JP2024010703A - Fertilizing body and manufacturing method of fertilizing body - Google Patents

Fertilizing body and manufacturing method of fertilizing body Download PDF

Info

Publication number
JP2024010703A
JP2024010703A JP2022112132A JP2022112132A JP2024010703A JP 2024010703 A JP2024010703 A JP 2024010703A JP 2022112132 A JP2022112132 A JP 2022112132A JP 2022112132 A JP2022112132 A JP 2022112132A JP 2024010703 A JP2024010703 A JP 2024010703A
Authority
JP
Japan
Prior art keywords
fulvic acid
fertilizing
iron
algae
nutrients
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022112132A
Other languages
Japanese (ja)
Inventor
修 池田
Osamu Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Tech Co Ltd
Original Assignee
Asahi Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Tech Co Ltd filed Critical Asahi Tech Co Ltd
Priority to JP2022112132A priority Critical patent/JP2024010703A/en
Publication of JP2024010703A publication Critical patent/JP2024010703A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Artificial Fish Reefs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fertilizing body having a small structure and capable of supplying nutrients of algae into the sea without selecting an area such as a coastal sand/mud area and a rocky area, and manufacturing method of the fertilizing body.
SOLUTION: A fertilizing body includes at least one of fulvic acid iron (divalent) produced by reacting at least ferrous sulfate with fulvic acid, cement, sand, and gravel. As a result, the fertilizing body has a small structure and can supply nutrients of the alga into the sea without selecting an area such as a coastal sand/mud area and a rocky area.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2024,JPO&INPIT

Description

特許法第30条第2項適用申請有り 株式会社みなと山口合同新聞社(日刊みなと新聞にて公開) 令和4年6月22日Application for application of Article 30, Paragraph 2 of the Patent Act filed Minato Yamaguchi Godo Shimbun Co., Ltd. (published in the daily Minato Shimbun) June 22, 2020

本発明は、施肥体及び施肥体の製造方法に関する。 The present invention relates to a fertilizing body and a method for manufacturing the fertilizing body.

近年、沿岸部や川などでは、藻(海藻を含む)が減少して磯焼けも進行している。従前であれば栄養分として森林の腐植土壌中で生成するフルボ酸鉄が河川から流れ込んでいたが、近年はその量が減ってしまっているので、魚や海藻に必要な栄養分が足りなくなってしまったからである。その結果、タイなどの魚の産卵場所が減少し、魚の減少にも繋がる。特許文献1には、二価鉄含有物質と腐植含有物質を存在させ、水中に沈設した状態でフルボ酸鉄が溶出するような水域環境保全材料が開示されている。 In recent years, algae (including seaweed) are decreasing in coastal areas and rivers, and rocky shores are becoming increasingly eroded. In the past, iron fulvic acid, which is produced in the humus soil of forests, flowed in from rivers as a nutrient, but the amount has decreased in recent years, and there is no longer enough nutrients for fish and seaweed. be. As a result, spawning sites for fish such as sea bream will decrease, leading to a decline in fish numbers. Patent Document 1 discloses an aquatic environment conservation material in which a divalent iron-containing substance and a humic-containing substance are present, and iron fulvic acid is eluted when the material is submerged in water.

特開2006-81457号公報Japanese Patent Application Publication No. 2006-81457

藻は、沿岸砂泥地や岩場など様々な環境下で生息している。しかしながら、特許文献1のような水域環境保全材料は、その構造上、水深1~数メートルの沿岸砂泥地などに自生するアマモの生育のために使用することが困難であり、場所を選ぶ構造となっている。また、大きな構造体となっているので、配置する手間もかかる。 Algae live in a variety of environments, including coastal sandy mud and rocky areas. However, due to its structure, the aquatic environment conservation material as disclosed in Patent Document 1 is difficult to use for the growth of eelgrass, which grows naturally in coastal sandy mudlands at depths of 1 to several meters. It becomes. Moreover, since it is a large structure, it takes time and effort to arrange it.

そこで本発明は、小型な構造で、沿岸砂泥地や岩場などの場所を選ばずに、藻の栄養分を海中に供給することのできる施肥体及び施肥体の製造方法を提供することを目的とする。 SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a fertilizing body and a method for manufacturing the fertilizing body, which have a small structure and can supply algae nutrients into the sea regardless of the location, such as coastal sandy mud areas or rocky areas. do.

本発明の施肥体は、少なくとも硫酸第一鉄とフルボ酸を反応させることで生成されたフルボ酸鉄(2価)と、セメント、砂、砂利のうち少なくとも一つを含む。 The fertilizer application body of the present invention contains at least iron fulvic acid (divalent) produced by reacting ferrous sulfate with fulvic acid, and at least one of cement, sand, and gravel.

本発明の施肥体は、フルボ酸鉄(2価)と、セメント、砂、砂利を含む。 The fertilizer application body of the present invention contains iron fulvic acid (divalent), cement, sand, and gravel.

本発明の施肥体は、少なくとも硫酸第一鉄とフルボ酸を反応させることで生成されたフルボ酸鉄(2価)を含み、その最大の幅が1~10cmであり、その重さが20~1000gであり、その比重が3以上である。 The fertilizer body of the present invention contains at least iron fulvic acid (divalent) produced by reacting ferrous sulfate with fulvic acid, has a maximum width of 1 to 10 cm, and weighs 20 to 20 cm. 1000g, and its specific gravity is 3 or more.

本発明の施肥体の製造方法は、セメント、砂、砂利のうち少なくとも一つを水と合わせた混合物を生成し、少なくとも硫酸第一鉄とフルボ酸を反応させることで生成されたフルボ酸鉄(2価)を前記混合物と合わせることを特徴とする。 The method for producing a fertilization body of the present invention includes producing a mixture of at least one of cement, sand, and gravel combined with water, and reacting at least ferrous sulfate with fulvic acid to produce ferrous ferric acid (ferrous sulfate). divalent) with the mixture.

本発明によれば、小型な構造で、沿岸砂泥地や岩場などの場所を選ばずに、藻の栄養分を水中に供給することができる。 According to the present invention, nutrients for algae can be supplied into water with a small structure regardless of the location, such as coastal sandy mud areas or rocky areas.

本発明の一実施の形態の施肥体の斜視図A perspective view of a fertilizing body according to an embodiment of the present invention 本発明の一実施の形態の施肥体に関する説明図An explanatory diagram regarding a fertilizing body according to an embodiment of the present invention 本発明の一実施の形態の施肥体に関する説明図An explanatory diagram regarding a fertilizing body according to an embodiment of the present invention 本発明の一実施の形態の人工礁の斜視図A perspective view of an artificial reef according to an embodiment of the present invention

以下に図面を用いて、本発明の一実施の形態を詳細に説明する。以下で述べる構成、形状、成分等は説明のための例示であって、施肥体、人工礁などの仕様に応じ、適宜変更が可能である。以下では、全ての図面において対応する要素には同一符号を付し、重複する説明を省略する。また、以下では水中を表すために海や川を例示しているが、施肥体1は海や川以外の水中で使用されても良い。 An embodiment of the present invention will be described in detail below with reference to the drawings. The configuration, shape, components, etc. described below are examples for explanation, and can be changed as appropriate depending on the specifications of the fertilization body, artificial reef, etc. Hereinafter, corresponding elements in all drawings will be denoted by the same reference numerals, and redundant explanation will be omitted. Moreover, although the sea and the river are illustrated below to represent the water, the fertilizing body 1 may be used in water other than the sea and the river.

まず図1を参照して、施肥体1について説明する。図1は、本発明の一実施の形態の施肥体の斜視図である。施肥体1は、セメント、砂、シリコン、珪藻土、砂利などの粒状(例えば、直径3mm~5mm)の石材などのうちから少なくとも一つとフルボ酸鉄(2価鉄状態)を含んで構成されている。特に、少なくともセメント、砂、砂利(粒状の石材)とフルボ酸鉄(2価鉄状態)を含むことが好ましい。これによって、例えば3~10年以上といった長期間において、ゆっくりとフルボ酸鉄(2価鉄状態)など栄養分を水中に供給することができる。 First, referring to FIG. 1, the fertilizing body 1 will be explained. FIG. 1 is a perspective view of a fertilizing body according to an embodiment of the present invention. The fertilizing body 1 includes at least one of granular (for example, 3 mm to 5 mm in diameter) stones such as cement, sand, silicon, diatomaceous earth, and gravel, and iron fulvic acid (in the divalent iron state). . In particular, it is preferable to contain at least cement, sand, gravel (granular stone), and iron fulvic acid (in the form of divalent iron). This makes it possible to slowly supply nutrients such as iron fulvic acid (in the divalent iron state) into the water over a long period of time, for example 3 to 10 years or more.

施肥体1を長期間において栄養分を溶出できるようにすると好ましい理由は、藻が、例えば11月~3月のような1年のうちのある一定期間において成長するからである。どのような気候や地域であっても藻の成長期間に安定して長期的に栄養分を溶出できるよう、施肥体1は1年以上栄養分を供給できるようにすることが好ましい。なお、セメントとフルボ酸鉄などの栄養分だけでは栄養分が水中にあまりに溶けにくくなってしまうことがあり、砂や砂利とフルボ酸などの栄養分だけでは早期に栄養分が水中に流出してしまうことがある。 The reason why it is preferable to allow the fertilized body 1 to elute nutrients over a long period of time is because algae grow during a certain period of the year, for example from November to March. It is preferable that the fertilizing body 1 is capable of supplying nutrients for one year or more so that nutrients can be eluted stably over a long period of time during the algae growth period in any climate or region. In addition, if nutrients such as cement and iron fulvic acid are used alone, the nutrients may become too difficult to dissolve in water, and if nutrients such as sand or gravel and fulvic acid are used alone, the nutrients may quickly leak into the water. .

セメントは、水や液剤などにより水和や重合し硬化する粉体を指し、アスファルト、膠(にかわ)、樹脂、石膏、石灰等、これらを少なくとも2つ以上を組み合わせたもの(接着剤を含む)を含む。砂は、砕屑物のうち、粒径が2ミリメートル~1/16mm(62.5マイクロメートル(μm))の粒子のものを含む。岩石が風化・侵食・運搬される過程で生じた岩片や鉱物片などの砕屑物(砕屑性堆積物)から構成され、サンゴ・貝殻などの石灰質の化石片を含むこともある。 Cement refers to a powder that hardens by hydration or polymerization with water or liquid agents, and is a combination of at least two or more of these (including adhesives), such as asphalt, glue, resin, gypsum, and lime. including. Sand includes crushed debris with particles having a particle size of 2 millimeters to 1/16 mm (62.5 micrometers (μm)). It is composed of clastic materials (clastic deposits) such as rock fragments and mineral fragments produced during the process of weathering, erosion, and transportation of rocks, and may also contain calcareous fossil fragments such as corals and shells.

また、岩石を人工的手段で破砕した破砕物を含む場合もある。砂利は、砂より大きいサイズであって、直系5cm程度までの砕屑物が集まったもの、あるいはその石が砂とまじった集まりである。同様に、岩石が風化・侵食・運搬される過程で生じた岩片や鉱物片などの砕屑物(砕屑性堆積物)から構成され、サンゴ・貝殻などの石灰質の化石片を含むこともあり、また、岩石を人工的手段で破砕した破砕物を含む場合もある。 It may also include crushed rocks created by crushing rocks by artificial means. Gravel is larger than sand, and is a collection of debris up to about 5 cm in diameter, or a collection of stones mixed with sand. Similarly, it is composed of clastic materials (clastic deposits) such as rock fragments and mineral fragments produced during the process of weathering, erosion, and transportation of rocks, and may also contain calcareous fossil fragments such as corals and shells. , may also include crushed rocks created by crushing rocks by artificial means.

すなわち、施肥体1に含まれる砂と砂利(粒状の石材)は、同じ成分でその粒のサイズの違いだけであって良い。もちろん、サイズだけでなく成分の少なくとも一部が異なっても良い。施肥体1が含む石材、砂、砂利としては、マグネシウム、バリウム、ストロンチウム、ルビジウム、窒素、リン、カリウムなどの元素を持つ鉱石など(栄養源)を含むものが望ましい。もしくは、砂、砂利とは別に、マグネシウム、バリウム、ストロンチウム、ルビジウム、窒素、リン、カリウムなどの栄養源をパウダー状にして施肥体1に混ぜても良い。このような栄養源は、施肥体1に複数の種類の栄養源を入れた方が良い。特に、なお、窒素、リン、カリウムは入った方が良い。このような栄養源は、フルボ酸鉄(2価鉄状態)があることで、藻が栄養を吸収しやすくなり、より藻の生育に影響を及ぼす。 That is, the sand and gravel (granular stone) contained in the fertilizing body 1 may have the same components and only differ in the size of their grains. Of course, not only the size but also at least some of the components may be different. The stones, sand, and gravel contained in the fertilized body 1 preferably contain ores (nutrient sources) containing elements such as magnesium, barium, strontium, rubidium, nitrogen, phosphorus, and potassium. Alternatively, in addition to sand and gravel, nutrients such as magnesium, barium, strontium, rubidium, nitrogen, phosphorus, and potassium may be powdered and mixed into the fertilized body 1. It is better to include a plurality of types of such nutrient sources in the fertilizing body 1. In particular, it is better to include nitrogen, phosphorus, and potassium. In such a nutrient source, the presence of iron fulvic acid (in the divalent iron state) makes it easier for algae to absorb nutrients, which further affects the growth of algae.

これによって、栄養分としてのフルボ酸鉄(2価鉄状態)や鉱石、岩塩等からなる栄養源(栄養塩)を施肥体1に含ませることができ、その栄養分を水中(海水や川)に溶け出し、藻の生育を促すことができる。施肥体1の水素イオン指数(pH)は8未満であり、7.7~7.9が最も望ましい。 As a result, nutrients such as iron fulvic acid (divalent iron state), ore, rock salt, etc. can be included in the fertilized body 1, and the nutrients can be dissolved in water (seawater and rivers). This can encourage the growth of algae. The hydrogen ion index (pH) of the fertilized body 1 is less than 8, and most preferably 7.7 to 7.9.

図1の施肥体1のサイズは約2cm×2cm×2cmの略直方体である。施肥体1の形状は、図1のような略直方体でも良い。もちろん、正直方体でも良いし、略多面体、正多面体、略球、球のようにどのような形でも良い。表面積の広い直方体や多面体を選ぶことで栄養分を効率的に海中に溶出させることができ、球体のように表面積を抑えることで、栄養分をより長期的に溶出させ続けることができる。 The size of the fertilizing body 1 in FIG. 1 is approximately a rectangular parallelepiped of approximately 2 cm x 2 cm x 2 cm. The shape of the fertilizing body 1 may be a substantially rectangular parallelepiped as shown in FIG. Of course, it may be an honest parallelepiped, or any shape such as a substantially polyhedron, a regular polyhedron, a substantially sphere, or a sphere. Choosing a rectangular parallelepiped or polyhedron with a large surface area allows nutrients to be leached into the sea efficiently, and by reducing the surface area like a sphere, nutrients can continue to be leached for a longer period of time.

サイズとしては、どのような形状であっても、最大の幅が1cm~10cmになるようにすると良く、好ましくは1cm~5cmであると良い。このようなサイズ(人工礁よりも小さい)とすることで、沿岸砂泥地や岩場などの場所を選ばずに、藻が根を張る場所(砂地、泥地、岩場)を大きく奪わないように施肥体1を水中に置く(散布などでも良い)ことができる。 As for size, whatever the shape, the maximum width should be 1 cm to 10 cm, preferably 1 cm to 5 cm. By making it this size (smaller than an artificial reef), it can be used in coastal sandy, muddy, rocky areas, etc., without taking up too much of the area where algae can take root (sandy, muddy, rocky areas). The fertilizing body 1 can be placed in water (spraying or the like may also be used).

また、施肥体1がこのように持ち運びやすいサイズであることで、人が容易に広い範囲に散布することができるので、沿岸砂泥地や岩場などの場所を選ばずに、広範囲の藻に対して栄養分を供給することができる。もちろん、施肥体1は、砂泥地や岩場以外の海や川といったどのような水中に設けても良い。なお、砂泥地とは、海底や川底が砂地や泥地である領域がそれ以外の領域よりも多いところを言う。岩場とは、岩が存在する領域が、砂地や泥地などのそれ以外の領域よりも多いところを言う。 In addition, since the fertilizer application body 1 is of such an easy-to-carry size, it can be easily spread over a wide area by people, so it can be used to treat algae over a wide range of areas, such as coastal sandy mud areas or rocky areas. can provide nutrients. Of course, the fertilizing body 1 may be placed in any water other than sandy mud or rocky areas, such as the sea or river. Note that sandy and muddy areas refer to areas where the ocean floor and riverbed are more sandy or muddy than other areas. A rocky area is an area where there are more rocks than other areas such as sand or mud.

また、図1の施肥体1は約55gであり、比重は約6である。施肥体1があまりに軽いと、水に流されて栄養分の必要な場所から遠く離れた場所で栄養分を溶出し続けてしまう。一方で、重すぎると、人力で散布、撒くなどして海に広範囲に施肥体1を設けることが難しくなる。従って、施肥体1の重さは20g~1000gの範囲で、好ましくは20g~200gであると良い。また、施肥体1は生育している藻の近くで栄養分を溶出し続けることが好ましいため、施肥体1が大幅に流されることや水面に浮かび上がることを避けるよう比重は3以上であると良い。 Further, the fertilized body 1 in FIG. 1 weighs about 55 g and has a specific gravity of about 6. If the fertilizing body 1 is too light, it will be washed away by water and the nutrients will continue to be eluted in a place far away from the place where the nutrients are needed. On the other hand, if it is too heavy, it will be difficult to spread the fertilizer 1 over a wide area in the sea by manually spreading it. Therefore, the weight of the fertilized body 1 is in the range of 20g to 1000g, preferably 20g to 200g. In addition, since it is preferable that the fertilizing body 1 continues to elute nutrients near the growing algae, it is preferable that the specific gravity is 3 or more to avoid the fertilizing body 1 from being washed away or floating to the water surface. .

次に、施肥体1に含まれるフルボ酸鉄(2価鉄状態)について説明する。先述したとおり、沿岸部や川などでは、藻が減少して磯焼けが進行している。従前であれば、栄養分として森林の腐の植土壌中で生成するフルボ酸鉄が河川から流れ込んでいたが、近年はその量が減ってしまっている。そこで、海水中にフルボ酸を供給したいものの、通常の2価のフルボ酸鉄は水中の酸素によって酸化され易く、3価のフルボ酸鉄(3価の鉄イオン)に変化して即座に粒状鉄として沈降してしまい、生物が摂取することができなくなってしまう。 Next, fulvic acid iron (divalent iron state) contained in the fertilized body 1 will be explained. As mentioned earlier, algae are decreasing in coastal areas and rivers, and rock formations are progressing. In the past, iron fulvic acid, which is produced in forest humus planting soil, flowed in from rivers as a nutrient, but the amount has decreased in recent years. Therefore, although we would like to supply fulvic acid to seawater, ordinary divalent iron fulvic acid is easily oxidized by oxygen in the water, changes to trivalent iron fulvic acid (trivalent iron ion), and immediately turns into granular iron. This results in sedimentation, making it impossible for living organisms to ingest it.

さらに、2価のフルボ酸鉄(2価の鉄イオン)はコンクリート内に含まれる水酸化カルシウムとも反応し、3価のフルボ酸鉄(3価の鉄イオン)になってしまう。従って、施肥体1は、水中でも2価状態をより長期間維持できるフルボ酸を含むことが好ましい。 Furthermore, divalent iron fulvic acid (bivalent iron ions) also reacts with calcium hydroxide contained in concrete, resulting in trivalent iron fulvic acid (trivalent iron ions). Therefore, it is preferable that the fertilized body 1 contains fulvic acid, which can maintain a bivalent state even in water for a longer period of time.

水中でも2価状態を長期間維持できるよう、フルボ酸鉄(2価鉄状態)は、好ましくはPh4以下の硫酸第一鉄とフルボ酸をそれぞれ真水で溶かし、それらを混ぜ合わせるなどして製造されると良い。すなわち、常に酸性状態でフルボ酸鉄に変化させると良い。Ph4以下の硫酸第一鉄を使用することで、フルボ酸鉄が海水などの水に触れても長期間3価鉄に変化しにくくなる。重量として、硫酸第一鉄に対して少なくとも0.001~0.1%のフルボ酸を配合することが好ましい。なお、施肥体1は前述した栄養源を含んでいなくてもよく、その場合、水中の栄養源と施肥体1のフルボ酸鉄(2価鉄状態)によって藻の生育を促すことができる。 In order to maintain the divalent state even in water for a long period of time, iron fulvic acid (in the divalent iron state) is produced by dissolving ferrous sulfate and fulvic acid, each having a pH of 4 or less, in fresh water and mixing them together. That's good. In other words, it is best to always convert it to iron fulvic acid under acidic conditions. By using ferrous sulfate with a pH of 4 or less, iron fulvic acid is difficult to change into trivalent iron for a long period of time even if it comes into contact with water such as seawater. It is preferable to blend fulvic acid in an amount of at least 0.001 to 0.1% by weight based on ferrous sulfate. In addition, the fertilized body 1 does not need to contain the above-mentioned nutrient source, and in that case, the growth of algae can be promoted by the nutrient source in the water and the iron fulvic acid (divalent iron state) in the fertilized body 1.

施肥体1は、適量のセメント、砂、小砂利、マイクロシリカ、天鉱石、岩塩、その他栄養源等を海水などの水(水分を含む物質)で混ぜ、その混合物の中に上述したフルボ酸鉄(2価鉄状態)を混ぜることで製造されることができる。または、施肥体1は、適量のセメント、砂、小砂利、マイクロシリカ、天鉱石、岩塩、その他栄養源等を海水などの水(水分を含む物質)で混ぜ、その混合物の表面上に上述したフルボ酸鉄(2価鉄状態)と真水または海水を混ぜ合わせたものを吹き付けて製造されることができる。フルボ酸鉄(2価鉄状態)は、上述したように好ましくはPh4以下の硫酸第一鉄とフルボ酸それぞれを真水に溶かし、それらを合わせて反応させて生成することができる。このような製造方法とすることで、栄養分としてのフルボ酸鉄(2価鉄状態)や天鉱石や岩塩等からなる栄養塩が水中(海水や川)に溶け出し、藻の生育を促すことができる。 Fertilizer 1 is made by mixing an appropriate amount of cement, sand, gravel, micro silica, natural ore, rock salt, and other nutrient sources with water (a substance containing moisture) such as seawater, and adding the above-mentioned iron fulvic acid to the mixture. It can be produced by mixing (in the divalent iron state). Alternatively, the fertilization body 1 can be made by mixing an appropriate amount of cement, sand, gravel, micro silica, natural ore, rock salt, other nutrient sources, etc. with water (a substance containing water) such as seawater, and applying the above-mentioned materials on the surface of the mixture. It can be produced by spraying a mixture of iron fulvic acid (in divalent iron state) and fresh water or seawater. As described above, fulvic acid iron (in the divalent iron state) can be produced by dissolving ferrous sulfate and fulvic acid, each having a pH of preferably 4 or less, in fresh water and reacting them together. By using this manufacturing method, nutrients such as iron fulvic acid (divalent iron state), ore, rock salt, etc. dissolve into water (seawater and rivers) and promote the growth of algae. can.

次に、図2、3を用いて、施肥体1の使用形態について説明する。図2と図3はそれぞれ、発明の一実施の形態の施肥体に関する説明図である。施肥体1は海上から散布(撒く)などされて、バラバラで海底や川底に散在するように設けられている。もちろん、網などのなかに複数の施肥体1を入れて海や川に配置しても良い。散布というのは、施肥体1を海や川に少なくとも1個以上設けることを言い、ある海の領域の中で施肥体1が海底や川底でほぼ均等に配置されるようにしても良いし、ある一部の領域に偏って配置されるようにしても良い。 Next, the usage pattern of the fertilizing body 1 will be explained using FIGS. 2 and 3. FIGS. 2 and 3 are explanatory diagrams of a fertilizing body according to an embodiment of the invention, respectively. The fertilizers 1 are spread (spread) from the sea, and are scattered on the seabed or riverbed in pieces. Of course, a plurality of fertilizers 1 may be placed in a net or the like and placed in the sea or river. Spreading refers to the provision of at least one fertilizing body 1 in the sea or river, and the fertilizing bodies 1 may be arranged almost evenly on the seabed or riverbed within a certain sea area, It may be arranged to be biased toward a certain area.

海に生息する藻には、大きく、図2(a)の領域10のような浅瀬の沿岸砂泥地に根を張って育つアマモのような藻11から、図2(b)の領域20のように岩礁の周りに岩礁を掴むように根を張る藻12(アマモ以外の藻を含む)まである。領域20には、岩礁として、のちに説明する図4の人工礁100が設置されても良い。 There are two major types of algae that live in the sea, ranging from eelgrass-like algae 11 that grows with roots in shallow coastal sand and mud, as shown in area 10 in Figure 2(a), to area 20 in Figure 2(b). There are up to 12 types of algae (including algae other than eelgrass) that spread their roots around rocky reefs as if gripping the reefs. In the area 20, an artificial reef 100 shown in FIG. 4, which will be described later, may be installed as a reef.

施肥体1は、領域10のような場所において、沿岸砂泥地に根を張って育つアマモのような藻に対しても、フルボ酸鉄(2価鉄状態)などの栄養分を供給することができる。施肥体1が、人工礁100のような大きな構造物ではなく、より小さな構造体であるからである。もちろん、岩礁(人工礁100を含む)の周りに生息する藻に対しても、施肥体1を岩礁の周りに設けることによって同様に栄養分を供給することができる。すなわち、施肥体1は、沿岸砂泥地の領域10や岩場(人工礁100)の領域20などの場所を選ばずに、藻の栄養分を水中に供給することができる。 Fertilizer 1 is capable of supplying nutrients such as iron fulvic acid (divalent iron state) even to algae such as eelgrass that grows with roots in coastal sandy mud in areas such as area 10. can. This is because the fertilizing body 1 is not a large structure like the artificial reef 100 but a smaller structure. Of course, nutrients can be similarly supplied to algae living around a rocky reef (including the artificial reef 100) by providing the fertilizing body 1 around the rocky reef. That is, the fertilizer 1 can supply nutrients for algae to water regardless of the location, such as the coastal sandy mud area 10 or the rocky area (artificial reef 100) area 20.

図3は牡蠣の養殖現場を示している。図2の形態以外にも、図3(a)のように、ネット30の中に1つまたは複数の施肥体1を入れて、海上の筏13などからそのネット30を吊るすようにしてもいい。この場合、施肥体1は、図2のように海底や川底に設けられるのではなく、水面と海底または川底との間に位置する。なお、ネット40には、養殖されている牡蠣14が入っている。また、図3(b)のようにネットに入れない牡蠣14の養殖の場合も、牡蠣14はネットに入っていないが、同様にネット30のようなものに施肥体1を入れて、海上の筏13などからそのネットを吊るすようにしてもいい。これによって、藻と同様牡蠣にとっても栄養分となるフルボ酸鉄(2価鉄状態)などの栄養分を供給することができる。 Figure 3 shows an oyster farming site. In addition to the configuration shown in FIG. 2, as shown in FIG. 3(a), one or more fertilizing bodies 1 may be placed in a net 30, and the net 30 may be suspended from a raft 13 on the sea. . In this case, the fertilizing body 1 is not provided on the seabed or riverbed as shown in FIG. 2, but is located between the water surface and the seabed or riverbed. Note that the net 40 contains cultivated oysters 14. Also, in the case of cultivating oysters 14 that cannot be placed in a net as shown in Figure 3(b), the oysters 14 are not placed in the net, but the fertilized body 1 is placed in something like a net 30, and the oysters 14 are placed in the sea. You can also hang the net from raft 13 or something like that. This makes it possible to supply nutrients such as iron fulvic acid (divalent iron), which is a nutrient for oysters as well as algae.

また、図3(a)のようにネット30に施肥体1を入れて、水面方向から施肥体1の入ったネット30を吊るすような方法は、牡蠣14の養殖だけに限られず、その他の養殖されている魚介類や、藻の栄養分の供給としても利用できる。 In addition, the method of putting the fertilized body 1 in a net 30 and suspending the net 30 containing the fertilized body 1 from the water surface direction as shown in FIG. It can also be used as a source of nutrients for seafood and algae.

図4は、本発明の一実施の形態の人工礁の斜視図である。人工礁100は、内部に内部空洞が形成された略球状の本体部101を備える。本体部101の上部101aには、内部空洞まで貫通する上部開口102が少なくとも1つ形成されている。また、本体部101の側部101bには、内部空洞まで貫通する複数の側部開口103が形成されている。 FIG. 4 is a perspective view of an artificial reef according to an embodiment of the present invention. The artificial reef 100 includes a substantially spherical main body portion 101 having an internal cavity formed therein. At least one upper opening 102 penetrating to the internal cavity is formed in the upper part 101a of the main body part 101. Further, a plurality of side openings 103 are formed in the side portion 101b of the main body portion 101, which penetrate to the internal cavity.

人工礁100は、本体部101の底部101cが海底に接地するように設置される。なお、本体部101の形状は、海底に安定して設置できる形状であればよく、岩を模した不規則な形状であってもよい。 The artificial reef 100 is installed so that the bottom portion 101c of the main body portion 101 is in contact with the seabed. The shape of the main body portion 101 may be any shape as long as it can be stably installed on the seabed, and may be an irregular shape imitating a rock.

人工礁100のサイズは、高さが20cmから2m程度であり、設置する場所、育成対象の海藻や魚などの種類に応じて、適宜変更される。例えば、高さが70cmの人工礁100では、本体部101の厚さは15cm、重量が170kgである。また、上部開口102は直径30cm、側部開口103は直径15cmから25cmである。 The size of the artificial reef 100 is approximately 20 cm to 2 m in height, and may be changed as appropriate depending on the location where it is installed and the type of seaweed or fish to be grown. For example, in the artificial reef 100 with a height of 70 cm, the thickness of the main body portion 101 is 15 cm and the weight is 170 kg. Further, the upper opening 102 has a diameter of 30 cm, and the side opening 103 has a diameter of 15 cm to 25 cm.

上部開口102や側部開口103は、人工礁100を設置する位置に生息する魚が自由に外部と内部空洞を往来できる大きさが望ましい。また、重量(本体部101の厚さ)は、台風などの大波で人工礁100が移動しない重さが望ましい。 The upper opening 102 and the side openings 103 are preferably large enough to allow fish living in the position where the artificial reef 100 is installed to freely move between the outside and the internal cavity. Further, the weight (thickness of the main body portion 101) is preferably such that the artificial reef 100 does not move due to large waves such as a typhoon.

栄養分が十分に供給されると、人工礁100の外面(上部101a、側部101b)などに海藻などが生育する。この時、生育する藻は、図2(a)におけるアマモのような砂泥地に生育する藻ではなく、図2(b)のように岩場などに生息する藻12である。人工礁100が設置された領域において、施肥体1を散布または撒くなどすることによって設けることで、藻に栄養分が供給され、藻の生育を促すことができる。なお、本体部101に形成された保持部に施肥体1を充填してもよい。 When nutrients are sufficiently supplied, seaweed and the like grow on the outer surface (upper part 101a, side part 101b) of the artificial reef 100. At this time, the algae that grows is not the algae that grows in sandy and muddy areas like eelgrass in FIG. 2(a), but the algae 12 that grows in rocky areas as shown in FIG. 2(b). By distributing or scattering the fertilizer 1 in the area where the artificial reef 100 is installed, nutrients are supplied to the algae and the growth of the algae can be promoted. Note that the fertilizing body 1 may be filled into a holding part formed in the main body part 101.

一方、アマモが生育するのは岩場や人工礁100ではなく、砂泥地であるため、人工礁100ではなく、小型の施肥体1のみを砂泥地に散布などすることによって設けると良い。また、施肥体1の栄養分は、サンゴの生育にも有効であり、成長させたいサンゴの周りに施肥体1を設けるとよい。 On the other hand, since eelgrass grows not on rocky areas or artificial reefs 100 but on sandy muddy ground, it is preferable to provide only the small fertilizer 1 instead of the artificial reef 100 by spraying it on the sandy muddy ground. Moreover, the nutrients in the fertilized body 1 are also effective for the growth of coral, and it is preferable to provide the fertilized body 1 around the coral that is desired to grow.

以上から、施肥体1は、少なくとも硫酸第一鉄とフルボ酸を反応させることで生成されたフルボ酸鉄(2価)と、セメント、砂、砂利のうち少なくとも一つを含むことで、藻などの生育に有効で必要な栄養分を水中に供給することができる。 From the above, the fertilizer application body 1 contains at least iron fulvic acid (divalent) produced by reacting ferrous sulfate and fulvic acid, and at least one of cement, sand, and gravel, so that it can remove algae, etc. It is possible to supply effective and necessary nutrients to the water for the growth of plants.

また、施肥体1は、フルボ酸鉄(2価)と、セメント、砂、砂利を含むことで、藻などの生育に有効で必要な栄養分を、長期的に水中に供給することができる。 In addition, the fertilizing body 1 contains iron fulvic acid (divalent), cement, sand, and gravel, so that it can supply effective and necessary nutrients for the growth of algae and the like to the water over a long period of time.

また、施肥体1は、少なくとも硫酸第一鉄とフルボ酸を反応させることで生成されたフルボ酸鉄(2価)を含み、その最大の幅が1~10cmであり、その重さが20~1000gであり、その比重が3以上であると良い。それによって、小型な形状で手軽に、藻などの生育に有効で必要な栄養分を供給することができる。 Further, the fertilized body 1 contains at least iron fulvic acid (divalent) produced by reacting ferrous sulfate and fulvic acid, has a maximum width of 1 to 10 cm, and weighs 20 to 20 cm. It is preferable that the weight is 1000 g and the specific gravity is 3 or more. As a result, it is possible to easily supply effective and necessary nutrients for the growth of algae etc. in a compact form.

施肥体1は、岩礁領域はもちろん、砂泥地の水底に設けることができる。それによって岩礁を使って生育する藻に対しても、砂泥地で生育する藻に対しても、栄養分を供給することができる。また、施肥体1は、窒素、リン、カリウムをさらに含むとよい。それによって、藻に必要な栄養分をより多く供給することができる。また、窒素、リン、カリウムは、施肥体1にフルボ酸鉄(2価)が含まれることで、より効率的に藻の栄養源となる。 The fertilizing body 1 can be provided not only in rocky reef areas but also on the bottom of sandy and muddy areas. This makes it possible to supply nutrients to both algae that grow on rocky reefs and algae that grow on sandy and muddy soil. Further, the fertilized body 1 may further contain nitrogen, phosphorus, and potassium. This allows more nutrients to be supplied to the algae. In addition, nitrogen, phosphorus, and potassium become nutritional sources for algae more efficiently when the fertilized body 1 contains iron fulvic acid (divalent).

この施肥体1は、セメント、砂、砂利のうち少なくとも一つを水と混ぜ合わせた混合物を生成し、少なくとも硫酸第一鉄とフルボ酸を反応させることで生成されたフルボ酸鉄(2価)を混合物と混ぜ合わせることで製造されても良い。これによって、水中でもより長期的に2価状態を維持できるフルボ酸鉄を含んだ施肥体1を製造することができる。 This fertilizer application body 1 produces a mixture of at least one of cement, sand, and gravel mixed with water, and contains ferrous fulvic acid (divalent) produced by reacting at least ferrous sulfate with fulvic acid. may be produced by mixing with a mixture. As a result, it is possible to produce a fertilized body 1 containing iron fulvic acid that can maintain a bivalent state even in water for a longer period of time.

小型な構造で、沿岸砂泥地や岩場などの場所を選ばずに、藻の栄養分を海中に供給することのできる施肥体及び施肥体の製造方法を提供する。 To provide a fertilizing body which has a small structure and can supply algae nutrients to the sea regardless of the location such as coastal sandy mud land or rocky areas, and a method for producing the fertilizing body.

1 施肥体
30 ネット
40 ネット
100 人工礁
101 本体部

1 Fertilizer body 30 Net 40 Net 100 Artificial reef 101 Main body

Claims (10)

少なくとも硫酸第一鉄とフルボ酸を反応させることで生成されたフルボ酸鉄(2価)と、
セメント、砂、砂利のうち少なくとも一つを含むことを特徴とする施肥体。
Fulvic acid iron (divalent) produced by reacting at least ferrous sulfate with fulvic acid,
A fertilization body characterized by containing at least one of cement, sand, and gravel.
フルボ酸鉄(2価)と、
セメント、砂、砂利を含むことを特徴とする施肥体。
Iron fulvic acid (divalent) and
A fertilization body characterized by containing cement, sand, and gravel.
前記施肥体の最大の幅が、1~10cmである、請求項1または2に記載の施肥体。 The fertilizer application body according to claim 1 or 2, wherein the maximum width of the fertilizer application body is 1 to 10 cm. 前記施肥体の重さが、20~1000gである、請求項1または2に記載の施肥体。 The fertilizer application body according to claim 1 or 2, wherein the weight of the fertilizer application body is 20 to 1000 g. 前記施肥体の比重が、3以上である、請求項1または2に記載の施肥体。 The fertilizing body according to claim 1 or 2, wherein the specific gravity of the fertilizing body is 3 or more. 前記施肥体は、その最大の幅が1~10cmであり、その重さが20~1000gであり、その比重が3以上である、請求項1または2に記載の施肥体。 The fertilizing body according to claim 1 or 2, wherein the fertilizing body has a maximum width of 1 to 10 cm, a weight of 20 to 1000 g, and a specific gravity of 3 or more. 少なくとも硫酸第一鉄とフルボ酸を反応させることで生成されたフルボ酸鉄(2価)を含み、
その最大の幅が1~10cmであり、その重さが20~1000gであり、その比重が3以上であることを特徴とする施肥体。
Contains at least iron fulvic acid (divalent) produced by reacting ferrous sulfate and fulvic acid,
A fertilizing body having a maximum width of 1 to 10 cm, a weight of 20 to 1000 g, and a specific gravity of 3 or more.
砂泥地の水底に設けられる、請求項1、2または7に記載の施肥体。 The fertilization body according to claim 1, 2 or 7, which is provided at the bottom of a sandy and muddy area. 窒素、リン、カリウムをさらに含む、請求項1、2または7に記載の施肥体。 The fertilizer application body according to claim 1, 2 or 7, further comprising nitrogen, phosphorus, and potassium. セメント、砂、砂利のうち少なくとも一つを水と合わせた混合物を生成し、
少なくとも硫酸第一鉄とフルボ酸を反応させることで生成されたフルボ酸鉄(2価)を前記混合物と合わせることを特徴とした施肥体の製造方法。

producing a mixture of at least one of cement, sand, and gravel combined with water;
A method for producing a fertilization body, comprising combining at least ferrous fulvic acid (divalent) produced by reacting ferrous sulfate with fulvic acid with the mixture.

JP2022112132A 2022-07-13 2022-07-13 Fertilizing body and manufacturing method of fertilizing body Pending JP2024010703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022112132A JP2024010703A (en) 2022-07-13 2022-07-13 Fertilizing body and manufacturing method of fertilizing body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022112132A JP2024010703A (en) 2022-07-13 2022-07-13 Fertilizing body and manufacturing method of fertilizing body

Publications (1)

Publication Number Publication Date
JP2024010703A true JP2024010703A (en) 2024-01-25

Family

ID=89622362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022112132A Pending JP2024010703A (en) 2022-07-13 2022-07-13 Fertilizing body and manufacturing method of fertilizing body

Country Status (1)

Country Link
JP (1) JP2024010703A (en)

Similar Documents

Publication Publication Date Title
JP4351708B2 (en) Water environment container, water environment protection system, and water environment protection method
JP4489043B2 (en) Water area environmental conservation material and water area environmental conservation method
JP3829140B2 (en) How to repair salmon burn
CN103960179A (en) Artificial ecological barrier reef
JP4213069B2 (en) Marine seed plant growing material, production method of marine seed plant growing material, and creation method of marine seed plant growing ground
JP2004159610A (en) Sea weed growing reef and method for forming sea weed bed
JP2014093967A (en) Organism cultivation block and organism cultivation method
KR102428747B1 (en) Sea nutrient-dissolving seaweed growth device for the restoration of seaweed grounds
JP3142286U (en) Seaweed culture float
KR101025559B1 (en) Adhesive substrate of marine algae seedling for restoration of marine ecological system and planting method of marine forest
JP6776080B2 (en) Bottom sediment improvement material and bottom sediment improvement method
KR101681578B1 (en) Green Tetrapod and method thereof
JP2024010703A (en) Fertilizing body and manufacturing method of fertilizing body
JP3729160B2 (en) Environmental improvement method and environmental improvement materials for underwater or beach
JP5114840B2 (en) Underwater fauna and flora and marine ranch using the same
JP6891615B2 (en) How to create brackish water eelgrass field and how to grow eelgrass in brackish water.
KR101427485B1 (en) Artificial reefs supplies a deep seawater and nutrient salts
JP2003000091A (en) Humic acid feeder
Boyd Water quality and pond fertilization
JP2007161975A (en) Novel method for using pelytes of geological ages including the mesozoic jurassic period and periods prior to the same
JP6583732B2 (en) Method for producing savable seaweed seeds
JP2773067B2 (en) Porous molded body for growing aquatic organisms and artificial reef comprising the molded body
KR100385907B1 (en) The fertilizing agent to improve growing environment of living things which live in the ocean
JP2003000092A (en) Method for producing humic acid feeder, humic acid feed device to be used underwater and method for setting humic acid feeder
JP3374103B2 (en) Fertilizer for improving marine life growth environment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220713

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20220725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240305