JP2024005982A - Membrane separation apparatus - Google Patents

Membrane separation apparatus Download PDF

Info

Publication number
JP2024005982A
JP2024005982A JP2022106499A JP2022106499A JP2024005982A JP 2024005982 A JP2024005982 A JP 2024005982A JP 2022106499 A JP2022106499 A JP 2022106499A JP 2022106499 A JP2022106499 A JP 2022106499A JP 2024005982 A JP2024005982 A JP 2024005982A
Authority
JP
Japan
Prior art keywords
membrane
membrane separation
water
deterioration
separation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022106499A
Other languages
Japanese (ja)
Inventor
俊之 内山
Toshiyuki Uchiyama
藤男 杉野
Fujio Sugino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Medical Co Ltd
Original Assignee
Toray Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Medical Co Ltd filed Critical Toray Medical Co Ltd
Priority to JP2022106499A priority Critical patent/JP2024005982A/en
Publication of JP2024005982A publication Critical patent/JP2024005982A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

PROBLEM TO BE SOLVED: To provide a membrane separation apparatus capable of being operated while maintaining a cleanliness of the system and the separation performance of the membrane separation means.
SOLUTION: A membrane separation apparatus comprises membrane separation means that supplies raw water and separates it into permeate water and concentrated water, estimating means for estimating the degradation state of the separation performance of the membrane separation means, and determination means for determining the cause of degradation in the separation performance. When the degradation state estimated by the estimating means exceeds a predetermined level, the cause of degradation is determined by the determination means.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、系内のクリーン化が図られ、高度に安定した運転性能を有する膜分離装置に関する。 The present invention relates to a membrane separation device that achieves cleanliness within the system and has highly stable operating performance.

透析治療のために必要な透析液を集中して調製する『セントラル透析液供給システム(CDDS)』は、現在 国内で主流のシステムとなっている。大量の透析液の調製には、大量の希釈用の精製水が必要であり、これを主に水道水などを原水として、逆浸透法による膜分離技術を用いた精製水製造装置によって精製水を得ている。ダイアライザーなどの血液浄化器の内部で、中空糸膜を介して患者の血液と接する透析液を希釈作製する精製水に対する清浄化の要求は高まる一方となっている。 The Central Dialysate Supply System (CDDS), which centrally prepares the dialysate needed for dialysis treatment, is currently the mainstream system in Japan. Preparing a large amount of dialysate requires a large amount of purified water for dilution, and this water is mainly used as raw water, such as tap water, and purified water is purified using a purified water production device that uses membrane separation technology using reverse osmosis. It has gained. There is an ever-increasing demand for purification of purified water that is used to dilute dialysate that comes into contact with a patient's blood through a hollow fiber membrane inside a blood purifier such as a dialyzer.

高い清浄度の精製水を得るためには、これらの膜モジュールに対して、熱水による消毒や低濃度の薬液による洗浄を定期的に確実に実施することが重要となるが、いったん汚染が進行すると消毒や洗浄を経ても系内を十分に清浄化できなくなる恐れがある。 In order to obtain highly clean purified water, it is important to regularly disinfect these membrane modules with hot water and clean them with low-concentration chemical solutions, but once contamination has progressed, In this case, there is a possibility that the inside of the system may not be sufficiently cleaned even after disinfection and cleaning.

系内の汚染を防止するためには、流路に水の滞留や淀みが生じにくいような構造を採用する方法が考えられる。例えば特許文献1には、RO膜モジュールの集水管の一端側と貯水タンクが透過水ラインで接続され、貯水タンクとRO膜モジュールの集水管の他端側が透過水返送ラインで接続され、透過水ライン、集水管及び透過水返送ラインにより循環洗浄ラインが形成された精製水製造装置が開示されている。 In order to prevent contamination within the system, it is possible to adopt a structure in which water is less likely to accumulate or stagnate in the flow path. For example, in Patent Document 1, one end side of the water collection pipe of the RO membrane module and the water storage tank are connected by a permeated water line, the water storage tank and the other end side of the water collection pipe of the RO membrane module are connected by a permeated water return line, and the permeated water A purified water production apparatus is disclosed in which a circulating cleaning line is formed by a line, a water collection pipe, and a permeated water return line.

また、特許文献2には、RO膜の閉塞等による逆浸透システムの動作不調を検知して対策を判定する診断装置が開示されている。 Further, Patent Document 2 discloses a diagnostic device that detects malfunction of a reverse osmosis system due to blockage of an RO membrane and determines countermeasures.

特開2012-106188号公報Japanese Patent Application Publication No. 2012-106188 特開2019-202305号公報Japanese Patent Application Publication No. 2019-202305

上記のように、RO膜等を用いた膜分離装置は、系内を清浄に保ちつつ安定した運転を行うことが求められている。そこで本発明の課題は、系内の清浄度と膜分離手段の分離性能を維持しつつ運転可能な膜分離装置を提供することにある。 As mentioned above, membrane separation devices using RO membranes and the like are required to operate stably while keeping the inside of the system clean. Therefore, an object of the present invention is to provide a membrane separation device that can be operated while maintaining the cleanliness inside the system and the separation performance of the membrane separation means.

上記課題を解決するために、本発明に係る膜分離装置は、原水を供給して透過水と濃縮水とに分離する膜分離手段と、該膜分離手段の分離性能の劣化状況を推定する推定手段と、前記分離性能の劣化要因を判定する判定手段とからなり、
前記推定手段により推定された前記劣化状態が所定レベルを超えたときに、前記判定手段により前記劣化要因を判定することを特徴とするものからなる。
In order to solve the above problems, the membrane separation device according to the present invention includes a membrane separation means that supplies raw water and separates it into permeated water and concentrated water, and an estimation that estimates the state of deterioration of the separation performance of the membrane separation means. and a determining means for determining the deterioration factor of the separation performance,
The deterioration factor is determined by the determining means when the deterioration state estimated by the estimating means exceeds a predetermined level.

本発明の膜分離装置によれば、運転中に分離性能を監視しつつ、分離性能の劣化が生じたと推定された際には、あらかじめ定められた手順で劣化要因を判定し、適切に対処することが可能となる。 According to the membrane separation device of the present invention, while monitoring separation performance during operation, when it is estimated that separation performance has deteriorated, the cause of the deterioration is determined according to a predetermined procedure and appropriate measures are taken. becomes possible.

本発明の膜分離装置において、前記劣化要因が、膜面への異物堆積、膜の目詰まり、膜の破れ、に少なくとも分類されることが好ましい。劣化要因がこれら3つ以上の項目に分類されることにより、性能回復のための処置を定型的に実施することができる。 In the membrane separation device of the present invention, it is preferable that the deterioration factors are at least classified into foreign matter deposition on the membrane surface, membrane clogging, and membrane tearing. By classifying the deterioration factors into these three or more items, measures for performance recovery can be routinely implemented.

本発明の膜分離装置において、前記判定手段により判定された前記劣化要因の除去操作を実施するように構成されることが好ましい。特定された劣化要因ごとに適切な対処方法をあらかじめ運転制御プログラムに組み込むことにより、性能劣化が生じた場合に作業員が現場に駆け付けなくてもある程度の性能回復処置を自動的に実施することができる。 The membrane separation apparatus of the present invention is preferably configured to perform an operation for removing the deterioration factor determined by the determination means. By incorporating appropriate countermeasures into the operation control program in advance for each identified deterioration factor, it is possible to automatically take measures to restore performance to a certain extent when performance deterioration occurs, without the need for workers to rush to the site. can.

本発明の膜分離装置において、前記膜分離手段が複数の膜モジュールからなり、各々の前記膜モジュールについて前記推定手段および前記判定手段が設けられ、各々の前記膜モジュールについて前記劣化要因の除去操作を実施するように構成することができる。このような構成を採用することにより、膜分離手段が複数の膜モジュールから構成されている場合であっても、膜分離装置全体で性能劣化が生じた際に、いずれの膜モジュールに不具合が生じているのかを特定することが可能となり、性能回復処置を適切に実施することができる。 In the membrane separation apparatus of the present invention, the membrane separation means includes a plurality of membrane modules, the estimation means and the determination means are provided for each of the membrane modules, and the deterioration factor removal operation is performed for each of the membrane modules. can be configured to perform. By adopting such a configuration, even if the membrane separation means is composed of multiple membrane modules, if the performance of the entire membrane separation device deteriorates, any membrane module will fail. This makes it possible to identify whether or not the system is operating properly, and to appropriately implement performance recovery measures.

本発明の膜分離装置において、前記除去操作が、前記膜モジュールへの前記原水の供給中止を含むように構成することが可能である。膜分離手段が複数の膜モジュールから構成されている場合には、不具合が生じた膜モジュールへの原水供給を中止して残りの膜モジュールで膜分離を継続することができる。この場合に、一部の膜モジュールの使用を中止することになるので、あらかじめ原水負荷に余裕を持たせた装置設計をするか、あるいは予備の膜モジュールをいつでも使用開始できるように設置しておいて、不具合が生じた膜モジュールの代わりに切り替え使用することができる。 In the membrane separation apparatus of the present invention, it is possible to configure the removal operation to include stopping the supply of the raw water to the membrane module. When the membrane separation means is composed of a plurality of membrane modules, it is possible to stop supplying raw water to the membrane module in which the problem has occurred and continue membrane separation using the remaining membrane modules. In this case, some of the membrane modules will have to be discontinued, so it is recommended that you design the equipment in advance to allow a margin for the raw water load, or install spare membrane modules so that they can be used at any time. It can be used in place of a malfunctioning membrane module.

本発明の膜分離装置において、前記推定手段が少なくとも、圧力計、電導度計および流量計からなることが好ましい。膜の破れは透過水の電導度上昇により検知可能であり、異物堆積や目詰まりは差圧上昇や流量低下の度合いから推定可能である。 In the membrane separation apparatus of the present invention, it is preferable that the estimating means includes at least a pressure gauge, a conductivity meter, and a flowmeter. Membrane rupture can be detected by an increase in the electrical conductivity of permeated water, and foreign matter accumulation and clogging can be estimated from the degree of increase in differential pressure and decrease in flow rate.

本発明の膜分離装置において、前記透過水と前記濃縮水が、前記膜分離装置の膜面を隔てて同じ向きに流れることが好ましい。いわゆる外圧式の膜分離装置で両端開放型の集水管を用いた場合には、このような並流運転の方が、対向流の場合よりも集水管上流側の原水圧力を高めることができるので、集水管内の淀みを効果的に防止することができる。 In the membrane separation device of the present invention, it is preferable that the permeated water and the concentrated water flow in the same direction across a membrane surface of the membrane separation device. When a water collection pipe with both ends open is used in a so-called external pressure type membrane separation device, this type of parallel flow operation can increase the raw water pressure upstream of the water collection pipe than when using countercurrent flow. , stagnation in the water collection pipe can be effectively prevented.

本発明の膜分離装置において、前記透過水と前記濃縮水の流れる向きが変化することが好ましい。より具体的には、間欠的に運転状態と休止状態を繰り返し、前記休止状態から前記運転状態に移行する度に前記透過水と前記濃縮水の流れる向きが変化するように構成することが好ましい。このように透過水と濃縮水の流れる向きが入れ替わることにより、膜分離手段に掛かる原水負荷の偏りを抑制し、スケール付着による膜の目詰まりを防止することができる。また、膜面に堆積する異物も、流れ方向の変更により系外へ洗い流すことができる。 In the membrane separation device of the present invention, it is preferable that the flow directions of the permeated water and the concentrated water change. More specifically, it is preferable that the operating state and the resting state are repeated intermittently, and the flow directions of the permeated water and the concentrated water change each time the operating state is changed from the resting state to the operating state. By switching the flow directions of permeated water and concentrated water in this manner, it is possible to suppress unevenness in the raw water load applied to the membrane separation means and prevent clogging of the membrane due to scale adhesion. Further, foreign matter deposited on the membrane surface can be washed out of the system by changing the flow direction.

本発明の膜分離装置は、前記膜分離装置が逆浸透膜からなる場合に好適である。透析液を希釈作製する精製水を製造する膜分離装置においては特に系内のクリーン化が求められるので、本発明の適用によりそのような要求を満たすことが可能である。 The membrane separation device of the present invention is suitable when the membrane separation device consists of a reverse osmosis membrane. In a membrane separation device that produces purified water for diluting dialysate, cleaning of the system is particularly required, and the application of the present invention can satisfy such a requirement.

本発明によれば、膜分離手段の分離性能の劣化状況および劣化要因を把握できるので、系内の清浄度と膜分離手段の分離性能を維持することができる。 According to the present invention, since it is possible to grasp the deterioration status and deterioration factors of the separation performance of the membrane separation means, it is possible to maintain the cleanliness in the system and the separation performance of the membrane separation means.

本発明の一実施態様に係る膜分離装置の概略フロー図である。1 is a schematic flow diagram of a membrane separation device according to one embodiment of the present invention. 図1の膜分離装置において透過水と濃縮水を逆向きに流す場合を示す概略フロー図である。2 is a schematic flow diagram showing a case where permeated water and concentrated water flow in opposite directions in the membrane separation device of FIG. 1. FIG. 本発明の他の実施態様に係る膜分離装置の概略フロー図である。FIG. 3 is a schematic flow diagram of a membrane separation device according to another embodiment of the present invention. 図3の膜分離装置において透過水と濃縮水を逆向きに流す場合を示す概略フロー図である。4 is a schematic flow diagram showing a case where permeated water and concentrated water flow in opposite directions in the membrane separation device of FIG. 3. FIG. 図1または3の膜分離装置において膜モジュールに劣化が生じた場合の挙動を説明するための概略フロー図であり、(A)は膜面への異物堆積による劣化、(B)は膜の目詰まりによる劣化、(C)は膜の破れによる劣化が生じた場合をそれぞれ示す。3 is a schematic flow diagram for explaining the behavior when deterioration occurs in the membrane module in the membrane separation device of FIG. (C) shows the case where deterioration occurs due to clogging, and (C) shows the case where deterioration occurs due to membrane tearing.

以下に、本発明の望ましい実施の形態を、図面を参照して説明する。
図1は本発明の一実施態様に係る膜分離装置1の構成を示す概略フロー図であり、図2は透過水と濃縮水を逆向きに流す場合を示す場合を示している。破線は弁の閉止により水が流れていない流路を示し、水が流れている流路は実線で示す。また三方弁3、13、23、33、43の閉止箇所を黒色で示す。図1および図2のいずれにおいても、ROポンプ2により膜分離装置に供給される原水は、三方弁3を経て第一膜モジュール4に流入し、第一RO透過水と第一RO濃縮水に分離される。第一RO濃縮水は第二膜モジュール5に流入し、第二RO透過水と第二RO濃縮水に分離される。第一RO透過水は第一膜モジュール4の集水管4aから流出し、第二RO透過水は第二膜モジュール5の集水管5aから流出して、三方弁13、23を経て透過水タンク6に貯留される。第二濃縮水は三方弁33、43を経て一部は系外に排出され、一部は逆止弁7を経て原水ポンプ2の吸入側に戻される。
Below, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic flow diagram showing the configuration of a membrane separation apparatus 1 according to an embodiment of the present invention, and FIG. 2 shows a case where permeated water and concentrated water flow in opposite directions. A broken line indicates a channel in which water is not flowing due to the valve being closed, and a solid line indicates a channel in which water is flowing. Also, the closed locations of the three-way valves 3, 13, 23, 33, and 43 are shown in black. In both FIGS. 1 and 2, raw water supplied to the membrane separator by the RO pump 2 flows into the first membrane module 4 through the three-way valve 3, and becomes the first RO permeated water and the first RO concentrated water. separated. The first RO retentate flows into the second membrane module 5 and is separated into the second RO permeate and the second RO retentate. The first RO permeated water flows out from the water collection pipe 4a of the first membrane module 4, and the second RO permeated water flows out from the water collection pipe 5a of the second membrane module 5, passes through the three-way valves 13 and 23, and then passes through the permeated water tank 6. is stored in A portion of the second concentrated water is discharged outside the system through the three-way valves 33 and 43, and a portion is returned to the suction side of the raw water pump 2 through the check valve 7.

透過水タンク6には殺菌灯8と液面計9が設けられ、精製水ポンプ10により図示されない透析液製造装置に送られる。 The permeated water tank 6 is equipped with a sterilizing lamp 8 and a liquid level gauge 9, and is sent to a dialysate manufacturing apparatus (not shown) by a purified water pump 10.

第一膜モジュール4および第二膜モジュール5の入口部および出口部などには圧力計16および流量計17が設けられている。流量計17の設置箇所には併せて電導度計を設置してもよい。 A pressure gauge 16 and a flow meter 17 are provided at the inlet and outlet of the first membrane module 4 and the second membrane module 5, respectively. A conductivity meter may also be installed at the location where the flow meter 17 is installed.

図3は本発明の他の実施態様に係る膜分離装置11の構成を示す概略フロー図であり、図4は透過水と濃縮水を逆向きに流す場合を示す場合を示している。図3および図4のいずれにおいても、ROポンプ2により膜分離装置に供給される原水は、三方弁3を経て第一膜モジュール14に流入し、第一RO透過水と第一RO濃縮水に分離される。第一RO濃縮水は第二膜モジュール15に流入し、第二RO透過水と第二RO濃縮水に分離されるが、集水管14aから流出した第一RO透過水が第二膜モジュール15の集水管15aに流入して、集水管15a内で第二RO透過水と合流し、集水管15aから流出した透過水が透過水タンク6に貯留される点が図1のフローと異なる。第二RO濃縮水は、図1および図2のフローと同様に、三方弁33、43を経て一部は系外に排出され、一部は逆止弁7を経て原水ポンプ2の吸入側に戻される。 FIG. 3 is a schematic flow diagram showing the configuration of a membrane separation device 11 according to another embodiment of the present invention, and FIG. 4 shows a case where permeated water and concentrated water flow in opposite directions. In both FIGS. 3 and 4, the raw water supplied to the membrane separator by the RO pump 2 flows into the first membrane module 14 through the three-way valve 3, and becomes the first RO permeated water and the first RO concentrated water. Separated. The first RO concentrated water flows into the second membrane module 15 and is separated into the second RO permeated water and the second RO concentrated water, but the first RO permeated water flowing out from the water collection pipe 14a flows into the second membrane module 15. The flow differs from the flow shown in FIG. 1 in that the permeated water flows into the water collection pipe 15a, merges with the second RO permeated water within the water collection pipe 15a, and flows out from the water collection pipe 15a and is stored in the permeated water tank 6. Similar to the flows in FIGS. 1 and 2, a portion of the second RO concentrated water is discharged outside the system via the three-way valves 33 and 43, and a portion of the second RO concentrate passes through the check valve 7 and enters the suction side of the raw water pump 2. be returned.

膜分離装置1、11の運転方法としては、連続運転も可能であるが、透過水タンク6の容量が透過水の消費量に比して大きい場合には採水の開始および停止を繰り返す間欠運転をしてもよい。この場合、透過水と濃縮水の流れ方向を図1または図3に示した向きで採水開始して透過水タンク6が透過水で満たされた場合に採水を停止し、透過水タンク6の液面が所定レベルまで低下した際には透過水と濃縮水の流れ方向を図2または図4に示した向きに変更して採水開始することができる。このように透過水と濃縮水の流れ方向を随時入れ替えながら運転すれば、膜モジュールにかかる負荷の偏りが緩和され、膜の寿命を延ばすことが可能である。 Continuous operation is possible for the membrane separators 1 and 11, but if the capacity of the permeated water tank 6 is larger than the amount of permeated water consumed, intermittent operation that repeats the start and stop of water sampling is possible. You may do so. In this case, water sampling is started with the flow direction of permeated water and concentrated water as shown in FIG. 1 or 3, and when the permeated water tank 6 is filled with permeated water, water sampling is stopped, and When the liquid level drops to a predetermined level, the flow direction of the permeated water and concentrated water can be changed to the direction shown in FIG. 2 or FIG. 4, and water sampling can be started. If the membrane module is operated while changing the flow direction of the permeated water and concentrated water at any time in this way, the unbalanced load on the membrane module can be alleviated and the life of the membrane can be extended.

図5は、図1または図3の膜分離装置において、いずれかの膜モジュールに劣化が生じた場合の挙動を説明するための概略フロー図であり、(A)は膜面への異物堆積による劣化、(B)は膜の目詰まりによる劣化、(C)は膜の破れによる劣化が生じた場合をそれぞれ示す。 FIG. 5 is a schematic flow diagram for explaining the behavior when deterioration occurs in any of the membrane modules in the membrane separation apparatus of FIG. (B) shows deterioration due to membrane clogging, and (C) shows deterioration due to membrane tearing.

膜モジュールの劣化(A)~(C)を検知するために、個々の膜モジュールの入口側、出口側および集水管出口側に圧力計16、電導度計および流量計17などを設置して、劣化状況を監視することができる。 In order to detect deterioration (A) to (C) of the membrane modules, a pressure gauge 16, a conductivity meter, a flow meter 17, etc. are installed on the inlet side, outlet side, and water collection pipe outlet side of each membrane module. Deterioration status can be monitored.

例えば図5(A)に示すように原水入口側に異物18が堆積した場合には、圧力や流量の変動が生じるので、変動幅が所定値を超えた場合には膜面への異物堆積による劣化(A)の推定フラグが立つように劣化状況監視プログラムを設定しておく。運転を継続し、採水の開始および停止を所定回数繰り返した後に、圧力や流量の変動幅が所定値を下回った場合には、膜面への異物堆積による劣化(A)がいったん生じて回復したものと判定する。採水の開始および停止を所定回数繰り返した後も、圧力や流量の変動幅が所定値を超えたままである場合には、採水停止中のタイミングで原水ラインに原水を勢いよく流して短時間のフラッシング洗浄を実施し、圧力や流量の変動幅が所定値を下回った場合には、劣化要因が膜面への異物堆積による劣化(A)であり、既に回復したものと判定する。 For example, if foreign matter 18 is deposited on the raw water inlet side as shown in Fig. 5(A), fluctuations in pressure and flow rate will occur. The deterioration status monitoring program is set so that the deterioration (A) estimation flag is set. After continuing operation and repeating the start and stop of water sampling a predetermined number of times, if the fluctuation range of pressure or flow rate falls below the predetermined value, deterioration (A) due to foreign matter accumulation on the membrane surface will occur and recovery will occur. It is determined that the If the fluctuation range of pressure and flow rate still exceeds the specified value even after starting and stopping water sampling a predetermined number of times, drain the raw water forcefully through the raw water line for a short period of time while water sampling is stopped. If the fluctuation width of the pressure and flow rate falls below a predetermined value after performing the flushing cleaning, it is determined that the cause of the deterioration is deterioration (A) due to the accumulation of foreign matter on the membrane surface, and that the film has already recovered.

また、例えば図5(B)に示すように、スケール19やその他のファウリング20による膜の目詰まりが生じた場合には、圧力や流量の変動が生じるので、変動幅が所定値を超えた場合には膜の目詰まりによる劣化(B)の推定フラグが立つように劣化状況監視プログラムを設定しておく。膜の目詰まりによる劣化(B)の場合には、運転を継続しても膜面への異物堆積による劣化(A)のように自然に回復することが期待できないので、採水の開始および停止を所定回数繰り返した後や、上述の短時間のフラッシング洗浄を実施した後に、圧力や流量の変動幅が所定値を下回った場合には、膜の目詰まりによる劣化(B)の推定フラグをキャンセルする。所定時間を超えて膜の目詰まりによる劣化(B)の推定フラグが立ったままである場合には、劣化要因が膜の目詰まりによる劣化(B)であると判定し、モニター画面にその旨を表示させる。また、通信手段を用いて膜分離装置のメンテナンス会社に警報を発信することも可能である。 Furthermore, as shown in FIG. 5(B), for example, when membrane clogging occurs due to scale 19 or other fouling 20, pressure and flow rate fluctuations occur, so the range of fluctuations exceeds a predetermined value. In this case, the deterioration status monitoring program is set so that a flag for estimating deterioration (B) due to membrane clogging is set. In the case of deterioration due to membrane clogging (B), it cannot be expected to recover naturally even if operation continues as in the case of deterioration due to foreign matter deposited on the membrane surface (A), so it is necessary to start and stop water sampling. If the fluctuation width of the pressure or flow rate falls below the predetermined value after repeating this a predetermined number of times or after performing the short-time flushing cleaning described above, the flag for estimating deterioration due to membrane clogging (B) is canceled. do. If the estimated flag for deterioration due to membrane clogging (B) remains on for a predetermined period of time, it is determined that the deterioration factor is deterioration due to membrane clogging (B), and a message to that effect is displayed on the monitor screen. Display. It is also possible to send an alarm to the maintenance company of the membrane separation device using communication means.

さらに、例えば図5(C)に示すように、膜の破れ21が生じた場合には、圧力や流量の変動に加えて透過水の電導度が上昇するので、電導度が所定値を超えた場合には膜の破れによる劣化(C)の推定フラグが立つように劣化状況監視プログラムを設定しておく。透過水の電導度が上昇する要因としては、膜の破れ以外に電気信号ノイズの発生、原水水質や圧力の急激な変動なども考えられるが、電導度の上昇が一定時間以上継続した場合には、採水停止中のタイミングで、圧空ポンプにて透過水ラインから膜モジュールにエアを送り込み、集水管から水を追い出した状態で圧空ポンプを停止させたときに圧力が保持できなければ、劣化要因が膜の破れによる劣化(C)であると判定し、モニター画面にその旨を表示させる。また、通信手段を用いて膜分離装置のメンテナンス会社に警報を発信することも可能である。 Furthermore, as shown in FIG. 5(C), for example, when a membrane rupture 21 occurs, the conductivity of the permeated water increases in addition to fluctuations in pressure and flow rate, so that the conductivity exceeds a predetermined value. In this case, the deterioration status monitoring program is set so that a flag for estimating deterioration (C) due to membrane tearing is raised. Factors that can cause the conductivity of permeated water to increase include, in addition to membrane rupture, the occurrence of electrical signal noise and sudden changes in raw water quality or pressure. However, if the conductivity continues to increase for a certain period of time, When water sampling is stopped, a compressed air pump is used to send air from the permeated water line to the membrane module, and if the pressure cannot be maintained when the compressed air pump is stopped with water expelled from the water collection pipe, the cause of deterioration may occur. It is determined that the deterioration (C) is due to membrane tearing, and a message to that effect is displayed on the monitor screen. It is also possible to send an alarm to the maintenance company of the membrane separation device using communication means.

また、上述のように膜の劣化状況を監視しつつ、劣化要因が膜面への異物堆積による劣化(A)や膜の目詰まりによる劣化(B)であると判定されたときには、劣化要因の除去操作として洗浄工程を実施することもできる。例えば膜分離装置の原水ラインをクエン酸や酢酸または乳酸等の薬液でスケール除去を行う薬液洗浄工程や、マイクロバブルを混入させた水で原水ラインを洗浄するバブル洗浄などを行い、劣化した膜の性能回復を図ることができる。洗浄工程を実施した後に再び採水工程を実施する際には、上述の劣化状況監視プログラムに従い、劣化要因が除去されて性能回復したかどうかを確認することも可能である。 In addition, while monitoring the deterioration status of the membrane as described above, if it is determined that the deterioration factor is due to the accumulation of foreign matter on the membrane surface (A) or deterioration due to membrane clogging (B), the deterioration factor will be determined. A washing step can also be carried out as a removal operation. For example, a chemical cleaning process in which scale is removed from the raw water line of a membrane separator using a chemical solution such as citric acid, acetic acid, or lactic acid, or a bubble cleaning process in which the raw water line is cleaned with water mixed with microbubbles is performed to remove deteriorated membranes. Performance can be recovered. When carrying out the water sampling process again after carrying out the cleaning process, it is also possible to follow the above-mentioned deterioration status monitoring program to check whether the deterioration factors have been removed and the performance has been restored.

また、上述の洗浄工程を実施する代わりに、劣化要因が膜の破れによる劣化(C)であると判定されたときには、劣化要因の除去操作として膜モジュールへの原水の供給を中止することもできる。膜の破れが生じた場合には、もはや洗浄しても性能回復が期待できないので、当該膜モジュール周りの流入弁および流出弁を遮断して利用を中止し、あらかじめ待機させていた予備の膜モジュールの利用を開始することが可能である。あるいは、原水負荷に対し膜モジュール本数に余裕を持たせた設計をしている場合には、一部の膜モジュールの利用を中止し、残りの膜モジュールだけで原水負荷を賄うようにして採水を継続してもよい。 Furthermore, instead of performing the above-mentioned cleaning process, when it is determined that the deterioration factor is deterioration (C) due to membrane tearing, the supply of raw water to the membrane module can be stopped as an operation to remove the deterioration factor. . If a membrane rupture occurs, performance recovery cannot be expected even after cleaning, so the inflow and outflow valves around the membrane module are shut off, the use is stopped, and a spare membrane module that has been kept on standby is removed. It is possible to start using it. Alternatively, if the design allows for a margin in the number of membrane modules for the raw water load, it is possible to discontinue the use of some membrane modules and collect water by using only the remaining membrane modules to cover the raw water load. may continue.

本発明は、高度に安定した運転性能が求められる膜分離装置として広く利用可能である。 INDUSTRIAL APPLICABILITY The present invention can be widely used as a membrane separation device that requires highly stable operating performance.

1、11 膜分離装置
2 ROポンプ
3、13、23、33、43 三方弁
4、14 第一膜モジュール
4a、5a、14a、15a 集水管
5、15 第二膜モジュール
6 透過水タンク
7 逆止弁
8 殺菌灯
9 液面計
10 精製水ポンプ
16 圧力計
17 流量計
18 異物
19 スケール
20 ファウリング
21 破れ
1, 11 Membrane separation device 2 RO pump 3, 13, 23, 33, 43 Three-way valve 4, 14 First membrane module 4a, 5a, 14a, 15a Water collection pipe 5, 15 Second membrane module 6 Permeated water tank 7 Check Valve 8 Germicidal lamp 9 Level gauge 10 Purified water pump 16 Pressure gauge 17 Flow meter 18 Foreign object 19 Scale 20 Fouling 21 Rupture

Claims (10)

原水を供給して透過水と濃縮水とに分離する膜分離手段と、該膜分離手段の分離性能の劣化状況を推定する推定手段と、前記分離性能の劣化要因を判定する判定手段とからなり、
前記推定手段により推定された前記劣化状態が所定レベルを超えたときに、前記判定手段により前記劣化要因を判定することを特徴とする膜分離装置。
It consists of a membrane separation means for supplying raw water and separating it into permeated water and concentrated water, an estimation means for estimating the state of deterioration of the separation performance of the membrane separation means, and a determination means for determining the cause of the deterioration of the separation performance. ,
A membrane separation apparatus characterized in that when the state of deterioration estimated by the estimating means exceeds a predetermined level, the determining means determines the deterioration factor.
前記劣化要因が、膜面への異物堆積、膜の目詰まり、膜の破れ、に少なくとも分類される、請求項1に記載の膜分離装置。 The membrane separation device according to claim 1, wherein the deterioration factors are at least classified into foreign matter deposition on the membrane surface, membrane clogging, and membrane tearing. 前記判定手段により判定された前記劣化要因の除去操作を実施する、請求項2に記載の膜分離装置。 The membrane separation apparatus according to claim 2, wherein an operation for removing the deterioration factor determined by the determination means is performed. 前記膜分離手段が複数の膜モジュールからなり、各々の前記膜モジュールについて前記推定手段および前記判定手段が設けられ、各々の前記膜モジュールについて前記劣化要因の除去操作を実施する、請求項3に記載の膜分離装置。 4. The method according to claim 3, wherein the membrane separation means includes a plurality of membrane modules, the estimation means and the determination means are provided for each of the membrane modules, and the deterioration factor removal operation is performed for each of the membrane modules. membrane separation equipment. 前記除去操作が、前記膜モジュールへの前記原水の供給中止を含む、請求項4に記載の膜分離装置。 The membrane separation apparatus according to claim 4, wherein the removal operation includes stopping the supply of the raw water to the membrane module. 前記推定手段が少なくとも、圧力計、電導度計および流量計からなる、請求項1~5のいずれかに記載の膜分離装置。 The membrane separation apparatus according to any one of claims 1 to 5, wherein the estimating means includes at least a pressure gauge, a conductivity meter, and a flow meter. 前記透過水と前記濃縮水が、前記膜分離装置の膜面を隔てて同じ向きに流れる、請求項1に記載の膜分離装置。 The membrane separation device according to claim 1, wherein the permeated water and the concentrated water flow in the same direction across a membrane surface of the membrane separation device. 前記透過水と前記濃縮水の流れる向きが変化する、請求項1または7に記載の膜分離装置。 The membrane separation device according to claim 1 or 7, wherein the flow directions of the permeated water and the concentrated water change. 間欠的に運転状態と休止状態を繰り返し、前記休止状態から前記運転状態に移行する度に前記透過水と前記濃縮水の流れる向きが変化する、請求項8に記載の膜分離装置。 The membrane separation device according to claim 8, wherein the operating state and the resting state are repeated intermittently, and the flow directions of the permeated water and the concentrated water change each time the operating state is changed from the resting state to the operating state. 前記膜分離装置が逆浸透膜からなる、請求項1に記載の膜分離装置。
The membrane separation device according to claim 1, wherein the membrane separation device comprises a reverse osmosis membrane.
JP2022106499A 2022-06-30 2022-06-30 Membrane separation apparatus Pending JP2024005982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022106499A JP2024005982A (en) 2022-06-30 2022-06-30 Membrane separation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022106499A JP2024005982A (en) 2022-06-30 2022-06-30 Membrane separation apparatus

Publications (1)

Publication Number Publication Date
JP2024005982A true JP2024005982A (en) 2024-01-17

Family

ID=89540595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022106499A Pending JP2024005982A (en) 2022-06-30 2022-06-30 Membrane separation apparatus

Country Status (1)

Country Link
JP (1) JP2024005982A (en)

Similar Documents

Publication Publication Date Title
JP2015042385A (en) Desalination system
JP2015188767A (en) Water purification apparatus
WO2017204054A1 (en) Reverse osmosis membrane apparatus and method for operating reverse osmosis membrane apparatus
JPH11319516A (en) Water filtration apparatus and method for operating the same
JP3598912B2 (en) Operation method of membrane separator
JP2008237980A (en) Membrane separation apparatus for drinking water production, and its operation method
JP7306826B2 (en) Physical cleaning process trouble determination program for fresh water generation system, physical cleaning process trouble determination device, and recording medium
JP2007296500A (en) Membrane separation apparatus and membrane filtration method
JP2008080193A (en) Filtration system and filtration method
JP6299548B2 (en) Filtration system
KR20100116847A (en) Cleaning apparatus for maintaining high efficiency intelligent separate membranes and method thereof
JP2024005982A (en) Membrane separation apparatus
KR100235682B1 (en) Reverse osmosis filtering type pure water system
JP6299547B2 (en) Filtration system
JP2013022543A (en) Membrane treatment device and method of operation of membrane module
JP3445916B2 (en) Water treatment equipment
JP2024038918A (en) membrane separation equipment
JPH081158A (en) Method for operating water purification system and water purifier
JP4903464B2 (en) Method and system for detecting reliable membrane breakage
JP5287459B2 (en) Method for cleaning ultrafiltration filter and developing device using ultrafiltration filter
JP3616503B2 (en) Membrane filtration device
JP2006130496A (en) Water treatment device and its operating method
JP7075751B2 (en) How to clean the filtration membrane
JP5734038B2 (en) Membrane filtration system and filtration membrane damage detection method
JP4834435B2 (en) Automatic cleaning method of strainer for water treatment equipment by membrane filtration