JP2024011517A - Collecting method for suspended particle and continuous measuring device for suspended particle - Google Patents

Collecting method for suspended particle and continuous measuring device for suspended particle Download PDF

Info

Publication number
JP2024011517A
JP2024011517A JP2022113552A JP2022113552A JP2024011517A JP 2024011517 A JP2024011517 A JP 2024011517A JP 2022113552 A JP2022113552 A JP 2022113552A JP 2022113552 A JP2022113552 A JP 2022113552A JP 2024011517 A JP2024011517 A JP 2024011517A
Authority
JP
Japan
Prior art keywords
suspended particles
air
particles
coarse
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022113552A
Other languages
Japanese (ja)
Other versions
JP7333979B1 (en
Inventor
岳志 紀本
Takashi Kimoto
凌佑 秋田
Ryosuke Akita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimoto Electric Co Ltd
Original Assignee
Kimoto Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimoto Electric Co Ltd filed Critical Kimoto Electric Co Ltd
Priority to JP2022113552A priority Critical patent/JP7333979B1/en
Application granted granted Critical
Publication of JP7333979B1 publication Critical patent/JP7333979B1/en
Publication of JP2024011517A publication Critical patent/JP2024011517A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and a measuring device for collecting two kinds of particle and aerosol, included in the sample air and differing in particle size and concentration, separately by required amounts.
SOLUTION: A collecting method for suspended particles comprises: classifying suspended particles in air by a virtual impactor 1; separating air including coarse suspended particles of large particle size and air including fine suspended particles of small particle size from each other; sucking the air including the coarse suspended particles to collect the coarse suspended particles; and also sucking the air including the fine suspended particles through a bypass to collect the fine suspended particles at a position different from the collection position for the coarse suspended particles.
SELECTED DRAWING: Figure 2
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、環境大気や屋内空気中の浮遊粒子の捕集方法および浮遊粒子の連続測定装置に関する。 The present invention relates to a method for collecting suspended particles in ambient air or indoor air, and a continuous measuring device for suspended particles.

環境大気中や屋内空気中に浮遊する粒子は、呼吸器に重大な危害を及ぼす恐れがあるため、環境大気の環境基準や労働衛生環境基準が、国際機関(WHO)などや各国で、それぞれ定められている。また、そのための測定法として、粒径の大きい沈降性粒子(粒径10μm以上)の粒子を除いて捕集することが推奨されている。 Particles floating in the ambient air or indoor air can pose serious respiratory hazards, so environmental standards for ambient air and occupational health and environmental standards are being established by international organizations such as the WHO and each country. It is being In addition, as a measurement method for this purpose, it is recommended to remove and collect particles that are sedimentary particles with a large particle size (particle size of 10 μm or more).

このことから、日本では、粒径10μmを超える粒子を10μmで100%除いて捕集したもの(10μmで100%カット)を浮遊粒子状物質(SPM)と呼んでおり、諸外国では、粒径10μm以上を10μmで50%除いたものをPM10(10μmで50%カット)と呼んでいる。 For this reason, in Japan, particles with a particle size exceeding 10 μm that are collected by removing 100% of them with 10 μm (100% cut with 10 μm) are called suspended particulate matter (SPM), and in other countries, particles with a particle size of PM 10 (50% cut at 10 μm) is defined as PM 10 (50% cut at 10 μm) that is 10 μm or more.

また、1980年代から米国で行われた大規模疫学調査の結果から、PM10の中でも粒径2.5μm以下(2.5μmで50%カット)の粒子が心筋梗塞などの引き金になるとの報告から、世界的にPM2.5の環境基準が定められた。日本では、これを微小粒子状物質と呼んで基準が定められている。このことから、PM10やSPMに合わせて、PM2.5の測定が求められている。 Additionally, from the results of large-scale epidemiological surveys conducted in the United States since the 1980s, it has been reported that even among PM10 , particles with a particle size of 2.5 μm or less (2.5 μm cuts 50%) can trigger myocardial infarction. , environmental standards for PM 2.5 have been established worldwide. In Japan, standards have been set for this substance, which is called fine particulate matter. For this reason, measurement of PM 2.5 is required in addition to PM 10 and SPM.

一方、労働安全衛生基準でも空気中の浮遊粒子状物質に対する基準が定められている。粒径4μm以下(4μmで50%カット)の粒子は、肺胞まで達する恐れのある「吸入性粉じん」として、PM10と共に測定が求められている。 On the other hand, the Occupational Safety and Health Standards also set standards for suspended particulate matter in the air. Particles with a particle size of 4 μm or less (50% cut at 4 μm) are considered "respirable dust" that may reach the alveoli, and are required to be measured along with PM 10 .

また、呼吸器疾患における医学的な研究分野(例えばAerosol Science Technology and Applications, 2014.に総説が載っている)では、「吸入性粉じん」として粒径4μm以下ではなく、粒径5μm以下を「吸入性粉じん」としている。 Furthermore, in the field of medical research on respiratory diseases (for example, a review can be found in Aerosol Science Technology and Applications, 2014), particles with a particle size of 5 μm or less are considered “inhalable dust” rather than particles with a particle size of 4 μm or less. It is said to be "sexual dust".

一般に、5μm以下の粒子は、体内深くまで到達し一部が沈着するものが多く、健康影響が大きいと考えられる。中でも、粒径1μmを超え5μm未満の粒子は咽喉、気管部で吸着されることが多く、一部は肺まで到達し吸着する。一方、粒径1μm以下の粒子は、酸素や窒素ガスと似た挙動を示し、いったん肺にまで到達するが、そのほとんどが再び呼気と共に吐出される。 In general, many particles with a diameter of 5 μm or less reach deep into the body and some of them are deposited, and are considered to have a large impact on health. Among these, particles with a particle size of more than 1 μm and less than 5 μm are often adsorbed in the throat and trachea, and some of them reach the lungs where they are adsorbed. On the other hand, particles with a particle size of 1 μm or less behave similarly to oxygen or nitrogen gas, and once they reach the lungs, most of them are exhaled again with exhalation.

このように、空気中のエアロゾル(煙霧質)の分散相の粒子は、粒径によって体内沈着の仕方や成分は異なるため、それを分析するために、粒径1μmを超える粒子と粒径1μm以下の粒子を分けて捕集し、その重量を連続的に測定することができるサンプリング方法や装置の開発が望まれている。 In this way, particles in the dispersed phase of aerosols in the air differ in how they are deposited in the body and their components depending on the particle size, so in order to analyze this, we analyzed particles with a particle size of over 1 μm and particles with a particle size of 1 μm or less. It is desired to develop a sampling method and device that can separate and collect the particles and continuously measure their weight.

粒子の分級には、例えば特許文献1および2のように、バーチャルインパクタを用いた技術が知られているが、粒径1μmを超える浮遊粒子は、大気中に存在する量が少なく、分析手法に応じた量を捕集するには、大量の大気をサンプリングする必要があるため、これらの技術だけでは、上記の目的を達成するには十分ではない。 Techniques using virtual impactors are known for classifying particles, for example, as in Patent Documents 1 and 2, but suspended particles with a particle size of more than 1 μm exist in small amounts in the atmosphere, making it difficult to analyze them. These techniques alone are not sufficient to achieve the above objectives, as large amounts of the atmosphere need to be sampled to capture a corresponding amount.

同じサンプル空気中に含まれる粒子を、それぞれ別のスポットで分けて捕集しようとすると、粒径1μm以下の方が濃度が高いため、粒径1μm以下の粒子が過剰に捕集され、粒径1μmを超える粒径の浮遊粒子が分析手法に応じた量まで捕集できないという問題点がある。 If you try to separate and collect particles contained in the same sample air in different spots, particles with a diameter of 1 μm or less have a higher concentration, so particles with a diameter of 1 μm or less will be collected in excess, and the particle size will increase. There is a problem in that suspended particles with a particle size exceeding 1 μm cannot be collected in an amount suitable for the analysis method.

特開2016-142722号公報Japanese Patent Application Publication No. 2016-142722 特開2019-20372号公報JP 2019-20372 Publication

本発明の目的は、同じサンプル空気中に含まれる粒径1μmを超える粒径の粗大浮遊粒子と粒径1μm以下の微細浮遊粒子とを、それぞれ別のスポットで分けて捕集し、その分析手法に応じた量まで採取することができ、それぞれの粒子の捕集した質量を連続的に測定することができる浮遊粒子の捕集方法および浮遊粒子の連続測定装置を提供することである。 The purpose of the present invention is to separate and collect coarse suspended particles with a particle size of more than 1 μm and fine suspended particles with a particle size of 1 μm or less contained in the same sample air in different spots, and to develop an analysis method. It is an object of the present invention to provide a method for collecting suspended particles and a continuous measuring device for suspended particles, which can collect up to an amount according to the amount of particles and continuously measure the collected mass of each particle.

本発明は、空気中の浮遊粒子を、バーチャルインパクタで分級して、粒径の大きい粗大浮遊粒子を含む大気と粒径の小さい微細浮遊粒子を含む空気とに分け、
粗大浮遊粒子を含む空気を吸引して、粗大浮遊粒子をフィルタに捕集するとともに、
微細浮遊粒子を含む空気をバイパスさせながら吸引して、粗大浮遊粒子の捕集位置とは異なる位置で微細浮遊粒子をフィルタに捕集する、ことを特徴とする浮遊粒子の捕集方法である。
The present invention classifies suspended particles in the air using a virtual impactor and divides them into air containing coarse suspended particles with large particle sizes and air containing fine suspended particles with small particle sizes,
The air containing coarse suspended particles is sucked in, and the coarse suspended particles are collected in a filter.
This method of collecting suspended particles is characterized in that air containing fine suspended particles is sucked while being bypassed, and the fine suspended particles are collected on a filter at a position different from the position where coarse suspended particles are collected.

また、本発明は、浮遊粒子を含む空気を吸引して、吸引された空気中の浮遊粒子を、粒径の大きい粗大浮遊粒子を含む空気と、粒径の小さい微細浮遊粒子を含む空気とに分級するバーチャルインパクタと、
バーチャルインパクタに接続して設けられ、微細浮遊粒子を含む空気を吸引して排気部にバイパスさせるバイパス手段と、
テープ状フィルタを備え、該テープ状フィルタの異なる位置を介して、バーチャルインパクタによって分級された、粗大浮遊粒子を含む大気と微細浮遊粒子を含む空気とを吸引して、粗大浮遊粒子と微細浮遊粒子とをテープ状フィルタの異なる位置に各別に連続的に捕集する捕集手段と、
捕集手段によってテープ状フィルタの異なる位置に捕集された浮遊粒子を、それぞれ連続して検出する検出手段と、
検出手段の出力と、吸引空気流量の積算値とから空気中の粗大浮遊粒子と、空気中の微細浮遊粒子とを、演算して記録する演算記録手段とを含むことを特徴とする浮遊粒子の連続測定装置である。
Further, the present invention sucks air containing suspended particles and divides the suspended particles in the sucked air into air containing coarse suspended particles with a large particle size and air containing fine suspended particles with a small particle size. A virtual impactor for classification,
a bypass means that is connected to the virtual impactor and that sucks air containing fine suspended particles and bypasses it to an exhaust section;
A tape-shaped filter is provided, and air containing coarse suspended particles and air containing fine suspended particles, which have been classified by a virtual impactor, are sucked through different positions of the tape-shaped filter to produce coarse suspended particles and fine suspended particles. a collection means for successively collecting and separately at different positions of a tape-shaped filter;
detection means for successively detecting floating particles collected at different positions of the tape-shaped filter by the collection means;
A method for detecting suspended particles characterized by comprising a calculation recording means for calculating and recording coarse suspended particles in the air and fine suspended particles in the air from the output of the detection means and the integrated value of the suction air flow rate. It is a continuous measurement device.

本発明によれば、空気中において、粒径および濃度が異なる2種類の浮遊粒子を、同時に吸引するだけで、必要量の異なる2種類の粒子を、異なる別の位置に捕集し、それぞれの量を効率よく測定することができる。 According to the present invention, by simply suctioning two types of suspended particles with different particle sizes and concentrations in the air at the same time, two types of particles with different required amounts can be collected at different positions, and each Quantity can be measured efficiently.

本発明によれば、2種類の浮遊粒子の大気中の粒径や濃度の差に応じて、バイパスさせる空気量を調整することで、同時に吸引するだけで、それぞれの量を効率よく測定することができるので、空気中の物質の測定方法として適応性が高いという特徴を有する。 According to the present invention, by adjusting the amount of air to be bypassed according to the difference in particle size and concentration of two types of suspended particles in the atmosphere, it is possible to efficiently measure the amount of each by simply sucking them at the same time. This method is highly adaptable as a method for measuring substances in the air.

本発明の実施の一形態である浮遊粒子の測定装置に備えられるバーチャルインパクタ1の構成を模式的に示す断面図である。1 is a cross-sectional view schematically showing the configuration of a virtual impactor 1 included in a suspended particle measuring device according to an embodiment of the present invention. 図1のバーチャルインパクタ1を備える浮遊粒子の測定装置の構成を示す系統図である。2 is a system diagram showing the configuration of a suspended particle measuring device including the virtual impactor 1 of FIG. 1. FIG. フィルタ9の捕集位置3,3’;4,4’を示す平面図である。FIG. 4 is a plan view showing collection positions 3, 3'; 4, 4' of the filter 9; 図2に示す本実施形態の浮遊粒子の測定装置を用い、β線吸収方式により屋内空気中の浮遊粒子の濃度を7日間連続測定した結果の一例を示すグラフである。3 is a graph showing an example of the results of continuous measurement of the concentration of suspended particles in indoor air for 7 days using the β-ray absorption method using the suspended particle measuring device of the present embodiment shown in FIG. 2. FIG. 図2に示す本実施形態の浮遊粒子の測定装置に、5μmで分級する分級器52と1μmで分級するバーチャルインパクタ1を用い、β線吸収方式により屋内空気中の浮遊粒子の捕集量を7日間連続測定した結果の一例を示すグラフである。A classifier 52 that classifies at 5 μm and a virtual impactor 1 that classifies at 1 μm are used in the suspended particle measuring device of this embodiment shown in FIG. It is a graph showing an example of the results of continuous measurement for one day.

以下、図面を参照しつつ、本発明の実施形態について説明する。各図において、実質的に対応する部分には同一の符号を付しており、重複する説明は省略または簡略化する。 Embodiments of the present invention will be described below with reference to the drawings. In each figure, substantially corresponding parts are given the same reference numerals, and overlapping explanations will be omitted or simplified.

図1は、本発明の実施の一形態のバーチャルインパクタ1の構成を示す断面図であり、図2は図1のバーチャルインパクタ1を備える浮遊粒子の測定装置の構成を示す系統図である。本実施形態の浮遊粒子の捕集方法は、まず、試料空気を採取口53から取り入れ、分級器(インパクタやサイクロン)52を用いて、粒径5μm以上の粒子を取り除く。粒径5μm未満の浮遊粒子を含む試料空気をバーチャルインパクタ1で分級して、粒径1μmを超える粗大浮遊粒子(粒径1μmを超え5μm未満、Coarse Particle;以下「CP」と略記する場合がある。)を含む空気と、粒径1μm以下の微細浮遊粒子(Fine Particle;以下「FP」と略記する場合がある。)を含む空気とに分け、粗大浮遊粒子を含む空気を吸引して粗大浮遊粒子をフィルタ9に捕集するとともに、微細浮遊粒子を含む空気の大部分をバイパス手段2によりフィルタ9の同一位置に捕集せずにバイパスさせながら吸引するとともに、フィルタ9の粗大浮遊粒子の捕集位置とは異なる位置に微細浮遊粒子を捕集することを含む。 FIG. 1 is a sectional view showing the configuration of a virtual impactor 1 according to an embodiment of the present invention, and FIG. 2 is a system diagram showing the configuration of a suspended particle measuring device including the virtual impactor 1 of FIG. 1. In the method for collecting suspended particles of this embodiment, first, sample air is taken in through the sampling port 53, and particles with a particle size of 5 μm or more are removed using a classifier (impactor or cyclone) 52. A sample air containing suspended particles with a particle size of less than 5 μm is classified with the virtual impactor 1, and coarse suspended particles with a particle size of more than 1 μm (more than 1 μm and less than 5 μm, Coarse Particle; hereinafter sometimes abbreviated as “CP”) are classified. ) and air containing fine particles (hereinafter sometimes abbreviated as "FP") with a particle size of 1 μm or less, and air containing coarse suspended particles is sucked into coarse suspended particles. The particles are collected in the filter 9, and most of the air containing fine suspended particles is sucked by the bypass means 2 while being bypassed without being collected at the same position on the filter 9, and the coarse suspended particles in the filter 9 are This includes collecting fine suspended particles at a location different from the collection location.

また、バーチャルインパクタ1のカット特性を粒径2.5μmとし、その上流の分級器52のカット特性を10μmとすれば、粗大浮遊粒子を粒径2.5μmを超え10μm未満(PM10-2.5)として、微細浮遊粒子を粒径2.5μm以下の粒子(PM2.5)として捕集することも可能である。したがって、カット特性の範囲が粒径1μmを超え10μm未満の分級器52、カット特性の範囲が粒径0.1μmを超え8μm以下のバーチャルインパクタ1を製作することで、粒子の粒径を変更して捕集することが可能である。本発明では、バーチャルインパクタ1のカット特性を基準にして、それよりも大きい粒子を粗大浮遊粒子と記載し、それよりも小さい粒子を微細浮遊粒子と記載している。 Further, if the cutting characteristic of the virtual impactor 1 is 2.5 μm in particle size, and the cutting characteristic of the classifier 52 upstream thereof is 10 μm, coarse suspended particles can be separated into particles with a particle size of more than 2.5 μm and less than 10 μm (PM 10-2. 5 ), it is also possible to collect fine suspended particles as particles with a particle size of 2.5 μm or less (PM 2.5 ). Therefore, the particle size of the particles can be changed by manufacturing the classifier 52 whose cutting characteristics range is more than 1 μm in particle size and less than 10 μm, and the virtual impactor 1 whose cutting characteristics range is more than 0.1 μm and less than 8 μm in particle size. It is possible to collect it by In the present invention, particles larger than the cutting characteristics of the virtual impactor 1 are referred to as coarse suspended particles, and particles smaller than the cutting characteristics are referred to as fine suspended particles.

本発明に係る実施形態において、バーチャルインパクタ1は、ノズル部40と、集気部41と、導気部42とを含んで構成され、ノズル部40は、内径D0を有する円形の噴出口43を規定する円筒部44と、円筒部44に連なる縮管部45とを有する。導気部42は、内径D2の第1排出口46と、内径D3の第2排出口47とを有し、第2排出口47は、円筒状の直管から成る捕集部51によって規定される。 In the embodiment according to the present invention, the virtual impactor 1 includes a nozzle section 40, an air collection section 41, and an air guide section 42, and the nozzle section 40 has a circular jet nozzle 43 having an inner diameter D0. It has a defining cylindrical portion 44 and a constricted tube portion 45 continuous to the cylindrical portion 44. The air guide part 42 has a first outlet 46 with an inner diameter D2 and a second outlet 47 with an inner diameter D3, and the second outlet 47 is defined by a collecting part 51 made of a cylindrical straight pipe. Ru.

集気部41は、円錐台状の集気管部48と、集気管部48に同軸に連なる円筒状の直管部49とを有する。集気管部48は、噴出口43と同一の軸線を成し、軸線方向に間隔Sをあけて離間して位置する内径D1の流入口50を有する。ノズル部40に供給された試料空気は、縮管部45によって流速を上昇させながら円筒部44に流入し、噴出口43から噴出された試料空気の一部は、集気部41に流入し、主流は導気部42へ流入する。導気部42へ流入した試料空気は、その一部が第2排出口47から流路L2に流入し、残部は第1排出口46から流路L3に流入する。 The air collection section 41 includes a truncated conical air collection pipe section 48 and a cylindrical straight pipe section 49 coaxially connected to the air collection pipe section 48 . The air collecting pipe section 48 has an inlet 50 having an inner diameter D1, which forms the same axis as the jet nozzle 43 and is spaced apart from each other at an interval S in the axial direction. The sample air supplied to the nozzle part 40 flows into the cylindrical part 44 while increasing the flow velocity by the tube contraction part 45, and a part of the sample air ejected from the jet port 43 flows into the air collecting part 41. The main flow flows into the air guide section 42 . A part of the sample air that has flowed into the air guide section 42 flows into the channel L2 from the second outlet 47, and the remainder flows into the channel L3 from the first outlet 46.

図3は、フィルタの捕集位置を示す平面図である。バーチャルインパクタ1は、一定流量の空気を吸引し、吸引した空気中の粒子径1μmを超える粗大浮遊粒子は慣性の力によって粒子径1μm以下の微小浮遊粒子と分級され、Q0の空気に含まれるほとんどの粗大浮遊粒子が集気部41に入り、その下のフィルタ9の参照符3の位置に捕集される。一方で、微細浮遊粒子を含む空気は、流線に沿って流れ、Q0のうちQ2分の空気中の微細浮遊粒子が捕集部51に入り、その下のフィルタ9の参照符4の位置に捕集される。残りのQ3の空気中の微細浮遊粒子は、フィルタ9に捕集されることなくバイパスから排出される。Q0は、バーチャルインパクタ1内の圧力G3と圧力センサG4(大気圧を測定している)との差圧から計算された流量によって確認し、Q1およびQ2はそれぞれ流量センサMFM1、流量センサMFM2によって計測される。 FIG. 3 is a plan view showing the collection position of the filter. The virtual impactor 1 sucks a constant flow of air, and coarse suspended particles in the sucked air with a particle size exceeding 1 μm are classified by inertial force into micro suspended particles with a particle size of 1 μm or less, and most of the particles contained in the air at Q0 are coarse suspended particles enter the air collection section 41 and are collected at the position indicated by reference numeral 3 on the filter 9 below. On the other hand, the air containing fine suspended particles flows along the streamline, and Q2 of the Q0 fine suspended particles in the air enter the collection section 51 and are deposited at the position of reference numeral 4 of the filter 9 below. be captured. The remaining fine suspended particles in the air Q3 are discharged from the bypass without being collected by the filter 9. Q0 is confirmed by the flow rate calculated from the differential pressure between the pressure G3 inside the virtual impactor 1 and the pressure sensor G4 (which measures atmospheric pressure), and Q1 and Q2 are measured by the flow rate sensor MFM1 and flow rate sensor MFM2, respectively. be done.

バーチャルインパクタ1の各部位の寸法および空気の流れQ0~Q3等を一例として述べると、D0=φ4mm、D1=φ5mm、D2=φ12.7mm、D3=φ12mm、S=5mm、空気の流れQ0~Q3に対応する空気の体積流量をQv0~Qv3とすると、Qv0=125L/min、Qv1=20L/min、Qv2=15L/min、Qv3=90L/min、D1/D0=1.25、S/D0=1.25、Qv1/Qv0=0.16である。 To describe the dimensions of each part of the virtual impactor 1 and the air flow Q0 to Q3 as an example, D0 = φ4 mm, D1 = φ5 mm, D2 = φ12.7 mm, D3 = φ12 mm, S = 5 mm, air flow Q0 to Q3. Let Qv0 to Qv3 be the volume flow rate of air corresponding to Qv0=125L/min, Qv1=20L/min, Qv2=15L/min, Qv3=90L/min, D1/D0=1.25, S/D0= 1.25, Qv1/Qv0=0.16.

体積流量Qv0になるように流量調整バルブPV3および流量調整バルブPV4によって調整され、体積流量Qv1になるように流量調整バルブPV1によって調整され、体積流量Qv2になるように流量調整バルブPV2で調整される。 The volume flow rate is adjusted by the flow rate adjustment valve PV3 and the flow rate adjustment valve PV4 so that the volumetric flow rate becomes Qv0, the volumetric flow rate is adjusted by the flow rate adjusting valve PV1 so that the volumetric flow rate becomes Qv1, and the flow rate adjusting valve PV2 is adjusted so that the volumetric flow rate becomes Qv2. .

導入された大気は、ノズル部40を通り、外管部(主流)と集気部41(二次流)とに配分される。本実施形態においては、主流は、外管部の排出口に接続されて設けられるバイパス手段2に導かれ、さらにバイパスされるバイパス流と微細浮遊粒子を捕集する捕集部51への流れとに分配されて、前記テープ状のフッ素系メンブランフィルタ(Membrane Filter)(以下、「フィルタ」と略記する場合がある。)9の第2の位置で微細浮遊粒子を捕集する。 The introduced atmosphere passes through the nozzle section 40 and is distributed into an outer tube section (main stream) and an air collection section 41 (secondary flow). In this embodiment, the main flow is guided to the bypass means 2 provided connected to the outlet of the outer pipe section, and further flows into the bypass flow to be bypassed and the flow to the collection section 51 that collects fine suspended particles. The fine suspended particles are collected at a second position of the tape-shaped fluorine-based membrane filter (hereinafter sometimes abbreviated as "filter") 9.

通常、従来のバーチャルインパクタを使った装置で、フィルタに捕集することを行わないバイパス手段2がなければ、主流が二次流に対して大きな流量となるので、そのままでも主流に含まれる微細浮遊粒子のろ過量が増えて、粗大浮遊粒子のろ過よりも多い。 Normally, in a device using a conventional virtual impactor, if there is no bypass means 2 that does not collect it in a filter, the mainstream will have a large flow rate compared to the secondary flow, so even if it is as it is, fine particles contained in the mainstream will be The amount of particle filtration increases and is greater than the filtration of coarse suspended particles.

そのため、粗大浮遊粒子の成分を確認するために必要な量がろ過できないうちに、微細浮遊粒子の捕集部のろ紙が目詰まりすることが生じて、同時に適量を捕集することができない。特に、大気中の濃度が低い粗大浮遊粒子を捕集するために、通常よりも大量の大気を導入する場合には、微細浮遊粒子の捕集量が過大となるという問題がある。 Therefore, the filter paper in the collection section for fine suspended particles becomes clogged before the amount necessary to confirm the components of coarse suspended particles can be filtered, making it impossible to collect an appropriate amount at the same time. In particular, when a larger amount of air than usual is introduced in order to collect coarse suspended particles that have a low concentration in the air, there is a problem that the amount of fine suspended particles that are collected becomes excessive.

本実施形態の同時捕集方法によれば、バイパス手段2によりバイパスさせるバイパス流により、微細浮遊粒子の大部分をろ過することなく、微細浮遊粒子の捕集量を、適量となるように調整することができる。 According to the simultaneous collection method of this embodiment, the bypass flow bypassed by the bypass means 2 adjusts the amount of collected fine suspended particles to an appropriate amount without filtering most of the fine suspended particles. be able to.

また、本実施形態においては、バーチャルインパクタ1に導入される空気量と、前記バイパス流の量とを、それぞれの吸引ポンプP1,P2,P3と各流路に設けた流量調整バルブPV1~PV4を用いて調節することにより、さらに細かい捕集量の調整が可能である。 In addition, in this embodiment, the amount of air introduced into the virtual impactor 1 and the amount of the bypass flow are controlled by the respective suction pumps P1, P2, P3 and flow rate adjustment valves PV1 to PV4 provided in each flow path. By using and adjusting the amount, it is possible to finely adjust the amount of collection.

本実施形態において、本装置に吸引された試料空気は、バーチャルインパクタ1によって微細浮遊粒子を含む空気と、粗大浮遊粒子とを含む空気とに分級され、CPのみを含む空気は、バーチャルインパクタ1のノズル部40から集気部41(二次流)を通って、テープ状のフッ素系メンブランフィルタ9の第1の位置3で濾過され、流路L1を通って外部へ排気される。 In this embodiment, the sample air sucked into the device is classified by the virtual impactor 1 into air containing fine suspended particles and air containing coarse suspended particles, and the air containing only CP is classified by the virtual impactor 1. The air passes from the nozzle section 40 through the air collection section 41 (secondary flow), is filtered at the first position 3 of the tape-shaped fluorine-based membrane filter 9, and is exhausted to the outside through the flow path L1.

FPを含む空気は、バーチャルインパクタ1から主流として排出されて導気部42に導かれ、吸引ポンプP3による流路L3を介した吸引および吸引ポンプP2による流路L2を介した吸引により、フィルタ9に捕集されずにバイパスされるバイパス流と微細浮遊粒子をフィルタ9に捕集する捕集部51への流れに分配される。 The air containing FP is discharged as a main stream from the virtual impactor 1 and guided to the air guide section 42, and is sucked through the flow path L3 by the suction pump P3 and the air containing the FP through the flow path L2 by the suction pump P2. A bypass flow is bypassed without being collected by the filter 9, and a flow is distributed to the collection section 51 where fine suspended particles are collected by the filter 9.

バイパス手段2は、バーチャルインパクタ1の外管部の排出口に接続されて、前記バイパスされる空気を吸引ポンプP3により吸引するもので、その形状は、円筒形のものが挙げられ、一端は前記のとおり、バーチャルインパクタ1の外管部の排出口に接続され、他端は流路L3を介して、吸引ポンプP3に通じている。 The bypass means 2 is connected to the discharge port of the outer tube part of the virtual impactor 1, and sucks the bypassed air with a suction pump P3.The bypass means 2 is cylindrical in shape, and one end is connected to the outlet of the outer tube part of the virtual impactor 1. As shown, it is connected to the discharge port of the outer tube part of the virtual impactor 1, and the other end communicates with the suction pump P3 via the flow path L3.

このとき、バイパス流と捕集部51への流れとは、吸引ポンプP2と吸引ポンプP3との吸引量を調整することにより、FP捕集量が所望の値となるようにバランスさせることが重要である。すなわち、大気中のFP量が非常に多いときには、吸引ポンプP2よりも吸引ポンプP3の吸引量が多くなるように調整することによって、バイパスされるFPを含む空気量が増加して、捕集部51への流れが減り、捕集されるFP量を少なくすることができる。 At this time, it is important to balance the bypass flow and the flow to the collection section 51 by adjusting the suction amount of the suction pump P2 and the suction pump P3 so that the amount of FP collected becomes a desired value. It is. That is, when the amount of FPs in the atmosphere is very large, by adjusting the suction amount of suction pump P3 to be larger than that of suction pump P2, the amount of air containing FPs to be bypassed increases, and the amount of air containing FPs that is bypassed increases. 51 is reduced, and the amount of FP to be collected can be reduced.

微細浮遊粒子を捕集する捕集部51への流れは、吸引ポンプP1に吸引されて、テープ状のフッ素系メンブランフィルタ9の第2の位置4によって濾過され、流路L2を通って外部へ排気される。 The flow to the collection unit 51 that collects fine suspended particles is sucked by the suction pump P1, filtered by the second position 4 of the tape-shaped fluorine-based membrane filter 9, and passed through the flow path L2 to the outside. Exhausted.

バイパス流は、吸引ポンプP3により吸引されて、バイパス手段2および流路L3を通って外部に排気される。 The bypass flow is sucked by the suction pump P3 and exhausted to the outside through the bypass means 2 and the flow path L3.

本装置では、空気の流れQ1について、吸引ポンプP1の吸引量を流量センサMFM1を用いて測定し、流路L1に設けた流量調整バルブPV1、圧力センサG1を用いて、流路L1を通過する空気の量を調整することによって、フィルタ9の第1の位置3に捕集するCPの量を、所望の単位時間あたりの所望の捕集量とすることができる。 In this device, regarding the air flow Q1, the suction amount of the suction pump P1 is measured using the flow rate sensor MFM1, and the air flow is passed through the flow path L1 using the flow rate adjustment valve PV1 provided in the flow path L1 and the pressure sensor G1. By adjusting the amount of air, the amount of CP collected at the first position 3 of the filter 9 can be set to a desired amount per unit time.

同時に、空気の流れQ2について、吸引ポンプP2の吸引量を流量センサMFM2を用いて測定し、流路L2に設けた流量調整バルブPV2、圧力センサG2を用いて、流路L2を通過する空気の量を調整することによって、フィルタ9の第2の位置4に捕集するFPの量を、所望の単位時間あたりの所望の捕集量とすることができる。さらに、空気の流れQ0については、圧力センサG3および圧力センサG4を用いて差圧を算出し、バーチャルインパクタ1の特性からQ0を求め、Q3(Q3=Q0-Q1-Q2)を計算する。Q3は吸引ポンプP3の吸引量を流路L3に設けた流量調整バルブPV3,PV4を用いて流路L3を通過するバイパス流の流量の調整を行う。 At the same time, regarding the air flow Q2, the suction amount of the suction pump P2 is measured using the flow rate sensor MFM2, and the flow rate adjustment valve PV2 provided in the flow path L2 and the pressure sensor G2 are used to measure the suction amount of the air passing through the flow path L2. By adjusting the amount, the amount of FP collected at the second position 4 of the filter 9 can be set to a desired amount per desired unit time. Furthermore, regarding the air flow Q0, the pressure difference is calculated using the pressure sensor G3 and the pressure sensor G4, Q0 is determined from the characteristics of the virtual impactor 1, and Q3 (Q3=Q0-Q1-Q2) is calculated. Q3 adjusts the suction amount of the suction pump P3 by using flow rate adjustment valves PV3 and PV4 provided in the flow path L3, and adjusts the flow rate of the bypass flow passing through the flow path L3.

たとえば、試料空気Q0の流量を毎分125L(リットル)でバーチャルインパクタ1に導入する場合を例とすると、バーチャルインパクタ1からCPを含む二次流の空気Q1が毎分20Lであり、バーチャルインパクタ1からのFPを含む主流のうち、バイパス流Q3が毎分90L、FPを捕集する捕集部51への流れQ2が毎分15Lとなる。 For example, if the sample air Q0 is introduced into the virtual impactor 1 at a flow rate of 125 L (liters) per minute, then the secondary flow of air Q1 containing CP from the virtual impactor 1 is 20 L per minute, and the virtual impactor 1 Of the main flow containing FP from the main stream, the bypass flow Q3 is 90 L/min, and the flow Q2 to the collection section 51 that collects FP is 15 L/min.

連続してフィルタ9の第1および第2の位置3,4に空気を透過させていると、第1および第2の位置3,4上に捕集された浮遊粒子の量が次第に増え、粒子でフィルタ9が詰って吸引できなくなるので、一定時間毎、あるいはFP、CPの捕集量がある一定量を超えたときにテープ送り機構7によってフィルタ9が一定の長さCだけ矢符8方向に送られ、次の捕集が開始される。 When air is continuously passed through the first and second positions 3 and 4 of the filter 9, the amount of suspended particles collected on the first and second positions 3 and 4 gradually increases, and the particles Since the filter 9 becomes clogged and cannot be suctioned, the tape feed mechanism 7 moves the filter 9 a certain length C in the direction of the arrow 8 at regular intervals or when the amount of collected FP and CP exceeds a certain amount. The next collection begins.

フィルタ9は、テープ状であり供給ロール6に巻かれた状態で供給され、図示しない複数のガイドローラによって、第1の位置3および第2の位置4に供給され、図示しない複数のガイドローラおよび上下2個のローラから成るテープ送り機構7を経て、巻取ローラ5に巻取られる。テープ送り機構7は、一定時間が経過あるいはFP、CPの捕集量がある一定量を超えたときに、フィルタ9を一定の長さCだけ矢符8方向に送る。これによって、フィルタ9の位置3’が新しい位置3に、位置4’が新しい位置4に移動する。 The filter 9 is in the form of a tape and is supplied wound around the supply roll 6, and is supplied to the first position 3 and the second position 4 by a plurality of guide rollers (not shown), and is supplied to the first position 3 and the second position 4 by a plurality of guide rollers (not shown) and The tape is wound onto a take-up roller 5 through a tape feeding mechanism 7 consisting of two upper and lower rollers. The tape feeding mechanism 7 feeds the filter 9 by a certain length C in the direction of the arrow 8 when a certain period of time has elapsed or when the amount of collected FP and CP exceeds a certain amount. This moves the position 3' of the filter 9 to a new position 3 and the position 4' to a new position 4.

かくして、フィルタ9の第1および第2の位置3,4に捕集されたCPおよびFPは、公知の測定手段、たとえば、β線吸収方式や光反射方式、と組み合わせることにより、その量を測定することができる。 In this way, the amount of CP and FP collected at the first and second positions 3 and 4 of the filter 9 can be measured by combining with a known measuring means, such as a β-ray absorption method or a light reflection method. can do.

捕集されたCPおよびFPを、β線吸収方式や光反射方式を組み合わせて測定する場合の例を説明する。 An example of measuring collected CP and FP using a combination of a β-ray absorption method and a light reflection method will be described.

フィルタ9の第1の位置3および第2の位置4には、第1β線源10および第2β線源11からβ線が照射され、透過したβ線量が連続的にそれぞれ第1β線検出器12、第2β線検出器13で検出される。検出結果は、第1プリアンプ21および第2プリアンプ22を通して演算処理部(Central Processing Unit;CPU)28に入力される。 The first position 3 and second position 4 of the filter 9 are irradiated with β-rays from the first β-ray source 10 and the second β-ray source 11, and the amount of transmitted β-rays is continuously transmitted to the first β-ray detector 12, respectively. , detected by the second β-ray detector 13. The detection result is input to a calculation processing unit (Central Processing Unit; CPU) 28 through the first preamplifier 21 and the second preamplifier 22.

またフィルタ9の第1の位置3には、光源24から光ファイバ25を介して一定強さの白色光が照射され、その反射光が光ファイバ26を介して光検出器23に導かれ、この光検出器23によって1分毎に連続的に検出され、検出結果が第3プリアンプ27を介して演算処理部28に入力される。 Further, the first position 3 of the filter 9 is irradiated with white light of a constant intensity from the light source 24 via the optical fiber 25, and the reflected light is guided to the photodetector 23 via the optical fiber 26. The light is continuously detected by the photodetector 23 every minute, and the detection results are input to the arithmetic processing section 28 via the third preamplifier 27.

連続してフィルタ9の第1および第2の位置3,4に空気を透過させていると、第1の位置3および第2の位置4上に捕集された浮遊粒子の量が次第に増え、第1の位置3および第2の位置4が詰まって吸引力が低下するので、一定時間毎、たとえば1時間毎に、テープ送り機構7によってフィルタ9が一定の長さCだけ矢符8方向に送られ、次の測定が開始される。 When air is continuously passed through the first and second positions 3 and 4 of the filter 9, the amount of suspended particles collected on the first position 3 and the second position 4 gradually increases. Since the first position 3 and the second position 4 become clogged and the suction force decreases, the tape feeding mechanism 7 moves the filter 9 by a certain length C in the direction of the arrow 8 at fixed intervals, for example, every hour. and the next measurement begins.

フィルタ9の浮遊粒子を捕集する第1の位置3および第2の位置4の領域は、たとえば直径11mmの円形である。 The regions of the first position 3 and second position 4 of the filter 9 that collect suspended particles are, for example, circular with a diameter of 11 mm.

フィルタ9は、テープ状であり供給ロール6に巻かれた状態から巻き出され、図示しない複数のガイドローラによって、第1の位置3および第2の位置4に供給され、図示しない複数のガイドローラおよび上下2個のローラから成るテープ送り機構7を経て、巻取ローラ5に巻取られる。テープ送り機構7は、一定時間経過したとき、あるいはFP,CPの捕集量がある一定量を超えたとき、フィルタ9を一定の長さCだけ矢符8方向に送りだすように構成される。これによって、新しいフィルタ9の位置3が新たな位置3’に、位置4が新たな位置4’に移動する。 The filter 9 is tape-shaped and is unwound from the supply roll 6, and is supplied to the first position 3 and the second position 4 by a plurality of guide rollers (not shown). The tape is then wound onto a take-up roller 5 through a tape feeding mechanism 7 consisting of two upper and lower rollers. The tape feeding mechanism 7 is configured to feed the filter 9 by a certain length C in the direction of the arrow 8 when a certain period of time has elapsed or when the amount of collected FP and CP exceeds a certain amount. This moves the position 3 of the new filter 9 to a new position 3' and the position 4 to a new position 4'.

第1および第2β線検出器ならびに光検出器の検出結果と、フィルタ9上の浮遊粒子の量との関係は、式(1)で計算される。 The relationship between the detection results of the first and second β-ray detectors and the photodetector and the amount of suspended particles on the filter 9 is calculated using equation (1).

j=Ij-1exp(-μχ) …(1) I j = I j-1 exp (-μ m χ m ) …(1)

ここにIjは、ある瞬間に浮遊粒子を捕集したフィルタを透過したβ線量またはフィルタ9で反射された光量であり、Ij-1はその1分前の同じ量である。またIは、浮遊粒子を捕集する前の新しいフィルタを透過したβ線量または同フィルタで反射された光量であり、μは比例定数であり、χはフィルタ9の単位面積当たりの捕集浮遊粒子の質量(μg/cm)である。μはβ線源10,11および光源に固有の値であり、標準物質によって予めcm/μgの単位で求められる。式(1)を変形して、式(2)を得る。 Here, I j is the amount of β-rays transmitted through the filter that collected suspended particles or the amount of light reflected by the filter 9 at a certain moment, and I j-1 is the same amount one minute before. In addition, I 0 is the amount of β-rays transmitted through a new filter before collecting suspended particles or the amount of light reflected by the same filter, μ m is a proportionality constant, and χ m is the amount of β-rays transmitted per unit area of the filter 9. Mass of collected suspended particles (μg/cm 2 ). μm is a value specific to the β-ray sources 10, 11 and the light source, and is determined in advance in units of cm 2 /μg using a standard material. Equation (1) is transformed to obtain equation (2).

χ=-1/μln(Ij/Ij-1) …(2) χ m =-1/μ m ln(I j /I j-1 ) …(2)

式(2)からIjとIj-1との比を求めることによって、たとえば1分間に捕集されたフィルタ9の単位面積当たりの浮遊粒子の量が計算でき、これに第1の位置3の面積(これは第2の位置4の面積に等しく、直径が11mmの場合、約0.95cmとなる)を掛ければ、1分前に捕集された浮遊粒子の質量(μg/min)が計算できる。 By determining the ratio of I j and I j-1 from equation (2), for example, the amount of suspended particles per unit area of the filter 9 collected in one minute can be calculated. (which is equal to the area of the second location 4, which for a diameter of 11 mm is about 0.95 cm2 ) will give you the mass of airborne particles collected one minute ago (μg/min) can be calculated.

Q1よりフィルタ3に捕集された粒子の質量:M(Q1)μg、
Q2よりフィルタ4に捕集された粒子の質量:M(Q2)μgとする。
ここで、試料空気の質量濃度を、
CPの質量濃度:[CP]μg/m
FPの質量濃度:[FP]μg/m
また、一定時間、捕集した時の、Q0~Q3に対応した積算流量を、Qt0~Qt3(m)として記載する。
Mass of particles collected by filter 3 from Q1: M(Q1) μg,
Mass of particles collected by filter 4 from Q2: M(Q2) μg.
Here, the mass concentration of the sample air is
Mass concentration of CP: [CP] μg/m 3 ,
Mass concentration of FP: [FP] μg/m 3 ,
Further, the integrated flow rates corresponding to Q0 to Q3 when collected for a certain period of time are written as Q t0 to Q t3 (m 3 ).

ここで、バーチャルインパクタ1の特性として、
1.CPは全てバーチャルインパクタ1のQ1(粗大粒子側)だけを通過し、フィルタ9に捕集される。
2.FPはバーチャルインパクタ1のQ2(微細粒子側)とともにQ1(粗大粒子側)にも通過し、フィルタ9に捕集される粒子質量(個数)は流量の分流比に応じたものとなる。
Here, as the characteristics of virtual impactor 1,
1. All of the CP passes through only Q1 (coarse particle side) of the virtual impactor 1 and is collected by the filter 9.
2. The FP passes through Q1 (coarse particle side) as well as Q2 (fine particle side) of the virtual impactor 1, and the mass (number) of particles collected by the filter 9 depends on the flow rate division ratio.

M(Q2)=[FP]×Qt2 …(3)
M(Q1)=[CP]×Qt0+[FP]×Qt1 …(4)
M(Q2)=[FP]× Qt2 ...(3)
M (Q1) = [CP] × Q t0 + [FP] × Q t1 … (4)

式(3)及び式(4)より、質量濃度は、 From equations (3) and (4), the mass concentration is

[FP]=M(Q2)/(Qt2) …(5)
[CP]={M(Q1)-M(Q2)×(Qt1/Qt2)}/Qt0 …(6)
であらわされる。
[FP]=M(Q2)/( Qt2 )...(5)
[CP]={M(Q1)-M(Q2)×(Q t1 /Q t2 )}/Q t0 …(6)
It is expressed as

図4は、図2に示す本実施形態の浮遊粒子の測定装置に、5μmで分級する分級器52と1μmで分級するバーチャルインパクタ1を用い、β線吸収方式により屋内空気中の浮遊粒子の濃度を7日間連続測定した結果の一例を示すグラフであり、図5は、図2に示す本実施形態の浮遊粒子の測定装置に、5μmで分級する分級器52と1μmで分級するバーチャルインパクタ1を用い、β線吸収方式により屋内空気中の浮遊粒子の捕集量を7日間連続測定した結果の一例を示すグラフである。図4において、縦軸は浮遊粒子濃度(μg/m)を示し、横軸は時間(日)を示す。また図5において、縦軸は1時間あたりの浮遊粒子捕集量(μg)を示し、横軸は時刻(日)を示す。図4より、屋内空気中では粗大浮遊粒子(粒径1μmを超え5μm未満)の濃度は1~3μg/m程度であり、低いことが分かる。一方、図5で示されるように、粗大浮遊粒子(粒径1μmを超え5μm未満)の1時間あたりの捕集量は10~20μgとより多く捕集できていることが分かる。 FIG. 4 shows the concentration of suspended particles in indoor air using a β-ray absorption method using a classifier 52 that classifies at 5 μm and a virtual impactor 1 that classifies at 1 μm in the suspended particle measuring device of the present embodiment shown in FIG. FIG. 5 is a graph showing an example of the results of continuous measurement for 7 days. FIG. 5 shows a graph in which a classifier 52 that classifies at 5 μm and a virtual impactor 1 that classifies at 1 μm are added to the suspended particle measuring device of this embodiment shown in FIG. 2 is a graph showing an example of the results of continuous measurement of the amount of trapped particles in indoor air for 7 days using the β-ray absorption method. In FIG. 4, the vertical axis shows suspended particle concentration (μg/m 3 ), and the horizontal axis shows time (days). Moreover, in FIG. 5, the vertical axis shows the amount of suspended particles collected per hour (μg), and the horizontal axis shows the time (day). From FIG. 4, it can be seen that the concentration of coarse suspended particles (particle size of more than 1 μm and less than 5 μm) in indoor air is about 1 to 3 μg/m 3 , which is low. On the other hand, as shown in FIG. 5, it can be seen that the amount of coarse suspended particles (particle size exceeding 1 μm and less than 5 μm) collected per hour was 10 to 20 μg, which was a larger amount.

さらに、2022年4月20日AM1:00~AM11:00の10時間について注目すると、この期間の粗大浮遊粒子の平均濃度が2.1μg/mであったのに対して、微細浮遊粒子18.0μg/mであった。また、1時間に1回、フィルタとしてのテープ移動を行っており、この間の平均捕集量は、粗大浮遊粒子16.0μg、微細浮遊粒子16.1μgであった。もし仮に、この期間同じ空気を、本発明を使わずに、従来法のバーチャルインパクタを使った装置で1時間に一回のテープ移動で、1時間に約1mの採取量で採取すれば、粗大浮遊粒子の平均捕集量は2.1μgにしかならない。従来法で、例えば10時間に1回のテープ移動を行い、採取時間を長くして粗大浮遊粒子を捕集しようとすれば、時間分解能が悪くなるだけでなく、積算捕集量が粗大浮遊粒子21μg、微細浮遊粒子180μgとなり、粗大浮遊粒子は十分な捕集量になるけれども、微細浮遊粒子の捕集量が過大となり、フィルタが粒子で目詰まりを起こしてしまい捕集できなくなってしまうことが予想される。従来法では通常、80~100μgの浮遊粒子をフィルタに捕集すると目詰まりを起こして、捕集できなくなってしまう。また、β線吸収方式の検出限界をフィルタ捕集量として表現すると例えば1~2μgであり、粗大浮遊粒子の平均濃度が2.1μg/mなので、前記従来法のように1時間に一回のテープ移動ならば平均捕集量が2.1μgとなり、この期間は検出限界付近で誤差の大きい測定になってしまう。これに対して、本発明での平均フィルタ捕集量は16.0μgなので、精度の良い測定が可能であった。 Furthermore, focusing on the 10-hour period from 1:00 AM to 11:00 AM on April 20, 2022, the average concentration of coarse suspended particles during this period was 2.1 μg/m3, while the average concentration of fine suspended particles was 18 μg/ m3 . It was .0μg/ m3 . In addition, the tape was moved as a filter once every hour, and the average amount collected during this period was 16.0 μg of coarse suspended particles and 16.1 μg of fine suspended particles. If the same air is sampled during this period, without using the present invention, with a device using a conventional virtual impactor, by moving the tape once every hour, at a sampling rate of about 1 m 3 per hour, The average amount of coarse suspended particles collected is only 2.1 μg. With the conventional method, if you try to collect coarse suspended particles by moving the tape once every 10 hours and increasing the collection time, not only will the temporal resolution deteriorate, but the cumulative amount of collected particles will increase. 21 μg and 180 μg of fine suspended particles, which is a sufficient amount of coarse suspended particles to be collected, but the amount of fine suspended particles collected may be too large and the filter may become clogged with particles, making it impossible to collect them. is expected. In conventional methods, when a filter collects 80 to 100 μg of suspended particles, the filter becomes clogged and cannot be collected. Furthermore, if the detection limit of the β-ray absorption method is expressed as the amount of filter capture, it is, for example, 1 to 2 μg, and the average concentration of coarse suspended particles is 2.1 μg/m 3 , so the detection limit is expressed once every hour as in the conventional method. If the tape is moved as shown in FIG. On the other hand, since the average amount collected by the filter in the present invention was 16.0 μg, highly accurate measurement was possible.

このように、本発明の効果により、試料空気の粗大浮遊粒子が低濃度であっても、効率的に濃縮することができ、フィルタへの捕集量を多くすることができるとともに、高感度に測定できたことが分る。 As described above, the effects of the present invention make it possible to efficiently concentrate coarse suspended particles in the sample air even at a low concentration, increase the amount of particles collected in the filter, and improve sensitivity. You can see that the measurement was successful.

1 バーチャルインパクタ
2 バイパス手段
3 浮遊粒子を捕集する第1の位置
4 浮遊粒子を捕集する第2の位置
5 テープ巻取ローラ
6 テープ供給ロール
7 テープ送り機構
8 矢符
9 テープ状メンブランフィルタ
10 第1β線源
11 第2β線源
12 第1β線検出器
13 第2β線検出器
14 β線の流れ
21 第1プリアンプ
22 第2プリアンプ
23 光検出器
24 光源
26 光ファイバ
27 第3プリアンプ
28 演算処理部
40 ノズル部
41 集気部
42 導気部
43 噴出口
44 円筒部
45 縮管部
46 第1排出口
47 第2排出口
48 集気管部
49 直管部
50 流入孔
51 捕集部
52 分級器
53 採取口
G1 圧力センサ
G2 圧力センサ
G3 圧力センサ
G4 圧力センサ
L1 流路
L2 流路
L3 流路
P1 吸引ポンプ
P2 吸引ポンプ
P3 吸引ポンプ
MFM1 流量センサ
MFM2 流量センサ
PV1 流量調整バルブ
PV2 流量調整バルブ
PV3 流量調整バルブ
PV4 流量調整バルブ
1 Virtual impactor 2 Bypass means 3 First position for collecting suspended particles 4 Second position for collecting suspended particles 5 Tape take-up roller 6 Tape supply roll 7 Tape feeding mechanism 8 Arrow mark 9 Tape-shaped membrane filter 10 First β-ray source 11 Second β-ray source 12 First β-ray detector 13 Second β-ray detector 14 β-ray flow 21 First preamplifier 22 Second preamplifier 23 Photodetector 24 Light source 26 Optical fiber 27 Third preamplifier 28 Arithmetic processing Part 40 Nozzle part 41 Air collection part 42 Air guide part 43 Spout port 44 Cylindrical part 45 Constriction pipe part 46 First discharge port 47 Second discharge port 48 Air collection pipe part 49 Straight pipe part 50 Inflow hole 51 Collection part 52 Classifier 53 Collection port G1 Pressure sensor G2 Pressure sensor G3 Pressure sensor G4 Pressure sensor L1 Flow path L2 Flow path L3 Flow path P1 Suction pump P2 Suction pump P3 Suction pump MFM1 Flow rate sensor MFM2 Flow rate sensor PV1 Flow rate adjustment valve PV2 Flow rate adjustment valve PV3 Flow rate adjustment Valve PV4 Flow rate adjustment valve

本発明は、空気中の浮遊粒子を、バーチャルインパクタで分級して、粒径の大きい粗大浮遊粒子を含む空気と粒径の小さい微細浮遊粒子を含む空気と分け、
粗大浮遊粒子を含む空気を吸引して、粗大浮遊粒子をフィルタに捕集するとともに、
前記バーチャルインパクタから流出する微細浮遊粒子を含む空気を、微細浮遊粒子を捕集する捕集部への流れと、微細浮遊粒子を捕集せずにバイパスさせるバイパス流と、に分配し、吸引して、粗大浮遊粒子の捕集位置とは異なる位置で微細浮遊粒子をフィルタに捕集する、ことを特徴とする浮遊粒子の捕集方法である。
The present invention classifies suspended particles in the air using a virtual impactor and separates air containing coarse suspended particles with large particle sizes and air containing fine suspended particles with small particle sizes,
The air containing coarse suspended particles is sucked in, and the coarse suspended particles are collected in a filter.
The air containing the fine suspended particles flowing out from the virtual impactor is divided into a flow to a collection part that collects the fine suspended particles, and a bypass flow that bypasses the fine suspended particles without collecting them, and the air is sucked. This method of collecting suspended particles is characterized in that fine suspended particles are collected on a filter at a position different from a position where coarse suspended particles are collected.

また、本発明は、浮遊粒子を含む空気を吸引して、吸引された空気中の浮遊粒子を、粒径の大きい粗大浮遊粒子を含む空気と、粒径の小さい微細浮遊粒子を含む空気とに分級するバーチャルインパクタと、
前記バーチャルインパクタに接続して設けられ、前記バーチャルインパクタから流出する微細浮遊粒子を含む空気の一部を吸引して微細浮遊粒子の捕集部への流れに分配する吸引手段と、微細浮遊粒子を含む空気の残部を吸引して微細浮遊粒子を捕集しないバイパス流として排気部にバイパスさせるバイパス手段と、
テープ状フィルタを備え、該テープ状フィルタの異なる位置を介して、前記バーチャルインパクタによって分級された、粗大浮遊粒子を含む空気と微細浮遊粒子を含む空気とを吸引して、粗大浮遊粒子と微細浮遊粒子とをテープ状フィルタの異なる位置に格別に連続的に捕集する捕集手段と、
捕集手段によってテープ状フィルタの異なる位置に捕集された浮遊粒子を、それぞれ連続して検出する検出手段と、
検出手段の出力と、吸引大気流量の積算値から空気中の粗大粒子と、空気中の微細浮遊粒子とを、演算して記録する演算記録手段とを含むことを特徴とする浮遊粒子の連続測定装置である。
Further, the present invention sucks air containing suspended particles and divides the suspended particles in the sucked air into air containing coarse suspended particles with a large particle size and air containing fine suspended particles with a small particle size. A virtual impactor for classification,
a suction means that is connected to the virtual impactor and sucks a part of the air containing the fine suspended particles flowing out from the virtual impactor and distributes the air to a collecting section for the fine suspended particles; bypass means for sucking the remainder of the air contained therein and bypassing it to the exhaust section as a bypass flow that does not collect fine suspended particles ;
A tape-shaped filter is provided, and air containing coarse suspended particles and air containing fine suspended particles, which have been classified by the virtual impactor, are sucked through different positions of the tape-shaped filter to separate coarse suspended particles and fine suspended particles. a collection means that specifically and continuously collects the particles at different positions of the tape-shaped filter;
detection means for successively detecting floating particles collected at different positions of the tape-shaped filter by the collection means;
Continuous measurement of suspended particles characterized by comprising a calculation recording means for calculating and recording coarse particles in the air and fine suspended particles in the air from the output of the detection means and the integrated value of the suction atmospheric flow rate. It is a device.

Claims (2)

空気中の浮遊粒子を、バーチャルインパクタで分級して、粒径の大きい粗大浮遊粒子を含む空気と粒径の小さい微細浮遊粒子を含む空気とに分け、
粗大浮遊粒子を含む空気を吸引して、粗大浮遊粒子をフィルタに捕集するとともに、
微細浮遊粒子を含む空気をバイパスさせながら吸引して、粗大浮遊粒子の捕集位置とは異なる位置で微細浮遊粒子をフィルタに捕集する、ことを特徴とする浮遊粒子の捕集方法。
The suspended particles in the air are classified using a virtual impactor, and the air is divided into air containing coarse suspended particles with a large particle size and air containing fine suspended particles with a small particle size.
The air containing coarse suspended particles is sucked in, and the coarse suspended particles are collected in a filter.
A method for collecting suspended particles, characterized in that air containing fine suspended particles is sucked while being bypassed, and the fine suspended particles are collected on a filter at a position different from the position where coarse suspended particles are collected.
浮遊粒子を含む空気を吸引して、吸引された空気中の浮遊粒子を、粒径の大きい粗大浮遊粒子を含む空気と、粒径の小さい微細浮遊粒子を含む空気とに分級するバーチャルインパクタと、
バーチャルインパクタに接続して設けられ、微細浮遊粒子を含む空気を吸引して排気部にバイパスさせるバイパス手段と、
テープ状フィルタを備え、該テープ状フィルタの異なる位置を介して、バーチャルインパクタによって分級された、粗大浮遊粒子を含む空気と微細浮遊粒子を含む空気とを吸引して、粗大浮遊粒子と微細浮遊粒子とをテープ状フィルタの異なる位置に各別に連続的に捕集する捕集手段と、
捕集手段によってテープ状フィルタの異なる位置に捕集された浮遊粒子を、それぞれ連続して検出する検出手段と、
検出手段の出力と、吸引大気流量の積算値とから空気中の粗大浮遊粒子と、空気中の微細浮遊粒子とを、演算して記録する演算記録手段とを含むことを特徴とする浮遊粒子の連続測定装置。
a virtual impactor that sucks air containing suspended particles and classifies the suspended particles in the sucked air into air containing coarse suspended particles with a large particle size and air containing fine suspended particles with a small particle size;
a bypass means that is connected to the virtual impactor and that sucks air containing fine suspended particles and bypasses it to an exhaust section;
A tape-shaped filter is provided, and air containing coarse suspended particles and air containing fine suspended particles, which have been classified by a virtual impactor, are sucked through different positions of the tape-shaped filter to produce coarse suspended particles and fine suspended particles. a collection means for successively collecting and separately at different positions of a tape-shaped filter;
detection means for successively detecting floating particles collected at different positions of the tape-shaped filter by the collection means;
A method for detecting suspended particles characterized by comprising a calculation recording means for calculating and recording coarse suspended particles in the air and fine suspended particles in the air from the output of the detection means and the integrated value of the suction atmospheric flow rate. Continuous measurement device.
JP2022113552A 2022-07-14 2022-07-14 Airborne particle collection method and airborne particle continuous measurement device Active JP7333979B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022113552A JP7333979B1 (en) 2022-07-14 2022-07-14 Airborne particle collection method and airborne particle continuous measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022113552A JP7333979B1 (en) 2022-07-14 2022-07-14 Airborne particle collection method and airborne particle continuous measurement device

Publications (2)

Publication Number Publication Date
JP7333979B1 JP7333979B1 (en) 2023-08-28
JP2024011517A true JP2024011517A (en) 2024-01-25

Family

ID=87764046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022113552A Active JP7333979B1 (en) 2022-07-14 2022-07-14 Airborne particle collection method and airborne particle continuous measurement device

Country Status (1)

Country Link
JP (1) JP7333979B1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3574045B2 (en) 2000-05-31 2004-10-06 紀本電子工業株式会社 Continuous measurement system for suspended particulate matter
JP2008261712A (en) 2007-04-11 2008-10-30 Kimoto Denshi Kogyo Kk System for measuring suspended particular substance
JP2009031227A (en) 2007-07-30 2009-02-12 Kimoto Denshi Kogyo Kk Device for measuring suspended particular substances
JP4879921B2 (en) 2008-01-30 2012-02-22 新日本製鐵株式会社 Continuous collection device for atmospheric fallout
JP2013061254A (en) 2011-09-13 2013-04-04 Kimoto Denshi Kogyo Kk Radioactive suspended particulate matter measuring instrument and radioactive suspended particulate matter measuring method

Also Published As

Publication number Publication date
JP7333979B1 (en) 2023-08-28

Similar Documents

Publication Publication Date Title
JP3574045B2 (en) Continuous measurement system for suspended particulate matter
US9506843B2 (en) Personal nanoparticle respiratory depositions sampler and methods of using the same
US9718017B2 (en) Multi-filter chemical speciation sampler and virtual impaction particle separation inlet therefore
US20060169065A1 (en) Particle matter sampling method and sampler with a virtual impactor particle concentrator
JP2008261712A (en) System for measuring suspended particular substance
JP5203225B2 (en) Inline smoke attenuator
CN110998276B (en) Continuous automatic measuring device for fine powder in chimney waste gas
John et al. A cyclone for size-selective sampling of ambient air
CN101765452B (en) Apparatus and method of smoke detection
CA2256743C (en) Methods and apparatus for continuous ambient particulate mass monitoring
US6010554A (en) Micro-machined virtual impactor and method of operation
CA2998988C (en) Apparatus and method for determination of the fine particle dose of a powder inhalation formulation
HINDS Size characteristics of cigarette smoke
WO2009021123A1 (en) A size segregated aerosol mass concentration measurement device
US9945768B2 (en) Method and apparatus for a portable PM2.5 monitoring device
CN108318394A (en) A kind of micro-fluidic sorting measures the method and device of pellet
JP2009031227A (en) Device for measuring suspended particular substances
KR102332142B1 (en) Beta-ray type chimney fine dust measuring device with diffusion pipe
JP2024011517A (en) Collecting method for suspended particle and continuous measuring device for suspended particle
CN208125571U (en) A kind of device of micro-fluidic sorting measurement pellet
CN100447555C (en) Laser signal real-time continuous extracting method for atmospheric suspended particle
CN105890926A (en) Device and method for sorting and gathering of airborne suspended particulates by means of sonodynamic
JP2013061254A (en) Radioactive suspended particulate matter measuring instrument and radioactive suspended particulate matter measuring method
KR102122689B1 (en) Fine paticle measurement device
Hata et al. Development of a high-volume air sampler for nanoparticles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230808

R150 Certificate of patent or registration of utility model

Ref document number: 7333979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150