JP2024003631A - secondary battery - Google Patents

secondary battery Download PDF

Info

Publication number
JP2024003631A
JP2024003631A JP2022102906A JP2022102906A JP2024003631A JP 2024003631 A JP2024003631 A JP 2024003631A JP 2022102906 A JP2022102906 A JP 2022102906A JP 2022102906 A JP2022102906 A JP 2022102906A JP 2024003631 A JP2024003631 A JP 2024003631A
Authority
JP
Japan
Prior art keywords
electrode
conductive member
electrode terminal
conductive
terminal member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022102906A
Other languages
Japanese (ja)
Inventor
守伯 尾崎
Morinori Ozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2022102906A priority Critical patent/JP2024003631A/en
Publication of JP2024003631A publication Critical patent/JP2024003631A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel battery structure from the viewpoint of the electric connection and fixation of an electrode tab and an electrode terminal member.
SOLUTION: There is provided a secondary battery 400 including an electrode assembly 10 and an external body 300 for storing the electrode assembly 10. An electrode tab 6 of the electrode assembly 10 includes a conductive member 20 combined with the electrode tab 6. An electrode terminal member 30 and a conductive terminal member 20 provided in the external body 300 are electrically connected to each other due to the elasticity of at least one of the electrode terminal member 30 and the conductive terminal member 20.
SELECTED DRAWING: Figure 2
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は二次電池に関する。特に、本発明は、正極、負極およびセパレータを含む電極構成層から成る電極組立体を備えた二次電池に関する。 The present invention relates to secondary batteries. In particular, the present invention relates to a secondary battery equipped with an electrode assembly consisting of electrode constituent layers including a positive electrode, a negative electrode, and a separator.

二次電池は、いわゆる蓄電池ゆえ充電および放電の繰り返しが可能であり、様々な用途に用いられている。例えば、携帯電話、スマートフォンおよびノートパソコンなどのモバイル機器に二次電池が用いられている。 Secondary batteries are so-called storage batteries, so they can be repeatedly charged and discharged, and are used for various purposes. For example, secondary batteries are used in mobile devices such as mobile phones, smartphones, and notebook computers.

特開2008-66170号公報Japanese Patent Application Publication No. 2008-66170 特開2017-107688号公報JP2017-107688A 特開2009-289593号公報JP2009-289593A 特開2010-27521号公報JP2010-27521A 特開2000-260478号公報Japanese Patent Application Publication No. 2000-260478 特開2009-26490号公報JP2009-26490A 特開2020-53333号公報JP 2020-53333 Publication

二次電池は、電極組立体の各電極構成層から電気を集約する電極タブを設ける必要がある。一方、二次電池は、その使用のために外部との電気接続に供する電極端子部材を設ける必要がある。 A secondary battery needs to be provided with an electrode tab that collects electricity from each electrode component layer of the electrode assembly. On the other hand, in order to use a secondary battery, it is necessary to provide an electrode terminal member for electrical connection with the outside.

二次電池を使用するためには、電極タブと電極端子部材とが互いに電気的に接続されている必要がある。また、電気的な接続が解消されないように電極タブと電極端子部材とが互いに好適に組み合わされている必要がある。 In order to use a secondary battery, the electrode tab and the electrode terminal member need to be electrically connected to each other. Further, the electrode tab and the electrode terminal member need to be suitably combined with each other so that the electrical connection is not broken.

本願発明者は、電極タブと電極端子部材との電気的接続および組合せの双方を満たす構造に関して、新たな電池構造を開発できる余地が依然ないか鋭意検討した。その結果、電極タブと電極端子部材との電気的接続および固定化の双方を満たす構造には依然開発の余地が残されていることを見出した。 The inventors of the present application have diligently investigated whether there is still room for developing a new battery structure with respect to a structure that satisfies both the electrical connection and combination of electrode tabs and electrode terminal members. As a result, it was found that there is still room for development of a structure that satisfies both the electrical connection and fixation of the electrode tab and the electrode terminal member.

本発明は上記課題に鑑みて為されたものである。即ち、本発明の主たる目的は、電極タブと電極端子部材との電気的接続および好適な組合せの観点から新たな電池構造を提供することである。 The present invention has been made in view of the above problems. That is, the main object of the present invention is to provide a new battery structure from the viewpoint of electrical connection and suitable combination of electrode tabs and electrode terminal members.

本願発明者は、従来技術の延長線上で対応するのではなく、新たな方向で対処することによって上記課題の解決を試みた。その結果、上記主たる目的が達成された二次電池の発明に至った。 The inventor of the present application attempted to solve the above problem by tackling the problem in a new direction rather than by extending the conventional technology. As a result, a secondary battery was invented that achieved the above main objective.

本発明に係る二次電池は、
電極組立体と前記電極組立体とを収納する外装体とを有して成り、
前記電極組立体の前記電極タブは、前記電極タブと組み合わされた導電性部材を備え、
前記外装体に設けられた電極端子部材と前記導電性部材とが、前記電極端子部材および前記導電性部材の少なくとも一方の弾性に起因して互いに電気的に接続されている。
The secondary battery according to the present invention includes:
It comprises an electrode assembly and an exterior body housing the electrode assembly,
the electrode tab of the electrode assembly includes a conductive member associated with the electrode tab;
An electrode terminal member provided on the exterior body and the conductive member are electrically connected to each other due to elasticity of at least one of the electrode terminal member and the conductive member.

本発明に係る二次電池では、電極タブは、電極タブと組み合わされた導電性部材を備え、外装体に設けられた電極端子部材と導電性部材とが、電極端子部材および導電性部材の少なくとも一方の弾性に起因して互いに電気的に接続されており、電極タブと電極端子部材との電気的接続および好適な組合せの観点から新たな電池構造が供される。かかる新たな電池構造では、電極端子部材と導電性部材との電気的な接続に溶接を要しないため、溶接工程を省略でき、より簡易な二次電池の製造が可能となる。 In the secondary battery according to the present invention, the electrode tab includes a conductive member combined with the electrode tab, and the electrode terminal member and the conductive member provided on the exterior body are at least one of the electrode terminal member and the conductive member. They are electrically connected to each other due to the elasticity of one of them, and a new battery structure is provided from the viewpoint of electrical connection and suitable combination between the electrode tab and the electrode terminal member. In such a new battery structure, welding is not required for electrical connection between the electrode terminal member and the conductive member, so the welding process can be omitted and a secondary battery can be manufactured more easily.

図1Aおよび図1Bは、電極組立体の模式的断面図(図1A:非巻回の平面積層型電池、図1B:巻回型電池)を示す。1A and 1B show schematic cross-sectional views of electrode assemblies (FIG. 1A: unwound flat layered battery, FIG. 1B: wound battery). 図2は、本発明の一実施形態に係る二次電池の模式部分断面図を示す。FIG. 2 shows a schematic partial cross-sectional view of a secondary battery according to an embodiment of the present invention. 図3は、本発明の一実施形態に係る導電性部材の模式斜視図を示す。FIG. 3 shows a schematic perspective view of a conductive member according to an embodiment of the present invention. 図4は、本発明の一実施形態に係る導電性部材と電極タブとを圧接合する様子を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing how a conductive member and an electrode tab are pressure-bonded according to an embodiment of the present invention. 図5は、本発明の一実施形態に係る導電性部材の模式斜視図を示す。FIG. 5 shows a schematic perspective view of a conductive member according to an embodiment of the present invention. 図6は、本発明の一実施形態に係る導電性部材と電極タブとを圧接合する様子を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing how a conductive member and an electrode tab are pressure-bonded according to an embodiment of the present invention. 図7は、本発明の一実施形態に係る導電性部材と電極タブとを溶接する様子を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing welding of a conductive member and an electrode tab according to an embodiment of the present invention. 図8は、本発明の一実施形態に係る二次電池の模式部分断面図を示す。FIG. 8 shows a schematic partial cross-sectional view of a secondary battery according to an embodiment of the present invention. 図9は、本発明の一実施形態に係る電極端子部材を樹脂部材により一体化する様子を説明する模式断面図を示す。FIG. 9 shows a schematic cross-sectional view illustrating how the electrode terminal member according to an embodiment of the present invention is integrated with a resin member. 図10は、本発明の一実施形態に係る電極端子部材がリベットにより固定されている様子を示す模式断面図である。FIG. 10 is a schematic cross-sectional view showing how an electrode terminal member according to an embodiment of the present invention is fixed with a rivet. 図11は、本発明の一実施形態に係る二次電池の製造方法を説明する模式斜視図である。FIG. 11 is a schematic perspective view illustrating a method for manufacturing a secondary battery according to an embodiment of the present invention. 図12は、本発明の一実施形態に係る二次電池の製造方法を説明する模式断面図である。FIG. 12 is a schematic cross-sectional view illustrating a method for manufacturing a secondary battery according to an embodiment of the present invention. 図13は、本発明の一実施形態に係る二次電池の製造方法を説明する模式断面図である。FIG. 13 is a schematic cross-sectional view illustrating a method for manufacturing a secondary battery according to an embodiment of the present invention. 図14は、本発明の一実施形態に係る二次電池の斜視図である。FIG. 14 is a perspective view of a secondary battery according to an embodiment of the present invention. 図15は、従来の二次電池の模式部分断面図である。FIG. 15 is a schematic partial cross-sectional view of a conventional secondary battery.

以下では、本発明の一実施形態に係る二次電池をより詳細に説明する。必要に応じて図面を参照して説明を行うものの、図面における各種の要素は、本発明の理解のために模式的かつ例示的に示したにすぎず、外観や寸法比などは実物と異なり得る。 Below, a secondary battery according to one embodiment of the present invention will be described in more detail. Although explanations will be made with reference to drawings as necessary, various elements in the drawings are merely shown schematically and illustratively for understanding the present invention, and the appearance and dimensional ratio may differ from the actual thing. .

本明細書で直接的または間接的に説明される“厚み”の方向は、二次電池を構成する電極材の積層方向に基づいている。例えば扁平状電池などの「板状に厚みを有する二次電池」でいえば、“厚み”の方向は、かかる二次電池の板厚方向に相当する。 The direction of "thickness" described directly or indirectly in this specification is based on the lamination direction of the electrode materials that constitute the secondary battery. For example, in the case of a "secondary battery having a plate-like thickness" such as a flat battery, the direction of "thickness" corresponds to the thickness direction of such a secondary battery.

本明細書で直接的または間接的に説明される「断面視」は、二次電池を構成する電極組立体または電極構成層の積層方向に沿って二次電池を切り取った仮想的な断面に基づいている。本明細書で直接的または間接的に説明される“厚み”の方向は、二次電池を構成する電極材の積層方向や巻回積層構造の巻回軸に沿う方向などに基づいている。ある一例では、二次電池を構成する電極層の積層方向に基づく厚み方向と、電極層が電極端子部材の位置する方向へと延在する長手方向とが構成する面に沿って切り取ったような断面に基づいている。端的にいえば、図2などに示される二次電池の断面の形態に基づいている。 A "cross-sectional view" described directly or indirectly in this specification is based on a hypothetical cross section of the secondary battery cut along the stacking direction of the electrode assembly or electrode constituent layers that constitute the secondary battery. ing. The direction of "thickness" described directly or indirectly in this specification is based on the stacking direction of the electrode materials constituting the secondary battery, the direction along the winding axis of the wound laminated structure, and the like. In one example, the battery is cut along a plane formed by the thickness direction based on the stacking direction of the electrode layers constituting the secondary battery and the longitudinal direction in which the electrode layers extend in the direction in which the electrode terminal member is located. Based on cross section. To put it simply, it is based on the cross-sectional form of a secondary battery shown in FIG. 2 and the like.

本明細書で言及する各種の数値範囲は、特段の説明が付されない限り、下限および上限の数値そのものも含むことを意図している。なお、“約”という用語は、数パーセント、例えば±10%の変動又は違いを含み得ることを意味する。 The various numerical ranges mentioned herein are intended to include the lower and upper numerical limits themselves, unless expressly stated otherwise. It should be noted that the term "about" means that it may include variations or differences of several percentages, for example ±10%.

[本発明に係る二次電池の基本構成]
本発明は二次電池を提供する。本明細書中、「二次電池」という用語は充電・放電の繰り返しが可能な電池のことを指している。「二次電池」は、その名称に過度に拘泥されるものではなく、例えば、「蓄電デバイス」などの電気化学デバイスも包含し得る。
[Basic configuration of secondary battery according to the present invention]
The present invention provides a secondary battery. In this specification, the term "secondary battery" refers to a battery that can be repeatedly charged and discharged. The term "secondary battery" is not overly limited by its name, and may include, for example, electrochemical devices such as "electricity storage devices."

本発明に係る二次電池は、正極、負極およびセパレータを含む電極構成単位を有する電極組立体を備えている。図1Aおよび図1Bには電極組立体10を例示している。図示されるように、正極1と負極2とはセパレータ3を介して積み重なって電極構成単位10を成している。かかる電極構成単位が少なくとも1つ以上積層して電極組立体が構成されていたり(図1A参照)、あるいは、電極構成単位が巻回することで電極組立体が構成されたりする(図1B参照)。二次電池では、そのような電極組立体が電解質(例えば非水電解質)と共に外装体に封入されている。 A secondary battery according to the present invention includes an electrode assembly having an electrode structural unit including a positive electrode, a negative electrode, and a separator. An electrode assembly 10 is illustrated in FIGS. 1A and 1B. As shown in the figure, a positive electrode 1 and a negative electrode 2 are stacked with a separator 3 in between to form an electrode structural unit 10. An electrode assembly is formed by stacking at least one such electrode structural unit (see FIG. 1A), or an electrode assembly is formed by winding the electrode structural units (see FIG. 1B). . In a secondary battery, such an electrode assembly is enclosed in an outer case together with an electrolyte (for example, a non-aqueous electrolyte).

正極は、少なくとも正極材層および正極集電体(例えば層形態を成す正極集電体)から構成されている。正極では正極集電体の少なくとも片面に正極材層が設けられており、正極材層には電極活物質として正極活物質が含まれている。例えば、電極組立体における複数の正極は、それぞれ、正極集電体の両面に正極材層が設けられていてよいし、あるいは、正極集電体の片面にのみ正極材層が設けられていてよい。二次電池のさらなる高容量化の観点でいえば正極は正極集電体の両面に正極材層が設けられていてよい。 The positive electrode includes at least a positive electrode material layer and a positive electrode current collector (for example, a positive electrode current collector in a layered form). In the positive electrode, a positive electrode material layer is provided on at least one side of a positive electrode current collector, and the positive electrode material layer contains a positive electrode active material as an electrode active material. For example, each of the plurality of positive electrodes in the electrode assembly may be provided with a positive electrode material layer on both sides of the positive electrode current collector, or may be provided with a positive electrode material layer only on one side of the positive electrode current collector. . From the viewpoint of further increasing the capacity of the secondary battery, the positive electrode may be provided with positive electrode material layers on both sides of the positive electrode current collector.

負極は、少なくとも負極材層および負極集電体(例えば層形態を成す負極集電体)から構成されている。負極では負極集電体の少なくとも片面に負極材層が設けられており、負極材層には電極活物質として負極活物質が含まれている。例えば、電極組立体における複数の負極は、それぞれ、負極集電体の両面に負極材層が設けられていてよいし、あるいは、負極集電体の片面にのみ負極材層が設けられていてよい。二次電池のさらなる高容量化の観点でいえば負極は負極集電体の両面に負極材層が設けられていてよい。 The negative electrode includes at least a negative electrode material layer and a negative electrode current collector (for example, a negative electrode current collector in a layered form). In the negative electrode, a negative electrode material layer is provided on at least one side of a negative electrode current collector, and the negative electrode material layer contains a negative electrode active material as an electrode active material. For example, each of the plurality of negative electrodes in the electrode assembly may be provided with a negative electrode material layer on both sides of the negative electrode current collector, or may be provided with a negative electrode material layer only on one side of the negative electrode current collector. . From the viewpoint of further increasing the capacity of the secondary battery, the negative electrode may be provided with negative electrode material layers on both sides of the negative electrode current collector.

正極および負極に含まれる電極活物質、即ち、正極活物質および負極活物質は、二次電池において電子の受け渡しに直接関与する物質であり、充放電、すなわち電池反応を担う正負極の主物質である。より具体的には、「正極材層に含まれる正極活物質」および「負極材層に含まれる負極活物質」に起因して電解質にイオンがもたらされ、かかるイオンが正極と負極との間で移動して電子の受け渡しが行われて充放電がなされる。正極材層および負極材層は特にリチウムイオンを吸蔵放出可能な層であってよい。つまり、非水電解質を介してリチウムイオンが正極と負極との間で移動して電池の充放電が行われる非水電解質二次電池となっていてよい。充放電にリチウムイオンが関与する場合、本発明に係る二次電池は、いわゆるリチウムイオン電池に相当し、正極および負極がリチウムイオンを吸蔵放出可能な層を有している。 The electrode active materials contained in the positive and negative electrodes, that is, the positive and negative electrode active materials, are substances that are directly involved in the transfer of electrons in secondary batteries, and are the main materials of the positive and negative electrodes that are responsible for charging and discharging, that is, battery reactions. be. More specifically, ions are brought into the electrolyte due to "the positive electrode active material contained in the positive electrode material layer" and "the negative electrode active material contained in the negative electrode material layer", and these ions are brought into contact between the positive electrode and the negative electrode. The battery moves and exchanges electrons to perform charging and discharging. The positive electrode material layer and the negative electrode material layer may be layers capable of intercalating and deintercalating lithium ions. In other words, the battery may be a non-aqueous electrolyte secondary battery in which lithium ions move between the positive electrode and the negative electrode via the non-aqueous electrolyte to charge and discharge the battery. When lithium ions are involved in charging and discharging, the secondary battery according to the present invention corresponds to a so-called lithium ion battery, and the positive electrode and the negative electrode have a layer that can insert and release lithium ions.

正極材層の正極活物質は例えば粒状体から成るところ、粒子同士のより十分な接触と形状保持のためにバインダーが正極材層に含まれていてよい。更には、電池反応を推進する電子の伝達を円滑にするために導電助剤が正極材層に含まれていてもよい。同様にして、負極材層の負極活物質は例えば粒状体から成るところ、粒子同士のより十分な接触と形状保持のためにバインダーが含まれていてもよく、電池反応を推進する電子の伝達を円滑にするために導電助剤が負極材層に含まれていてもよい。このように、複数の成分が含有されて成る形態ゆえ、正極材層および負極材層はそれぞれ「正極合材層」および「負極合材層」などと称すこともできる。 When the positive electrode active material of the positive electrode material layer is composed of, for example, granules, a binder may be included in the positive electrode material layer for more sufficient contact between the particles and shape retention. Furthermore, a conductive additive may be included in the positive electrode material layer in order to facilitate the transmission of electrons that promote battery reactions. Similarly, when the negative electrode active material of the negative electrode material layer is composed of, for example, granules, a binder may be included for better contact between particles and shape retention, and to facilitate the transfer of electrons that promote battery reactions. A conductive additive may be included in the negative electrode material layer for smooth conduction. As described above, since a plurality of components are contained, the positive electrode material layer and the negative electrode material layer can also be referred to as a "positive electrode composite material layer" and a "negative electrode composite material layer," respectively.

正極活物質は、リチウムイオンの吸蔵放出に資する物質であってよい。かかる観点でいえば、正極活物質は例えばリチウム含有複合酸化物であってよい。より具体的には、正極活物質は、リチウムと、コバルト、ニッケル、マンガンおよび鉄から成る群から選択される少なくとも1種の遷移金属とを含むリチウム遷移金属複合酸化物であってよい。つまり、本実施態様に係る二次電池の正極材層においては、そのようなリチウム遷移金属複合酸化物が正極活物質として含まれていてよい。例えば、正極活物質はコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、リン酸鉄リチウム、または、それらの遷移金属の一部を別の金属で置き換えたものである。そのような正極活物質は、単独種として含まれてよいものの、二種以上が組み合わされて含まれていてもよい。 The positive electrode active material may be a material that contributes to intercalation and desorption of lithium ions. From this point of view, the positive electrode active material may be, for example, a lithium-containing composite oxide. More specifically, the positive electrode active material may be a lithium transition metal composite oxide containing lithium and at least one transition metal selected from the group consisting of cobalt, nickel, manganese, and iron. That is, in the positive electrode material layer of the secondary battery according to this embodiment, such a lithium transition metal composite oxide may be included as a positive electrode active material. For example, the positive electrode active material is lithium cobalt oxide, lithium nickel oxide, lithium manganate, lithium iron phosphate, or a material in which a part of the transition metal thereof is replaced with another metal. Although such positive electrode active materials may be contained as a single species, they may be contained in a combination of two or more types.

正極材層に含まれる得るバインダーとしては、特に制限されるわけではないが、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロチレン共重合体およびポリテトラフルオロチレンなどから成る群から選択される少なくとも1種を挙げることができる。正極材層に含まれる得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラックなどのカーボンブラック、黒鉛、カーボンナノチューブおよび気相成長炭素繊維などの炭素繊維、銅、ニッケル、アルミニウムおよび銀などの金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。 The binder that can be contained in the positive electrode material layer is not particularly limited, but includes polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, and polytetrafluoroethylene. At least one selected from the group consisting of: The conductive additive that can be included in the positive electrode material layer is not particularly limited, but includes carbon blacks such as thermal black, furnace black, channel black, Ketjen black and acetylene black, graphite, carbon nanotubes, and vapor phase growth. Examples include at least one selected from carbon fibers such as carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives.

正極材層の厚み寸法は、特に制限されるわけではないが、1μm以上300μm以下であってよく、例えば5μm以上200μm以下であってよい。正極材層の厚み寸法は二次電池内部での厚みであって、任意の10箇所における測定値の平均値が用いられる。 Although the thickness dimension of the positive electrode material layer is not particularly limited, it may be 1 μm or more and 300 μm or less, for example, 5 μm or more and 200 μm or less. The thickness of the positive electrode material layer is the thickness inside the secondary battery, and the average value of measurements at ten arbitrary locations is used.

負極活物質は、リチウムイオンの吸蔵放出に資する物質であってよい。かかる観点でいえば、負極活物質は例えば各種の炭素材料、酸化物、または、リチウム合金などであってよい。 The negative electrode active material may be a material that contributes to intercalation and desorption of lithium ions. From this point of view, the negative electrode active material may be, for example, various carbon materials, oxides, lithium alloys, or the like.

負極活物質の各種の炭素材料としては、黒鉛(例えば天然黒鉛および/もしくは人造黒鉛)、ハードカーボン、ソフトカーボン、ならびに/またはダイヤモンド状炭素などを挙げることができる。負極活物質の酸化物としては、酸化シリコン、酸化スズ、酸化インジウム、酸化亜鉛および酸化リチウムなどから成る群から選択される少なくとも1種を挙げることができる。負極活物質のリチウム合金は、リチウムと合金形成され得る金属であればよく、例えば、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、Laなどの金属とリチウムとの2元、3元またはそれ以上の合金である。 Various carbon materials for the negative electrode active material include graphite (eg, natural graphite and/or artificial graphite), hard carbon, soft carbon, and/or diamond-like carbon. Examples of the oxide of the negative electrode active material include at least one selected from the group consisting of silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and the like. The lithium alloy of the negative electrode active material may be any metal that can be alloyed with lithium, such as Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, It is a binary, ternary or higher alloy of metal such as La and lithium.

負極材層に含まれる得るバインダーとしては、特に制限されるわけではないが、スチレンブタジエンゴム、ポリアクリル酸、ポリフッ化ビニリデン、ポリイミド系樹脂およびポリアミドイミド系樹脂から成る群から選択される少なくとも1種を挙げることができる。負極材層に含まれる得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラックなどのカーボンブラック、黒鉛、カーボンナノチューブおよび気相成長炭素繊維などの炭素繊維、銅、ニッケル、アルミニウムおよび銀などの金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。なお、負極材層には、電池製造時に使用された増粘剤成分(例えばカルボキシルメチルセルロース)に起因する成分が含まれていてもよい。 The binder included in the negative electrode material layer is not particularly limited, but at least one selected from the group consisting of styrene-butadiene rubber, polyacrylic acid, polyvinylidene fluoride, polyimide resin, and polyamideimide resin. can be mentioned. The conductive additives that can be included in the negative electrode material layer include, but are not particularly limited to, carbon blacks such as thermal black, furnace black, channel black, Ketjen black and acetylene black, graphite, carbon nanotubes, and vapor phase growth. Examples include at least one selected from carbon fibers such as carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives. Note that the negative electrode material layer may contain a component resulting from a thickener component (for example, carboxymethylcellulose) used during battery manufacture.

負極材層の厚み寸法は、特に制限されるわけではないが、1μm以上300μm以下であってよく、例えば5μm以上200μm以下である。負極材層の厚み寸法は二次電池内部での厚みであって、任意の10箇所における測定値の平均値が用いられる。 Although the thickness dimension of the negative electrode material layer is not particularly limited, it may be 1 μm or more and 300 μm or less, for example, 5 μm or more and 200 μm or less. The thickness of the negative electrode material layer is the thickness inside the secondary battery, and the average value of measurements at ten arbitrary locations is used.

正極および負極に用いられる正極集電体および負極集電体は電池反応に起因して活物質で発生した電子を集めたり供給したりするのに資する部材である。そのような集電体は、シート状の金属部材であってよく、多孔または穿孔の形態を有していてよい。例えば、集電体は金属箔、パンチングメタル、網またはエキスパンドメタルなどである。正極に用いられる正極集電体は、アルミニウム、ステンレス鋼およびニッケルなどから成る群から選択される少なくとも1種を含んだ金属箔から成るものであってよく、例えばアルミニウム箔である。一方、負極に用いられる負極集電体は、銅、ステンレス鋼およびニッケルなどから成る群から選択される少なくとも1種を含んだ金属箔から成るものであってよく、例えば銅箔である。 A positive electrode current collector and a negative electrode current collector used in a positive electrode and a negative electrode are members that help collect and supply electrons generated in an active material due to a battery reaction. Such a current collector may be a sheet-like metal member and may have a porous or perforated form. For example, the current collector is metal foil, punched metal, mesh, expanded metal, or the like. The positive electrode current collector used in the positive electrode may be made of a metal foil containing at least one member selected from the group consisting of aluminum, stainless steel, nickel, etc., and is, for example, an aluminum foil. On the other hand, the negative electrode current collector used in the negative electrode may be made of a metal foil containing at least one selected from the group consisting of copper, stainless steel, nickel, etc., and is, for example, a copper foil.

セパレータは、正負極の接触による短絡防止および電解質保持などの観点から設けられる部材である。換言すれば、セパレータは、正極と負極との間の電子的接触を防止しつつイオンを通過させる部材であるといえる。例えば、セパレータは多孔性または微多孔性の絶縁性部材であり、その小さい厚みに起因して膜形態を有している。あくまでも例示にすぎないが、ポリオレフィン製の微多孔膜がセパレータとして用いられてよい。この点、セパレータとして用いられる微多孔膜は、例えば、ポリオレフィンとしてポリエチレン(PE)のみ又はポリプロピレン(PP)のみを含んだものであってよい。更にいえば、セパレータは、“PE製の微多孔膜”と“PP製の微多孔膜”とから構成される積層体であってもよい。セパレータの表面は無機粒子コート層および/または接着層などにより覆われていてもよい。セパレータの表面は接着性を有していてもよい。 The separator is a member provided from the viewpoint of preventing short circuits due to contact between positive and negative electrodes and retaining electrolyte. In other words, the separator can be said to be a member that allows ions to pass through while preventing electronic contact between the positive electrode and the negative electrode. For example, a separator is a porous or microporous insulating member that has a membrane shape due to its small thickness. By way of example only, a microporous membrane made of polyolefin may be used as the separator. In this regard, the microporous membrane used as the separator may contain, for example, only polyethylene (PE) or polypropylene (PP) as the polyolefin. Furthermore, the separator may be a laminate composed of a "microporous membrane made of PE" and a "microporous membrane made of PP." The surface of the separator may be covered with an inorganic particle coating layer and/or an adhesive layer. The surface of the separator may have adhesive properties.

セパレータの厚み寸法は、特に制限されるわけではないが、1μm以上100μm以下であってよく、例えば5μm以上20μm以下である。セパレータの厚み寸法は二次電池内部での厚み(特に正極と負極との間での厚み)であって、任意の10箇所における測定値の平均値が用いられる。 The thickness of the separator is not particularly limited, but may be 1 μm or more and 100 μm or less, for example, 5 μm or more and 20 μm or less. The thickness of the separator is the thickness inside the secondary battery (particularly the thickness between the positive electrode and the negative electrode), and the average value of the measured values at ten arbitrary locations is used.

本発明に係る二次電池では、正極、負極およびセパレータを含む電極組立体が電解質と共に外装体に封入されている。電解質は電極(正極・負極)から放出された金属イオンの移動を助力する。電解質は有機電解質および有機溶媒などの“非水系”の電解質であってもよく、または水を含む“水系”の電解質であってもよい。ある例示態様において、本発明に係る二次電池は、電解質として“非水系”の溶媒と、溶質とを含む電解質が用いられた非水電解質二次電池となっている。 In the secondary battery according to the present invention, an electrode assembly including a positive electrode, a negative electrode, and a separator is enclosed in an exterior body together with an electrolyte. The electrolyte assists in the movement of metal ions released from the electrodes (positive and negative electrodes). The electrolyte may be a "non-aqueous" electrolyte such as an organic electrolyte and an organic solvent, or it may be an "aqueous" electrolyte containing water. In one exemplary embodiment, the secondary battery according to the present invention is a non-aqueous electrolyte secondary battery in which an electrolyte containing a "non-aqueous" solvent and a solute is used as the electrolyte.

具体的な非水電解質の溶媒としては、少なくともカーボネートを含んで成るものであってよい。かかるカーボネートは、環状カーボネート類および/または鎖状カーボネート類であってもよい。特に制限されるわけではないが、環状カーボネート類としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)およびビニレンカーボネート(VC)から成る群から選択される少なくとも1種を挙げることができる。鎖状カーボネート類としては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)およびジプロピルカーボネート(DPC)から成る群から選択される少なくも1種を挙げることができる。本発明の1つの例示態様では、非水電解質として環状カーボネート類と鎖状カーボネート類との組合せが用いられ、例えばエチレンカーボネートとジエチルカーボネートとの混合物が用いられる。具体的な非水電解質の溶質としては、例えば、LiPFおよび/またはLiBFなどのLi塩が用いられてよい。 A specific nonaqueous electrolyte solvent may contain at least carbonate. Such carbonates may be cyclic carbonates and/or linear carbonates. Although not particularly limited, examples of the cyclic carbonates include at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC). be able to. Examples of chain carbonates include at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), and dipropyl carbonate (DPC). In one exemplary embodiment of the invention, a combination of cyclic carbonates and linear carbonates is used as the non-aqueous electrolyte, such as a mixture of ethylene carbonate and diethyl carbonate. As a specific solute of the non-aqueous electrolyte, for example, Li salt such as LiPF 6 and/or LiBF 4 may be used.

電極タブとしては、二次電池の分野で使用されているあらゆる電極タブが使用可能である。電極タブは、電子の移動が達成され得る材料から構成されればよく、通常は銀、金、銅、鉄、スズ、プラチナ、アルミニウム、ニッケル、および/またはステンレス鋼などの導電性材料から構成される。電極タブの形態は特に限定されず、例えば、線状であってもよいし、または板状であってもよい。正極側および負極側の電極タブ(以下では総称的に「正負極の電極タブ」とも称する)は、電極組立体のいずれの面から突出していてよい。正負極の電極タブは、互いに電極組立体の別の面から突出していてよく、あるいはそれぞれ同一の面から突出していてもよい。二次電池のコンパクト化の観点から、正負極の電極タブは、同一の面から突出していてよい。つまり、正極タブと負極タブとが、互いに電極組立体の同一の端面(すなわち同一側面)から突出するように延在していてよい。 As the electrode tab, any electrode tab used in the field of secondary batteries can be used. The electrode tabs may be constructed of any material through which electron transfer can be achieved, and are typically constructed of conductive materials such as silver, gold, copper, iron, tin, platinum, aluminum, nickel, and/or stainless steel. Ru. The shape of the electrode tab is not particularly limited, and may be linear or plate-shaped, for example. The positive and negative electrode tabs (hereinafter also collectively referred to as "positive and negative electrode tabs") may protrude from either side of the electrode assembly. The positive and negative electrode tabs may each protrude from different surfaces of the electrode assembly, or may each protrude from the same surface. From the viewpoint of making the secondary battery compact, the electrode tabs of the positive and negative electrodes may protrude from the same surface. That is, the positive electrode tab and the negative electrode tab may extend so as to protrude from the same end surface (ie, the same side surface) of the electrode assembly.

外装体は通常、ハードケースであり、本体部および蓋部などの2つの部材から成っていてよい。例えば、外装体が本体部および蓋部から構成される場合、本体部と蓋部とは、電極組立体、電解質および電極タブ、ならびに所望により電極端子部材の一部または全部などが収容された後、密封される。外装体の密封方法としては、特に限定されず、例えば、
レーザー溶接により互いに組み合わせて外装体としてよく、あるいは、かしめ加工により互いに組み合わせて外装体としてもよい。外装体には、外装体内に電解液を注入するための注入口が設けられていてもよい。電解液注入後、注入口は樹脂製の栓によって封止されてもよい。
The exterior body is usually a hard case and may consist of two members, such as a main body and a lid. For example, when the exterior body is composed of a main body part and a lid part, the main body part and the lid part are used to store the electrode assembly, electrolyte, electrode tab, and part or all of the electrode terminal member if desired. , sealed. The method of sealing the exterior body is not particularly limited, and for example,
They may be combined with each other by laser welding to form an exterior body, or may be combined with each other by caulking to form an exterior body. The exterior body may be provided with an injection port for injecting the electrolyte into the exterior body. After injecting the electrolyte, the injection port may be sealed with a resin stopper.

外装体の本体部および蓋部を構成する材料としては、二次電池の分野でハードケース型外装体を構成し得るあらゆる材料が使用可能である。そのような材料は、電子の移動が達成され得る導電性材料であってもよいし、または電子の移動が達成され得ない絶縁材料であってもよい。外装体の材料は、電極取り出しの観点から、導電性材料であってよい。 Any material that can be used to construct a hard case type exterior body in the field of secondary batteries can be used as the material for the main body and the lid of the exterior body. Such materials may be conductive materials in which electron transfer can be achieved, or insulating materials in which electron transfer cannot be achieved. The material of the exterior body may be a conductive material from the viewpoint of electrode extraction.

導電性材料としては、例えば銀、金、銅、鉄、スズ、プラチナ、アルミニウム、ニッケルおよび/またはステンレス鋼などの導電性材料が挙げられる。絶縁材料としては、例えば、ポリエステル(例えば、ポリエチレンテレフタレート)、ポリイミド、ポリアミド、ポリアミドイミド、ならびに/またはポリオレフィン(例えば、ポリエチレンおよび/もしくはポリプロピレン)などの絶縁ポリマー材料が挙げられる。 Conductive materials include, for example, conductive materials such as silver, gold, copper, iron, tin, platinum, aluminum, nickel and/or stainless steel. Insulating materials include, for example, insulating polymeric materials such as polyester (eg, polyethylene terephthalate), polyimide, polyamide, polyamideimide, and/or polyolefin (eg, polyethylene and/or polypropylene).

上述した導電性および剛性の観点から、本体部および蓋部はともに、ステンレス鋼から構成されていてよい。なお、ステンレス鋼とは、「JIS G 0203 鉄鋼用語」に規定されている通り、クロムまたはクロムとニッケルとを含有させた合金鋼で、一般にはクロム含有量が全体の約10.5%以上の鋼をいう。そのようなステンレス鋼としては、マルテンサイト系ステンレス鋼、フェライト系ステンレス鋼、オーステナイト系ステンレス鋼、オーステナイト・フェライト系ステンレス鋼および/または析出硬化系ステンレス鋼が挙げられる。 From the above-mentioned viewpoints of conductivity and rigidity, both the main body and the lid may be made of stainless steel. As defined in "JIS G 0203 Steel Terminology," stainless steel is an alloy steel containing chromium or chromium and nickel, and generally has a chromium content of about 10.5% or more of the total. Refers to steel. Such stainless steels include martensitic stainless steel, ferritic stainless steel, austenitic stainless steel, austenitic-ferritic stainless steel, and/or precipitation hardening stainless steel.

外装体の本体部および蓋部の寸法は、主として電極組立体の寸法に応じて決定される。例えば、電極組立体を収容したとき、外装体内での電極組立体の移動が防止される程度の寸法を外装体が有していてもよい。電極組立体の移動を防止することにより、衝撃などによる電極組立体の損傷を防止し、二次電池の安全性が向上することができる。 The dimensions of the main body and lid of the exterior body are determined mainly depending on the dimensions of the electrode assembly. For example, the exterior body may have dimensions that prevent the electrode assembly from moving within the exterior body when the electrode assembly is housed therein. By preventing the electrode assembly from moving, damage to the electrode assembly due to impact or the like can be prevented and safety of the secondary battery can be improved.

外装体はラミネートフィルムからなるパウチなどのフレキシブルケースであってもよい。ラミネートフィルムとしては、少なくとも金属層(例えば、アルミニウムなど)と接着層(例えば、ポリプロピレンおよび/またはポリエチレンなど)とが積層される構成であり、付加的に保護層(例えば、ナイロンおよび/またはポリアミドなど)が積層される構成であってもよい。 The exterior body may be a flexible case such as a pouch made of a laminate film. The laminate film has a structure in which at least a metal layer (for example, aluminum, etc.) and an adhesive layer (for example, polypropylene and/or polyethylene, etc.) are laminated, and a protective layer (for example, nylon and/or polyamide, etc.) is laminated. ) may be stacked.

外装体の厚み寸法(すなわち、肉厚寸法)は、特に制限されるわけではないが、10μm以上200μm以下であってよく、例えば50μm以上100μm以下であってよい。外装体の厚み寸法は、任意の10箇所における測定値の平均値が用いられる。 The thickness dimension (namely, wall thickness dimension) of the exterior body is not particularly limited, but may be 10 μm or more and 200 μm or less, for example, 50 μm or more and 100 μm or less. The average value of the measured values at ten arbitrary locations is used as the thickness dimension of the exterior body.

[本発明に係る二次電池の特徴]
本発明にかかる二次電池は、電極組立体およびそれを収納する外装体を有して成る電池であるところ、電極組立体の電極タブと外装体に設けられた電極端子部材とを互いに電気的に接続する形態について特徴を有する。
[Characteristics of the secondary battery according to the present invention]
The secondary battery according to the present invention is a battery comprising an electrode assembly and an exterior body housing the electrode assembly, and the electrode tab of the electrode assembly and the electrode terminal member provided on the exterior body are electrically connected to each other. It is characterized by the form in which it is connected to.

具体的には、本発明に係る二次電池において、電極タブと組み合わされた導電性部材を備え、外装体に設けられた電極端子部材と導電性部材とが、電極端子部材および導電性部材の少なくとも一方の弾性に起因して互いに電気的に接続されている。つまり、電極端子部材と導電性部材とが弾性に起因して互いに電気的に接続されていることにより、電極組立体から外部へと電気を取り出すことが可能となっている。 Specifically, the secondary battery according to the present invention includes a conductive member combined with an electrode tab, and the electrode terminal member and the conductive member provided on the exterior body are connected to the electrode terminal member and the conductive member. They are electrically connected to each other due to the elasticity of at least one of them. That is, since the electrode terminal member and the conductive member are electrically connected to each other due to their elasticity, it is possible to extract electricity from the electrode assembly to the outside.

本明細書における「弾性」とは、物体に外力を加えて変形させた後、力を取除くと元の状態に戻る性質を意味する。換言すると、物体に力を加えて変形させると、物体に力を加えられる前の状態に戻ろうとする力が生じる性質を意味する。本明細書では、当該「力」を「弾性力」と称する。 In this specification, "elasticity" refers to the property of deforming an object by applying an external force and then returning to its original state when the force is removed. In other words, it means the property that when a force is applied to an object to cause it to deform, a force is generated that causes the object to return to its state before the force was applied. In this specification, the "force" is referred to as "elastic force."

図2は、本発明の一実施形態に係る二次電池400を示す。二次電池400は、外装体300内部に収容した電極組立体10を有して成る。電極組立体10を構成する電極構成層5のそれぞれには電極タブ6が設けられている。電極タブ6は、導電性部材20と組合されている。具体的には、各電極層に設けられたそれぞれの電極タブ6は集められて、導電性部材20と組み合わされている。 FIG. 2 shows a secondary battery 400 according to an embodiment of the present invention. The secondary battery 400 includes an electrode assembly 10 housed inside an exterior body 300. An electrode tab 6 is provided on each of the electrode constituent layers 5 that constitute the electrode assembly 10 . The electrode tab 6 is combined with a conductive member 20. Specifically, the respective electrode tabs 6 provided on each electrode layer are collected and combined with the conductive member 20.

外装体300には、外部との電気接続に供する電極端子部材30が設けられている。電極端子部材30は、樹脂部材50を介して、外装体300の外部と外装体300の内部との間を横断するように設けられている。外装体300の内部では、電極端子部材30と導電性部材20とが、互いに電気的に接続されている。 The exterior body 300 is provided with an electrode terminal member 30 for electrical connection with the outside. The electrode terminal member 30 is provided so as to cross between the outside of the exterior body 300 and the inside of the exterior body 300 with the resin member 50 interposed therebetween. Inside the exterior body 300, the electrode terminal member 30 and the conductive member 20 are electrically connected to each other.

図2に示す態様でいえば、導電性部材20の端部を折り返すことで形作られる形状に、電極端子部材30が嵌り込むように位置づけられている。電極端子部材30と導電性部材20とのこのような位置関係では、導電性部材20および/または電極端子部材30は互いから外力を受けているところ、導電性部材20および/または電極端子部材30には、当該外力に抗する力、つまり弾性力が働き得る。かかる弾性力により、導電性部材20と電極端子部材30は互いに押圧されて接触し、電気的に接続され得る。換言すると、電極端子部材30および導電性部材20の少なくとも一方の弾性に起因して互いに電気的に接続されている。 In the embodiment shown in FIG. 2, the electrode terminal member 30 is positioned so as to fit into the shape formed by folding back the end portion of the conductive member 20. In such a positional relationship between the electrode terminal member 30 and the conductive member 20, the conductive member 20 and/or the electrode terminal member 30 are receiving an external force from each other, and the conductive member 20 and/or the electrode terminal member 30 A force that resists the external force, that is, an elastic force can act on the object. Due to such elastic force, the conductive member 20 and the electrode terminal member 30 are pressed against each other and come into contact with each other, so that they can be electrically connected. In other words, the electrode terminal member 30 and the conductive member 20 are electrically connected to each other due to the elasticity of at least one of them.

一実施形態に係る二次電池は、上記特徴を有するため、従前の二次電池とは異なる構造を有する。従前の二次電池では、電極タブと電極端子部材とを互いに溶接して電気的な接続を確保する。従前の二次電池の製造工程では、溶接が必要となり、加工費および二次電池の製造効率の点で改善の余地がある。本発明では、電極端子部材と導電性部材とが、電極端子部材および導電性部材の少なくとも一方の弾性に起因して互いに電気的に接続されるため、溶接による電気的な接続を要しない。従って、溶接機、溶接材料、および加工に関する費用の低減、ならびに溶接工程を省略できる点で二次電池の製造効率が向上し得る。 Since the secondary battery according to one embodiment has the above characteristics, it has a structure different from that of conventional secondary batteries. In conventional secondary batteries, the electrode tab and the electrode terminal member are welded together to ensure electrical connection. Conventional secondary battery manufacturing processes require welding, and there is room for improvement in terms of processing costs and secondary battery manufacturing efficiency. In the present invention, since the electrode terminal member and the conductive member are electrically connected to each other due to the elasticity of at least one of the electrode terminal member and the conductive member, electrical connection by welding is not required. Therefore, the manufacturing efficiency of the secondary battery can be improved in that costs related to welding machines, welding materials, and processing can be reduced, and the welding process can be omitted.

また、従来の溶接等による電気的な接続は、電極タブと電極外部端子との電気的な接続が解除されないように、電極タブと電極外部端子とが強固に固定される。したがって、溶接等による電気的な接続は、外部からの振動または衝撃等を吸収し難く、接続部分が破損し易い。例えば、外部からの振動または衝撃等による溶接部への負荷の蓄積、あるいは溶接部への応力集中により、溶接部が破断する虞がある。 Further, in the conventional electrical connection by welding or the like, the electrode tab and the electrode external terminal are firmly fixed so that the electrical connection between the electrode tab and the electrode external terminal is not broken. Therefore, electrical connections made by welding or the like have difficulty absorbing vibrations or shocks from the outside, and the connected portions are likely to be damaged. For example, there is a risk that the welded portion may break due to accumulation of load on the welded portion due to external vibrations or shocks, or stress concentration on the welded portion.

本発明では、電極端子部材と導電性部材とが、電極端子部材および導電性部材の少なくとも一方の弾性に起因して互いに電気的に接続されているため、当該弾性が外部からの振動または衝撃等を効果的に吸収し得る。つまり、外部からの振動または衝撃等によって、弾性に起因する電気的な接続部分に外力が加わっても、当該接続部分には、外力に対する弾性力が働くため、電気的な接続が維持され得る。従って、本発明では、振動または衝撃を受け得る環境下においても、電極端子部材と導電性部材との互いの電気的な接続が好適に維持され易い。 In the present invention, the electrode terminal member and the conductive member are electrically connected to each other due to the elasticity of at least one of the electrode terminal member and the conductive member. can be absorbed effectively. That is, even if an external force is applied to the electrically connected portion due to elasticity due to external vibrations, shocks, etc., the electrical connection can be maintained because the elastic force against the external force acts on the connected portion. Therefore, in the present invention, the electrical connection between the electrode terminal member and the conductive member can be easily maintained even in an environment where vibrations or shocks may be applied.

なお、導電性部材および電極端子部材は、特記しない限り、正極側および負極側のそれぞれに設けられる。つまり、正極側には、正極導電性部材および正極端子部材が設けられる。負極側には、負極導電性部材および負極端子部材が設けられる。本明細書では、単に導電性部材と称する場合、それは正極導電性部材および負極導電性部材の少なくとも一方を意味している。同様にして、単に電極端子部材と称する場合、それは正極端子部材および負極端子部材の少なくとも一方を意味している。本発明の効果は、特記しない限り、正極側および負極側のそれぞれの電極側にも奏し得る。 Note that the conductive member and the electrode terminal member are provided on each of the positive electrode side and the negative electrode side, unless otherwise specified. That is, a positive electrode conductive member and a positive terminal member are provided on the positive electrode side. A negative electrode conductive member and a negative electrode terminal member are provided on the negative electrode side. In this specification, when simply referred to as a conductive member, it means at least one of a positive conductive member and a negative conductive member. Similarly, when simply referring to an electrode terminal member, it means at least one of a positive electrode terminal member and a negative electrode terminal member. The effects of the present invention can also be exerted on each of the positive electrode side and the negative electrode side, unless otherwise specified.

本発明では、さらに以下の態様を採ることができる。 The present invention can further adopt the following aspects.

一実施形態では、導電性部材の弾性に起因して電極端子部材と導電性部材とが互いに電気的に接続されていてよい。換言すると、導電性部材が受ける外力に抗する弾性力により、電極端子部材と導電性部材とが互いに電気的に接続されていてよい。 In one embodiment, the electrode terminal member and the conductive member may be electrically connected to each other due to the elasticity of the conductive member. In other words, the electrode terminal member and the conductive member may be electrically connected to each other by an elastic force that resists an external force applied to the conductive member.

一実施形態では、導電性部材の形状に起因して導電性部材が弾性を呈してよい。換言すると、導電性部材によって立体的に形作られた形状の変位に起因する弾性力を利用してもよい。例えば、導電性部材を湾曲および/または屈曲させて形作られた立体形状の少なくとも一部の変位に起因する弾性力を利用するものであってよい。図2に示す態様では、導電性部材20の最端部21を折り返すことで形作られる形状に、外装体300の内部にある電極端子部材30が嵌り込むように位置づけられている。換言すると、導電性部材20の折り返し形状を押し広げるように電極端子部材30が嵌まり込んでいると言える。 In one embodiment, the conductive member may exhibit elasticity due to its shape. In other words, elastic force resulting from displacement of a three-dimensional shape formed by the conductive member may be utilized. For example, it may utilize elastic force caused by displacement of at least a portion of a three-dimensional shape formed by curving and/or bending a conductive member. In the embodiment shown in FIG. 2, the electrode terminal member 30 inside the exterior body 300 is positioned so as to fit into the shape formed by folding back the outermost end 21 of the conductive member 20. In other words, it can be said that the electrode terminal member 30 is fitted in such a way that the folded shape of the conductive member 20 is pushed out.

押し広げられた導電性部材20は外力を受けているところ、導電性部材20には外力に抗する力、つまり弾性力が働き得る。かかる弾性力に起因して、導電性部材20は電極端子部材30に対して押圧するように作用し得る。つまり、導電性部材20の形状に起因して導電性部材20が弾性を呈することにより、その導電性部材20の弾性力を利用して、導電性部材20と電極端子部材30とを互いに電気的に接続できる。かかる態様を採ることにより、導電性部材20と電極端子部材30との電気的接続がより強固になり易くなる。 While the spread conductive member 20 is receiving an external force, a force that resists the external force, that is, an elastic force may act on the conductive member 20 . Due to such elastic force, the conductive member 20 can act to press against the electrode terminal member 30. That is, since the conductive member 20 exhibits elasticity due to the shape of the conductive member 20, the elastic force of the conductive member 20 is used to electrically connect the conductive member 20 and the electrode terminal member 30 to each other. can be connected to. By adopting such an aspect, the electrical connection between the conductive member 20 and the electrode terminal member 30 can easily become stronger.

導電性部材の形状に起因して導電性部材が弾性を呈する態様としては、上記の通り、導電性部材の折り返し形状が挙げられる。折り返し形状は、例えば、導電性部材を湾曲させて形成してもよく、または屈曲させて形成してもよい。折り返し形状は、導電性部材を複数回湾曲および/または複数回屈曲させて形成してもよい。 As described above, examples of the mode in which the conductive member exhibits elasticity due to the shape of the conductive member include the folded shape of the conductive member. The folded shape may be formed by, for example, curving or bending the conductive member. The folded shape may be formed by curving and/or bending the conductive member multiple times.

本開示における「湾曲」とは、図2に示すように、断面視において、湾状(または弓状)に曲がること(すなわち略曲線的に曲がること)であって、丸みを帯びた輪郭を有し得、撓曲も包含する。本開示における「屈曲」は、断面視において、鈍角または鋭角に折れ曲がること(すなわち略直線的に曲がること)であって、角張った輪郭(例えば略V字状の輪郭)を有し得る。 As shown in FIG. 2, "curving" in the present disclosure refers to bending in a curved (or arcuate) manner (i.e., bending in a substantially curved manner) in a cross-sectional view, and having a rounded outline. However, it also includes bending. In the present disclosure, "bending" refers to bending at an obtuse or acute angle (that is, bending approximately linearly) in a cross-sectional view, and may have an angular outline (for example, a roughly V-shaped outline).

一実施形態では、導電性部材は、折返し形状の導電性湾曲部を備えており、導電性湾曲部が電極端子部材と接していてよい。図2に示すように、導電性部材20は折り返されているところ、その折り返しの部分が湾曲した形状となっている。換言すると、折り返された導電性部材20の折り返しの部分は、導電性湾曲部22となっている。導電性湾曲部22はその形状が連続的に変位しているため、導電性部材20に加えられた外力は湾曲部全体に伝わり易い。つまり、外力が加えられた際、湾曲部全体が変形し易くなる。例えば、外力を加えた際に折返し形状が大きく開き易くなるため、導電性部材20の最端部21を折り返すことで形作られる形状に、電極端子部材30が嵌り込み易くなる。また、導電性部材20に加えられた外力は、湾曲部全体に作用し易い。外力が湾曲部全体に分散し易くなる点で、導電性部材20の局所的な疲労による破損が抑制され易くなる。 In one embodiment, the conductive member may include a folded conductive curved portion, and the conductive curved portion may be in contact with the electrode terminal member. As shown in FIG. 2, the conductive member 20 is folded back, and the folded portion has a curved shape. In other words, the folded portion of the folded conductive member 20 becomes the conductive curved portion 22 . Since the shape of the conductive curved portion 22 is continuously displaced, external force applied to the conductive member 20 is easily transmitted to the entire curved portion. In other words, when an external force is applied, the entire curved portion is easily deformed. For example, when an external force is applied, the folded shape tends to open widely, so that the electrode terminal member 30 easily fits into the shape formed by folding back the extreme end 21 of the conductive member 20. Further, the external force applied to the conductive member 20 tends to act on the entire curved portion. Since the external force is more easily dispersed over the entire curved portion, damage to the conductive member 20 due to local fatigue can be more easily suppressed.

一実施形態では、図2および図3に示すように、導電性部材20は、その同一主面側が互いに向かい合うように折り返されている。そのような導電性部材の折り返し部分では、その最端部21が、導電性部材の折り返し部分と対向する主面から離れるように湾曲していてよい。かかる態様を採ることにより、導電性部材の最端部21を折り返すことで形作られる形状の挿入口が広くなり得る。従って、導電性部材の最端部21を折り返すことで形作られる形状に電極端子部材30が嵌り込め易くなり、導電性部材20と電極端子部材30との電気的接続が容易となる。 In one embodiment, as shown in FIGS. 2 and 3, the conductive member 20 is folded back so that the same main surfaces thereof face each other. In such a folded portion of the conductive member, the outermost end 21 may be curved away from the main surface facing the folded portion of the conductive member. By adopting such an aspect, the insertion opening formed by folding back the most end portion 21 of the conductive member can be made wider. Therefore, the electrode terminal member 30 can be easily fitted into the shape formed by folding back the outermost end 21 of the conductive member, and the electrical connection between the conductive member 20 and the electrode terminal member 30 can be facilitated.

一実施形態では、図2および図3に示すように、導電性部材20は、その同一主面側が互いに向かい合うように折り返されている。導電性部材の最端部21と導電性湾曲部22との間に、導電性部材の折り返し部分と対向する主面に向かって凸状に湾曲する部分を有してもよい。かかる態様を採ることにより、上記凸状に湾曲する部分が、導電性部材が形作る形状に嵌り込んだ電極端子部材30に対する抜け止めとして機能し得る。従って、導電性部材と電極端子部材との電気的接続がより解除され難くなる。 In one embodiment, as shown in FIGS. 2 and 3, the conductive member 20 is folded back so that the same main surfaces thereof face each other. Between the endmost part 21 of the conductive member and the conductive curved part 22, there may be a part that curves convexly toward the main surface facing the folded part of the conductive member. By adopting such an aspect, the convexly curved portion can function as a retainer for the electrode terminal member 30 that fits into the shape formed by the conductive member. Therefore, the electrical connection between the conductive member and the electrode terminal member becomes more difficult to break.

一実施形態では、導電性部材に設けられた開口部を電極タブが通るように電極タブと導電性部材とが互いに組み合わされていてよい。導電性部材に設けられた開口部は、導電性部材の一部を剪断に付すことで設けられていてよい。例えば、導電性部材の一部を除して設けてもよい。つまり、導電性部材の一部をくり抜き、貫通孔を設けてもよい。 In one embodiment, the electrode tab and the conductive member may be combined with each other such that the electrode tab passes through an opening provided in the conductive member. The opening provided in the electrically conductive member may be provided by subjecting a portion of the electrically conductive member to shearing. For example, a part of the conductive member may be removed. That is, a portion of the conductive member may be hollowed out to provide a through hole.

導電性部材の一部を除することで、導電性部材に開口部を設ける場合、例えば、導電性部材と電極端子部材とが互いに電気的に接続される箇所に開口部を設けてもよい。図2および図3に示す態様では、導電性部材の導電性湾曲部22には、導電性部材20の一部を除することで形成した第1の開口部25が設けられている。換言すると、導電性部材20と電極端子部材30とが電気的に接続される箇所に第1の開口部25が設けられており、電極タブ6は当該第1の開口部25を挿通している。 When providing an opening in the conductive member by removing a part of the conductive member, the opening may be provided at a location where the conductive member and the electrode terminal member are electrically connected to each other, for example. In the embodiment shown in FIGS. 2 and 3, the conductive curved portion 22 of the conductive member is provided with a first opening 25 formed by removing a portion of the conductive member 20. In the embodiment shown in FIGS. In other words, the first opening 25 is provided at the location where the conductive member 20 and the electrode terminal member 30 are electrically connected, and the electrode tab 6 is inserted through the first opening 25. .

導電性部材20の第1の開口部25を通ることにより、電極タブ6は、導電性部材20と電極端子部材30との間に介在し易くなり、電極タブ、導電性部材、および電極端子部材を互いに一体化させ易くなる。換言すると、導電性部材20と電極端子部材30とによって電極タブ6が挟持され得るため、電極タブ6がより好適に固定され易くなる。このように、本発明では電極タブ6と導電性部材20とが溶接を用いずに互いに組み合わされて好適な電気接続が成され得る。 By passing through the first opening 25 of the conductive member 20, the electrode tab 6 is easily interposed between the conductive member 20 and the electrode terminal member 30, and the electrode tab, the conductive member, and the electrode terminal member It becomes easier to integrate them with each other. In other words, since the electrode tab 6 can be held between the conductive member 20 and the electrode terminal member 30, the electrode tab 6 can be more easily fixed. As described above, in the present invention, the electrode tab 6 and the conductive member 20 can be combined with each other without using welding to establish a suitable electrical connection.

別態様では、導電性部材にスリットを設けて、当該スリットを押し広げて開口部としてもよい。つまり、切れ目を入れた導電性部材を押圧して変形させ、当該切れ目を拡張することにより導電性部材に開口部を設けてもよい。かかる方法により形成された開口部は押し広げられて形成されているため、外力をかけることにより開口部を再び閉じることができる。 In another embodiment, a slit may be provided in the conductive member and the slit may be expanded to form an opening. That is, an opening may be provided in the conductive member by pressing and deforming the conductive member with a cut, and expanding the cut. Since the opening formed by this method is formed by being forced wide, the opening can be closed again by applying an external force.

導電性部材には、スリットを複数設けてもよい。スリットを設けることにより、導電性部材にトンネル状の開口部を形成してもよい。具体的には、導電性部材に設けられた複数のスリットの間を押圧することで、複数のスリットの間の導電性部材が突き出るように変形させて開口部を形成してもよい。かかる方法の場合、設けたスリットの数に対応した分の開口部が形成される。 A plurality of slits may be provided in the conductive member. A tunnel-shaped opening may be formed in the conductive member by providing a slit. Specifically, by pressing between the plurality of slits provided in the conductive member, the conductive member between the plurality of slits may be deformed so as to protrude, thereby forming an opening. In the case of this method, openings corresponding to the number of slits provided are formed.

例えば、2つのスリットを用いて開口部を形成した場合、図3に示すように、それぞれのスリットに由来する2つの開口部26が形成され得る。それぞれの開口部26は、同一平面状に並ぶように位置付けられているため、例えば図2に示すように、電極タブ6等をそれぞれの開口部26に、導電性部材20の表面に対し平行に挿通可能である。このような一対の開口部26を有する点で、図3に示す導電性部材は、2つの第2の開口部を有するトンネル部27が設けられていると言える。 For example, when two slits are used to form an opening, two openings 26 may be formed from each slit, as shown in FIG. Since the respective openings 26 are positioned so as to be lined up on the same plane, for example, as shown in FIG. It can be inserted. In having such a pair of openings 26, it can be said that the conductive member shown in FIG. 3 is provided with a tunnel portion 27 having two second openings.

一実施形態では、電極タブと導電性部材とは圧接合によって互いに組み合わされていてよい。「圧接合」とは、押さえつけて繋ぎ合わさることを意味する。具体的には、「圧接合」とは、単に接しているというよりも、むしろ圧力および/またはせん断力などが加えられた状態で緊密に接している態様を指している。 In one embodiment, the electrode tab and the electrically conductive member may be assembled together by pressure bonding. “Pressure bonding” means pressing and joining together. Specifically, "pressure bonding" refers to a mode in which they are in close contact with each other under pressure and/or shear force, rather than simply in contact with each other.

電極タブと導電性部材との圧接合は、導電性部材に設けられた第2の開口部に電極タブを挿通させ、当該第2の開口部を電極タブごと閉じることによって為されてもよい。上記の通り、第2の開口部は押し広げられて形成されているため、外力を加えることにより開口部を再度閉じることができる。第2の開口部に電極タブが挿通された状態で第2の開口部を閉じることにより、電極タブは第2の開口部の開口端に挟持され、導電性部材と圧接合され得る。 The pressure bonding between the electrode tab and the conductive member may be achieved by inserting the electrode tab into a second opening provided in the conductive member and closing the second opening together with the electrode tab. As described above, since the second opening is formed by being pushed apart, the opening can be closed again by applying an external force. By closing the second opening with the electrode tab inserted through the second opening, the electrode tab can be held between the open ends of the second opening and pressure-bonded to the conductive member.

図3に示すように、導電性部材に第2の開口部を設けてトンネル部27を形成した場合、トンネル部27を押圧することで、第2の開口部26を電極タブ6ごと押し潰してもよい。かかる態様により、電極タブ6と導電性部材20とが圧接合され、強固に固定し易くなる。このように、本発明では電極タブ6と導電性部材20とが溶接を用いずに互いに組み合わされて好適な電気接続が成され得る。 As shown in FIG. 3, when a tunnel portion 27 is formed by providing a second opening in the conductive member, pressing the tunnel portion 27 crushes the second opening 26 together with the electrode tab 6. Good too. According to this aspect, the electrode tab 6 and the conductive member 20 are pressure-bonded and can be easily fixed firmly. As described above, in the present invention, the electrode tab 6 and the conductive member 20 can be combined with each other without using welding to establish a suitable electrical connection.

一実施形態では、導電性部材にトンネル部を分割して設けてもよい。換言すると、導電性部材にトンネル部を複数設けてもよい。例えば図5に示すように、導電性部材20にトンネル部27を2つ設けてもよい。導電性部材に複数のトンネル部を設ける場合、図5に示すように、同一の形状を有するトンネル部を複数設けてもよく、異なる形状を有するトンネル部を複数設けてもよい。 In one embodiment, the conductive member may be provided with a divided tunnel portion. In other words, a plurality of tunnel portions may be provided in the conductive member. For example, as shown in FIG. 5, two tunnel portions 27 may be provided in the conductive member 20. When providing a plurality of tunnel portions in the conductive member, as shown in FIG. 5, a plurality of tunnel portions having the same shape may be provided, or a plurality of tunnel portions having different shapes may be provided.

導電性部材にトンネル部を分割して設けると、個々のトンネル部は相対的に小さくなり得る。具体的には、図5の態様における導電性部材20では、トンネル部27を2つに分割して設けているところ、個々のトンネル部の大きさは、図3の態様における分割せずに設けられているトンネル部27よりも小さい。 When the conductive member is provided with divided tunnel portions, each tunnel portion can be relatively small. Specifically, in the conductive member 20 in the embodiment of FIG. 5, the tunnel portion 27 is provided by being divided into two, whereas the size of each tunnel portion is different from that in the embodiment of FIG. The tunnel portion 27 is smaller than the tunnel portion 27.

導電性部材にトンネル部を分割して設けると、個々のトンネル部の大きさが相対的に小さくなり得るところ、特に個々のトンネル部の幅が相対的に短くなり得る。「トンネル部の幅」とは、トンネル部が有する2つの第2の開口部の配列方向におけるトンネル部の長さを意味する。図3と図5とを対比すると、図5の態様における個々のトンネル部27の幅が図3のトンネル部の幅よりも短くなっている。トンネル部の幅が短くなると、トンネル部を押圧して押し潰し易くなる。つまり、トンネル部の幅が短くなるため、トンネル部を押し潰すための応力が相対的に小さくなり易い。従って、導電性部材20にトンネル部27を分割して設けることにより、より小さい押圧力で電極タブ6を導電性部材20に圧接合し易くなる。また、複数のトンネル部(第2の開口部)により電極タブ6と導電性部材20とを圧接合するため、接合信頼性がより向上し得る。 When the conductive member is provided with divided tunnel portions, the size of each tunnel portion may be relatively small, and in particular, the width of each tunnel portion may be relatively short. “Width of the tunnel portion” means the length of the tunnel portion in the arrangement direction of the two second openings that the tunnel portion has. Comparing FIG. 3 with FIG. 5, the width of each tunnel section 27 in the embodiment of FIG. 5 is shorter than the width of the tunnel section of FIG. 3. As the width of the tunnel portion becomes shorter, it becomes easier to press and crush the tunnel portion. In other words, since the width of the tunnel portion is shortened, the stress for crushing the tunnel portion tends to be relatively small. Therefore, by separately providing the tunnel portion 27 in the conductive member 20, it becomes easier to pressure-join the electrode tab 6 to the conductive member 20 with a smaller pressing force. Further, since the electrode tab 6 and the conductive member 20 are pressure-bonded by the plurality of tunnel portions (second openings), the bonding reliability can be further improved.

開口部を電極タブごと押し潰す方法は、例えば、図4および図6に示すようにトンネル部27をパンチ600等で押圧して塑性変形させて行ってもよい。かかる方法では、トンネル部27を挿通している電極タブ6が塑性変形したトンネル部27により圧接合される。 The opening may be crushed along with the electrode tab by, for example, pressing the tunnel portion 27 with a punch 600 or the like to plastically deform it, as shown in FIGS. 4 and 6. In this method, the electrode tab 6 inserted through the tunnel portion 27 is pressure-bonded by the plastically deformed tunnel portion 27.

電極タブと導電性部材との接合をより強固にする観点から、トンネル部に導電性部材を挿通させた状態で、トンネル部における導電性部材と電極タブとを溶接により接合してもよい。導電性部材と電極タブとの溶接は、例えば抵抗溶接、超音波溶接、またはレーザー溶接等であってよい。電極タブをトンネル部に挿通させた状態で溶接する場合、電極タブと導電性部材との接合をさらに強固にする観点から、抵抗溶接により導電性部材と電極タブとを溶接してもよい。抵抗溶接では、図7に示すように、一方の抵抗溶接棒610と他方の抵抗溶接棒620とにより、電極タブ6と導電性部材20が挟持され、電極タブ6と導電性部材20とが互いにより密着し得る。より密着した状態で溶接するため、電極タブ6と導電性部材20との接合信頼性が向上し、電極タブ6と導電性部材20との溶接がより強固になり得る。 In order to strengthen the bond between the electrode tab and the conductive member, the conductive member and the electrode tab in the tunnel portion may be joined by welding while the conductive member is inserted through the tunnel portion. The conductive member and the electrode tab may be welded by, for example, resistance welding, ultrasonic welding, laser welding, or the like. When welding is performed with the electrode tab inserted into the tunnel portion, the conductive member and the electrode tab may be welded together by resistance welding in order to further strengthen the bond between the electrode tab and the conductive member. In resistance welding, as shown in FIG. 7, the electrode tab 6 and the conductive member 20 are held between one resistance welding rod 610 and the other resistance welding rod 620, and the electrode tab 6 and the conductive member 20 are held together. It can fit more closely. Since the welding is performed in a more intimate state, the reliability of the bond between the electrode tab 6 and the conductive member 20 is improved, and the welding between the electrode tab 6 and the conductive member 20 can be made stronger.

第1の開口部および第2の開口部は、例えば、機械加工により導電性部材上に設けてもよい。機械加工としては、せん断加工により導電性部材を切断、穿孔、打ち抜き等をして開口部を設けてもよい。 The first opening and the second opening may be provided on the conductive member by machining, for example. As for machining, openings may be provided by cutting, perforating, punching, etc. the conductive member by shearing.

一実施形態では、電極端子部材は、外装体の内部に位置する端子形状に起因して弾性を呈してもよい。換言すると、電極端子部材によって立体的に形作られた形状を変位させた際に生じる弾性力を利用してもよい。例えば、電極端子部材を湾曲および/または屈曲させて形作られた立体形状の少なくとも一部を変位させた際に生じる弾性力を利用するものであってよい。図2に示す態様では、電極端子部材30の最端部31を折り返すことで形作られる形状を、導電性部材20を折り返すこと形成された空間に嵌り込むように位置づけられている。換言すると、電極端子部材30の折り返し形状は、導電性部材20によって圧縮されて変形し得る。変形した電極端子部材30の折り返し形状には、元の形状に戻ろうとする弾性力が働き得る。 In one embodiment, the electrode terminal member may exhibit elasticity due to the terminal shape located inside the sheath. In other words, the elastic force generated when the three-dimensional shape of the electrode terminal member is displaced may be used. For example, it may utilize elastic force generated when at least a portion of a three-dimensional shape formed by curving and/or bending the electrode terminal member is displaced. In the embodiment shown in FIG. 2, the shape formed by folding back the extreme end 31 of the electrode terminal member 30 is positioned so as to fit into the space formed by folding back the conductive member 20. In other words, the folded shape of the electrode terminal member 30 can be compressed and deformed by the conductive member 20. An elastic force may act on the folded shape of the deformed electrode terminal member 30 to return it to its original shape.

上記弾性力に起因して電極端子部材30は導電性部材20に対して押圧するように作用し得る。つまり、電極端子部材30の形状に起因して電極端子部材30が弾性を呈することにより、その電極端子部材30の弾性力を利用して、導電性部材20と電極端子部材30とを互いに電気的に接続できる。かかる態様を採ることにより、導電性部材20と電極端子部材30との電気的接続がより強固になり易くなる。 Due to the elastic force, the electrode terminal member 30 can act to press against the conductive member 20. In other words, since the electrode terminal member 30 exhibits elasticity due to the shape of the electrode terminal member 30, the elastic force of the electrode terminal member 30 is used to electrically connect the conductive member 20 and the electrode terminal member 30 to each other. can be connected to. By adopting such an aspect, the electrical connection between the conductive member 20 and the electrode terminal member 30 can easily become stronger.

一実施形態では、電極端子部材が、折返し形状の端子湾曲部を備えており、端子湾曲部が導電性部材と接していてよい。図2に示すように、電極端子部材30は折り返されているところ、その折り返しの部分は湾曲した形状となっている。換言すると、折り返された電極端子部材30の折り返しの部分は、端子湾曲部32となっている。湾曲形状とすることにより、導電性部材20が形作る形状に電極端子部材30を嵌め込んだ際、電極端子部材30と導電性部材20とが当接し易くなる。つまり、電極端子部材30の端子湾曲部32が丸みを帯びた形状をしているため、導電性部材20と当接する箇所が偏り難くなる。したがって、電極端子部材30と導電性部材20との電気的接続が維持し易くなる。また、電極端子部材30に加えられた外力は、湾曲部全体に作用し易い。外力が湾曲部全体に分散し易くなる点で、電極端子部材30の局所的な疲労による破損を抑制し易くなる。 In one embodiment, the electrode terminal member may include a folded terminal curved portion, and the terminal curved portion may be in contact with the conductive member. As shown in FIG. 2, the electrode terminal member 30 is folded back, and the folded portion has a curved shape. In other words, the folded portion of the electrode terminal member 30 becomes the terminal curved portion 32 . The curved shape makes it easier for the electrode terminal member 30 and the conductive member 20 to come into contact when the electrode terminal member 30 is fitted into the shape formed by the conductive member 20 . In other words, since the terminal curved portion 32 of the electrode terminal member 30 has a rounded shape, the portion in contact with the conductive member 20 is less likely to be biased. Therefore, the electrical connection between the electrode terminal member 30 and the conductive member 20 can be easily maintained. Further, the external force applied to the electrode terminal member 30 tends to act on the entire curved portion. Since the external force is more easily dispersed over the entire curved portion, damage to the electrode terminal member 30 due to local fatigue can be more easily suppressed.

一実施形態では、導電性部材が折返し形状の導電性湾曲部を備えると共に、電極端子部材が折返し形状の端子湾曲部を備えており、導電性湾曲部の内側に端子湾曲部が位置付けられて電極端子部材と導電性部材とが互いに接続されていてよい。「導電性湾曲部の内側」とは、図2および図3に示すように、折り返し形状を有する導電性部材の主面、湾曲部、および最端部によって囲まれる空間24側を意味する。当該空間24に、端子湾曲部32が位置付けられている。 In one embodiment, the conductive member includes a folded conductive curved section, the electrode terminal member includes a folded terminal curved section, and the terminal curved section is positioned inside the conductive curved section to provide an electrode. The terminal member and the conductive member may be connected to each other. "Inside the conductive curved part" means the space 24 side surrounded by the main surface, the curved part, and the extreme end of the folded conductive member, as shown in FIGS. 2 and 3. A terminal curved portion 32 is positioned in the space 24 .

図2に示す態様において導電性部材20に着目すると、導電性部材20の最端部21を折り返すことで形作られる形状に、電極端子部材30が嵌り込むように位置づけられている。換言すると、導電性部材20の折り返し形状を押し広げるように電極端子部材30が嵌まり込んでいると言える。押し広げられた導電性部材20の折り返し形状には、元の形状に戻ろうとする弾性力が働き得る。 Focusing on the conductive member 20 in the embodiment shown in FIG. 2, the electrode terminal member 30 is positioned so as to fit into the shape formed by folding back the outermost end 21 of the conductive member 20. In other words, it can be said that the electrode terminal member 30 is fitted in such a way that the folded shape of the conductive member 20 is pushed out. An elastic force may act on the folded shape of the conductive member 20 that has been stretched out to return it to its original shape.

一方で電極端子部材30に着目すると、電極端子部材30の最端部31を折り返すことで形作られる形状が、導電性部材20を折り返すことで形成された空間24に嵌り込むように位置づけられている。換言すると、導電性部材20の折り返し形状が、電極端子部材30を圧縮していると言える。圧縮された電極端子部材30の折り返し形状には、元の形状に戻ろうとする弾性力が働き得る。 On the other hand, focusing on the electrode terminal member 30, the shape formed by folding back the extreme end 31 of the electrode terminal member 30 is positioned so as to fit into the space 24 formed by folding back the conductive member 20. . In other words, it can be said that the folded shape of the conductive member 20 compresses the electrode terminal member 30. An elastic force may act on the folded shape of the compressed electrode terminal member 30 to return it to its original shape.

上記の態様では、電極端子部材には導電性部材からの弾性力が作用し、導電性部材には電極端子部材からの弾性力が作用し得る。つまり、電極端子部材と導電性部材には、双方からの弾性力が作用し得る。換言すると、外装体に設けられた電極端子部材と導電性部材とが、電極端子部材および導電性部材の双方の弾性に起因して互いに電気的に接続されている。かかる態様を採ることにより、電極端子部材と導電性部材との電気的接続がより強固になり得る。また、電極端子部材および導電性部材の双方からの弾性力が作用する点において、導電性湾曲部と端子湾曲部とが互いの弾性力でもって互いに電気接続するための応力を補っていると言える。この点につき、導電性湾曲部と端子湾曲部とが互いに相補的に係合し得る。 In the above aspect, the elastic force from the conductive member can act on the electrode terminal member, and the elastic force from the electrode terminal member can act on the conductive member. That is, elastic forces from both can act on the electrode terminal member and the conductive member. In other words, the electrode terminal member and the conductive member provided in the exterior body are electrically connected to each other due to the elasticity of both the electrode terminal member and the conductive member. By adopting such an aspect, the electrical connection between the electrode terminal member and the conductive member can be made stronger. In addition, in that the elastic force from both the electrode terminal member and the conductive member acts, it can be said that the conductive curved portion and the terminal curved portion compensate for the stress for electrical connection with each other with their respective elastic forces. . In this regard, the conductive curved portion and the terminal curved portion may engage each other in a complementary manner.

互いに相補的に係合する導電性湾曲部22および端子湾曲部32は、図2に示すような形態となっていてよい。具体的には、図示されるような断面視において、導電性湾曲部22の内側輪郭と端子湾曲部32の外側輪郭とが互いに接するようになっていてよい。つまり、導電性湾曲部22の内側輪郭と端子湾曲部32の外側輪郭とが互いに相補的な関係を有していてよい。かかる態様を採ることにより、導電性部材20と電極端子部材30との電気的接続がより好適に強固になり易くなる。 The conductive curved portion 22 and the terminal curved portion 32 that engage each other in a complementary manner may have a configuration as shown in FIG. 2 . Specifically, in the illustrated cross-sectional view, the inner contour of the conductive curved portion 22 and the outer contour of the terminal curved portion 32 may be in contact with each other. That is, the inner contour of the conductive curved portion 22 and the outer contour of the terminal curved portion 32 may have a mutually complementary relationship. By adopting such an aspect, the electrical connection between the conductive member 20 and the electrode terminal member 30 can be more suitably and easily strengthened.

一実施形態では、導電性部材と電極端子部材との接続は、溶接部を含まない非溶接な接続となっていてよい。換言すると、導電性部材と電極端子部材との接続において、溶接部を形成しないで互いに電気的に接続されかつ固定されていてよい。かかる態様は、上述した外装体に設けられた電極端子部材と導電性部材とが、電極端子部材および導電性部材の少なくとも一方の弾性に起因して互いに電気的に接続されることで為される。この点で、溶接機、溶接材料、および加工に関する費用の低減、ならびに溶接工程を省略できる点で二次電池の製造効率が向上し得る。また、かかる態様では、溶接部を含まない非溶接な接続であるため、可逆的な接続形態で成り得る。つまり、導電性部材と電極端子部材との接続を接続した後に、導電性部材と電極端子部材との接続を解除できる。 In one embodiment, the connection between the conductive member and the electrode terminal member may be a non-welded connection that does not include a weld. In other words, the conductive member and the electrode terminal member may be electrically connected and fixed to each other without forming a welded portion. This aspect is achieved by the electrode terminal member and the conductive member provided in the above-mentioned exterior body being electrically connected to each other due to the elasticity of at least one of the electrode terminal member and the conductive member. . In this respect, the manufacturing efficiency of the secondary battery can be improved in that the costs related to welding machines, welding materials, and processing can be reduced, and the welding process can be omitted. Further, in this embodiment, since the connection is a non-welded connection that does not include a welded portion, a reversible connection form can be achieved. That is, after the connection between the conductive member and the electrode terminal member is established, the connection between the conductive member and the electrode terminal member can be released.

一実施形態では、導電性部材と電極タブとの接続は、溶接部を含まない非溶接な接続となっている。換言すると、導電性部材と電極タブとの接続において、溶接部を形成しないで、互いに電気的に接続されかつ固定されていてよい。かかる態様は、図2に示すように、電極タブが、導電性部材と電極端子部材との間に設けられていることで為される。上述の通り、電極端子部材と導電性部材とは、電極端子部材および導電性部材の少なくとも一方の弾性に起因して互いに電気的に接続されている。かかる電気的に接続されている部分には、弾性力が作用され得る。当該弾性力が、導電性部材に対して電極タブを押さえ付け得るため、電極タブが導電性部材に対して圧して接合され得る。導電性部材と電極タブとが、溶接部を含まない非溶接な接続となる態様は、例えば、導電性部材に第2の開口部を有するトンネル部を設けて電極タブを挿通し、トンネル部を電極タブごと圧着しても為すことができる。溶接部を含まない非溶接な接続とすることにより、図15に示すような従来の二次電池400’における溶接に要する部位700’を省略でき、その分だけスペースを縮小可能となる。したがって、二次電池の体積を小さくでき、電池容量を大きくし易くなる。 In one embodiment, the connection between the conductive member and the electrode tab is a non-welded connection that does not include a weld. In other words, the conductive member and the electrode tab may be electrically connected and fixed to each other without forming a welded portion. This aspect is achieved by providing an electrode tab between the conductive member and the electrode terminal member, as shown in FIG. As described above, the electrode terminal member and the conductive member are electrically connected to each other due to the elasticity of at least one of the electrode terminal member and the conductive member. An elastic force can be applied to such electrically connected portions. Since the elastic force can press the electrode tab against the conductive member, the electrode tab can be pressed and bonded to the conductive member. A non-welded connection between the conductive member and the electrode tab that does not include a weld is, for example, by providing a tunnel portion having a second opening in the conductive member, inserting the electrode tab therein, and opening the tunnel portion. This can also be done by crimping the electrode tab together. By making a non-welded connection that does not include a welded part, a part 700' required for welding in a conventional secondary battery 400' as shown in FIG. 15 can be omitted, and the space can be reduced by that amount. Therefore, the volume of the secondary battery can be reduced and the battery capacity can be easily increased.

以下に、本発明の一実施形態の二次電池に持ちる各部材について説明する。 Each member included in a secondary battery according to an embodiment of the present invention will be explained below.

<導電性部材>
正極導電性部材は、電子の移動が達成され得る材料から構成されていればよい。例えば、正極導電性部材は、導電性材料から構成されていればよく、具体的には銀、金、銅、鉄、スズ、プラチナ、アルミニウム、ニッケル、および/またはステンレス鋼などの導電性材料から構成される。
<Conductive member>
The positive electrode conductive member may be made of any material that can achieve electron transfer. For example, the positive conductive member may be made of a conductive material, specifically conductive materials such as silver, gold, copper, iron, tin, platinum, aluminum, nickel, and/or stainless steel. configured.

ある好適な態様では、正極導電性部材と正極タブは、互いに同じ金属材料であってよい。例えば、正極タブがアルミニウムから構成される場合、正極導電性部材もアルミニウムから構成されていてよい。かかる構成を採ることにより、正極導電性部材と正極タブとの接続安定性が高くなり易い。 In a preferred embodiment, the positive electrode conductive member and the positive electrode tab may be made of the same metal material. For example, when the positive electrode tab is made of aluminum, the positive electrode conductive member may also be made of aluminum. By adopting such a configuration, the connection stability between the positive electrode conductive member and the positive electrode tab can be easily increased.

負極導電性部材は、電子の移動が達成され得る材料から構成されていればよい。例えば、負極導電性部材は、導電性材料から構成されていればよく、具体的には銀、金、銅、鉄、スズ、プラチナ、アルミニウム、ニッケルおよび/またはステンレス鋼などの導電性材料から構成される。 The negative electrode conductive member may be made of any material that can achieve electron movement. For example, the negative electrode conductive member may be made of a conductive material, specifically, silver, gold, copper, iron, tin, platinum, aluminum, nickel, and/or stainless steel. be done.

ある好適な態様では、負極導電性部材と負極タブは、互いに同じ金属材料であってよい。例えば、負極タブが銅から構成される場合、負極導電性部材も銅から構成されていてよい。かかる構成を採ることにより、負極導電性部材と負極タブとの接続安定性が高くなり易い。なお、負極タブと負極導電性部材としてニッケルまたはステンレス鋼を用いる場合も、負極導電性部材と負極タブとの接続安定性が高くなり易い。 In a preferred embodiment, the negative electrode conductive member and the negative electrode tab may be made of the same metal material. For example, when the negative electrode tab is made of copper, the negative electrode conductive member may also be made of copper. By adopting such a configuration, the connection stability between the negative electrode conductive member and the negative electrode tab can be easily increased. Note that also when nickel or stainless steel is used as the negative electrode tab and the negative electrode conductive member, the connection stability between the negative electrode conductive member and the negative electrode tab tends to be high.

導電性部材は、導電性材料を機械的加工に付すことにより得ることができる。機械的加工は、例えば、せん断加工、曲げ加工、抜き打ち加工、および穴あけ加工等を組み合わせた加工であってよい。導電性部材を効率的に作製する観点から、導電性部材はプレス加工で作製してもよい。プレス加工は、例えば、順送加工、トランスファー加工、または単発加工であってよい。プレス加工として順送加工を選んだ場合、複数の機械的加工を連続的に行えるため、導電性部材を安価に作製し易くなる。導電性材料を機械的加工に付す際、導電性材料は、板状またはシート状の形態(例えばブランク材)であってよい。 The conductive member can be obtained by subjecting a conductive material to mechanical processing. The mechanical processing may be, for example, a combination of shearing, bending, punching, drilling, and the like. From the viewpoint of efficiently producing a conductive member, the conductive member may be produced by press working. Pressing may be, for example, progressive processing, transfer processing, or single-shot processing. When progressive processing is selected as press processing, a plurality of mechanical processes can be performed continuously, making it easier to manufacture the conductive member at low cost. When subjecting the electrically conductive material to mechanical processing, the electrically conductive material may be in the form of a plate or sheet (for example a blank).

<電極端子部材>
正極端子部材は、電子の移動が達成され得る材料から構成されていればよい。例えば、正極端子部材は、銀、金、銅、鉄、スズ、プラチナ、アルミニウム、ニッケルおよび/またはステンレス鋼などの導電性材料から構成される。
<Electrode terminal member>
The positive electrode terminal member may be made of any material that can achieve electron transfer. For example, the positive terminal member is constructed from a conductive material such as silver, gold, copper, iron, tin, platinum, aluminum, nickel and/or stainless steel.

ある好適な態様では、正極端子部材は、正極タブおよび/または正極導電性部材と同じ金属材料であってよい。例えば、正極タブおよび正極導電性部材がアルミニウムから構成される場合、正極端子部材もアルミニウムから構成されていてよい。かかる構成を採ることにより、導電性部材と集電電極端子部材との接続安定性が高くなり易い。 In a preferred embodiment, the positive terminal member may be made of the same metal material as the positive tab and/or the positive conductive member. For example, when the positive electrode tab and the positive conductive member are made of aluminum, the positive terminal member may also be made of aluminum. By adopting such a configuration, the connection stability between the conductive member and the current collecting electrode terminal member is likely to be increased.

正極端子部材は、例えば、外部環境によって腐食することがある。特に、外装体の外部に露出する正極端子部材は、外部環境に晒され易く、相対的に腐食し易い。例えば、正極端子部材が酸化すると、酸化した部分にて電気的な接続がし難くなり、接続不良が生じ得る。 For example, the positive terminal member may be corroded by the external environment. In particular, the positive electrode terminal member exposed to the outside of the exterior body is easily exposed to the external environment and is relatively easily corroded. For example, when a positive electrode terminal member is oxidized, it becomes difficult to make an electrical connection at the oxidized portion, and a connection failure may occur.

正極端子部材の腐食を抑制する観点から、正極端子部材は、クラッド材であってよい。クラッド材は、例えば、銀、金、銅、鉄、スズ、プラチナ、アルミニウム、ニッケルおよびステンレス鋼から成る群から選択される2種類以上の金属を組み合わせて構成されていてよい。なお、正極端子部材に用いるクラッド材は、例えば、正極タブおよび/または正極導電性部材に用いられる導電性材料に応じて選んでもよい。ある好適な態様では、正極導電性部材としてアルミニウムが用いられている場合、正極端子部材は、アルミニウム-ニッケルのクラッド材を用いてもよい。 From the viewpoint of suppressing corrosion of the positive electrode terminal member, the positive electrode terminal member may be made of a clad material. The cladding material may be made of a combination of two or more metals selected from the group consisting of silver, gold, copper, iron, tin, platinum, aluminum, nickel, and stainless steel, for example. Note that the cladding material used for the positive electrode terminal member may be selected depending on, for example, the conductive material used for the positive electrode tab and/or the positive electrode conductive member. In a preferred embodiment, when aluminum is used as the positive electrode conductive member, an aluminum-nickel cladding material may be used for the positive electrode terminal member.

正極端子部材としてクラッド材を用いる場合、正極端子部材と正極タブとが電気的に接続する部分は同種の金属にすることが好ましい。換言すると、正極端子部材と正極タブとが電気的に接続する部分は、異種金属同士による接続でないことが好ましい。図8は、正極端子部材としてクラッド材を用いた態様を示す。図8に示すように、正極端子部材は2種類の異なる金属から構成されており、クラッド材となっている。正極端子部材と正極タブとが互いに接する面は、同種の金属となるように互いに電気的に接続されている。 When using a cladding material as the positive electrode terminal member, it is preferable that the portion where the positive electrode terminal member and the positive electrode tab are electrically connected be made of the same type of metal. In other words, the portion where the positive electrode terminal member and the positive electrode tab are electrically connected is preferably not connected by different metals. FIG. 8 shows an embodiment in which a cladding material is used as the positive electrode terminal member. As shown in FIG. 8, the positive electrode terminal member is made of two different metals and is a clad material. The surfaces where the positive electrode terminal member and the positive electrode tab come into contact with each other are electrically connected to each other so that they are made of the same type of metal.

外装体の外部の正極端子部材は、図8に示すように、屈曲形状を有していてよい。換言すると、正極端子部材の端部を180°折り返し、正極端子部材の同一金属の主面同士が互いに接するように構成されていてよい。外装体の外部に露出するクラッド材の主面は、クラッド材に用いられている金属のうちイオン化傾向が低い金属で構成される主面であることが好ましい。かかる態様を採ることにより、クラッド材は、同種の金属同士と電気的に接続され、かつ外部に露出する金属層をイオン化傾向が低い金属で構成される主面にすることができる。これにより、正極端子部材の腐食を抑制し易くなる。 The positive electrode terminal member outside the exterior body may have a bent shape, as shown in FIG. 8 . In other words, the end portion of the positive electrode terminal member may be folded back by 180 degrees, and the main surfaces of the positive electrode terminal member made of the same metal may be in contact with each other. The main surface of the cladding material exposed to the outside of the exterior body is preferably a main surface made of a metal with a low ionization tendency among the metals used in the cladding material. By adopting such an aspect, the cladding material can be electrically connected to metals of the same type, and the metal layer exposed to the outside can be made into a main surface made of a metal with a low ionization tendency. This makes it easier to suppress corrosion of the positive electrode terminal member.

負極端子部材は、電子の移動が達成され得る材料から構成されていればよい。例えば、負極端子部材は、銀、金、銅、鉄、スズ、プラチナ、アルミニウム、ニッケルおよび/またはステンレス鋼などの導電性材料から構成される。 The negative electrode terminal member may be made of any material that can achieve electron transfer. For example, the negative terminal member is constructed from a conductive material such as silver, gold, copper, iron, tin, platinum, aluminum, nickel and/or stainless steel.

ある好適な態様では、負極端子部材は、負極タブおよび/または負極導電性部材と同じ金属材料であってよい。例えば、負極タブおよび負極導電性部材が銅から構成される場合、負極端子部材も銅から構成されていてよい。かかる構成を採ることにより、負極導電性部材と負極端子部材との接続安定性が高くなり易い。なお、負極タブ、負極導電性部材、および負極端子部材としてニッケルまたはステンレス鋼を用いる場合も、負極導電性部材と負極端子部材との接続安定性が高くなり易い。 In a preferred embodiment, the negative terminal member may be made of the same metal material as the negative tab and/or the negative conductive member. For example, when the negative electrode tab and the negative electrode conductive member are made of copper, the negative electrode terminal member may also be made of copper. By adopting such a configuration, the connection stability between the negative electrode conductive member and the negative electrode terminal member is likely to be increased. Note that when nickel or stainless steel is used for the negative electrode tab, the negative electrode conductive member, and the negative electrode terminal member, the connection stability between the negative electrode conductive member and the negative electrode terminal member tends to be high.

<樹脂部材>
一実施形態では、電極端子部材は、樹脂部材によって外装体に固定化されていてよい。例えば、電極端子部材は、単一の樹脂部材によって外装体に固定化されていてよく、複数の樹脂部材を組み合わせて外装体に固定化されていてよい。
<Resin member>
In one embodiment, the electrode terminal member may be fixed to the exterior body using a resin member. For example, the electrode terminal member may be fixed to the exterior body using a single resin member, or may be fixed to the exterior body by combining a plurality of resin members.

(単一の樹脂部材を用いる態様)
本発明における「単一の樹脂部材」とは、樹脂部材が、一個の樹脂の部品のみから構成
されていることを意味する。または、複数の樹脂の部品を組合せて構成されていないことを意味する。図2で示す態様で例示すると、樹脂部材50は、1つの樹脂の部品から構成されており、複数の樹脂の部品へと別々に分離可能な構造または境界部分を有してない。
(A mode using a single resin member)
A "single resin member" in the present invention means that the resin member is composed of only one resin component. Or, it means that it is not constructed by combining multiple resin parts. In the example shown in FIG. 2, the resin member 50 is composed of one resin component and does not have a structure or a boundary portion that can be separated into a plurality of resin components.

単一の樹脂部材によって電極端子部材を外装体に固定化する方法は、例えば、外装体に電極端子部材を挿入した状態で樹脂を組み込んで固定化してもよい。樹脂の組み込みは、例えば、溶融した樹脂を注入し、その後所望の形状に樹脂を硬化させて行ってもよい。具体的には、アウトサート成形により、電極端子部材を樹脂部材によって外装体に固定化されていてよい。 As for the method of fixing the electrode terminal member to the exterior body using a single resin member, for example, the electrode terminal member may be inserted into the exterior body and then the resin may be incorporated and fixed therein. The resin may be incorporated, for example, by injecting a molten resin and then curing the resin into a desired shape. Specifically, the electrode terminal member may be fixed to the exterior body using a resin member by outsert molding.

アウトサート成形とは、金型の中に金属部品等をセットし、次いで樹脂を射出成形して成型品を作製する方法である。アウトサート成形により作製された成型品は、例えば、金属等の部材の周囲に樹脂等の部材を成形し、金属等の部材の一部又は全部を、樹脂等の部材で覆うように成形されていてよい。つまり、アウトサート成形品は、金属等の部材と樹脂等の部材とが一体化した構造を有していてよい。 Outsert molding is a method in which metal parts and the like are set in a mold, and then resin is injection molded to produce a molded product. A molded product produced by outsert molding is, for example, formed by molding a member such as resin around a member such as metal, and covering part or all of the member such as metal with the member such as resin. It's fine. That is, the outsert molded product may have a structure in which a member such as metal and a member such as resin are integrated.

アウトサート成形は、例えば、以下の方法により実施できる。図9(a)のように、側面に開口部320を設けた外装部材310を樹脂成形金型にセット(図示せず)し、外装部材の開口部320に電極端子部材30を挿入する。短絡を防ぐ観点から、電極端子部材と外装ケースとが接触しないように位置決めする。位置決めした状態で樹脂の射出成形を行い、外装部材と電極端子部材とを樹脂により固定する(図9(b))。電極端子部材30の不要な部分は、カットしてもよい(図9(c))。電極端子部材の固定後、電極端子部材を樹脂に向かって折り曲げる(図9(d)および図9(e)。以上により、外装部材、電極端子部材、および樹脂が一体化した成型品が得られる。 Outsert molding can be performed, for example, by the following method. As shown in FIG. 9A, an exterior member 310 having an opening 320 on its side surface is set in a resin molding die (not shown), and the electrode terminal member 30 is inserted into the opening 320 of the exterior member. In order to prevent short circuits, the electrode terminal member and the exterior case are positioned so that they do not come into contact with each other. In the positioned state, resin injection molding is performed to fix the exterior member and the electrode terminal member with the resin (FIG. 9(b)). An unnecessary portion of the electrode terminal member 30 may be cut (FIG. 9(c)). After fixing the electrode terminal member, the electrode terminal member is bent toward the resin (FIGS. 9(d) and 9(e). Through the above, a molded product in which the exterior member, the electrode terminal member, and the resin are integrated is obtained. .

単一の樹脂部材によって電極端子部材を外装体に固定化する方法では、電極端子部材を外装体に固定化するために用いる部品数が比較的少なくなり易い。また、用いる部品が少ない場合、組立て工数が少なくなり易い。従って、上記方法では、コスト削減し易くなりおよび製造効率が向上し得る。また、溶接による固定ではないため、スパッタ等が発生せず、電極組立体に異物が混入する虞が減じられ、二次電池に不具合が起きることを抑制し易くなる。溶接機の故障(例えば、抵抗溶接機の異常放電)も回避できる。 In the method of fixing the electrode terminal member to the exterior body using a single resin member, the number of parts used for fixing the electrode terminal member to the exterior body tends to be relatively small. Furthermore, when fewer parts are used, the number of assembly steps tends to be reduced. Therefore, the above method can facilitate cost reduction and improve manufacturing efficiency. Furthermore, since the electrode assembly is not fixed by welding, spatter and the like do not occur, reducing the risk of foreign matter getting into the electrode assembly, and making it easier to prevent problems from occurring in the secondary battery. Malfunctions of welding machines (for example, abnormal discharge of resistance welding machines) can also be avoided.

作業性向上の観点から、アウトサート成形において、正極側の電極端子部材と負極側の電極端子部材とを予め金属板等で連結させたものを用いてもよい。正極側の電極端子部材および負極側の電極端子部材の挿入位置を調整し易くなり、より正確な位置決めを実現し易くなる。なお、連結に用いた金属板等は、外装部材と電極端子部材とを樹脂による固定後、カットして取り除くことが好ましい。 From the viewpoint of improving workability, in outsert molding, an electrode terminal member on the positive electrode side and an electrode terminal member on the negative electrode side may be connected in advance with a metal plate or the like. It becomes easier to adjust the insertion positions of the electrode terminal member on the positive electrode side and the electrode terminal member on the negative electrode side, and it becomes easier to realize more accurate positioning. Note that it is preferable to cut and remove the metal plate or the like used for connection after fixing the exterior member and the electrode terminal member with resin.

(複数の樹脂部材を用いる態様)
複数の樹脂部材によって電極端子部材を外装体に固定化する方法は、例えば、複数の樹脂部材同士を圧着させることにより、電極端子部材を外装体に固定化する方法であってよい。例えば、リベット部を設けて、当該リベット部を加締めることにより、外装体を複数のガスケットで挟持および圧着して固定する方法であってよい。
(Mode using multiple resin members)
The method of fixing the electrode terminal member to the exterior body using a plurality of resin members may be, for example, a method of fixing the electrode terminal member to the exterior body by crimping the plurality of resin members together. For example, a method may be used in which a rivet part is provided and the rivet part is crimped to clamp and press the exterior body between a plurality of gaskets and fix the exterior body.

リベット部は、特に限定されないが、例えば、外装体に設けた貫通孔に嵌合して挿通されていてもよい。リベット部は導電性を有し得る。ガスケットは、リベット部と外装体との電気的な絶縁を確保しつつ、電解質の漏出を防止するための外装体の外側に設ける外側ガスケットおよび外装体の内側に設ける内側ガスケットを含んでもよい。 The rivet portion is not particularly limited, but may be inserted into, for example, a through hole provided in the exterior body. The rivet portion may be electrically conductive. The gasket may include an outer gasket provided on the outside of the outer case and an inner gasket provided on the inside of the outer case for preventing electrolyte leakage while ensuring electrical insulation between the rivet part and the outer case.

図10に示す態様では、外装体の内側には、電極端子部材30および内側ガスケット51が設けられており、外装体の外側には、外側ガスケット52が設けられている。リベット部60が、内側ガスケット51、外装部材310、および外側ガスケット52のそれぞれに設けられた開口部を挿通している。リベット部60は、加締めによって塑性変形させて、内側ガスケット51および外側ガスケット52を挟持するように圧着している。電極端子部材30は、リベット部60によって、内側ガスケット51とともに外装体圧着されており、リベット部60を介して外装体の外側に設けられた電極端子70から外部へと電気が取出し可能となっている。 In the embodiment shown in FIG. 10, an electrode terminal member 30 and an inner gasket 51 are provided on the inside of the exterior body, and an outer gasket 52 is provided on the outside of the exterior body. The rivet portion 60 is inserted through openings provided in each of the inner gasket 51, the exterior member 310, and the outer gasket 52. The rivet portion 60 is plastically deformed by crimping and is crimped to sandwich the inner gasket 51 and the outer gasket 52. The electrode terminal member 30 is crimped to the exterior body together with the inner gasket 51 by the rivet portion 60, and electricity can be extracted to the outside from the electrode terminal 70 provided on the outside of the exterior body via the rivet portion 60. There is.

リベット部は、電子の移動が達成され得る材料から構成されていればよい。例えば、リベット部は、銀、金、銅、鉄、スズ、プラチナ、アルミニウム、ニッケルおよび/またはステンレス鋼などの導電性材料から構成される。 The rivet portion may be made of any material that can achieve electron transfer. For example, the rivet portion is constructed from a conductive material such as silver, gold, copper, iron, tin, platinum, aluminum, nickel and/or stainless steel.

樹脂部材は、絶縁材料から構成されていればよい。例えば、樹脂部材は、エポキシ樹脂、ポリフェニレンサルファイド、液晶ポリマー、芳香族ポリエステル(例えばポリエチレンナフタレート)、芳香族ポリエーテルケトン、ポリエステル(例えば、ポリエチレンテレフタレート)、ポリイミド、ポリアミド、ポリアミドイミド、ならびに/またはポリオレフィン(例えば、ポリエチレンおよび/もしくはポリプロピレン)などの絶縁ポリマー材料から構成される。なお、樹脂部材は、外装体内部と外装体外部との間の流体の移動を抑制するために設けることから、ガスケットと称し得る。ガスケットとしての封止性をより向上する観点から、樹脂材料は、エポキシ樹脂またはポリフェニレンサルファイド等を用いていもよい。 The resin member may be made of an insulating material. For example, the resin member may be made of epoxy resin, polyphenylene sulfide, liquid crystal polymer, aromatic polyester (e.g. polyethylene naphthalate), aromatic polyether ketone, polyester (e.g. polyethylene terephthalate), polyimide, polyamide, polyamideimide, and/or polyolefin. (e.g., polyethylene and/or polypropylene). Note that the resin member may be referred to as a gasket because it is provided to suppress movement of fluid between the inside of the exterior body and the outside of the exterior body. From the viewpoint of further improving the sealing performance of the gasket, the resin material may be epoxy resin, polyphenylene sulfide, or the like.

樹脂部材は、フィラーを含んでいてもよい。フィラーとしては、例えば、無機フィラーおよび/または有機フィラーを用いてもよい。無機フィラーとしては、金属粉、炭素材料、ケイ素酸化物、金属酸化物、金属水酸化物、金属窒化物、および金属硫酸塩からなる群より選択される少なくとも1種を含んでもよい。例えば、無機フィラーとして、セラミックス粒子、アルミナ粒子、カーボンブラック、黒鉛またはシリカ粒子等を用いてもよい。有機フィラーとしては、ABS樹脂、ポリアミド樹脂、エーテルイミド樹脂、ポリフェニレンスルフィド樹脂、セルロース、および/またはフェノール樹脂等を含んでいてよい。 The resin member may contain filler. As the filler, for example, an inorganic filler and/or an organic filler may be used. The inorganic filler may include at least one selected from the group consisting of metal powder, carbon material, silicon oxide, metal oxide, metal hydroxide, metal nitride, and metal sulfate. For example, ceramic particles, alumina particles, carbon black, graphite, or silica particles may be used as the inorganic filler. The organic filler may include ABS resin, polyamide resin, etherimide resin, polyphenylene sulfide resin, cellulose, and/or phenol resin.

無機フィラーおよび/または有機フィラーの形状は、特に制限されず、粒状、球状、針状、板状、繊維状および/または不定形などであってよい。なお、ガスケットとしての封止性をより向上する観点から、フィラーは、シリカ粒子等を用いてもよい。 The shape of the inorganic filler and/or organic filler is not particularly limited, and may be granular, spherical, acicular, plate-like, fibrous, and/or amorphous. Note that from the viewpoint of further improving the sealing performance of the gasket, silica particles or the like may be used as the filler.

樹脂部材と外装部材および/または電極端子部材との密着性を向上させる観点から、外装部材および/または電極端子部材が表面処理(または表面改質)されていてもよい。そのような表面処理は、例えば、機械的処理、プライマー処理、化学的処理、洗浄、または電気化学処理であってよい。 From the viewpoint of improving the adhesion between the resin member and the exterior member and/or the electrode terminal member, the exterior member and/or the electrode terminal member may be surface treated (or surface modified). Such surface treatment may be, for example, mechanical treatment, priming, chemical treatment, cleaning or electrochemical treatment.

機械的処理としては、研磨紙またはサンドブラスト等により表面異物を除去し、表面に微細な凹凸を設けてもよい。これにより、樹脂部材と外装部材および/または電極端子部材との接触面積が増加し、密着性がより向上し得る。プライマー処理としては、ポリアクリル樹脂、ウレタン樹脂、エポキシ樹脂、ポリアミド樹脂、およびシランカップリング剤から成る群から選択される1種以上を含むプライマーを塗布して表面処理してもよい。 As the mechanical treatment, foreign matter on the surface may be removed using abrasive paper or sandblasting, and fine irregularities may be provided on the surface. Thereby, the contact area between the resin member and the exterior member and/or the electrode terminal member increases, and the adhesion can be further improved. As the primer treatment, the surface may be treated by applying a primer containing one or more selected from the group consisting of polyacrylic resin, urethane resin, epoxy resin, polyamide resin, and silane coupling agent.

[本発明の二次電池の製造方法]
本発明の二次電池は、正極、負極及びセパレータを含む電極構成層が積層した電極組立体を外装体に封入することを通じて得ることができる。具体的には、電極組立体を外装体に封入する際に、電極組立体に設けられた導電性部材と、外装体に設けられた電極端子部材とを、電極端子部材および導電性部材の少なくとも一方の弾性に起因して互いに電気的に接続することで本発明の二次電池を得ることができる。
[Method for manufacturing a secondary battery of the present invention]
The secondary battery of the present invention can be obtained by enclosing an electrode assembly in which electrode constituent layers including a positive electrode, a negative electrode, and a separator are laminated in an exterior body. Specifically, when enclosing the electrode assembly in the exterior body, a conductive member provided in the electrode assembly and an electrode terminal member provided in the exterior body are connected to at least one of the electrode terminal member and the conductive member. The secondary battery of the present invention can be obtained by electrically connecting them to each other due to the elasticity of one of them.

電極組立体は、常套的な手法で作製してよい。電極組立体に導電性部材を設けるにあたり、まずは電極組立体の各電極層から引き出されている電極タブを束ねて1つの集合体にしてもよい。束ねた電極タブは、その形状を導電性部材に取り付け易い形状に成形してもよい。例えば、束ねた電極タブを圧縮して薄型化してもよい。または、束ねた電極タブの周囲を切り落とし、矩形状の電極タブにしてもよい。 The electrode assembly may be fabricated using conventional techniques. In providing the conductive member to the electrode assembly, first, the electrode tabs drawn out from each electrode layer of the electrode assembly may be bundled into one assembly. The bundled electrode tabs may be formed into a shape that is easy to attach to a conductive member. For example, the bundled electrode tabs may be compressed to make them thinner. Alternatively, the periphery of the bundled electrode tabs may be cut off to form a rectangular electrode tab.

電極タブに導電性部材を取り付けるにあたり、電極タブを導電性部材と電極端子部材との間に設けてもよい。電極タブを導電性部材と電極端子部材との間に位置付けることで電極タブを固定し易くなる。好ましい態様では、電極端子部材および導電性部材の少なくとも一方の弾性に起因して固定してもよい。また、図11(a)に示すように、導電性部材20に設けた第1の開口部25に電極タブ6を通すと、電極タブ6を導電性部材20と電極端子部材との間に位置付け易くなる。また、導電性部材20に設けたスリットを拡張して形成したトンネル部27の第2の開口部26に電極タブ6を挿通してもよい。図11(b)に示すように、挿通後、トンネル部27を電極タブ6ごと押圧し、電極タブ6を導電性部材20に圧着してもよい。電極タブ6に導電性部材を取り付けた後、図12のように、導電性部材20を電極組立体10の端面に沿うように電極タブ6を曲げてもよい。このように電極タブ6を折り曲げて位置づけることにより、二次電池を省スペースな設計にし易くなる。 When attaching the conductive member to the electrode tab, the electrode tab may be provided between the conductive member and the electrode terminal member. By positioning the electrode tab between the conductive member and the electrode terminal member, the electrode tab can be easily fixed. In a preferred embodiment, the fixation may be achieved due to the elasticity of at least one of the electrode terminal member and the conductive member. Further, as shown in FIG. 11(a), when the electrode tab 6 is passed through the first opening 25 provided in the conductive member 20, the electrode tab 6 is positioned between the conductive member 20 and the electrode terminal member. It becomes easier. Further, the electrode tab 6 may be inserted into the second opening 26 of the tunnel portion 27 formed by expanding a slit provided in the conductive member 20. As shown in FIG. 11(b), after insertion, the tunnel portion 27 may be pressed together with the electrode tab 6, and the electrode tab 6 may be crimped onto the conductive member 20. After attaching the conductive member to the electrode tab 6, the electrode tab 6 may be bent so that the conductive member 20 follows the end surface of the electrode assembly 10, as shown in FIG. By bending and positioning the electrode tabs 6 in this manner, it becomes easier to design the secondary battery to save space.

外装体に電極端子部材を取り付けるにあたり、電極端子部材は、樹脂部材によって外装体に固定化されていてよい。例えば、電極端子部材は、単一の樹脂部材によって外装体に固定化されていてよく、複数の樹脂部材を組み合わせて外装体に固定化されていてよい。例えば、溶融した樹脂を注入し、その後所望の形状に樹脂を硬化させて行ってもよい。具体的には、アウトサート成形により、電極端子部材を樹脂部材によって外装体に固定化されていてよい。 When attaching the electrode terminal member to the exterior body, the electrode terminal member may be fixed to the exterior body with a resin member. For example, the electrode terminal member may be fixed to the exterior body using a single resin member, or may be fixed to the exterior body by combining a plurality of resin members. For example, molten resin may be injected and then cured into a desired shape. Specifically, the electrode terminal member may be fixed to the exterior body using a resin member by outsert molding.

電極タブに設けた導電性部材と外装体の内側に設けた電極端子部材とを互いに電気的に接続する方法は、下記で説明する方法により接続してもよい。 The conductive member provided on the electrode tab and the electrode terminal member provided inside the exterior body may be electrically connected to each other by the method described below.

まず、図13(a)に示すように、電極タブ6に設けた導電性部材20と外装体300の内側に設けた電極端子部材30とを位置合わせする。次に、図13(b)に示すように、導電性部材20を電極端子部材30に向かって移動し、導電性部材20と電極端子部材30とを当接させる。具体的には、導電性部材20の最端部21と電極端子部材30の端子湾曲部とを当接させる。 First, as shown in FIG. 13(a), the conductive member 20 provided on the electrode tab 6 and the electrode terminal member 30 provided inside the exterior body 300 are aligned. Next, as shown in FIG. 13(b), the conductive member 20 is moved toward the electrode terminal member 30, and the conductive member 20 and the electrode terminal member 30 are brought into contact with each other. Specifically, the most end portion 21 of the conductive member 20 and the terminal curved portion of the electrode terminal member 30 are brought into contact with each other.

一実施形態では、当接後、導電性部材20を電極端子部材30に向かって継続して移動させると、図13(c)に示すように、導電性部材20の最端部21が、電極端子部材30によって電極組立体10側から離れるように押し広げられる。導電性部材20の最端部21が押し広げられたまま、導電性部材の主面、導電性湾曲部、および導電性部材の際端部とによって形作られる空間24に電極端子部材30が収納される。かかる状態では、電極端子部材30によって導電性部材20に外力が与えられるところ、導電性部材20には、外力に抗する力、つまり弾性力が発生する。当該弾性力によって、導電性部材20は、電極端子部材30を押圧するように外力を加える。 In one embodiment, when the conductive member 20 is continuously moved toward the electrode terminal member 30 after the contact, as shown in FIG. It is pushed apart from the electrode assembly 10 side by the terminal member 30 . The electrode terminal member 30 is housed in the space 24 formed by the main surface of the conductive member, the conductive curved portion, and the edge portion of the conductive member while the outermost end 21 of the conductive member 20 is being pushed out. Ru. In this state, when an external force is applied to the conductive member 20 by the electrode terminal member 30, a force that resists the external force, that is, an elastic force is generated in the conductive member 20. Due to the elastic force, the conductive member 20 applies an external force to press the electrode terminal member 30.

一実施形態では、当接後、導電性部材20を電極端子部材30に向かって継続して移動させると、導電性部材の主面、導電性湾曲部、および導電性部材の最端部とによって形作られる空間24に電極端子部材30が収納される。収納された電極端子部材30は、空間24を形作る導電性部材20によって外力が加えられ、例えば、圧縮される。かかる状態では、導電性部材20によって電極端子部材30に外力が与えられるところ、電極端子部材30には、外力に抗する力、つまり弾性力が発生する。当該弾性力によって、電極端子部材30は、導電性部材20を押圧するように外力を加える。 In one embodiment, as the conductive member 20 continues to move toward the electrode terminal member 30 after contact, the main surface of the conductive member, the conductive curved portion, and the extreme end of the conductive member The electrode terminal member 30 is housed in the space 24 formed. The housed electrode terminal member 30 is subjected to an external force by the conductive member 20 forming the space 24, and is compressed, for example. In such a state, when an external force is applied to the electrode terminal member 30 by the conductive member 20, a force that resists the external force, that is, an elastic force is generated in the electrode terminal member 30. Due to the elastic force, the electrode terminal member 30 applies an external force to press the conductive member 20.

電極端子部材30を導電性部材20に向かって移動し続けると、最終的に図13(d)に示すように、電極端子部材30は、導電性部材20の主面と導電性湾曲部と最端部とによって包囲される空間29に位置付けられる。具体的には、電極端子部材30と、導電性部材20の主面、湾曲部および最端部とが接触した状態になり得る。ここで、導電性部材20は、電極端子部材30によって押し広げられ得るため、電極端子部材30に向かって弾性力が作用し得る。一方で、電極端子部材30は、導電性部材20によって圧縮され得るため、導電性部材20に向かって弾性力が作用し得る。従って、導電性部材20および電極端子部材30は、少なくとも一方からの弾性力を受け得るため、導電性部材20と電極端子部材30は互いに接触し、電気的に接続され得る。換言すると、外装体に設けられた電極端子部材30と導電性部材20とが、電極端子部材30および導電性部材20の少なくとも一方の弾性に起因して互いに電気的に接続されている。 When the electrode terminal member 30 continues to move toward the conductive member 20, the electrode terminal member 30 finally reaches the main surface of the conductive member 20 and the conductive curved portion, as shown in FIG. 13(d). It is positioned in a space 29 surrounded by the end portions. Specifically, the electrode terminal member 30 and the main surface, the curved portion, and the extreme end of the conductive member 20 may come into contact with each other. Here, since the conductive member 20 can be spread apart by the electrode terminal member 30, an elastic force can act toward the electrode terminal member 30. On the other hand, since the electrode terminal member 30 can be compressed by the conductive member 20, an elastic force can act toward the conductive member 20. Therefore, since the conductive member 20 and the electrode terminal member 30 can receive elastic force from at least one of them, the conductive member 20 and the electrode terminal member 30 can come into contact with each other and be electrically connected. In other words, the electrode terminal member 30 and the conductive member 20 provided in the exterior body are electrically connected to each other due to the elasticity of at least one of the electrode terminal member 30 and the conductive member 20.

電極端子部材と導電性部材とを互いに電気的に接続した後、レーザー照射等により外装体を密封し、外装体内に電解液を外装体に設けた注入口から注入する。以上により、図14で例示するような、二次電池が得られる。なお、電解液の注入口には、樹脂栓80等で栓がされている。 After the electrode terminal member and the conductive member are electrically connected to each other, the exterior body is sealed by laser irradiation or the like, and an electrolytic solution is injected into the exterior body from an injection port provided in the exterior body. Through the above steps, a secondary battery as illustrated in FIG. 14 is obtained. Note that the electrolyte injection port is plugged with a resin plug 80 or the like.

以上、本発明の実施形態について説明してきたが、あくまでも典型例を例示したに過ぎない。従って、本発明はこれに限定されず、種々の態様が考えられることを当業者は容易に理解されよう。 Although the embodiments of the present invention have been described above, these are merely typical examples. Therefore, those skilled in the art will readily understand that the present invention is not limited thereto and that various embodiments are possible.

本発明に係る二次電池は、蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、本発明の二次電池は、電気・電子機器などが使用される電気・情報・通信分野(例えば、携帯電話、スマートフォン、ノートパソコンおよびデジタルカメラ、活動量計、アームコンピューター、電子ペーパー、ウェアラブルデバイスなどや、RFIDタグ、カード型電子マネー、スマートウォッチなどの小型電子機などを含む電気・電子機器分野あるいはモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、医療用途(イヤホン補聴器などの医療用機器分野)、医薬用途(服用管理システムなどの分野)、ならびに、IoT分野、宇宙・深海用途(例 The secondary battery according to the present invention can be used in various fields where power storage is expected. Although this is just an example, the secondary battery of the present invention can be used in the electrical, information, and communication fields where electrical and electronic devices are used (e.g., mobile phones, smartphones, notebook computers, digital cameras, activity meters, arm computers, etc.). , electronic paper, wearable devices, RFID tags, card-type electronic money, small electronic devices such as smart watches, and mobile device fields), household and small industrial applications (e.g., power tools, golf carts, household/nursing care/industrial robots), large industrial applications (e.g., forklifts, elevators, harbor cranes), transportation systems (e.g., hybrid vehicles, electric vehicles, buses, trains, electric assist) Bicycles, electric motorcycles, etc.), power system applications (e.g., various power generation, road conditioners, smart grids, home-installed power storage systems, etc.), medical applications (medical equipment such as earphones and hearing aids), and pharmaceutical applications. (fields such as medication management systems), as well as IoT fields, space/deep sea applications (e.g.

1 正極
2 負極
3 セパレータ
5 電極構成層
6 電極タブ
10、10’ 電極組立体
20 導電性部材
21 端部
22 導電性湾曲部
24 導電性部材の主面、湾曲部、および端部によって囲まれる空間
25 第1の開口部
26 第2の開口部
27 トンネル部
30 電極端子部材
31 端部
32 端子湾曲部
50 樹脂部材
51 内側ガスケット
52 外側ガスケット
60 リベット部
70 電極端子
80 樹脂栓
300 外装体
310 外装部材
320 開口部
400、400’ 二次電池
600 パンチ
610 一方の抵抗溶接棒
620 他方の抵抗溶接棒
700’溶接する部位
1 Positive electrode 2 Negative electrode 3 Separator 5 Electrode constituent layer 6 Electrode tab 10, 10' Electrode assembly 20 Conductive member 21 End portion 22 Conductive curved portion 24 Space surrounded by the main surface, curved portion, and end of the conductive member 25 First opening 26 Second opening 27 Tunnel portion 30 Electrode terminal member 31 End portion 32 Terminal curved portion 50 Resin member 51 Inner gasket 52 Outer gasket 60 Rivet portion 70 Electrode terminal 80 Resin plug 300 Exterior body 310 Exterior member 320 Opening 400, 400' Secondary battery 600 Punch 610 One resistance welding rod 620 Other resistance welding rod 700' Part to be welded

Claims (13)

電極組立体と前記電極組立体とを収納する外装体とを有して成り、
前記電極組立体の電極タブは、前記電極タブと組み合わされた導電性部材を備え、
前記外装体に設けられた電極端子部材と前記導電性部材とが、前記電極端子部材および前記導電性部材の少なくとも一方の弾性に起因して互いに電気的に接続されている、二次電池。
It comprises an electrode assembly and an exterior body housing the electrode assembly,
an electrode tab of the electrode assembly includes a conductive member associated with the electrode tab;
A secondary battery, wherein an electrode terminal member provided on the exterior body and the conductive member are electrically connected to each other due to elasticity of at least one of the electrode terminal member and the conductive member.
前記導電性部材の形状に起因して前記導電性部材が前記弾性を呈する、請求項1に記載の二次電池。 The secondary battery according to claim 1, wherein the conductive member exhibits the elasticity due to the shape of the conductive member. 前記導電性部材は、折返し形状の導電性湾曲部を備えており、前記導電性湾曲部が前記電極端子部材と接している、請求項1に記載の二次電池。 The secondary battery according to claim 1, wherein the conductive member includes a folded conductive curved portion, and the conductive curved portion is in contact with the electrode terminal member. 前記導電性部材に設けられた開口部を前記電極タブが通るように前記電極タブと前記導電性部材とが互いに前記組み合わされている、請求項1に記載の二次電池。 The secondary battery according to claim 1, wherein the electrode tab and the conductive member are combined with each other so that the electrode tab passes through an opening provided in the conductive member. 前記電極タブと前記導電性部材とは圧接合によって互いに前記組み合わされている、請求項4に記載の二次電池。 The secondary battery according to claim 4, wherein the electrode tab and the conductive member are combined with each other by pressure bonding. 前記電極端子部材は、前記外装体の内部に位置する端子形状に起因して前記弾性を呈する、請求項1に記載の二次電池。 The secondary battery according to claim 1, wherein the electrode terminal member exhibits the elasticity due to a terminal shape located inside the exterior body. 前記電極端子部材が、折返し形状の端子湾曲部を備えており、前記端子湾曲部が前記導電性部材と接している、請求項1に記載の二次電池。 The secondary battery according to claim 1, wherein the electrode terminal member includes a folded terminal curved portion, and the terminal curved portion is in contact with the conductive member. 前記電極端子部材は、樹脂部材によって前記外装体に固定化されている、請求項1に記載の二次電池。 The secondary battery according to claim 1, wherein the electrode terminal member is fixed to the exterior body with a resin member. 前記導電性部材と前記電極端子部材との前記接続は、溶接部を含まない非溶接な接続となっている、請求項1に記載の二次電池。 The secondary battery according to claim 1, wherein the connection between the conductive member and the electrode terminal member is a non-welded connection that does not include a welded portion. 前記電極タブと前記導電性部材との前記組み合せは、溶接部を含まない非溶接な組み合せとなっている、請求項1に記載の二次電池。 The secondary battery according to claim 1, wherein the combination of the electrode tab and the conductive member is a non-welded combination that does not include a welded part. 前記導電性部材が折返し形状の導電性湾曲部を備えると共に、前記電極端子部材が折返し形状の端子湾曲部を備えており、
前記導電性湾曲部の内部に前記端子湾曲部が位置付けられて前記電極端子部材と前記導電性部材とが互いに前記接続されている、請求項1に記載の二次電池。
The conductive member includes a folded conductive curved portion, and the electrode terminal member includes a folded terminal curved portion,
The secondary battery according to claim 1, wherein the terminal curved portion is positioned inside the conductive curved portion and the electrode terminal member and the conductive member are connected to each other.
断面視において前記導電性湾曲部と前記端子湾曲部とが互いに相補的に係合している、請求項11に記載の二次電池。 The secondary battery according to claim 11, wherein the conductive curved portion and the terminal curved portion engage each other in a complementary manner in a cross-sectional view. 前記電極組立体の電極として、リチウムイオンを吸蔵放出可能な正極および負極が含まれる、請求項1~12のいずれかに一項に記載の二次電池。 The secondary battery according to any one of claims 1 to 12, wherein the electrodes of the electrode assembly include a positive electrode and a negative electrode capable of intercalating and deintercalating lithium ions.
JP2022102906A 2022-06-27 2022-06-27 secondary battery Pending JP2024003631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022102906A JP2024003631A (en) 2022-06-27 2022-06-27 secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022102906A JP2024003631A (en) 2022-06-27 2022-06-27 secondary battery

Publications (1)

Publication Number Publication Date
JP2024003631A true JP2024003631A (en) 2024-01-15

Family

ID=89534011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022102906A Pending JP2024003631A (en) 2022-06-27 2022-06-27 secondary battery

Country Status (1)

Country Link
JP (1) JP2024003631A (en)

Similar Documents

Publication Publication Date Title
US20110195287A1 (en) Prismatic sealed secondary cell and method of manufacturing the same
WO2020256023A1 (en) Secondary battery
US20220045407A1 (en) Secondary battery
US20220029247A1 (en) Secondary battery and method for manufacturing the same
WO2020218214A1 (en) Secondary battery
US20230246313A1 (en) Secondary battery
JP7346988B2 (en) battery
US20230048086A1 (en) Secondary battery
US20220352581A1 (en) Secondary battery and method of manufacturing the same
JP6849051B2 (en) Secondary battery
US20220045404A1 (en) Secondary battery
EP4145617A1 (en) Secondary battery
EP4145616A1 (en) Secondary battery
CN111293268B (en) Battery with a battery cell
JP2024003631A (en) secondary battery
JP7238873B2 (en) Secondary battery and manufacturing method thereof
US20230369652A1 (en) Secondary battery and method of manufacturing secondary battery
US20240170731A1 (en) Secondary battery and method of manufacturing the same
WO2024048109A1 (en) Secondary battery
WO2024057711A1 (en) Secondary battery
JP7456163B2 (en) secondary battery
CN115461926B (en) Secondary battery
WO2021006161A1 (en) Secondary battery
WO2023054579A1 (en) Secondary battery
WO2023127726A1 (en) Secondary battery

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20240513