて測定)、5.6度、8.6度、9.9度、10.9度、11.6度、13.8度、14.8度、15.5度、16.4度、17.2度、19.7度に反射があり、本反射は、上記の単結晶の粉末シミュレーションパターンと同一であった(図8)。すなわち、上記の二種の本方法にて、BCTネットワーク構造を有する多孔性高分子金属錯体が合成出来、それが、単結晶X線回折および粉末X線回折法により解析可能であることを確認した。 Also, 1 mmol of zinc nitrate trihydrate, 1 mmol of 5-normal undecafluoropentylisophthalic acid (isophthalic acid having a normal C 5 F 11 group at the 5-position) and 1 mmol of bpy in a mixed solvent of 50 mL of ethanol and 50 mL of dimethylformamide. After dissolution, the solution was immediately put into a glass solution having a diameter of 3 centimeters, a stirrer having a diameter of 0.7 centimeters was added, and the solution was heated at 80 ° C. for 3 days while stirring at 100 rpm with a magnetic stirrer. The obtained powder was filtered, washed with ethanol, and vacuum-dried to obtain 79 mg of white powder. As a result of measuring this powder with a powder X-ray apparatus DISCOVER D8 with GADDS manufactured by Bruker AX Co., Ltd. (CuKα (λ = 1.54Å), 2θ = 4-40, measured at room temperature), 5.6 degrees, 8.6 degrees, 9.9 degrees, 10.9 degrees, 11.6 degrees, 13.8 degrees, 14.8 degrees, 15.5 degrees, 16.4 degrees, 17.2 degrees, 19.7 degrees There was reflection, and this reflection was the same as the above-mentioned single crystal powder simulation pattern (FIG. 8). That is, it was confirmed that a porous polymer metal complex having a BCT network structure can be synthesized by the above two kinds of the present methods and can be analyzed by single crystal X-ray diffraction and powder X-ray diffraction methods. .

また、本材料の結晶格子の熱的な膨張収縮を評価するため、粉末X線の温度可変測定を行った。この結果、室温から120℃において、反射ピークの位置がほぼ全く変わらなかった。すなわち、本材料は、室温〜120℃の範囲に於いて、熱的に結晶格子サイズが変化しない、すなわち、材料の熱収縮が極めて小さいことがわかった。   In order to evaluate the thermal expansion and contraction of the crystal lattice of this material, a temperature variable measurement of powder X-rays was performed. As a result, the position of the reflection peak was almost completely unchanged from room temperature to 120 ° C. That is, it was found that the crystal lattice size does not change thermally in the range of room temperature to 120 ° C., that is, the thermal shrinkage of the material is extremely small.

実施例2
実施例1と同様にして、硝酸亜鉛3水和物1ミリモル、5−トリフルオロメチルイソフタル酸(5位にCF基を有するイソフタル酸)1ミリモルおよびbpy1ミリモルをエタノール50mLとジメチルホルムアミド50mLの混合溶媒に溶解し、ただちに100mLのナス形フラスコにいれ、直径1センチの攪拌子を入れ、磁気攪拌機により溶液を400rpmで攪拌しながら80℃で3日間加熱した。得られた粉末を濾過し、エタノールで洗浄し、真空乾燥し、白色の粉末97mgを得た。
Example 2
In the same manner as in Example 1, 1 mmol of zinc nitrate trihydrate, 1 mmol of 5-trifluoromethylisophthalic acid (isophthalic acid having a CF 3 group at the 5-position) and 1 mmol of bpy were mixed with 50 mL of ethanol and 50 mL of dimethylformamide. It was dissolved in a solvent, and immediately put into a 100 mL eggplant-shaped flask. A stir bar having a diameter of 1 cm was added, and the solution was heated at 80 ° C. for 3 days while stirring at 400 rpm with a magnetic stirrer. The obtained powder was filtered, washed with ethanol, and vacuum-dried to obtain 97 mg of white powder.

本粉末を測定した粉末X線回折チャート及び実施例1で得られた単結晶をもとに作製したシミュレートパターンを図9に示す。下の点線がシミュレートパターン、上の実線が測定データであり、横軸は2θ、縦軸は強度である。これらはほぼ同一であり、実施例2で得られた多孔性高分子金属錯体は、実施例1で得られたBCT骨格と同一の構造を有している事がわかる。   FIG. 9 shows a simulation pattern produced based on the powder X-ray diffraction chart obtained by measuring this powder and the single crystal obtained in Example 1. The lower dotted line is the simulated pattern, the upper solid line is the measurement data, the horizontal axis is 2θ, and the vertical axis is the intensity. These are almost the same, and it can be seen that the porous polymer metal complex obtained in Example 2 has the same structure as the BCT skeleton obtained in Example 1.

実施例3
実施例1と同様にして、硝酸亜鉛3水和物1ミリモル、5−ノルマルヘプタフルオロプロピルイソフタル酸(5位にノルマルC37基を有するイソフタル酸)1ミリモルおよび4,4'-ビピリジン(bpy)1ミリモルをエタノール50mLとジメチルホルムアミド50mLの混合溶媒に溶解し、ただちに100mLのナス形フラスコにいれ、直径2センチの攪拌子を入れ、磁気攪拌機により溶液を400rpmで攪拌しながら80℃で3日間加熱した。得られた針状の単結晶をすりつぶし、得られた粉末を測定した粉末X線回折チャート及び実施例1で得られた単結晶をもとに作製したシミュレートパターンを図10に示す。下の点線がシミュレートパターン、上の実線が測定データであり、横軸は2θ、縦軸は強度である。これらはほぼ同一であり、実施例3で得られた多孔性高分子金属錯体は、実施例1で得られたBCT骨格と同一の構造を有している事がわかる。
Example 3
In the same manner as in Example 1, 1 mmol of zinc nitrate trihydrate, 1 mmol of 5-normalheptafluoropropylisophthalic acid (isophthalic acid having a normal C 3 F 7 group at the 5-position) and 4,4′-bipyridine ( (bpy) 1 mmol is dissolved in a mixed solvent of 50 mL of ethanol and 50 mL of dimethylformamide, and immediately put into a 100 mL eggplant-shaped flask. Heated for days. FIG. 10 shows a simulation pattern prepared based on the powder X-ray diffraction chart obtained by grinding the obtained needle-like single crystal and measuring the obtained powder and the single crystal obtained in Example 1. The lower dotted line is the simulated pattern, the upper solid line is the measurement data, the horizontal axis is 2θ, and the vertical axis is the intensity. These are almost the same, and it can be seen that the porous polymer metal complex obtained in Example 3 has the same structure as the BCT skeleton obtained in Example 1.

実施例4
実施例1と同様にして、硝酸亜鉛3水和物1ミリモル、5−ノルマルヘプタデカフルオロオクチルイソフタル酸(5位にノルマルC17基を有するイソフタル酸)1ミリモルおよびbpy1ミリモルをエタノール50mLとジメチルホルムアミド50mLの混合溶媒に溶解し、ただちに100mLのナス形フラスコにいれ、直径2センチの攪拌子を入れ、磁気攪拌機により溶液を600rpmで攪拌しながら80℃で3日間加熱した。得られた粉末を濾過し、エタノールで洗浄し、真空乾燥し、白色の粉末81mgを得た。本粉末を測定した粉末X線回折チャート及び実施例1で得られた単結晶をもとに作製したシミュレートパターンを図11に示す。下の点線がシミュレートパターン、上の実線が測定データであり、横軸は2θ、縦軸は強度である。これらはほぼ同一であり、実施例4で得られた多孔性高分子金属錯体は、実施例1で得られたBCT骨格と同一の構造を有している事がわかる。
Example 4
In the same manner as in Example 1, 1 mmol of zinc nitrate trihydrate, 1 mmol of 5-normalheptadecafluorooctylisophthalic acid (isophthalic acid having a normal C 8 C 17 group at the 5-position) and 1 mmol of bpy were added to 50 mL of ethanol. The sample was dissolved in a mixed solvent of 50 mL of dimethylformamide, immediately put into a 100 mL eggplant-shaped flask, a 2 cm diameter stirring bar was added, and the solution was heated at 80 ° C. for 3 days while stirring at 600 rpm with a magnetic stirrer. The obtained powder was filtered, washed with ethanol, and vacuum-dried to obtain 81 mg of white powder. FIG. 11 shows a simulation pattern produced based on the powder X-ray diffraction chart obtained by measuring this powder and the single crystal obtained in Example 1. The lower dotted line is the simulated pattern, the upper solid line is the measurement data, the horizontal axis is 2θ, and the vertical axis is the intensity. These are almost the same, and it can be seen that the porous polymer metal complex obtained in Example 4 has the same structure as the BCT skeleton obtained in Example 1.

比較例1
実施例1と同様にして、硝酸亜鉛3水和物1ミリモル、5−ブチルイソフタル酸1ミリモルおよびbpy1ミリモルをエタノール50mLとジメチルホルムアミド50mLの混合溶媒に溶解し、ただちに100mLのナス形フラスコにいれ、直径2センチの攪拌子を入れ、磁気攪拌機により溶液を600rpmで攪拌しながら80℃で3日間加熱した。得られた粉末を濾過し、エタノールで洗浄し、真空乾燥し、白色の粉末128mgを得た。本粉末を測定した粉末X線回折チャート及び実施例1で得られた単結晶をもとに作製したシミュレートパターンを図12に示す。下の点線がシミュレートパターン、上の実線が測定データであり、横軸は2θ、縦軸は強度である。これらはほぼ同一であり、本反応で得られた多孔性高分子金属錯体は、実施例1で得られたBCT骨格と同一の構造を有している事がわかる。
Comparative Example 1
In the same manner as in Example 1, 1 mmol of zinc nitrate trihydrate, 1 mmol of 5-butylisophthalic acid and 1 mmol of bpy were dissolved in a mixed solvent of 50 mL of ethanol and 50 mL of dimethylformamide, and immediately put into a 100 mL eggplant-shaped flask. A stir bar having a diameter of 2 centimeters was placed, and the solution was heated at 80 ° C. for 3 days while stirring at 600 rpm with a magnetic stirrer. The obtained powder was filtered, washed with ethanol, and vacuum-dried to obtain 128 mg of white powder. FIG. 12 shows a simulation pattern produced based on the powder X-ray diffraction chart obtained by measuring this powder and the single crystal obtained in Example 1. The lower dotted line is the simulated pattern, the upper solid line is the measurement data, the horizontal axis is 2θ, and the vertical axis is the intensity. These are almost the same, and it can be seen that the porous polymer metal complex obtained by this reaction has the same structure as the BCT skeleton obtained in Example 1.

比較例2
実施例1と同様にして、硝酸亜鉛3水和物1ミリモル、5−ジメチルアミノイソフタル酸1ミリモルおよびbpy1ミリモルをエタノール50mLとジメチルホルムアミド50mLの混合溶媒に溶解し、ただちに100mLのナス形フラスコにいれ、直径2センチの攪拌子を入れ、磁気攪拌機により溶液を600rpmで攪拌しながら80℃で3日間加熱した。得られた粉末を濾過し、エタノールで洗浄し、真空乾燥し、薄黄色の粉末81mgを得た。本粉末を測定した粉末X線回折チャート及び実施例1で得られた単結晶をもとに作製したシミュレートパターンを図13に示す。下の点線がシミュレートパターン、上の実線が測定データであり、横軸は2θ、縦軸は強度である。これらはほぼ同一であり、本反応で得られた多孔性高分子金属錯体は、実施例1で得られたBCT骨格と同一の構造を有している事がわかる。
Comparative Example 2
In the same manner as in Example 1, 1 mmol of zinc nitrate trihydrate, 1 mmol of 5-dimethylaminoisophthalic acid and 1 mmol of bpy were dissolved in a mixed solvent of 50 mL of ethanol and 50 mL of dimethylformamide, and immediately put into a 100 mL eggplant-shaped flask. A stir bar having a diameter of 2 centimeters was added, and the solution was heated at 80 ° C. for 3 days while stirring at 600 rpm with a magnetic stirrer. The obtained powder was filtered, washed with ethanol, and vacuum-dried to obtain 81 mg of light yellow powder. FIG. 13 shows a simulated pattern produced based on the powder X-ray diffraction chart obtained by measuring this powder and the single crystal obtained in Example 1. The lower dotted line is the simulated pattern, the upper solid line is the measurement data, the horizontal axis is 2θ, and the vertical axis is the intensity. These are almost the same, and it can be seen that the porous polymer metal complex obtained by this reaction has the same structure as the BCT skeleton obtained in Example 1.

<ガス吸着の結果>
得られたガス吸着材の種々のガス吸着特性を種々の温度で測定した。BET自動吸着装置(日本ベル株式会社製ベルミニII)を用いた。測定に先立って試料を393Kで6時間真空乾燥して、微量残存している可能性がある溶媒分子などを除去した。
<Results of gas adsorption>
Various gas adsorption characteristics of the obtained gas adsorbent were measured at various temperatures. A BET automatic adsorption device (Bell Mini II manufactured by Nippon Bell Co., Ltd.) was used. Prior to the measurement, the sample was vacuum-dried at 393 K for 6 hours to remove solvent molecules that may remain in a trace amount.

図14のグラフに、実施例1で得られた多孔性高分子金属錯体の吸着等温線を示す。四角(■)は一酸化炭素(82K),三角(▲)は酸素(90K),丸(●)は二酸化炭素(195K),バツ(×)は窒素(77K)であり、これらのカッコ内は測定温度である。二酸化炭素、酸素、一酸化炭素が多量に吸着していることがわかった。一方で、窒素ガスの吸着量は少なく、二酸化炭素/窒素、酸素/窒素、一酸化炭素/窒素の吸着量比が大きく、ガス分離材料として優れていることがわかった。また、いずれのガスにおいても明確なステップがみられ、ガス吸着にともない、構造が変化している可能性が示唆された。   The graph of FIG. 14 shows the adsorption isotherm of the porous polymer metal complex obtained in Example 1. Square (■) is carbon monoxide (82K), triangle (▲) is oxygen (90K), circle (●) is carbon dioxide (195K), x (x) is nitrogen (77K). Measurement temperature. It was found that carbon dioxide, oxygen and carbon monoxide were adsorbed in large quantities. On the other hand, the adsorption amount of nitrogen gas is small, and the adsorption ratios of carbon dioxide / nitrogen, oxygen / nitrogen, and carbon monoxide / nitrogen are large, indicating that it is excellent as a gas separation material. Moreover, a clear step was seen in any gas, suggesting the possibility that the structure has changed due to gas adsorption.

表1に、実施例2−4で得られた多孔性高分子金属錯体の、二酸化炭素(195K)、酸素(77K)、一酸化炭素(82K)、窒素(77K)(カッコ内は測定温度)の吸着量を示す(mL/g STP)。   Table 1 shows carbon dioxide (195K), oxygen (77K), carbon monoxide (82K), nitrogen (77K) of the porous polymer metal complex obtained in Example 2-4 (measured temperature in parentheses). (ML / g STP).

いずれの場合も二酸化炭素、酸素、一酸化炭素が多量に吸着していることがわかった。一方で、窒素ガスの吸着量は少なく、二酸化炭素/窒素、酸素/窒素、一酸化炭素/窒素の吸着量比が大きく、ガス分離材料として優れていることがわかった。また、いずれのガスにおいても明確なステップがみられ、ガス吸着にともない、構造が変化している可能性が示唆された。   In any case, it was found that carbon dioxide, oxygen, and carbon monoxide were adsorbed in large amounts. On the other hand, the adsorption amount of nitrogen gas is small, and the adsorption ratios of carbon dioxide / nitrogen, oxygen / nitrogen, and carbon monoxide / nitrogen are large, indicating that it is excellent as a gas separation material. Moreover, a clear step was seen in any gas, suggesting the possibility that the structure has changed due to gas adsorption.

表2に、実施例2−4で得られた多孔性高分子金属錯体の、二酸化炭素、酸素、一酸化炭素、窒素の、273Kでの吸着量を示す(mL/g STP)。
Table 2 shows the amount of adsorption of carbon dioxide, oxygen, carbon monoxide, and nitrogen at 273 K of the porous polymer metal complex obtained in Example 2-4 (mL / g STP).

いずれの場合も二酸化炭素、酸素、一酸化炭素が多量に吸着していることがわかった。一方で、窒素ガスの吸着量は少なく、二酸化炭素/窒素、酸素/窒素、一酸化炭素/窒素の吸着量比が大きく、ガス分離材料として優れていることがわかった。   In any case, it was found that carbon dioxide, oxygen, and carbon monoxide were adsorbed in large amounts. On the other hand, the adsorption amount of nitrogen gas is small, and the adsorption ratios of carbon dioxide / nitrogen, oxygen / nitrogen, and carbon monoxide / nitrogen are large, indicating that it is excellent as a gas separation material.

表3に、比較例1,2で得られた、ふっ素原子を含有しない多孔性高分子金属錯体の、二酸化炭素、酸素、一酸化炭素、窒素の、273Kでの吸着量を示す(mL/g STP)。
Table 3 shows the adsorption amount of carbon dioxide, oxygen, carbon monoxide and nitrogen at 273 K of the porous polymer metal complex containing no fluorine atom obtained in Comparative Examples 1 and 2 (mL / g STP).

いずれの場合も二酸化炭素/窒素、酸素/窒素、一酸化炭素/窒素の吸着量比が小さく、ガス分離材料として優れていないことがわかった。   In any case, the carbon dioxide / nitrogen, oxygen / nitrogen, and carbon monoxide / nitrogen adsorption ratios were small, indicating that they were not excellent as gas separation materials.

<耐熱性>
PCPの耐熱性は、熱重量分析装置(TGA)にて評価可能である。ふっ素の耐熱性への影響を評価するために、ふっ素を含む材料(実施例1及び3)と、含まない材料(特開2011-37794号公報、特開2012-17268号公報に基づき合成)の耐熱性をTGAにて評価した所、ふっ素を含む材料はいずれも熱分解温度が380℃程度、ふっ素を含まない材料はいずれも280℃程度であり、ふっ素を含む材料は含まない材料に比較して耐熱性が100℃以上向上することがわかった。熱重量分析は、株式会社リガク 熱重量分析装置TGA8120を用いて、試料容器にはアルミニウムのパンを用い、窒素気流下(100mL/分)で、5℃/分の昇温速度にて測定した。
<Heat resistance>
The heat resistance of PCP can be evaluated with a thermogravimetric analyzer (TGA). In order to evaluate the influence of fluorine on the heat resistance, a material containing fluorine (Examples 1 and 3) and a material containing no fluorine (synthesized based on JP 2011-37794 A and JP 2012-17268 A) were used. When the heat resistance was evaluated by TGA, all the materials containing fluorine had a thermal decomposition temperature of about 380 ° C., and all the materials not containing fluorine were about 280 ° C., compared to materials not containing fluorine. It was found that the heat resistance was improved by 100 ° C. or more. Thermogravimetric analysis was performed using a Rigaku Corporation thermogravimetric analyzer TGA8120, using an aluminum pan as the sample container, and under a nitrogen stream (100 mL / min) at a rate of temperature increase of 5 ° C./min.

本発明の多孔性高分子金属錯体は、配位子の整列によって形成される多数の微細孔が物質内部に存在する。この多孔性を生かして二酸化炭素や酸素、窒素、一酸化炭素の吸着量が多く、さらに骨格構造の特異性などにより、ガスの回収が容易に行えるため、種々のがすの、分離、貯蔵に好適に使用出来る。   In the porous polymer metal complex of the present invention, a large number of micropores formed by alignment of ligands are present in the substance. Taking advantage of this porosity, carbon dioxide, oxygen, nitrogen, and carbon monoxide can be adsorbed in a large amount, and the gas can be easily recovered due to the specificity of the skeletal structure. It can be used suitably.

Claims (5)

下記式(1)
[Zn(bpy)X]n (1)
(式中、bpyは4,4'-ビピリジン、Xは5位に炭素数1から8であるパーフルオロアルキル基を置換基として有するイソフタル酸誘導体イオンである。nは、Zn(bpy)Xから成る構成単位が多数集合しているという特性を示すもので、nの大きさは特に限定されない。)
で表され、
亜鉛イオンが3個の1座配位のカルボキシル基、1個のbpy分子の窒素原子により配位された4配位状態にあり、さらに全体のネットワーク構造が、ゼオライトの分類でいわゆるBCT骨格に相当する三次元ネットワーク構造を有している多孔性高分子金属錯体。
Following formula (1)
[Zn (bpy) X] n (1)
(Wherein bpy is 4,4′-bipyridine, X is an isophthalic acid derivative ion having a perfluoroalkyl group having 1 to 8 carbon atoms as a substituent at the 5-position. N is from Zn (bpy) X. It shows the characteristic that a large number of constituent units are assembled, and the size of n is not particularly limited.)
Represented by
The zinc ion is in a four-coordinate state coordinated by three monodentate carboxyl groups and one nitrogen atom of a bpy molecule, and the entire network structure corresponds to a so-called BCT skeleton in the classification of zeolite A porous polymer metal complex having a three-dimensional network structure.
Xの前記置換基が、CF3,C25,n−C37,n−C49,n−C511基から選ばれるものである請求項1に記載の多孔性高分子金属錯体。 2. The porosity according to claim 1, wherein the substituent of X is selected from CF 3 , C 2 F 5 , n-C 3 F 7 , n-C 4 F 9 , and n-C 5 F 11 groups. Polymer metal complex. 請求項1又は2に記載の多孔性高分子金属錯体を含むガス吸着材。   A gas adsorbent comprising the porous polymer metal complex according to claim 1. 請求項3に記載のガス吸着材を用いるガス分離装置。   A gas separator using the gas adsorbent according to claim 3. 請求項3に記載のガス吸着材を用いるガス貯蔵装置。   A gas storage device using the gas adsorbent according to claim 3.
JP2013040005A 2013-02-28 2013-02-28 Porous polymer metal complex, gas adsorbent, gas separation device and gas storage device using the same Expired - Fee Related JP5988896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013040005A JP5988896B2 (en) 2013-02-28 2013-02-28 Porous polymer metal complex, gas adsorbent, gas separation device and gas storage device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013040005A JP5988896B2 (en) 2013-02-28 2013-02-28 Porous polymer metal complex, gas adsorbent, gas separation device and gas storage device using the same

Publications (2)

Publication Number Publication Date
JP2014166971A true JP2014166971A (en) 2014-09-11
JP5988896B2 JP5988896B2 (en) 2016-09-07

Family

ID=51616881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013040005A Expired - Fee Related JP5988896B2 (en) 2013-02-28 2013-02-28 Porous polymer metal complex, gas adsorbent, gas separation device and gas storage device using the same

Country Status (1)

Country Link
JP (1) JP5988896B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014166970A (en) * 2013-02-28 2014-09-11 Nippon Steel & Sumitomo Metal Fluorine atom-containing porous polymer complex, gas adsorbent using the same, gas separation apparatus and gas storage apparatus
JP2014166969A (en) * 2013-02-28 2014-09-11 Nippon Steel & Sumitomo Metal Porous polymer metal complex, gas adsorbent, gas separation apparatus and gas storage apparatus using the same
JP2014169248A (en) * 2013-03-04 2014-09-18 Nippon Steel & Sumitomo Metal Coordinated polymer complex containing fluorine, gas adsorbent, gas separation device and gas storage device using the same
JP2015086219A (en) * 2013-09-26 2015-05-07 新日鐵住金株式会社 Fluorine-containing coordination high molecule complex and manufacturing method thereof, gas adsorbent, and gas separation apparatus and gas storage apparatus using the same
JPWO2015050236A1 (en) * 2013-10-02 2017-03-09 ダイキン工業株式会社 Fluorine-containing complex compound and method for producing fluorine-containing organic compound using the same
JP2017149683A (en) * 2016-02-25 2017-08-31 新日鐵住金株式会社 Three-dimensional porous polymer metal complex, and gas absorbent, gas separation device, gas storage device, catalyst, conductive material and sensor using the same
JP2022022982A (en) * 2020-07-01 2022-02-07 インディアン オイル コーポレイション リミテッド Zinc based metal organic frameworks (zit) with mixed ligands for hydrogen storage
WO2023067955A1 (en) * 2021-10-18 2023-04-27 新東工業株式会社 Gas measuring instrument

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6425378B2 (en) * 2013-12-18 2018-11-21 新日鐵住金株式会社 Fluorine-containing coordination polymer complex, gas adsorbent, gas separation device and gas storage device using the same
JP6422211B2 (en) * 2013-12-18 2018-11-14 新日鐵住金株式会社 Coordination polymer complex containing fluorine, gas adsorbent, gas separation device and gas storage device using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010042948A2 (en) * 2008-10-10 2010-04-15 Northwestern University Tetratopic phenyl compounds, related metal-organic framework materials and post-assembly elaboration
JP2010201292A (en) * 2009-02-27 2010-09-16 Kyoto Univ Gas adsorbent, molding for gas separation and gas separation method
JP2011037794A (en) * 2009-08-17 2011-02-24 Kuraray Co Ltd Metal complex and method for producing the same
JP2012017268A (en) * 2010-07-06 2012-01-26 Kuraray Co Ltd Metal complex and production method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010042948A2 (en) * 2008-10-10 2010-04-15 Northwestern University Tetratopic phenyl compounds, related metal-organic framework materials and post-assembly elaboration
JP2010201292A (en) * 2009-02-27 2010-09-16 Kyoto Univ Gas adsorbent, molding for gas separation and gas separation method
JP2011037794A (en) * 2009-08-17 2011-02-24 Kuraray Co Ltd Metal complex and method for producing the same
JP2012017268A (en) * 2010-07-06 2012-01-26 Kuraray Co Ltd Metal complex and production method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014166970A (en) * 2013-02-28 2014-09-11 Nippon Steel & Sumitomo Metal Fluorine atom-containing porous polymer complex, gas adsorbent using the same, gas separation apparatus and gas storage apparatus
JP2014166969A (en) * 2013-02-28 2014-09-11 Nippon Steel & Sumitomo Metal Porous polymer metal complex, gas adsorbent, gas separation apparatus and gas storage apparatus using the same
JP2014169248A (en) * 2013-03-04 2014-09-18 Nippon Steel & Sumitomo Metal Coordinated polymer complex containing fluorine, gas adsorbent, gas separation device and gas storage device using the same
JP2015086219A (en) * 2013-09-26 2015-05-07 新日鐵住金株式会社 Fluorine-containing coordination high molecule complex and manufacturing method thereof, gas adsorbent, and gas separation apparatus and gas storage apparatus using the same
JPWO2015050236A1 (en) * 2013-10-02 2017-03-09 ダイキン工業株式会社 Fluorine-containing complex compound and method for producing fluorine-containing organic compound using the same
US9802963B2 (en) 2013-10-02 2017-10-31 Daikin Industries, Ltd. Fluorine-containing complex compound, and production method for fluorine-containing organic compound employing same
USRE49222E1 (en) 2013-10-02 2022-09-27 Daikin Industries, Ltd. Fluorine-containing complex compound, and production method for fluorine-containing organic compound employing same
JP2017149683A (en) * 2016-02-25 2017-08-31 新日鐵住金株式会社 Three-dimensional porous polymer metal complex, and gas absorbent, gas separation device, gas storage device, catalyst, conductive material and sensor using the same
JP2022022982A (en) * 2020-07-01 2022-02-07 インディアン オイル コーポレイション リミテッド Zinc based metal organic frameworks (zit) with mixed ligands for hydrogen storage
JP7304382B2 (en) 2020-07-01 2023-07-06 インディアン オイル コーポレイション リミテッド Zinc-based metal-organic frameworks (ZITs) with mixed ligands for hydrogen storage
WO2023067955A1 (en) * 2021-10-18 2023-04-27 新東工業株式会社 Gas measuring instrument

Also Published As

Publication number Publication date
JP5988896B2 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
JP5988896B2 (en) Porous polymer metal complex, gas adsorbent, gas separation device and gas storage device using the same
JP5646789B2 (en) Porous polymer metal complex, gas adsorbent, gas separation device and gas storage device using the same
JP6080616B2 (en) Porous polymer metal complex, gas adsorbent, gas separation device and gas storage device using the same
JP6021691B2 (en) Porous polymer metal complex, gas adsorbent, gas separation device and gas storage device using the same
JP6132596B2 (en) Coordination polymer complex containing fluorine, gas adsorbent, gas separation device and gas storage device using the same
Li et al. The dynamic response of a flexible indium based metal–organic framework to gas sorption
JP6091256B2 (en) Porous polymer complex containing fluorine atom, gas adsorbent using the same, gas separation device and gas storage device
JP6456076B2 (en) Coordination polymer complex containing fluorine, gas adsorbent, gas separation device and gas storage device using the same
JP6456075B2 (en) Coordination polymer complex containing fluorine, gas adsorbent, gas separation device and gas storage device using the same
JP6452357B2 (en) Coordination polymer complex containing fluorine, gas adsorbent, gas separation device and gas storage device using the same
JP6425378B2 (en) Fluorine-containing coordination polymer complex, gas adsorbent, gas separation device and gas storage device using the same
JP6555861B2 (en) Coordinating complex containing fluorine or salt thereof, gas adsorbent and production method thereof, gas separation device and gas storage device using the same
US11420983B2 (en) Molecular hydrogen adsorbent comprising copper-BTC MOF
JP6525686B2 (en) Porous polymeric metal complex, gas adsorbent, gas separation device and gas storage device using the same
JP6422211B2 (en) Coordination polymer complex containing fluorine, gas adsorbent, gas separation device and gas storage device using the same
JP6591728B2 (en) Polymer complex containing bent ligand, gas adsorbent using the same, gas separation device and gas storage device
Choi et al. Gas sorption properties of a new three-dimensional in-abdc mof with a diamond net
EP2347821B1 (en) Gas adsorbing material, precursor of the gas adsorbing material, and process for producing gas adsorbing material
JP6671128B2 (en) Porous polymer metal complex, gas adsorbent, gas separation device and gas storage device using the same
JP6452356B2 (en) Coordination polymer complex containing fluorine, method for producing the same, gas adsorbent, gas separation device and gas storage device using the same
JP6676406B2 (en) Three-dimensional porous polymer metal complex, gas adsorbent using it, gas separation device, gas storage device, catalyst, conductive material, sensor
JP6338476B2 (en) Coordination polymer complex containing fluorine, gas adsorbent, gas separation device and gas storage device using the same
JP2020105118A (en) Porous polymer metal complex, gas adsorbent, and gas separation device and gas storage device using the same
KR20240045576A (en) Metal ORGANIC FRAMEWORK AND METHOD FOR PREPARING SAME
JP6761257B2 (en) Porous polymer metal complex, gas adsorbent using it, gas separator, gas storage device, catalyst, conductive material, sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160809

R150 Certificate of patent or registration of utility model

Ref document number: 5988896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees