JP2024004068A - 融着接続装置および融着接続方法 - Google Patents
融着接続装置および融着接続方法 Download PDFInfo
- Publication number
- JP2024004068A JP2024004068A JP2022103524A JP2022103524A JP2024004068A JP 2024004068 A JP2024004068 A JP 2024004068A JP 2022103524 A JP2022103524 A JP 2022103524A JP 2022103524 A JP2022103524 A JP 2022103524A JP 2024004068 A JP2024004068 A JP 2024004068A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- face
- light
- cores
- intensity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000004927 fusion Effects 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims description 29
- 239000013307 optical fiber Substances 0.000 claims abstract description 503
- 238000007526 fusion splicing Methods 0.000 claims description 103
- 239000003550 marker Substances 0.000 claims description 53
- 239000011248 coating agent Substances 0.000 claims description 29
- 238000000576 coating method Methods 0.000 claims description 29
- 230000002159 abnormal effect Effects 0.000 claims description 10
- 238000005259 measurement Methods 0.000 claims description 3
- 239000011347 resin Substances 0.000 description 26
- 229920005989 resin Polymers 0.000 description 26
- 238000010586 diagram Methods 0.000 description 15
- 238000003384 imaging method Methods 0.000 description 11
- 238000005253 cladding Methods 0.000 description 6
- 239000000428 dust Substances 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 5
- 238000013459 approach Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/255—Splicing of light guides, e.g. by fusion or bonding
- G02B6/2553—Splicing machines, e.g. optical fibre fusion splicer
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/255—Splicing of light guides, e.g. by fusion or bonding
- G02B6/2551—Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/255—Splicing of light guides, e.g. by fusion or bonding
- G02B6/2555—Alignment or adjustment devices for aligning prior to splicing
- G02B6/2556—Alignment or adjustment devices for aligning prior to splicing including a fibre supporting member inclined to the bottom surface of the alignment means
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/262—Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/255—Splicing of light guides, e.g. by fusion or bonding
- G02B6/2555—Alignment or adjustment devices for aligning prior to splicing
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Coupling Of Light Guides (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
【課題】個別のコアの光の導通状態を確認することができる融着接続装置を提供する。【解決手段】融着接続装置は、第一保持部と、第二保持部と、スクリーンと、光源と、第一測定器と、放電電極と、第一駆動部と、第二駆動部と、第三駆動部とを備える。第一光ファイバの端面と、第二光ファイバの端面とは対向している。光源は、第一光ファイバに試験光を入射する。スクリーンには、第一光ファイバの複数のコアのうちの一つのコアから出射される試験光のみが通過可能な導光部が設けられ、スクリーンは第一光ファイバの端面と第二光ファイバの端面との間に配置される。第一測定器は、第一光ファイバの端面から出射され第二光ファイバの端面に入射した試験光のうち、第二光ファイバから漏洩する漏洩光の強度を測定する。第三駆動部は、第一光ファイバの複数のコアのいずれかと導光部とが前記第一光ファイバの軸方向に並ぶようにスクリーンの位置を調整する。【選択図】図1
Description
本開示は、融着接続装置および融着接続方法に関する。
特許文献1~3には、2本のマルチコア光ファイバを融着接続する方法が開示されている。マルチコア光ファイバは、複数のコアと、上記複数のコアを覆うクラッドとを備える。
特許文献1には、複数のコアと、上記複数のコアを覆うクラッドとを共に有する第1のマルチコア光ファイバおよび第2のマルチコア光ファイバを融着接続する方法が記載されている。この方法では、第1のマルチコア光ファイバの軸と第2のマルチコア光ファイバの軸とが一致するように、第1のマルチコア光ファイバの接続端面と第2のマルチコア光ファイバの接続端面とを対向させる。次に、第1のマルチコア光ファイバの側方から試験光を入射させ、クラッドを伝搬させる。そして、第2のマルチコア光ファイバから検出される試験光に基づいて、第1のマルチコア光ファイバの軸回りの角度、および第2のマルチコア光ファイバの軸回りの角度を回転調整する。
特許文献2には、共にマルチコア光ファイバである第1の光ファイバおよび第2の光ファイバを融着接続する方法が記載されている。この方法では、第1の光ファイバの中心軸および第2の光ファイバの中心軸を平行にした状態で、第1の光ファイバの端面および第2の光ファイバの端面を向かい合わせる。次に、第2の光ファイバの一部を曲げる。次に、第1の光ファイバの一方の端部または第1の光ファイバの側方からコアに光を入射させ、他方の端部から出射した光を第2の光ファイバに入射させる。次に、第2の光ファイバを曲げた部分から出てくる光の強度を測定する。次に、第1の光ファイバの中心軸および第2の光ファイバの中心軸の平行を保持した状態で、光の強度が大きくなるように第1の光ファイバおよび第2の光ファイバのうちの少なくとも一方を移動または回転する。そして、光の強度が最大となった第1の光ファイバおよび第2の光ファイバの位置関係を保持した状態で、第1の光ファイバと第2の光ファイバとの距離を変更して端部同士を接続する。
特許文献3には、複数のコアと、上記複数のコアと離間して配置されるマーカと、上記複数のコアおよびマーカを覆うクラッドと、を共に有する2つのマルチコア光ファイバを互いに融着接続する方法が記載されている。この方法では、2つのマルチコア光ファイバが対向して配置され、2つのマルチコア光ファイバのそれぞれの側面から光が照射される。2つのマルチコア光ファイバの間にはモニタが配置され、モニタによって光のプロファイルが検出される。上記光のプロファイルから検出されるマーカの位置に基づいて、2つのマルチコア光ファイバは調芯される。
しかし、上記特許文献1~3に記載されている2つのマルチコア光ファイバを接続する方法では、全てのコアに同時に光が伝搬するので、個別のコアの光の導通状態を確認することができない。
本開示は、個別のコアの光の導通状態を確認することができる融着接続装置および融着接続方法を提供することを目的とする。
本開示は、複数のコアを有する第一光ファイバの端面と、複数のコアを有する第二光ファイバの端面とを融着接続する融着接続装置を提供する。この融着接続装置は、第一保持部と、第二保持部と、スクリーンと、光源と、第一測定器と、放電電極と、第一駆動部と、第二駆動部と、第三駆動部と、を備える。第一保持部は、第一光ファイバの端面と、第二光ファイバの端面とが対向した状態で、第一光ファイバを保持する。第二保持部は、第一光ファイバの端面と、第二光ファイバの端面とが対向した状態で、第二光ファイバを保持する。スクリーンは、第一光ファイバの複数のコアのうちの一つのコアから出射される光のみが通過可能な導光部、及び導光部を通過しない光を遮蔽する遮光部を有し、第一光ファイバの端面と第二光ファイバの端面との間に配置される。光源は、第一光ファイバに試験光を入射する。第一測定器は、第一光ファイバの端面から出射され第二光ファイバの端面に入射した試験光のうち、第二光ファイバから漏洩する漏洩光の強度を測定する。放電電極は、第一光ファイバの端面と、第二光ファイバの端面とを加熱する。第一駆動部は、第一保持部の位置、および第一光ファイバの軸回りの回転角度である第一角度を調整する。第二駆動部は、第二保持部の位置、および第二光ファイバの軸回りの回転角度である第二角度を調整する。第三駆動部は、第一光ファイバの複数のコアのいずれかと導光部とが第一光ファイバの軸方向に並ぶようにスクリーンの位置を調整することと、第一光ファイバの端面と第二光ファイバの端面との間からスクリーンを退避させることと、を行う。
本開示によれば、個別のコアの光の導通状態を確認することができる融着接続装置および融着接続方法を提供することが可能となる。
[本開示の実施形態の説明]
最初に、本開示の実施形態の内容を列記して説明する。
最初に、本開示の実施形態の内容を列記して説明する。
[1]
本開示の一側面に係る融着接続装置は、複数のコアを有する第一光ファイバの端面と、複数のコアを有する第二光ファイバの端面とを融着接続する。この融着接続装置は、第一保持部と、第二保持部と、スクリーンと、光源と、第一測定器と、放電電極と、第一駆動部と、第二駆動部と、第三駆動部と、を備える。第一保持部は、第一光ファイバの端面と、第二光ファイバの端面とが対向した状態で、第一光ファイバを保持する。第二保持部は、第一光ファイバの端面と、第二光ファイバの端面とが対向した状態で、第二光ファイバを保持する。スクリーンは、第一光ファイバの複数のコアのうちの一つのコアから出射される光のみが通過可能な導光部が設けられ、第一光ファイバの端面と第二光ファイバの端面との間に配置される。光源は、第一光ファイバに試験光を入射する。第一測定器は、第一光ファイバの端面から出射され第二光ファイバの端面に入射した試験光のうち、第二光ファイバから漏洩する漏洩光の強度を測定する。放電電極は、第一光ファイバの端面と、第二光ファイバの端面とを加熱する。第一駆動部は、第一保持部の位置、および第一光ファイバの軸回りの回転角度である第一角度を調整する。第二駆動部は、第二保持部の位置、および第二光ファイバの軸回りの回転角度である第二角度を調整する。第三駆動部は、第一光ファイバの複数のコアのいずれかと導光部とが第一光ファイバの軸方向に並ぶようにスクリーンの位置を調整することと、第一光ファイバの端面と第二光ファイバの端面との間からスクリーンを退避させることと、を行う。
本開示の一側面に係る融着接続装置は、複数のコアを有する第一光ファイバの端面と、複数のコアを有する第二光ファイバの端面とを融着接続する。この融着接続装置は、第一保持部と、第二保持部と、スクリーンと、光源と、第一測定器と、放電電極と、第一駆動部と、第二駆動部と、第三駆動部と、を備える。第一保持部は、第一光ファイバの端面と、第二光ファイバの端面とが対向した状態で、第一光ファイバを保持する。第二保持部は、第一光ファイバの端面と、第二光ファイバの端面とが対向した状態で、第二光ファイバを保持する。スクリーンは、第一光ファイバの複数のコアのうちの一つのコアから出射される光のみが通過可能な導光部が設けられ、第一光ファイバの端面と第二光ファイバの端面との間に配置される。光源は、第一光ファイバに試験光を入射する。第一測定器は、第一光ファイバの端面から出射され第二光ファイバの端面に入射した試験光のうち、第二光ファイバから漏洩する漏洩光の強度を測定する。放電電極は、第一光ファイバの端面と、第二光ファイバの端面とを加熱する。第一駆動部は、第一保持部の位置、および第一光ファイバの軸回りの回転角度である第一角度を調整する。第二駆動部は、第二保持部の位置、および第二光ファイバの軸回りの回転角度である第二角度を調整する。第三駆動部は、第一光ファイバの複数のコアのいずれかと導光部とが第一光ファイバの軸方向に並ぶようにスクリーンの位置を調整することと、第一光ファイバの端面と第二光ファイバの端面との間からスクリーンを退避させることと、を行う。
この融着接続装置では、スクリーンに設けられた導光部によって、第一光ファイバのいずれかのコアから出射される試験光のみがスクリーンを通過する。故に、第一測定器は、漏洩光の強度を測定することによって、第一光ファイバのいずれかのコアから出射される試験光の強度を測定することができる。更に、第三駆動部は、第一光ファイバの複数のコアのいずれかと導光部とが第一光ファイバの軸方向に並ぶようにスクリーンの位置を調整する。故に、第一測定器は、漏洩光の強度を測定することによって、第一光ファイバの複数のコアのそれぞれから出射される試験光の強度をコア毎に測定することができる。これにより、第一光ファイバの複数のコアのそれぞれの光の導通状態と、第二光ファイバの複数のコアのそれぞれの光の導通状態と、第一光ファイバの複数のコアおよび第二光ファイバの複数のコアの位置関係とを確認することができる。したがって、個別のコアの光の導通状態を確認することができ、その結果、第一光ファイバと第二光ファイバを低損失で融着接続することができる。
[2]上記[1]の融着接続装置において、第三駆動部が第一光ファイバの端面と第二光ファイバの端面との間からスクリーンを退避させ、第一測定器が測定する漏洩光が最大の強度となるように第一駆動部および第二駆動部のそれぞれが第一角度および第二角度のそれぞれを調整した状態で、第一測定器は、漏洩光の強度である第一強度を測定してもよい。第一光ファイバの複数のコアのうちの一つのコアと導光部とが第一光ファイバの軸方向に並ぶように第三駆動部がスクリーンの位置を調整した状態における漏洩光の強度であるコア強度を、第一測定器は、第一光ファイバの複数のコアのそれぞれに対して測定してもよい。第一光ファイバの複数のコアのそれぞれに対応するコア強度の和である第二強度と第一強度との比が所定の第一範囲内である場合に、第一光ファイバの端面と第二光ファイバの端面とが融着接続されてもよい。この場合、理論上、第二強度は第一強度に対して所定の比率を有する。しかし、第一光ファイバの複数のコアのそれぞれと導光部とが第一光ファイバの軸方向に並ぶときに位置ずれを起こすことによって、第二強度は第一強度に対する上記所定の比率よりも小さくなる。したがって、第一強度と第二強度との比を確認することで、スクリーンの位置が適切な位置に配置されたか否かを確認することができる。
[3]上記[1]または[2]の融着接続装置において、第一光ファイバの複数のコアのうちの一つのコアと導光部とが第一光ファイバの軸方向に並ぶように第三駆動部がスクリーンの位置を調整した状態における漏洩光の強度であるコア強度を、第一測定器は、第一光ファイバの複数のコアのそれぞれに対して測定してもよい。第一光ファイバの複数のコアのそれぞれに対応するコア強度のうち、最小のコア強度と、最大のコア強度との比が所定の第二範囲内である場合に、第一光ファイバの端面と、第二光ファイバの端面とが融着接続されてもよい。第一光ファイバのいずれかのコアに塵埃又は傷等が存在する場合には、そのコアに対応するコア強度は、塵埃又は傷等が存在しないコアに対応するコア強度よりも小さくなる。上記構成によれば、最大のコア強度と最小のコア強度との比が所定の第二範囲内であることを確認することによって、最小のコア強度に対応するコアに塵埃又は傷等が存在しないことを確認することができる。したがって、複数のコアのそれぞれの光の導通状態を確認することができる。
[4]上記[1]から[3]のいずれかの融着接続装置において、第一光ファイバの複数のコアのうちの一つのコアと導光部とが第一光ファイバの軸方向に並ぶように第三駆動部がスクリーンの位置を調整した状態における漏洩光の強度であるコア強度を、第一測定器は、第一光ファイバの複数のコアのそれぞれに対して測定してもよい。第一光ファイバの端面と第二光ファイバの端面とが融着接続された状態で、第一測定器は、漏洩光の強度である第三強度を測定してもよい。融着接続装置は、第一光ファイバの端面と第二光ファイバの端面との融着接続の状態を判定する判定部を更に備えてもよい。判定部は、第一光ファイバの複数のコアのそれぞれに対応するコア強度の和である第二強度と第三強度との比が所定の第三範囲外である場合に、第一光ファイバの端面と第二光ファイバの端面との融着接続の状態が異常であると判定してもよい。この場合、理論上、第三強度は第二強度に対して所定の比率を有する。しかし、融着時において生じる、第一光ファイバの複数のコアと第二光ファイバの複数のコアとの位置ずれによって、第三強度の第二強度に対する比率が上記所定の比率よりも小さくなることがある。上記構成では、第三強度と第二強度との比が所定の第三範囲外である場合に、第一光ファイバの端面と第二光ファイバの端面との融着接続の状態が異常であると判定するので、融着時において生じる、第一光ファイバの複数のコアと第二光ファイバの複数のコアとの位置ずれを検出することができる。
[5]上記[1]から[4]のいずれかの融着接続装置において、第一光ファイバおよび第二光ファイバは、更にマーカを有してもよい。第三駆動部は、導光部がマーカと第一光ファイバの軸方向に並ぶように前記スクリーンを調整することを更に行ってもよい。マーカを第一角度および第二角度の位置基準として使用することで、コア配置に回転対称性がある場合でもコアの誤接続を防止することができる。
[6]上記[1]から[5]のいずれかの融着接続装置において、導光部は貫通孔であってもよい。この場合、例えば、導光部が透明な平板によって構成されている場合と比較して、試験光が導光部を通過するときに導光部による試験光の反射を抑制できる。したがって、光源に戻る試験光によって光源の動作に影響を与えることを抑制することができる。
[7]上記[1]から[5]のいずれかの融着接続装置において、導光部は集光レンズでもよい。この場合、第一光ファイバの端面から出射された試験光は、集光レンズによって第二光ファイバの端面に向かって集光される。故に、試験光が第一光ファイバの端面から出射されてから第二光ファイバの端面に入射するまでの間に、試験光が漏洩することを抑制することができる。したがって、第二光ファイバの端面に入射される試験光の量を増大させることができ、漏洩光の量を増大させることができる。その結果、第一測定器が漏洩光の強度を測定するときの精度を向上させることができる。
[8]上記[1]から[7]のいずれかの融着接続装置において、スクリーンの遮光部は無反射コーティングされていてもよい。この場合、スクリーンによって試験光が反射されることを抑制できる。したがって、試験光が光源に戻ることによって光源の動作に影響を与えることを抑制することができる。
[9]上記[1]から[8]のいずれかの融着接続装置は、第一光ファイバの端面との間にスクリーンを挟む第一位置と、第一位置から離れた第二位置との間で移動可能に構成され、第一光ファイバの端面からスクリーンの導光部を通過して出射される試験光の強度を測定する第二測定器を更に備えてもよい。第二駆動部が第二光ファイバを退避させ、導光部と第一光ファイバの複数のコアのうちの一つのコアとが第一光ファイバの軸方向に並ぶように第三駆動部がスクリーンの位置を調整した状態において、第二測定器は、第一光ファイバの複数のコアのそれぞれから導光部を通過して出射される試験光の強度を第一位置において測定してもよい。その測定後、第二測定器が第二位置に移動してもよく、第二駆動部が第二光ファイバを第一光ファイバと対向する位置に戻してもよい。この場合、第二測定器は、第一光ファイバのコアのそれぞれから出射される試験光の強度をコア毎に直接的に測定する。したがって、第一光ファイバの複数のコアの光の導通状態をより一層精度良く確認することができる。
[10]本開示の一側面に係る融着接続方法は、複数のコアを有する第一光ファイバの端面と、複数のコアを有する第二光ファイバの端面とを融着接続する方法である。この融着接続方法は、第一光ファイバの端面と、第二光ファイバの端面とを対向させる工程と、第一光ファイバの中心軸および第二光ファイバの中心軸を合わせる工程と、第一光ファイバの軸回りの回転角度および第二光ファイバの軸回りの回転角度を調整する工程と、第一光ファイバに試験光を入射する工程と、第一光ファイバの端面から出射される試験光のうち、第一光ファイバの複数のコアのうちの一つのコアから出射される試験光を除く他の試験光を遮光した状態で、第二光ファイバから漏洩する漏洩光の強度を測定する工程を、第一光ファイバの複数のコアのそれぞれに対して実施する工程と、第一光ファイバの複数のコアのそれぞれに対応する漏洩光の強度に基づいて、第一光ファイバの端面と第二光ファイバの端面とを接続するか否かを判断する工程と、を備える。
この融着接続方法では、第一光ファイバのいずれかのコアから出射される試験光を除く他の試験光を遮光した状態で、第二光ファイバから漏洩する漏洩光の強度を測定する工程が、第一光ファイバの複数のコアのそれぞれに対して実施される。故に、第一光ファイバの複数のコアのそれぞれに対応する漏洩光の強度をコア毎に測定することができる。第一光ファイバの複数のコアのそれぞれに対応する漏洩光の強度に基づいて、第一光ファイバの端面と第二光ファイバの端面とを接続するか否かを判断する。したがって、複数のコアの光の導通状態が良好でない状態で、第一光ファイバの端面と、第二光ファイバの端面とを接続してしまうことを抑制することができる。
[本開示の実施形態の詳細]
[本開示の実施形態の詳細]
本開示の実施形態に係る融着接続装置および融着接続方法の具体例を、以下に図面を参照しつつ説明する。なお、本開示はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。以下の説明では、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
(第1実施形態)
(第1実施形態)
図1は、第1実施形態に係る融着接続装置1Aの概要を説明するための図である。図1には、XYZ直交座標系が併せて示されている。図1に示されるように、融着接続装置1Aは、第一光ファイバF1の端面F1aと、第二光ファイバF2の端面F2aとを互いに融着接続する装置である。図2は、第一光ファイバF1および第二光ファイバF2の側面図である。図3は、図2に示されたIII-III断面における第一光ファイバF1および第二光ファイバF2の断面図である。図3に示されるように、第一光ファイバF1および第二光ファイバF2は、ガラス部分GLと、ガラス部分GLの外周を取り囲む樹脂被覆RSとを有する。ガラス部分GLは、一または複数(図示例では4つ)のコアCRと、一つのマーカMKと、これらコアCRおよびマーカMKを取り囲む共通クラッドCLとを有する。マーカMKは、透明である。マーカMKは、不透明であってもよい。マーカMKは、光を伝送させることが可能である屈折率分布を有している。
図2に示されるように、第一光ファイバF1では、端面F1aを含むガラス部分GLの先端部分GL1が、樹脂被覆RSから露出している。第二光ファイバF2では、端面F2aを含むガラス部分GLの先端部分GL2が、樹脂被覆RSから露出している。これらの露出部分は、融着接続作業の前に、先端部分GL1,GL2の周囲の樹脂被覆RSが除去されることにより形成される。
再び図1を参照する。融着接続装置1Aは、第一保持部11と、第二保持部12とを備える。第一保持部11は、端面F1aと、端面F2aとが対向した状態で、第一光ファイバF1を保持する。第一保持部11は、第一光ファイバF1を保持した状態で、第一光ファイバF1の端面F1aの位置(X軸、Y軸およびZ軸それぞれにおける位置)および中心軸線周りの回転角θ(第一角度)を可変とする。第二保持部12は、端面F1aと、端面F2aとが対向した状態で、第二光ファイバF2を保持する。第二保持部12は、第二光ファイバF2を保持した状態で、第二光ファイバF2の端面F2aの位置および中心軸線周りの回転角θ(第二角度)を可変とする。第一保持部11および第二保持部12は、第一光ファイバF1および第二光ファイバF2の中心軸方向であるZ軸方向に沿って並んでいる。第一保持部11は、Z軸方向に沿って延びるV溝111を有する。V溝111は、第一光ファイバF1のうち先端部分GL1を除く部分、すなわち樹脂被覆RSを有する部分を収容して第一光ファイバF1のXY平面内の位置を固定する。第一保持部11は、先端部分GL1を突出させた状態で第一光ファイバF1を保持する。第二保持部12は、Z軸方向に沿って延びるV溝121を有する。V溝121は、第二光ファイバF2のうち先端部分GL2を除く部分、すなわち樹脂被覆RSを有する部分を収容して第二光ファイバF2のXY平面内の位置を固定する。第二保持部12は、先端部分GL2を突出させた状態で第二光ファイバF2を保持する。
一実施例では、第一保持部11および第二保持部12は樹脂製である。第一保持部11は、例えば、V溝111が形成されており第一光ファイバF1が載置される台112と、台112に載せられる蓋113とを有する。台112および蓋113は、例えば、Z軸方向と交差するY軸方向に沿って並ぶように配置される。第二保持部12は、例えば、V溝121が形成されており第二光ファイバF2が載置される台122と、台122に載せられる蓋123とを有する。台122および蓋123は、例えば、Y軸方向に沿って並ぶように配置される。
融着接続装置1Aは、第一駆動部21と、第二駆動部22とを更に備える。第一駆動部21は、第一保持部11を支持するとともに、第一保持部11の位置、および第一保持部11のZ軸周りの回転角θを調整する。第一駆動部21が第一保持部11の位置および回転角θを調整することによって、端面F1aの位置および回転角θが調整される。第二駆動部22は、第二保持部12を支持するとともに、第二保持部12の位置、および第二保持部12のZ軸周りの回転角θを調整する。第二駆動部22が第二保持部12の位置および回転角θを調整することによって、端面F2aの位置および回転角θが調整される。第一駆動部21および第二駆動部22は、例えばモータを含んで構成される。
融着接続装置1Aは、スクリーン3を更に備える。スクリーン3は、第一光ファイバF1の端面F1aから出射される光のうち、一つのコアCRから出射される光のみを通過させ、他のコアCRから出射される光を遮蔽する。スクリーン3は、矩形の形状を有する。スクリーン3は、端面F1aと端面F2aとの間に配置される。また、スクリーン3は、端面F1aと端面F2aとの間を除く他の位置に待避することができる。スクリーン3の厚みは、端面F1aと端面F2aとの間の距離よりも小さい。スクリーン3は、Z軸方向と垂直な面に沿って延在している。スクリーン3の位置は可変である。具体的には、スクリーン3の位置は、X方向およびY方向において可変である。スクリーン3のZ軸回りの回転角度が可変であってもよい。
図4は、スクリーン3の正面図である。図4に示されるように、スクリーン3は、導光部3aと遮光部3bとを有する。導光部3aは、Z軸方向においてスクリーン3を貫通する貫通孔である。導光部3aは、Z軸方向から見て円形の形状を有する。導光部3aの直径は、第一光ファイバF1の複数のコアCRのそれぞれの直径より僅かに大きい。導光部3aの直径は、第一光ファイバF1のマーカMKの直径よりも大きい。導光部3aには、一つのコアCRから出射される光のみが通過可能である。遮光部3bは、光を遮蔽する素材で構成されている。第一光ファイバF1の複数のコアCRから出射された光のうち、導光部3aを通過しない光は、遮光部3bによって遮蔽される。遮光部3bは、無反射コーティングされている。
スクリーン3の構成は、第一光ファイバF1の複数のコアCRのうちの一つのコアCRから出射される光を除く他の光を遮光することができる構成であれば、いかなる構成でもよい。
融着接続装置1Aは、第三駆動部23を更に備える。第三駆動部23は、スクリーン3を支持するとともに、スクリーン3の位置を調整する。第三駆動部23がスクリーン3の位置を調整することによって、第一光ファイバF1および第二光ファイバF2に対する導光部3aの相対位置が調整される。
図5~8は、第一光ファイバF1の複数のコアCRのいずれかと導光部3aとが第一光ファイバF1の軸方向に並んでいることを示す図である。図9は、第一光ファイバF1のマーカMKと導光部3aとが第一光ファイバF1の軸方向に並んでいることを示す図である。図5~8に示されるように、第三駆動部23は、第一光ファイバF1の複数のコアCRのいずれかと導光部3aとが第一光ファイバF1の軸方向に並ぶようにスクリーン3の位置を調整する。図9に示されるように、第三駆動部23は、第一光ファイバF1のマーカMKと導光部3aとが第一光ファイバF1の軸方向に並ぶようにスクリーン3の位置を調整する。また、第三駆動部23は、スクリーン3を移動させることによって、スクリーン3を端面F1aと端面F2aとの間に配置し、また、スクリーン3を端面F1aと端面F2aとの間から退避させる。第三駆動部23は、例えばモータを含んで構成される。
融着接続装置1Aは、一対の放電電極2を更に備える。一対の放電電極2は、端面F1aと端面F2aとが対向する位置に配置されている。一対の放電電極2は、Z軸方向およびY軸方向の双方と交差するX軸方向に沿って互いに対向するように配置される。一対の放電電極2は、端面F1a,F2aを互いに近接させた状態で溶融させるために、端面F1a,F2aを放電により加熱する加熱部である。端面F1aおよび端面F2aは互いに近接した状態で加熱溶融され、第一光ファイバF1と第二光ファイバF2とが融着接続される。
融着接続装置1Aは、制御部4Aを更に備える。制御部4Aは、例えばCPUおよびメモリを含むコンピュータによって構成され得る。制御部4Aは、放電電極2に電力を供給する電力源(不図示)と電気的に接続されており、放電電極2の放電電流および放電時間を制御する。これにより、第一光ファイバF1および第二光ファイバF2の種類に適合する条件にて融着接続が行われる。また、制御部4Aは、第一駆動部21、第二駆動部22および第三駆動部23の動作を制御する。第一駆動部21および第二駆動部22の動作には、端面F1aと端面F2aとを近づける動作、端面F1aと端面F2aとのXY面内における相対位置を調整する動作(すなわち軸合わせ)、および、端面F1aと端面F2aとの相対的な回転角θを調整する動作が含まれる。第三駆動部23の動作には、スクリーン3の位置を調整する動作、スクリーン3を端面F1aと端面F2aとの間に配置する動作、およびスクリーン3を端面F1aと端面F2aとの間から退避させる動作が含まれる。
制御部4Aによる第一光ファイバF1と第二光ファイバF2との軸合わせは、次のようにして行われる。まず、端面F1aおよび端面F2aの側方(Z軸方向と交差し且つ互いに直交する2方向)に配置されたカメラ(不図示)を用いて、端面F1a,F2a付近を撮像する。そして、その観察像に含まれる第一光ファイバF1および第二光ファイバF2それぞれの中心軸線が互いに一致するように、制御部4Aが第一駆動部21および第二駆動部22を制御する。
図10は、第一保持部11および第二保持部12のYZ平面に沿った断面を模式的に示す図である。図10に示されるように、融着接続装置1Aは、光源30および第一測定器40を更に備える。光源30は、第一光ファイバF1に試験光L1を入射する。具体的には、光源30は、第一光ファイバF1の樹脂被覆RSに試験光L1を照射する。一例では、光源30は、第一保持部11の内部において第一光ファイバF1に接するように設けられている。光源30は、第一光ファイバF1の樹脂被覆RSを押圧するように設けられてもよい。光源30の配置はこれに限られず、光源30は第一保持部11の外部に設けられてもよい。また、光源30は第一光ファイバF1から離れて配置されてもよい。その場合、第一光ファイバF1を曲げて湾曲部を形成し、その湾曲部に試験光L1を入射してもよい。光源30が第一光ファイバF1に向かって試験光L1を出射する位置は、端面F1aにおいて共通クラッドCLにおける試験光L1の伝搬が十分減衰する程度に、端面F1aからZ軸方向において離れた位置である。第一光ファイバF1の端面F1aから出射される試験光L1は、第二光ファイバF2の端面F2aに入射する。
第一測定器40は、第二光ファイバF2から漏洩する漏洩光L2の強度を測定する。第一測定器40は、端面F1aと端面F2aとが互いに近接した状態で第二光ファイバF2の樹脂被覆RSを通り漏洩する漏洩光L2の強度を測定するパワーメータである。一例では、第一測定器40は、第二保持部12の内部において第二光ファイバF2に接するように設けられている。第一測定器40の配置はこれに限られず、第一測定器40は第二保持部12の外部に設けられてもよい。また、第一測定器40は第二光ファイバF2から離れて配置されてもよい。その場合、第二光ファイバF2を曲げて湾曲部を形成し、その湾曲部から漏洩する漏洩光L2を検出してもよい。
光源30および第一測定器40は、図1に示された制御部4Aと電気的に接続されている。制御部4Aは、光源30における試験光L1の出力動作を制御するとともに、第一測定器40において検出された漏洩光L2の光強度に関する信号を第一測定器40から入力する。第一光ファイバF1の樹脂被覆RSに照射された試験光L1は、第一光ファイバF1の樹脂被覆RSを通過してガラス部分GLに入射し、各コアCRおよびマーカMKに集まる。そして、スクリーン3が端面F1aと端面F2aとの間から退避されている場合には、試験光L1は、第一光ファイバF1の各コアCRおよびマーカMKを伝搬したのちに、第二光ファイバF2の各コアCRおよびマーカMKを伝搬し、漏洩光L2が第二光ファイバF2の樹脂被覆RSを通って漏洩する。第一測定器40において検出されるのは、この漏洩した漏洩光L2である。なお、図10では、複数のコアCRおよびマーカMKのうち一つのコアCRを代表して図示している。
第一光ファイバF1のコアCRの位置と第二光ファイバF2のコアCRの位置とが互いにずれている場合、そのずれ量が大きいほど、第一光ファイバF1のコアCRから第二光ファイバF2のコアCRへ試験光L1が伝搬しにくくなり、第一測定器40において検出される漏洩光L2の強度が小さくなる。同様に、第一光ファイバF1のマーカMKの位置と第二光ファイバF2のマーカMKの位置とがずれている場合、そのずれ量が大きいほど、第一光ファイバF1のマーカMKから第二光ファイバF2のマーカMKへ試験光L1が伝搬しにくくなり、第一測定器40において検出される漏洩光L2の強度が小さくなる。従って、制御部4Aは、第一測定器40において検出される漏洩光L2の強度が最大値に近づくように、第一駆動部21および第二駆動部22の一方または双方を制御して、端面F1aと端面F2aとの相対的な回転角θを調整する。これにより、第一光ファイバF1のコアCRの位置と、第二光ファイバF2のコアCRの位置とを互いに合わせることができる。
スクリーン3が端面F1aと端面F2aとの間に配置されている場合には、第一光ファイバF1の複数のコアCRのうち、導光部3aと対向するコアCRを伝搬した試験光L1は、導光部3aを通過する。第一光ファイバF1の複数のコアCRのうち、遮光部3bと対向するコアCRを伝搬した試験光L1は、遮光部3bにより遮光される。導光部3aを通過した試験光L1は、第二光ファイバF2のコアCRのうち、導光部3aと対向するコアCRを伝搬し、漏洩光L2が第二光ファイバF2の樹脂被覆RSを通って漏洩する。
同様に、スクリーン3が端面F1aと端面F2aとの間に配置され、第一光ファイバF1のマーカMKが導光部3aと対向している場合には、マーカMKから出射される試験光L1は、導光部3aを通過する。このとき、マーカMKから出射される試験光L1を除く他の試験光L1は、遮光部3bにより遮光される。導光部3aを通過した試験光L1は、第二光ファイバF2のマーカMKを伝搬し、漏洩光L2が第二光ファイバF2の樹脂被覆RSを通って漏洩する。
図11は、融着接続装置1Aの動作を示すフローチャートである。図11を参照して、融着接続装置1Aの動作とともに本実施形態に係る融着接続方法について説明する。融着接続装置1Aは、スクリーン3が端面F1aと端面F2aとの間に配置されている場合には、端面F1aと端面F2aとの間からスクリーン3を退避させておく。まず、ステップST11において、端面F1a,F2aが互いに近づくように、制御部4Aが第一駆動部21および第二駆動部22を制御する。これにより、端面F1a,F2aが互いに対向する。但し、端面F1a,F2aの間には僅かな隙間が存在する。一例として、端面F1a,F2aの間には50μm以下の長さを有する隙間が存在する。次に、ステップST12において、端面F1aおよび端面F2aの側方に配置されたカメラを用いて、端面F1a,F2a付近を撮像する。そして、その観察像に含まれる第一光ファイバF1および第二光ファイバF2それぞれの中心軸線が互いに一致するように、制御部4Aが第一駆動部21および第二駆動部22を制御する。
ステップST13において、第一光ファイバF1および第二光ファイバF2の相対的な回転角θを調整する。図12を参照しながらステップST13の詳細を説明する。図12は、融着接続装置1Aが、第一光ファイバF1および第二光ファイバF2の相対的な回転角θを調整するときの動作を示すフローチャートである。ステップST131において、光源30が、第一光ファイバF1の樹脂被覆RSに試験光L1を照射する。そして、ステップST132において、第二光ファイバF2の樹脂被覆RSを通り漏洩する漏洩光L2の強度を、第一測定器40が測定する。そして、ステップST133において、制御部4Aは、ステップST132にて測定された漏洩光L2の強度に基づいて、第一光ファイバF1と第二光ファイバF2との相対的な回転角θを調整する。このとき、制御部4Aは、第一測定器40において測定される漏洩光L2の強度が最大値に近づくように、第一駆動部21および第二駆動部22の一方または双方を制御して、端面F1aと端面F2aとの相対的な回転角θを調整する。制御部4Aは、第一測定器40が測定した漏洩光L2の強度の最大値である第一強度を記録する。
図10に戻って、ステップST14において、第一光ファイバF1の複数のコアCRから出射される試験光L1の強度をコアCR毎に測定するとともに、第一光ファイバF1のマーカMKから出射される試験光L1の強度を測定する。図13を参照しながらステップST14の詳細を説明する。図13は、融着接続装置1Aが、第一光ファイバF1のコアCRから出射される試験光L1の強度をコアCR毎に測定するとともに、第一光ファイバF1のマーカMKから出射される試験光L1の強度を測定するときの動作を示すフローチャートである。ステップST141において、第三駆動部23は、スクリーン3を端面F1aと端面F2aとの間に配置する。ステップST142において、第三駆動部23は、スクリーン3の位置を調整する。具体的には、第三駆動部23は、第一光ファイバF1の複数のコアCRおよびマーカMKのいずれかと導光部3aとが第一光ファイバF1の軸方向に並ぶように、スクリーン3の位置を調整する。
第三駆動部23は、端面F1aと端面F2aとの間の側方に設けられた不図示のカメラによって把握された第一光ファイバF1の各コアCRの座標及びマーカMKの座標に基づいて、スクリーン3の位置を調整してもよい。第三駆動部23は、上記カメラによって把握された第一光ファイバF1のマーカMKの位置と、第一光ファイバF1の各コアの座標およびマーカMKの座標に関するデータとに基づいて、スクリーン3の位置を調整してもよい。
そして、ステップST143において、光源30が、第一光ファイバF1の樹脂被覆RSに試験光L1を照射する。そして、ステップST144において、第二光ファイバF2の樹脂被覆RSを通り漏洩する漏洩光L2の強度を、第一測定器40が測定する。制御部4Aは、第一測定器40が測定した漏洩光L2のうち第一光ファイバF1の各コアCRに対応する漏洩光L2の強度をコア強度として記録する。制御部4Aは、第一測定器40が測定した漏洩光L2のうち第一光ファイバF1のマーカMKに対応する漏洩光L2の強度をマーカ強度として記録する。制御部4Aは、漏洩光L2の強度を測定することによって、実質的に試験光L1の強度を測定する。制御部4Aは、第一光ファイバF1の複数のコアCRのそれぞれに対応づけてコア強度を記録する。具体的には、第一光ファイバF1の複数のコアCRのそれぞれの座標に対応づけてコア強度を記録する。そして、ステップST145において、制御部4Aは、第一光ファイバF1の全てのコアCRおよびマーカMKのそれぞれから出射される試験光L1の強度を測定したか否かを判断する。制御部4Aは、第一光ファイバF1の複数のコアCRおよびマーカMKのうち、未測定のコアCRまたは未測定のマーカMKが存在する場合には、第三駆動部23は、上記未測定のコアCRおよび上記未測定のマーカMKのいずれかと導光部3aとが第一光ファイバF1の軸方向に並ぶように、スクリーン3の位置を調整する。そして、ステップST142~ステップST144を再度実施する。
ステップST145において第一光ファイバF1の全てのコアCRおよびマーカMKのそれぞれから出射される試験光L1の強度を測定したと制御部4Aが判断した場合、ステップST146において、制御部4Aは、第一光ファイバF1の複数のコアCRのそれぞれに対応するコア強度の和である第二強度を算出する。第二強度は、マーカ強度を更に含んでもよい。そして、制御部4Aは、第一強度と第二強度との比を算出する。制御部4Aは、第一強度と第二強度との比が所定の第一範囲内であるか否かを判定する。所定の第一範囲は、例えば、第二強度を第一強度で除算したときの値の範囲を規定している。
ステップST146において、第一強度と第二強度との比が所定の第一範囲内であると制御部4Aが判定した場合、ステップST147を実施する。ステップST146において、第一強度と第二強度との比が所定の第一範囲内でないと制御部4Aが判定した場合、ステップST13に戻り、図11に記載されているフローチャートの順に各ステップを実施する。
ステップST147において、制御部4Aは、最大コア強度と最小コア強度との比を算出する。最大コア強度は、第一光ファイバF1の複数のコアCRのそれぞれに対応するコア強度のうち最大のコア強度である。最大コア強度は、第一光ファイバF1の複数のコアCRのそれぞれに対応するコア強度およびマーカ強度のうち最大の値であってもよい。最小コア強度は、第一光ファイバF1の複数のコアCRのそれぞれに対応するコア強度のうち最小のコア強度である。最小コア強度は、第一光ファイバF1の複数のコアCRのそれぞれに対応するコア強度およびマーカ強度のうち最小の値であってもよい。制御部4Aは、最大コア強度と最小コア強度との比が所定の第二範囲内であるか否かを判定する。所定の第二範囲は、例えば、最大コア強度を最小コア強度で除算したときの値の範囲を規定している。
ステップST147において、最大コア強度と最小コア強度との比が所定の第二範囲内であると制御部4Aが判定した場合、ステップST148を実施する。ステップST147において、最大コア強度と最小コア強度との比が所定の第二範囲内でないと制御部4Aが判定した場合、ステップST13に戻り、図11に記載されているフローチャートの順に各ステップを実施する。
ステップST148において、制御部4Aは、スクリーン3を端面F1aと端面F2aとの間から退避させる。
図11に戻って、ステップST15において、一対の放電電極2間で放電を行い、第一光ファイバF1および第二光ファイバF2の各端面F1a,F2aを加熱して溶融させ、互いに接続させる。そして、ステップST16において、端面F1aと端面F2aとの融着接続状態を確認する。図14を参照しながら、ステップST16の詳細を説明する。図14は、融着接続装置1Aが、端面F1aと端面F2aとの融着接続状態を確認するときの動作を示すフローチャートである。
ステップS161において、光源30は、第一光ファイバF1の樹脂被覆RSに試験光L1を照射する。そして、ステップST162において、第二光ファイバF2の樹脂被覆RSを通り漏洩する漏洩光L2の強度を、第一測定器40が測定する。制御部4Aは、第一測定器40が測定した漏洩光L2の強度である第三強度を記録する。そして、ステップST163において、制御部4Aは、前述した第二強度と第三強度との比が所定の第三範囲内であるか否かを判定する。所定の第三範囲は、例えば、第三強度を第二強度で除算したときの値の範囲を規定している。制御部4Aは、第二強度と第三強度との比が所定の第三範囲内である場合に、端面F1aと端面F2aとの融着接続状態が正常であると判定する。制御部4Aは、第二強度と第三強度との比が所定の第三範囲外である場合に、端面F1aと端面F2aとの融着接続状態が異常であると判定する。制御部4Aは、本実施形態における判定部の例である。
ステップST163において、端面F1aと端面F2aとの融着接続状態が異常であると制御部4Aが判定した場合には、融着接続装置1Aは、端面F1aと端面F2aとの融着接続状態が異常であることをユーザに知らせてもよい。その場合、融着接続装置1Aは、端面F1aと端面F2aとの融着接続状態が異常であることを、ユーザが視覚又は聴覚を通して知覚できる信号を出力する構成を更に備えてもよい。ステップST163において、端面F1aと端面F2aとの融着接続状態が異常であると制御部4Aが判定した場合に、ステップST11に戻り、図11に記載されているフローチャートの順に各ステップを実施する。
以上の構成を備える本実施形態の融着接続装置1Aおよび融着接続方法によって得られる効果について説明する。本実施形態の融着接続装置1Aでは、導光部3aによって第一光ファイバF1のいずれかのコアCRから出射される試験光L1がスクリーン3を通過する。また、本実施形態の融着接続方法においても、第一光ファイバF1のいずれかのコアCRから出射される試験光L1を除く他の試験光L1が遮光される。故に、第一測定器40は、第一光ファイバF1のいずれかのコアCRから出射される試験光L1の強度を、第二光ファイバF2から漏洩する漏洩光L2の強度を測定することによって測定することができる。更に、本実施形態の融着接続装置1Aでは、第三駆動部23は、第一光ファイバF1の複数のコアCRのいずれかと導光部3aとが第一光ファイバF1の軸方向に並ぶようにスクリーン3の位置を調整する。故に、第一測定器40は、第二光ファイバF2から漏洩する漏洩光L2の強度を測定することによって、第一光ファイバF1が有する複数のコアCRのそれぞれから出射される試験光L1の強度をコアCR毎に測定することができる。本実施形態の融着接続方法においても、第一光ファイバF1の端面F1aから出射される試験光L1のうち、第一光ファイバF1のいずれかのコアCRから出射される試験光L1を除く他の試験光L1を遮光した状態で、第二光ファイバF2から漏洩する漏洩光L2の強度を測定する工程を、第一光ファイバF1の複数のコアCRのそれぞれに対して実施する。これにより、第一光ファイバF1の複数のコアCRのそれぞれの光の導通状態と、第二光ファイバF2の複数のコアCRのそれぞれの光の導通状態と、第一光ファイバF1の複数のコアCR、および第二光ファイバF2の複数のコアCRの位置関係と、を確認することができる。したがって、個別のコアCRの光の導通状態を確認することができる。
前述したように、第三駆動部23が端面F1aと端面F2aとの間からスクリーン3を退避させ、第一測定器40が測定する漏洩光L2が最大の強度となるように第一駆動部21および第二駆動部22のそれぞれが回転角θを調整した状態で、第一測定器40は、漏洩光L2の強度である第一強度を測定してもよい。第一光ファイバF1の複数のコアCRのうちの一つのコアCRと導光部3aとが第一光ファイバF1の軸方向に並ぶように第三駆動部23がスクリーン3の位置を調整した状態における漏洩光L2の強度であるコア強度を、第一測定器40は、第一光ファイバF1の複数のコアCRのそれぞれに対して測定してもよい。そして、第一光ファイバF1の複数のコアCRのそれぞれに対応するコア強度の和である第二強度と第一強度との比が所定の第一範囲内である場合に、端面F1aと端面F2aとが融着接続されてもよい。この場合、理論上、第二強度は第一強度に対して所定の比率を有する。しかし、第一光ファイバF1の複数のコアCRのそれぞれと導光部3aとが第一光ファイバF1の軸方向に並ぶときに位置ずれを起こすことによって、第二強度は第一強度に対する上記所定の比率よりも小さくなる。したがって、第一強度と第二強度との比を確認することで、スクリーン3の位置が適切な位置に配置されたか否かを確認することができる。
前述したように、第一光ファイバF1の複数のコアCRのそれぞれに対応するコア強度のうち、最小のコア強度と、最大のコア強度との比が所定の第二範囲内である場合に、端面F1aと端面F2aとが融着接続されてもよい。第一光ファイバF1の複数のコアCRのうちいずれかのコアCRに塵埃又は傷等が存在する場合には、そのコアCRに対応するコア強度は、塵埃又は傷等が存在しないコアCRに対応するコア強度よりも小さくなる。上記構成によれば、最大のコア強度と最小のコア強度との比が所定の第二範囲内であることを確認することによって、最小のコア強度に対応するコアCRに塵埃又は傷等が存在しないことを確認することができる。したがって、複数のコアCRのそれぞれの光の導通状態を確認することができる。
前述したように、端面F1aと端面F2aとが融着接続された状態で、第一測定器40は、漏洩光L2の強度である第三強度を測定してもよい。融着接続装置1Aは、端面F1aと端面F2aとの融着接続の状態を判定する制御部4A(判定部)を更に備えてもよく、制御部4Aは、第一光ファイバF1の複数のコアCRのそれぞれに対応するコア強度の和である第二強度と第三強度との比が所定の第三範囲外である場合に、端面F1aと端面F2aとの融着接続の状態が異常であると判定してもよい。この場合、理論上、第三強度は第二強度に対して所定の比率を有する。しかし、融着時において生じる、第一光ファイバF1の複数のコアCRと第二光ファイバF2の複数のコアCRとの位置ずれによって、第三強度の第二強度に対する比率が上記所定の比率よりも小さくなることがある。上記構成では、第三強度と第二強度との比が所定の第三範囲外である場合に、端面F1aと端面F2aとの融着接続の状態が異常であると判定するので、融着時において生じる、第一光ファイバF1の複数のコアCRと第二光ファイバF2の複数のコアCRとの位置ずれを検出することができる。
前述したように、第一光ファイバF1および第二光ファイバF2は、更にマーカMKを有してもよい。第三駆動部23は、導光部3aがマーカMKと第一光ファイバF1の軸方向に並ぶようにスクリーン3を調整することを更に行ってもよい。マーカMKを第一光ファイバF1の軸回りの回転角θおよび第二光ファイバF2の軸周りの回転角θの位置基準として使用することで、コアCR配置に回転対称性がある場合でもコアCRの誤接続を防止することができる。
前述したように、導光部3aは貫通孔であってもよい。この場合、例えば、導光部3aが透明な平板によって構成されている場合と比較して、試験光L1が導光部3aを通過するときに導光部3aによる試験光L1の反射を抑制できる。したがって、光源30に戻る試験光L1によって光源30の動作に影響を与えることを抑制することができる。
前述したように、スクリーン3の遮光部3bは無反射コーティングされていてもよい。この場合、スクリーン3によって試験光L1が反射されることを抑制できる。したがって、試験光L1が光源30に戻ることによって光源30の動作に影響を与えることを抑制することができる。
本実施形態において、導光部3aは集光レンズ3cであってもよい。図15は、導光部3aが集光レンズ3cであるスクリーン3の正面図である。集光レンズ3cは、第一光ファイバF1の各コアCRのいずれかから集光レンズ3cに向かって出射された試験光L1を、試験光L1が出射されたコアCRと対応する第二光ファイバF2のコアCRに向かって集光する。集光レンズ3cは、第一光ファイバF1のマーカMKから集光レンズ3cに向かって出射された試験光L1を第二光ファイバF2のマーカMKに向かって集光する。この場合、端面F1aから出射された試験光L1は、集光レンズによって端面F2aに向かって集光される。故に、試験光L1が端面F1aから出射されてから端面F2aに入射するまでの間に、試験光L1が漏洩することを抑制することができる。したがって、端面F2aに入射される光の量を増大させることができ、漏洩光L2の量を増大させることができる。その結果、第一測定器40が漏洩光L2の強度を測定するときの精度を向上させることができる。
本実施形態の融着接続方法では、第一光ファイバF1の複数のコアCRのそれぞれに対して測定された漏洩光L2の強度に基づいて、端面F1aと端面F2aとを接続するか否かを判断してもよい。また、本実施形態の融着接続方法では、第一光ファイバF1の複数のコアCRおよびマーカMKのそれぞれに対して測定された漏洩光L2の強度に基づいて、端面F1aと端面F2aとを接続するか否かを判断してもよい。この場合、複数のコアCRの光の導通状態が良くない状態で、端面F1aと端面F2aとを接続してしまうことを抑制することができる。
ステップST146において、第一強度と第二強度との比が所定の第一範囲内でないと制御部4Aが判定した場合、各コア強度およびマーカ強度を確認しながら、コア強度がそれぞれ最大となる第一光ファイバF1の各コアCRの最適な座標、およびマーカ強度が最大となるマーカMKの最適な座標を求める。そして、それらの座標の平均値に基づいて、第一光ファイバF1と第二光ファイバF2との相対的な回転角θを調整してもよい。或いは、第一光ファイバF1の各コアCRおよびマーカMKのいずれか一つの最適な座標に基づいて、第一光ファイバF1と第二光ファイバF2との相対的な回転角θを調整してもよい。ステップST147において、最大コア強度と最小コア強度との比が所定の第二範囲内でないと制御部4Aが判定した場合も同様である。
融着接続装置1Aは、ステップST13を実施する代わりに、図16に示されるステップST13Aを実施してもよい。ステップST13Aにおいて、端面観察を用いて第一光ファイバF1の回転角θおよび第二光ファイバF2の回転角θを調整する。図16,17を参照しながら、ステップST13Aの詳細を説明する。図16は、融着接続装置1Aが、端面観察を用いて第一光ファイバF1の回転角θおよび第二光ファイバF2の回転角θを調整するときの動作を示すフローチャートである。図17は、第一保持部11および第二保持部12のYZ平面に沿った断面を模式的に示す図である。
図17に示されるように、融着接続装置1Aは、光源31と、撮像部60と、ミラー61とを更に有する。光源31は、第二光ファイバF2に試験光L1を入射する。具体的には、光源31は、第二光ファイバF2の樹脂被覆RSに試験光L1を照射する。一例では、光源31は、第二保持部12の内部において第二光ファイバF2に接するように設けられている。
撮像部60は、第一光ファイバF1および第二光ファイバF2の端面F1aおよびF2aそれぞれの観察像を取得するカメラである。図示例では、撮像部60は端面F1aおよびF2aの側方(図1のXY平面に沿った方向)に配置されている。ミラー61は、第一光ファイバF1の端面F1aと第二光ファイバF2の端面F2aとの間に配置されている。ミラー61に対しては、第一光ファイバF1の端面F1aを撮像部60により撮像する場合と、第二光ファイバF2の端面F2aを撮像部60により観察する場合とで、回転方向A1に沿って角度調整が行われる。ミラー61が第一光ファイバF1の端面F1aからの観察光を撮像部60に向けて反射するように配置された状態では、撮像部60は、第一光ファイバF1の端面F1aの観察像を出力する。ミラー61が第二光ファイバF2の端面F2aからの観察光を撮像部60に向けて反射するように配置された状態では、撮像部60は、第二光ファイバF2の端面F2aの観察像を出力する。ミラー61は、融着接続装置1Aが有する不図示の駆動部によって、端面F1aと端面F2aとの間から離れた位置に退避される。
ステップST131Aにおいて、第一光ファイバF1の端面F1aと第二光ファイバF2の端面F2aとの間にミラー61を配置する。ステップST132Aにおいて、第一光ファイバF1の樹脂被覆RSに試験光L1を照射する。第一光ファイバF1の像がミラー61に反射されることにより、撮像部60が第一光ファイバF1の端面F1aの観察像を取得する。そして、ステップ133Aにおいて、ミラー61を回転方向A1に沿って回転させる。そして、ステップ134Aにおいて、第二光ファイバF2の樹脂被覆RSに試験光L1を照射する。第二光ファイバF2の像がミラー61に反射されることにより、撮像部60が第二光ファイバF2の端面F2aの観察像を取得する。続くステップST135Aにおいて、第一光ファイバF1の端面F1aの観察像および第二光ファイバF2の端面F2aの観察像に基づいて、第一光ファイバF1と第二光ファイバF2との相対的な回転角θを調整する。ステップST136Aにおいて、ミラー61は退避される。
(第2実施形態)
(第2実施形態)
図18は、第2実施形態に係る融着接続装置1Bの構成の一部を示す図である。融着接続装置1Bは、更に第二測定器50を備える点において、第1実施形態に係る融着接続装置1Aと主に相違する。融着接続装置1Aが備える制御部4Aに代えて、融着接続装置1Bは、制御部4Bを備える。
第二測定器50は、導光部3aを通過して出射される試験光L1の強度を測定する。第二測定器50は、スクリーン3に近接した状態で試験光L1の強度を測定するパワーメータである。第二光ファイバF2が、第一光ファイバF1の軸線上から退避されているときに、第二測定器50は、端面F1aとの間にスクリーン3を挟む第一位置に配置される。第二測定器50は、その第一位置と、第一位置から離れた第二位置との間で移動可能に構成されている。
制御部4Bは、更に第二測定器50と電気的に接続されている点と、第二測定器50において測定された試験光L1の光強度に関する信号を第二測定器50から入力する点と、において制御部4Aと主に相違する。
融着接続装置1Bの動作は、図11のステップST11の前に、図19に示されるステップST10を行う点において、融着接続装置1Aの動作と主に相違する。ステップST10において、第一光ファイバF1の複数のコアCRのそれぞれから出射される試験光L1の強度を、第二測定器50を用いてコアCR毎に測定する。図19を参照しながら、ステップST10の詳細を説明する。図19は、融着接続装置1Bが、第一光ファイバF1の複数のコアCRのそれぞれから出射される試験光L1の強度を、第二測定器50を用いて測定するときの動作を示すフローチャートである。
まず、ステップST101において、融着接続装置1Bは、第一光ファイバF1、スクリーン3、および第二測定器50を、Z軸方向において、この順に配置する。ステップST102において、第三駆動部23は、スクリーン3の位置を調整する。具体的には、第三駆動部23は、第一光ファイバF1の複数のコアCRおよびマーカMKのいずれかと導光部3aとが第一光ファイバF1の軸方向に並ぶように、スクリーン3の位置を調整する。そして、ステップST103において、光源30は、第一光ファイバF1の樹脂被覆RSに試験光L1を照射する。そして、ステップST104において、第二測定器50が、一つのコアCRから出射されて導光部3aを通過した試験光L1の強度を測定する。制御部4Bは、第二測定器50が測定した試験光L1の強度を記録する。
そして、ステップST105において、制御部4Bは、第一光ファイバF1の全てのコアCRおよびマーカMKのそれぞれから出射される試験光L1の強度を測定したか否かを判断する。制御部4Bは、第一光ファイバF1の複数のコアCRおよびマーカMKのうち未測定のコアCRまたはマーカMKが存在する場合には、第三駆動部23は、上記未測定のコアCRおよび上記未測定のマーカMKのいずれかと導光部3aとが第一光ファイバF1の軸方向に並ぶように、スクリーン3の位置を調整する。そして、ステップST102~104を再度実施する。
第一光ファイバF1が有する全てのコアCRから出射される試験光L1の強度を測定したと制御部4Bが判断した場合、ステップST106において、スクリーン3および第二測定器50を退避させる。具体的には、第二測定器50は、上述した第二位置に移動する。そして、ステップST107において、第二光ファイバF2を元の位置に戻す。具体的には、第二光ファイバF2を、端面F1aと、端面F2aとが対向するように配置する。
以上の構成を備える第2実施形態の融着接続装置1Bによって得られる効果について説明する。第2実施形態に係る融着接続装置1Bでは、第二測定器50は、第一光ファイバF1のコアCRのそれぞれから出射される試験光L1の強度をコアCR毎に直接的に測定する。したがって、第一光ファイバF1の複数のコアCRの光の導通状態をより一層精度良く確認することができる。
第二光ファイバF2のコアCRから樹脂被覆RSを通過して光が出射する際の光出射効率が既知である場合には、第一光ファイバF1の複数のコアCRのそれぞれに対応する、第二測定器50が測定した試験光L1の強度の和と、漏洩光L2の強度とを比較してもよい。これにより、第一光ファイバF1と第二光ファイバF2との境界における損失量を導出することができる。
1A,1B…融着接続装置
11…第一保持部
12…第二保持部
2…放電電極
21…第一駆動部
22…第二駆動部
23…第三駆動部
3…スクリーン
3a…導光部
3b…遮光部
30…光源
40…第一測定器
50…第二測定器
CR…コア
F1…第一光ファイバ
F1a…端面
F2…第二光ファイバ
F2a…端面
L1…試験光
L2…漏洩光
MK…マーカ
θ…回転角(第一角度、第二角度)
11…第一保持部
12…第二保持部
2…放電電極
21…第一駆動部
22…第二駆動部
23…第三駆動部
3…スクリーン
3a…導光部
3b…遮光部
30…光源
40…第一測定器
50…第二測定器
CR…コア
F1…第一光ファイバ
F1a…端面
F2…第二光ファイバ
F2a…端面
L1…試験光
L2…漏洩光
MK…マーカ
θ…回転角(第一角度、第二角度)
Claims (10)
- 複数のコアを有する第一光ファイバの端面と、複数のコアを有する第二光ファイバの端面とを融着接続する融着接続装置であって、
前記第一光ファイバの端面と、前記第二光ファイバの端面とが対向した状態で、前記第一光ファイバを保持する第一保持部と、
前記第一光ファイバの端面と、前記第二光ファイバの端面とが対向した状態で、前記第二光ファイバを保持する第二保持部と、
前記第一光ファイバの前記複数のコアのうちの一つのコアから出射される光のみが通過可能な導光部、及び前記導光部を通過しない光を遮蔽する遮光部を有し、前記第一光ファイバの端面と前記第二光ファイバの端面との間に配置されるスクリーンと、
前記第一光ファイバに試験光を入射する光源と、
前記第一光ファイバの端面から出射され前記第二光ファイバの端面に入射した前記試験光のうち、前記第二光ファイバから漏洩する漏洩光の強度を測定する第一測定器と、
前記第一光ファイバの端面と、前記第二光ファイバの端面とを加熱する放電電極と、
前記第一保持部の位置、および前記第一光ファイバの軸回りの回転角度である第一角度を調整する第一駆動部と、
前記第二保持部の位置、および前記第二光ファイバの軸回りの回転角度である第二角度を調整する第二駆動部と、
前記第一光ファイバの前記複数のコアのいずれかと前記導光部とが前記第一光ファイバの軸方向に並ぶように前記スクリーンの位置を調整することと、前記第一光ファイバの端面と前記第二光ファイバの端面との間から前記スクリーンを退避させることと、を行う第三駆動部と、
を備える、融着接続装置。 - 前記第三駆動部が前記第一光ファイバの端面と前記第二光ファイバの端面との間から前記スクリーンを退避させ、前記第一測定器が測定する前記漏洩光が最大の強度となるように前記第一駆動部および前記第二駆動部のそれぞれが前記第一角度および前記第二角度のそれぞれを調整した状態で、前記第一測定器は、前記漏洩光の強度である第一強度を測定し、
前記第一光ファイバの前記複数のコアのうちの一つのコアと前記導光部とが前記第一光ファイバの軸方向に並ぶように前記第三駆動部が前記スクリーンの位置を調整した状態における前記漏洩光の強度であるコア強度を、前記第一測定器は、前記第一光ファイバの前記複数のコアのそれぞれに対して測定し、
前記第一光ファイバの前記複数のコアのそれぞれに対応する前記コア強度の和である第二強度と前記第一強度との比が所定の第一範囲内である場合に、前記第一光ファイバの端面と前記第二光ファイバの端面とが融着接続される、請求項1に記載の融着接続装置。 - 前記第一光ファイバの前記複数のコアのうちの一つのコアと前記導光部とが前記第一光ファイバの軸方向に並ぶように前記第三駆動部が前記スクリーンの位置を調整した状態における前記漏洩光の強度であるコア強度を、前記第一測定器は、前記第一光ファイバの前記複数のコアのそれぞれに対して測定し、
前記第一光ファイバの前記複数のコアのそれぞれに対応する前記コア強度のうち、最小の前記コア強度と、最大の前記コア強度との比が所定の第二範囲内である場合に、前記第一光ファイバの端面と、前記第二光ファイバの端面とが融着接続される、請求項1に記載の融着接続装置。 - 前記第一光ファイバの前記複数のコアのうちの一つのコアと前記導光部とが前記第一光ファイバの軸方向に並ぶように前記第三駆動部が前記スクリーンの位置を調整した状態における前記漏洩光の強度であるコア強度を、前記第一測定器は、前記第一光ファイバの前記複数のコアのそれぞれに対して測定し、
前記第一光ファイバの端面と前記第二光ファイバの端面とが融着接続された状態で、前記第一測定器は、前記漏洩光の強度である第三強度を測定し、
前記融着接続装置は、前記第一光ファイバの端面と前記第二光ファイバの端面との融着接続の状態を判定する判定部を更に備え、
前記判定部は、前記第一光ファイバの前記複数のコアのそれぞれに対応する前記コア強度の和である第二強度と前記第三強度との比が所定の第三範囲外である場合に、前記第一光ファイバの端面と前記第二光ファイバの端面との融着接続の状態が異常であると判定する、請求項1に記載の融着接続装置。 - 前記第一光ファイバおよび前記第二光ファイバは、更にマーカを有し、
前記第三駆動部は、前記導光部が前記マーカと前記第一光ファイバの軸方向に並ぶように前記スクリーンを調整することを更に行う、請求項1から請求項4のいずれか1項に記載の融着接続装置。 - 前記導光部は貫通孔である、請求項1から請求項4のいずれか1項に記載の融着接続装置。
- 前記導光部は集光レンズである、請求項1から請求項4のいずれか1項に記載の融着接続装置。
- 前記スクリーンの前記遮光部は無反射コーティングされている、請求項1から請求項4のいずれか1項に記載の融着接続装置。
- 前記第一光ファイバの端面との間に前記スクリーンを挟む第一位置と、前記第一位置から離れた第二位置との間で移動可能に構成され、前記第一光ファイバの端面から前記スクリーンの前記導光部を通過して出射される前記試験光の強度を測定する第二測定器を更に備え、
前記第二駆動部が前記第二光ファイバを退避させ、前記導光部と前記第一光ファイバの前記複数のコアのうちの一つのコアとが前記第一光ファイバの軸方向に並ぶように前記第三駆動部が前記スクリーンの位置を調整した状態において、前記第二測定器は、前記第一光ファイバの前記複数のコアのそれぞれから前記導光部を通過して出射される前記試験光の強度を前記第一位置において測定し、その測定後、前記第二測定器が前記第二位置に移動し、前記第二駆動部が前記第二光ファイバを前記第一光ファイバと対向する位置に戻す、請求項1から請求項4のいずれか1項に記載の融着接続装置。 - 複数のコアを有する第一光ファイバの端面と、複数のコアを有する第二光ファイバの端面とを融着接続する融着接続方法であって、
前記第一光ファイバの端面と、前記第二光ファイバの端面とを対向させる工程と、
前記第一光ファイバの中心軸および前記第二光ファイバの中心軸を合わせる工程と、
前記第一光ファイバの軸回りの回転角度および前記第二光ファイバの軸回りの回転角度を調整する工程と、
前記第一光ファイバに試験光を入射する工程と、
前記第一光ファイバの端面から出射される前記試験光のうち、前記第一光ファイバの前記複数のコアのうちの一つのコアから出射される前記試験光を除く他の前記試験光を遮光した状態で、前記第二光ファイバから漏洩する漏洩光の強度を測定する工程を、前記第一光ファイバの前記複数のコアのそれぞれに対して実施する工程と、
前記第一光ファイバの前記複数のコアのそれぞれに対応する前記漏洩光の強度に基づいて、前記第一光ファイバの端面と前記第二光ファイバの端面とを接続するか否かを判断する工程と、
を備える、融着接続方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022103524A JP2024004068A (ja) | 2022-06-28 | 2022-06-28 | 融着接続装置および融着接続方法 |
US18/327,927 US20230417994A1 (en) | 2022-06-28 | 2023-06-02 | Fusion splicer and fusion splicing method |
CN202310646588.7A CN117310882A (zh) | 2022-06-28 | 2023-06-02 | 熔接机以及熔接方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022103524A JP2024004068A (ja) | 2022-06-28 | 2022-06-28 | 融着接続装置および融着接続方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024004068A true JP2024004068A (ja) | 2024-01-16 |
Family
ID=89272543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022103524A Pending JP2024004068A (ja) | 2022-06-28 | 2022-06-28 | 融着接続装置および融着接続方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230417994A1 (ja) |
JP (1) | JP2024004068A (ja) |
CN (1) | CN117310882A (ja) |
-
2022
- 2022-06-28 JP JP2022103524A patent/JP2024004068A/ja active Pending
-
2023
- 2023-06-02 US US18/327,927 patent/US20230417994A1/en active Pending
- 2023-06-02 CN CN202310646588.7A patent/CN117310882A/zh active Pending
Also Published As
Publication number | Publication date |
---|---|
CN117310882A (zh) | 2023-12-29 |
US20230417994A1 (en) | 2023-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4978201A (en) | Method for measuring splice loss of an optical fiber | |
KR101811081B1 (ko) | 광섬유 융착 접속 방법 | |
JP2017021190A (ja) | マルチコア光ファイバの接続方法 | |
WO2015072309A1 (ja) | 光干渉断層撮像用光プローブ及びその製造方法 | |
JP4778520B2 (ja) | 光導波路のコアの偏心率を求める方法並びに光導波路を結合する方法および装置 | |
JP2013054116A (ja) | マルチコアファイバの結合方法 | |
US11656410B2 (en) | Optical fiber fusing and connecting machine and optical fiber fusing and connecting method | |
EP2711751A1 (en) | Method for distinguishing optical fiber and method for fusion-splicing optical fibers | |
US7181111B2 (en) | Apparatus for splicing optical fibers | |
EP0788611B1 (en) | Splicing an optical fiber having twin cores and a fiber having a single core | |
JP2015004762A (ja) | 光ファイバの接続方法 | |
JP2024004068A (ja) | 融着接続装置および融着接続方法 | |
US4830490A (en) | Apparatus for aligning optical fibers | |
JP2010261730A (ja) | 光ファイバの観察方法および観察装置 | |
JPS6046509A (ja) | 光フアイバのコア検出・軸合せ方法及びその装置 | |
JP4548841B2 (ja) | 光ファイバの接続損失判定方法 | |
WO2023182224A1 (ja) | ファイバ融着接続装置およびファイバ融着接続方法 | |
WO2023234403A1 (ja) | 融着接続装置および融着接続方法 | |
JPH0233107A (ja) | 光ファイバの融着接続装置 | |
CN114924354B (zh) | 一种多芯光纤的对准方法 | |
JPH0233108A (ja) | 光ファイバの接続方法 | |
JPS63197905A (ja) | 光フアイバのコア検出方法 | |
JP2024075873A (ja) | 融着機 | |
JP3273489B2 (ja) | 光ファイバのコア軸合せ方法 | |
CN118829917A (zh) | 光纤熔接装置和光纤熔接方法 |