WO2023054579A1 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
WO2023054579A1
WO2023054579A1 PCT/JP2022/036421 JP2022036421W WO2023054579A1 WO 2023054579 A1 WO2023054579 A1 WO 2023054579A1 JP 2022036421 W JP2022036421 W JP 2022036421W WO 2023054579 A1 WO2023054579 A1 WO 2023054579A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
electrode
secondary battery
density region
winding body
Prior art date
Application number
PCT/JP2022/036421
Other languages
French (fr)
Japanese (ja)
Inventor
泰男 五木田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023054579A1 publication Critical patent/WO2023054579A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks

Definitions

  • the present disclosure relates to secondary batteries.
  • the present invention relates to a secondary battery having an electrode assembly composed of electrode layers including a positive electrode, a negative electrode and a separator.
  • a secondary battery can be charged and discharged repeatedly and is used for various purposes.
  • secondary batteries are used in mobile devices such as mobile phones, smart phones, and laptop computers.
  • the inventor of the present application realized that there were problems to be overcome with conventional secondary batteries, and found the need to take measures to address them. Specifically, the inventors of the present application have found that there are the following problems.
  • Patent Document 1 discloses a secondary battery in which a current collector is welded to a foil-shaped body at the end of an electrode plate in an electrode winding body.
  • the foil-like body is subjected to a shaping process using high-frequency vibration, and the current collector is welded to the shaped foil-like body.
  • the foils of the electrode plates are softened and shaped so that the foils are intertwined with each other.
  • the inventors of the present application have found that the mutually entangled foil-like bodies can bring about an inconvenient phenomenon in the electrode winding body. Specifically, the inventors have found that since the ends of the electrode winding body are covered by the mutually entangled foil-like bodies, the injection of the electrolytic solution into the electrode winding body may be hindered during battery production.
  • a main object of the present disclosure is to provide a secondary battery having a more suitable structure in terms of electrolyte injection.
  • a secondary battery according to the present disclosure includes a positive electrode, a negative electrode, and an electrode roll composed of a separator disposed between the positive electrode and the negative electrode.
  • either one of the positive electrode and the negative electrode has a current collector extension part in which a current collector extends outside the other electrode, and the current collector
  • the body extension portion has a high density region where the density of the current collector extension portion is relatively high and a low density region where the density is relatively low, and the high density region has voids. .
  • the secondary battery according to the present disclosure has a more suitable structure in terms of electrolyte injection.
  • either one of the positive electrode and the negative electrode current collector extends beyond the other electrode.
  • the end portion of the electrode winding body has two regions, a high-density region and a low-density region, in which the densities of the extended portions of the current collector are different from each other, and the high-density region has voids.
  • FIG. 1 is a schematic cross-sectional view showing an example of an electrode-constituting layer.
  • FIG. 2 is a schematic perspective view showing the appearance of an example of the secondary battery of the present disclosure.
  • FIG. 3 is a schematic cross-sectional view of the secondary battery of FIG. 2 when the cross-section taken along line AA passing through the winding axis is viewed in the direction of the arrow.
  • FIG. 4 is a schematic perspective view showing an electrode winding body after end face shaping according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic partial cross-sectional enlarged view of the BB cross section of the electrode winding body of FIG. 4 when viewed in the direction of the arrow.
  • FIG. 6 is a schematic diagram for explaining assembly of an electrode winding body and a current collector according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic partial cross-sectional enlarged view showing the electrode winding body before the current collector plate is thermally bonded according to one embodiment of the present disclosure.
  • FIG. 8 is a schematic partial cross-sectional enlarged view showing the electrode winding body after the current collector plate is thermally bonded according to one embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram for explaining constituent members of an electrode winding body that constitutes a secondary battery according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic perspective view for explaining the winding mode of the electrode winding body according to one embodiment of the present disclosure.
  • FIG. 11 is a schematic perspective view showing an electrode winding body after winding according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic cross-sectional view of the electrode winding body of FIG. 11, taken along line CC passing through the winding axis, viewed in the direction of the arrow.
  • FIG. 13 is a schematic plan view for explaining end face shaping according to an embodiment of the present disclosure.
  • the “vertical direction” and “horizontal direction” directly or indirectly described in this specification correspond to the vertical direction and the horizontal direction in the drawings.
  • the “cross-sectional view” described directly or indirectly in this specification refers to a direction along the winding axis of the electrode winding body constituting the secondary battery, or a direction perpendicular to the winding axis. It is based on a virtual cross section of the secondary battery cut along.
  • the term “planar view” used in this specification is based on a sketch of the object viewed from above or below along the direction of the winding axis. Unless otherwise specified, the same reference numerals or symbols indicate the same members or parts or the same meanings.
  • the terms “perpendicular to the winding axis” and “substantially perpendicular” as used herein do not necessarily have to be perfectly “perpendicular”, and are slightly deviated from it (for example, the angle formed with the winding axis is in the range of 90° ⁇ 20°, eg up to 90° ⁇ 10°).
  • substantially parallel does not necessarily mean perfect “parallel”, and a slightly deviated form (for example, a range of ⁇ 20° from perfect parallel, for example, up to ⁇ 10° range).
  • a “secondary battery” as used herein refers to a battery that can be repeatedly charged and discharged. Therefore, the secondary battery according to the present disclosure is not overly bound by its name, and can include, for example, power storage devices.
  • FIG. 1 shows a schematic cross-sectional view of an exemplary electrode winding body 50.
  • FIG. A secondary battery according to the present disclosure comprises an electrode roll 50 having an electrode configuration layer 5 including a positive electrode 1 , a negative electrode 2 and a separator 3 .
  • the electrode winding body 50 may have a winding structure in which the electrode configuration layer 5 is wound in a winding shape. That is, the electrode winding body 50 includes the electrode-constituting layer 5 extending relatively long in a belt-like or elongated shape including the positive electrode 1, the negative electrode 2, and the separator 3 disposed between the positive electrode 1 and the negative electrode 2, which is a roll. It may have a winding structure wound in a shape.
  • such electrode-wound body 50 is enclosed in an exterior body together with an electrolyte (eg, non-aqueous electrolyte).
  • an electrolyte eg, non-aqueous electrolyte
  • the positive electrode 1 is composed of at least a positive electrode material layer 12 and a positive electrode current collector 11 (see FIG. 5).
  • a positive electrode material layer is provided on at least one side of a positive electrode current collector, and the positive electrode material layer contains a positive electrode active material as an electrode active material.
  • the positive electrode in the electrode winding body may be provided with positive electrode material layers on both sides of the positive electrode current collector, or may be provided with a positive electrode material layer only on one side of the positive electrode current collector. good.
  • the positive current collector does not have to have a layer of positive material on both sides or all over one side.
  • a positive electrode material layer is formed on both sides so that a “collector extension portion” described later is provided at one end or both ends located on the long side (before winding) of the positive electrode current collector. It may have a portion that is not provided.
  • the negative electrode 2 is composed of at least a negative electrode material layer 22 and a negative electrode current collector 21 (see FIG. 5).
  • a negative electrode material layer is provided on at least one side of the negative electrode current collector, and the negative electrode material layer contains a negative electrode active material as an electrode active material.
  • the negative electrode in the electrode winding body may be provided with a negative electrode material layer on both sides of the negative electrode current collector, or may be provided with a negative electrode material layer only on one side of the negative electrode current collector. good.
  • the negative electrode current collector does not have to have a layer of negative electrode material on both sides or the entire surface of one side.
  • one side end or both ends located on the long side (before winding) of the negative electrode current collector is provided with a negative electrode material layer on both sides so that a "current collector extension part" is provided. may have parts that are not
  • the electrode active material contained in the positive electrode 1 and the negative electrode 2 that is, the positive electrode active material and the negative electrode active material, is a substance directly involved in the transfer of electrons in the secondary battery, and is the main component of the positive and negative electrodes responsible for charging and discharging, that is, the battery reaction. It is matter. More specifically, ions are brought to the electrolyte due to the “positive electrode active material contained in the positive electrode material layer” and the “negative electrode active material contained in the negative electrode material layer”, and such ions are applied to the positive electrode 1 and the negative electrode 2. Electrons are transferred (or conducted) between them to charge and discharge.
  • the positive electrode material layer and the negative electrode material layer may be layers capable of intercalating and deintercalating lithium ions.
  • the secondary battery according to the present disclosure may be a non-aqueous electrolyte secondary battery in which charging and discharging of the battery are performed by moving lithium ions between the positive electrode 1 and the negative electrode 2 via the non-aqueous electrolyte.
  • the secondary battery according to the present disclosure corresponds to a so-called "lithium ion battery", and the positive electrode 1 and the negative electrode 2 have layers capable of intercalating and deintercalating lithium ions.
  • the positive electrode layer may contain a binder for sufficient contact between particles and shape retention. Furthermore, the positive electrode material layer may contain a conductive aid in order to facilitate the transfer of electrons that promote the battery reaction.
  • a binder may be included for more sufficient contact and shape retention between the particles, thereby promoting electron transfer that promotes the battery reaction.
  • a conductive aid may be included in the negative electrode material layer for smoothing. Because of such a configuration in which a plurality of components are contained, the positive electrode material layer and the negative electrode material layer can also be called "positive electrode material layer" and "negative electrode material layer", respectively.
  • the positive electrode active material may be a material that contributes to absorption and release of lithium ions. From this point of view, the positive electrode active material may be, for example, a lithium-containing composite oxide. More specifically, the positive electrode active material may be a lithium transition metal composite oxide containing lithium and at least one transition metal selected from the group consisting of cobalt, nickel, manganese and iron. That is, the positive electrode material layer of the secondary battery according to the present disclosure may contain such a lithium-transition metal composite oxide as a positive electrode active material.
  • the positive electrode active material may be lithium cobaltate, lithium nickelate, lithium manganate, lithium iron phosphate, or a transition metal thereof partially replaced by another metal. Although such a positive electrode active material may be contained as a single species, it may be contained in combination of two or more species.
  • the binder that can be contained in the positive electrode material layer is not particularly limited.
  • the binder for the positive electrode layer may be at least one selected from the group consisting of polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, polytetrafluoroethylene, and the like. Species can be mentioned.
  • the conductive aid that can be contained in the positive electrode material layer is not particularly limited.
  • the conductive additive for the positive electrode layer includes carbon black such as thermal black, furnace black, channel black, ketjen black and acetylene black, graphite, carbon fiber such as carbon nanotube and vapor growth carbon fiber, copper, nickel, and the like. , metal powders such as aluminum and silver, and at least one selected from the group consisting of polyphenylene derivatives and the like.
  • the negative electrode active material may be a material that contributes to intercalation and deintercalation of lithium ions. From this point of view, the negative electrode active material may be, for example, various carbon materials, oxides and/or lithium alloys.
  • Examples of various carbon materials for the negative electrode active material include graphite (eg, natural graphite and/or artificial graphite), hard carbon, soft carbon, and/or diamond-like carbon.
  • graphite has high electron conductivity and excellent adhesion to the negative electrode current collector.
  • the oxide of the negative electrode active material at least one selected from the group consisting of silicon oxide, tin oxide, indium oxide, zinc oxide and lithium oxide can be used.
  • the lithium alloy of the negative electrode active material may be any metal that can be alloyed with lithium, such as Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn and/or may be binary, ternary or higher alloys of lithium with metals such as La.
  • Such oxides may, for example, be amorphous in their structural form. This is because deterioration due to non-uniformity such as grain boundaries or defects is less likely to occur.
  • the binder that can be contained in the negative electrode material layer is not particularly limited.
  • the binder for the negative electrode layer include at least one selected from the group consisting of styrene-butadiene rubber, polyacrylic acid, polyvinylidene fluoride, polyimide-based resins, and polyamide-imide-based resins.
  • the conductive aid that can be contained in the negative electrode material layer is not particularly limited.
  • Conductive agents for the negative electrode layer include, for example, carbon blacks such as thermal black, furnace black, channel black, ketjen black and acetylene black; graphite; carbon fibers such as carbon nanotubes and vapor-grown carbon fibers; , metal powders such as aluminum and silver, and at least one selected from the group consisting of polyphenylene derivatives and the like.
  • the negative electrode material layer may contain a component resulting from a thickening agent component (for example, carboxylmethyl cellulose) used in manufacturing the battery.
  • the positive electrode current collector and negative electrode current collector used for the positive electrode and negative electrode are members that contribute to collecting and supplying electrons generated in the active material due to the battery reaction.
  • a current collector may be a sheet metal member and may have a perforated or perforated morphology.
  • the current collector may be metal foil, perforated metal, mesh and/or expanded metal, and the like.
  • the positive electrode current collector used for the positive electrode may be made of metal foil containing at least one selected from the group consisting of aluminum, stainless steel, nickel, and the like.
  • the positive electrode current collector may be aluminum foil.
  • the negative electrode current collector used for the negative electrode may be made of metal foil containing at least one selected from the group consisting of copper, stainless steel, nickel, and the like.
  • the negative electrode current collector may be copper foil.
  • the separator used between the positive electrode and the negative electrode is a member provided from the viewpoint of preventing short circuits due to contact between the positive and negative electrodes and/or retaining the electrolyte.
  • the separator is a member that allows ions to pass through while preventing electronic contact between the positive electrode and the negative electrode.
  • a separator is a porous or microporous insulating member that has a membrane morphology due to its small thickness.
  • a polyolefin microporous membrane may be used as the separator.
  • the microporous membrane used as the separator may contain, for example, only polyethylene (PE) or only polypropylene (PP) as the polyolefin.
  • the separator may be a laminate composed of a "PE microporous membrane” and a "PP microporous membrane".
  • the surface of the separator may be covered with an inorganic particle coat layer, an adhesive layer, or the like. Moreover, the surface of the separator may have adhesiveness.
  • the separator should not be specifically bound by its name.
  • the separator may be a solid electrolyte, a gel electrolyte, insulating inorganic particles, or the like having similar functions.
  • an electrode winding body composed of electrode configuration layers including a positive electrode, a negative electrode, and a separator is enclosed in an exterior body together with an electrolyte.
  • the electrolyte may be a “non-aqueous” electrolyte such as an organic electrolyte or an organic solvent. That is, the electrolyte may be a non-aqueous electrolyte.
  • the electrolyte will have metal ions released from the electrodes (positive and/or negative electrodes) and will therefore assist in the movement of metal ions in the battery reaction.
  • a non-aqueous electrolyte is an electrolyte containing a solvent and a solute.
  • a specific solvent for the non-aqueous electrolyte may contain at least carbonate.
  • Such carbonates may be cyclic carbonates and/or linear carbonates.
  • cyclic carbonates include at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC) and vinylene carbonate (VC). be able to.
  • chain carbonates include at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC) and dipropyl carbonate (DPC).
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethylmethyl carbonate
  • DPC dipropyl carbonate
  • a combination of cyclic carbonates and linear carbonates may be used as the non-aqueous electrolyte, for example, a mixture of ethylene carbonate and diethyl carbonate may be used.
  • the solute of the non-aqueous electrolyte can be any conventional solute.
  • Li salts such as LiPF 6 and/or LiBF 4 may be used.
  • FIG. 2 is a schematic perspective view showing the appearance of an example of the secondary battery 100 of the present disclosure.
  • the exterior body 60 that accommodates the electrode wound body may be a hard case, and may be composed of two members such as a body portion 61 and a lid portion 62 .
  • the body portion 61 may be a cup-shaped member that includes the side surface of the exterior body 60 and a main surface (typically, for example, a bottom surface or a lower surface) continuous therewith.
  • the lid portion 62 is a member combined to cover the cup-shaped main body portion 61 (preferably provided so as to block the hollow portion inside the main body portion 61 from the outside). good.
  • the exterior body 60 is composed of the main body portion 61 and the lid portion 62, the main body portion 61 and the lid portion 62 are sealed after accommodating the wound electrode body, the electrolyte, and optionally the electrode terminals.
  • a method for sealing the exterior body 60 is not particularly limited, and examples thereof include a laser irradiation method.
  • any material capable of forming a hard case-type exterior body in the field of secondary batteries can be used. Such materials may be conductive materials in which electron transfer may be achieved, or insulating materials in which electron transfer may not be achieved.
  • the material of the exterior body is preferably a conductive material from the viewpoint of electrode extraction.
  • Conductive materials include, for example, conductive materials such as silver, gold, copper, iron, tin, platinum, aluminum, nickel and/or stainless steel.
  • Insulating materials include, for example, insulating polymeric materials such as polyesters (eg, polyethylene terephthalate), polyimides, polyamides, polyamideimides, and/or polyolefins (eg, polyethylene and/or polypropylene).
  • both the body and lid may be constructed of stainless steel.
  • stainless steel is an alloy steel containing chromium or chromium and nickel. refers to steel. Examples of such stainless steels include martensitic stainless steels, ferritic stainless steels, austenitic stainless steels, austenitic-ferritic stainless steels and/or precipitation hardening stainless steels.
  • the dimensions of the main body and lid of the outer package are determined mainly according to the dimensions of the electrode winding body.
  • the outer package may have dimensions that prevent the electrode-wound body from moving within the outer package when the electrode-wound body is accommodated. By preventing the movement of the electrode winding body, damage to the electrode winding body due to impact or the like can be prevented, and the stability of the secondary battery can be further improved.
  • the exterior body may be a flexible case such as a pouch made of laminated film.
  • the laminate film has a configuration in which at least a metal layer (e.g., aluminum) and an adhesive layer (e.g., polypropylene and/or polyethylene) are laminated, and additionally a protective layer (e.g., nylon and/or polyamide, etc.) ) may be laminated.
  • a metal layer e.g., aluminum
  • an adhesive layer e.g., polypropylene and/or polyethylene
  • a protective layer e.g., nylon and/or polyamide, etc.
  • the thickness dimension (that is, thickness dimension) of the exterior body is not particularly limited, but may be 10 ⁇ m or more and 200 ⁇ m or less, for example, 50 ⁇ m or more and 100 ⁇ m or less.
  • the average value of the measured values at arbitrary 10 points is used as the thickness dimension of the outer package.
  • a secondary battery is generally provided with an electrode terminal.
  • electrode terminals for example, a positive electrode terminal and a negative electrode terminal may be provided on different surfaces of the exterior body. Specifically, the electrode terminals of the positive electrode and the negative electrode may be provided on two opposite end surfaces of the outer package in the direction of the winding axis of the electrode winding body.
  • a material with high conductivity may be used for the electrode terminals.
  • the material of the electrode terminal is not particularly limited, but at least one selected from the group consisting of silver, gold, copper, iron, tin, platinum, aluminum, nickel and stainless steel can be used.
  • the electrode terminal is not particularly limited and may have any configuration.
  • the electrode terminals may be constructed from a single material or may be constructed from multiple materials.
  • Electrode terminals made of multiple materials (hereinafter also referred to as “electrode terminal structures") may consist of, for example, a rivet portion, an inner terminal and/or a gasket portion.
  • the rivet part and the inner terminal need only be made of a material that allows electron transfer.
  • the rivet portion and inner terminal are each constructed from a conductive material such as silver, gold, copper, iron, tin, platinum, aluminum, nickel and/or stainless steel.
  • the gasket portion may be made of an insulating material.
  • the gasket portion is constructed from an insulating polymeric material such as polyester (eg, polyethylene terephthalate), polyimide, polyamide, polyamideimide, and/or polyolefin (eg, polyethylene and/or polypropylene).
  • the electrode terminal structure is not particularly limited, for example, it may be fitted and inserted through the opening of the exterior body.
  • the electrode terminal structure mainly includes a conductive rivet portion for leading the electrode to the outside, an outer gasket portion for preventing electrolyte leakage while ensuring electrical insulation between the rivet portion and the exterior body, An inner terminal for ensuring electrical connection between the rivet portion and the electrode winding body, and an inner gasket portion for preventing electrolyte leakage while ensuring electrical insulation between the inner terminal and the exterior body. may contain.
  • FIG. 2 is a schematic perspective view showing the appearance of an example of the secondary battery 100 of the present disclosure.
  • FIG. 4 is a schematic perspective view showing the appearance of an example of the electrode-wound body 50 that constitutes the secondary battery of the present disclosure.
  • the secondary battery 100 and the electrode winding body 50 have a substantially cylindrical shape, but they are not necessarily limited to this.
  • the electrode winding body 50 may have a substantially cylindric shape.
  • the cross-sectional shape of the electrode wound body 50 as seen from the direction along the winding axis is not particularly limited, and may be, for example, substantially circular, substantially elliptical, or substantially rectangular.
  • substantially rectangular includes shapes having chamfered or rounded corners or corners regardless of the accuracy of the corners or surfaces of the shape.
  • FIG. 3 is a schematic cross-sectional view of the secondary battery of FIG. 2 when the AA cross section passing through the winding axis is viewed in the direction of the arrow.
  • the secondary battery 100 according to the present disclosure is a secondary battery comprising an electrode winding body 50, an exterior body 60 that accommodates the electrode winding body 50, and an electrode terminal forming member 80 that is used for connection with an external device. At least the structure of the ends of the electrode winding body is characterized. The features are described below.
  • FIG. 4 shows a schematic perspective view of an electrode wound body 50 around which the electrode configuration layer 5 (see FIG. 1) of the secondary battery according to one embodiment of the present disclosure is wound.
  • FIG. 5 is a schematic cross-sectional view of the BB line cross section passing through the winding axis P of the electrode winding body 50 shown in FIG. 4 as viewed in the direction of the arrow.
  • the secondary battery of the present disclosure includes an electrode construction layer 5 composed of a positive electrode 1, a negative electrode 2 and a separator 3 disposed therebetween, and typically further includes an electrolyte. Further, in the electrode winding body 50 of the secondary battery according to the embodiment of the present disclosure, either one of the positive electrode 1 and the negative electrode 2 has the current collector extension portion 40 .
  • the term "current collector extension” means a portion of the electrode where the current collector having no electrode material layer extends along the edge of the electrode (see FIG. 5).
  • the “collector extension portion” refers to an exposed portion of the current collector extending from one of the end faces forming the end faces of the electrode winding body 50 (preferably, a portion where the electrode material layer is provided). not part).
  • the current collector of the positive electrode and/or the negative electrode may be metal foil. Therefore, the "collector extension portion” can also be referred to as “current collector exposed portion” or "collector foil extension portion”.
  • a secondary battery includes current collector extensions 40 of the positive electrode 1 and/or the negative electrode 2 at the ends of the electrode winding body 50 .
  • the "end” of the electrode winding body 50 means the end through which the winding axis P passes (see FIG. 3). That is, the “end portion” of the electrode-wound body 50 includes the end face of the electrode-wound body 50 .
  • the “end portion” of the electrode winding body 50 means an end portion including an end face on the side of the electrode terminal forming member 80 and an end portion including an end face opposite to the end face. Therefore, one of the positive electrode 1 and the negative electrode 2 may have the current collector extension portion 40 on at least one of the end surfaces of the electrode winding body 50 . In other words, the current collector of one electrode (collector extension part 40) may extend further outward than the other electrode on the end surface having the current collector extension part 40 .
  • the positive electrode current collector extension portion 41 extending longer than the negative electrode 2 and the negative electrode current collector extending longer than the positive electrode 1 in the direction of the winding axis P It may comprise at least one body extension 42 (see FIG. 12).
  • the electrode winding 50 may include both the positive electrode current collector extension portion 41 and the negative electrode current collector extension portion 42 . That is, each of the positive electrode current collector extension portion 41 and the negative electrode current collector extension portion 42 may extend on different end surfaces of the electrode wound body 50 . This means that the positive electrode current collector extension portion 41 and the negative electrode current collector extension portion 42 extend in directions facing each other along the winding axis P direction.
  • At least part of the current collector extension 40 has a curved shape.
  • bending includes at least bending and/or bending.
  • bending means bending in a curved (or arcuate) shape (that is, bending roughly curvilinearly) in a cross-sectional view, which results in rounded bending and also includes flexion.
  • the term "bending" in the present disclosure refers to bending at an acute angle or angular shape (that is, bending substantially linearly) in a cross-sectional view.
  • the end portion of the electrode winding body 50 has at least two regions in which the densities of the bent current collector extension portions 40 are different from each other.
  • the current collector extension portion 40 has a high density region 40a where the density of the current collector extension portion 40 is relatively high and a low density region 40b where the density is relatively low.
  • the terms "high density region” and "low density region” refer to a relatively dense region and a relatively sparse region of the current collector extension, respectively.
  • the end portion of the electrode winding body 50 has two regions, and the current collector extension portions 40 are arranged so that one region is dense and the other region is sparse. can be By providing two types of regions with different densities in the current collector extension, it is possible to obtain a secondary battery that is more excellent in terms of electrolyte pourability while more preferably protecting the end faces of the electrode winding body. obtain.
  • the current collector extension part 40 in the high-density region 40a may have a shape that bends in a folded manner.
  • the current collector extension portion 40 may have a shape that is greatly curved to form a convex shape in a cross-sectional view.
  • the current collector extension portion 40 may have a curved shape that protrudes in a direction substantially perpendicular to the winding axis P in at least a portion of the high density region 40a.
  • at least part of the current collector extending portion in the high density region 40 a may have a curved shape that is convex toward the inner or outer peripheral side of the electrode wound body 50 . It can also be understood that such a bent shape is bent so as to provide a flat portion on the end surface of the electrode winding body 50 .
  • Such a bent shape can also be referred to as, for example, a “folded shape”, a “substantially U-shaped (or substantially V-shaped) shape”, a “curved shape having a maximum point”, or a “sharp-angled shape”.
  • the current collector extension can also be regarded as having a wave shape that repeats a plurality of curved shapes. That is, in a cross-sectional view passing through the winding axis P, the current collector extension portion may extend in a meandering manner due to the curved shape in the high-density region.
  • the high-density region 40a has voids 45.
  • the pore portion means a space portion formed by at least a part of the bent current collector extension portion 40, and includes a gap portion inside the high-density region 40a and a concave portion existing on the end face.
  • the vacancies 45 may be positioned at bends of the current collector extension 40, between adjacent current collector extensions, and the like.
  • the pore 45 may be defined by the bent current collector extension 40 .
  • the holes 45 can exist in various shapes depending on the bent shape of the current collector extension portion 40 .
  • the hole portion 45 may have a flat shape or an elongated shape in a cross-sectional view.
  • the shape of the hole portion 45 may be a flat shape or an elongated shape along the direction perpendicular to the winding axis P in a cross-sectional view.
  • the shape of the hole portion 45 is not limited to such a shape, and the shape of the hole portion 45 may be, for example, a substantially circular shape, a substantially elliptical shape, a substantially rectangular shape, a polygonal shape, and/or an indefinite shape in a cross-sectional view passing through the winding axis P. It may be in shape.
  • the voids 45 may be distributed throughout the high-density region 40a. That is, the high density region 40a may have a plurality of voids 45 distributed throughout. In a cross-sectional view, the plurality of holes 45 may be arranged irregularly throughout the high-density region 40a, and may have different shapes and/or sizes.
  • the high density region 40a has at least a portion of a structure in which a plurality of current collector extension portions 40 are folded over each other. That is, the plurality of current collector extension portions 40 may have a structure in which a plurality of bent current collector extension portions 40 are laminated in at least a portion of the high density region 40a. In other words, the plurality of current collector extension portions 40 may be folded in an overlapping manner so as to form a gap. That is, the plurality of current collector extension portions 40 may be bent so as to overlap each other in at least a part of the high density region 40a, and the void portions 45 may be formed between the current collector extension portions 40. .
  • the adjacent current collector extension portions 40 are bent at the same degree of curvature, and the bent portion (for example, a portion where the curvature is relatively large or It may be folded while leaving a space at a substantially U-shaped portion (see FIGS. 5 and 7).
  • the hole portion 45 can be positioned at the bent portion of the adjacent current collector extension portion 40, and can have at least a part of the same contour as the bent portion in a cross-sectional view.
  • the voids 45 existing between the plurality of current collector extensions 40 are present along the bent current collector extensions 40 and help the electrolytic solution to flow smoothly into the electrode wound body 50. Therefore, more efficient electrolyte injection can be realized.
  • the bent current collector extension portion 40 may be exposed on the end surface of the electrode wound body 50 .
  • the end face of the electrode winding body 50 may be configured by at least a portion of the bent current collector extension portion 40 . That is, at least a portion of the current collector extension portion 40 may be bent so as to provide a substantially plane substantially perpendicular to the winding axis P at the end face of the electrode wound body 50 .
  • a collector plate 70 see FIG. 6
  • substantially planar simply means that it is planar when viewed macroscopically. In other words, it is not a flat surface in a strict physical sense, but when viewed microscopically, it means that it includes a shape with minute unevenness, or a case where there is minute distortion in whole or part. . Since the current collector extension part 40 of the high-density region 40 a has a folded structure, the current collector extension part 40 has a surface portion that is aligned with the end face of the electrode winding body 50 . folded so that it is exposed to Therefore, a larger bonding area can be provided when the collector plate and the electrode winding body 50 are bonded to each other, which will be described later. Therefore, the electrode winding body of the present disclosure can also contribute to stronger connection between the current collector extension and the current collector plate.
  • the high density region 40 a is in fluid communication from the end of the electrode winding 50 to the interior of the electrode winding 50 via the voids 45 . That is, in the electrode-wound body 50 of the present disclosure, fluid can enter and exit between the outside and the inside of the electrode-wound body 50 via the pores 45 of the high-density region 40a.
  • Such a structure can be useful when infiltrating the electrolyte into the wound electrode body 50 using vacuum injection or the like in manufacturing a secondary battery.
  • the hole portion 45 can be useful not only as an injection path for the electrolytic solution, but also as a degassing path during the injection.
  • fluid such as electrolytic solution and gas (for example, air) flows through the electrode winding through the pores 45 of the high-density region 40a formed by the bent current collector extension 40.
  • gas for example, air
  • the inside of the rotating body 50 may be accessible.
  • the holes 45 positioned at the ends of the electrode-wound body 50 can further improve the injection efficiency of the electrolytic solution into the electrode-wound body 50 .
  • the high-density region 40a extends from the end of the electrode winding body 50 to the inside through a plurality of holes 45 (for example, a plurality of holes that can be grasped in a cross-sectional view). may be in fluid communication with the Specifically, at least some of the pore portions 45 positioned in the high density region 40 a may be connected to each other through gaps formed between the current collector extension portions 40 . That is, the high-density region 40 a may be in fluid communication with the end portion of the electrode winding body 50 to the inside through at least one of the holes 45 . In such a structure, the fluid communication passages in the high density region 40a may have a serpentine shape.
  • fluid such as electrolyte and/or air can enter and exit along the gaps between the plurality of curved current collector extensions via at least one of the pores. Therefore, the structure described above facilitates smooth inflow of the injected electrolyte, so that more efficient injection of the electrolyte can be achieved.
  • the high density region 40 a may be positioned at the end of the electrode winding body 50 . That is, in one embodiment of the present disclosure, the high density region 40 a is positioned at the end of the current collector extension 40 . In other words, the high-density region 40 a may be formed at the end of the electrode wound body 50 by having a bent shape such that the end portion of the current collector extension portion 40 is compressed.
  • the electrode winding body 50 having the high-density region 40a at the end portion is provided with one or more holes 45 provided in the high-density region 40a to inject the electrolytic solution and/or remove the inside of the electrode winding body. can be made more suitable.
  • the current collector extension portions 40 are present at the ends at high density, a wider connection effective area can be ensured in the electrical connection between the end surfaces of the electrode winding body 50 and the electrode terminals 81 . . Furthermore, it can contribute to reducing the occurrence of breakage of the electrode winding body 50 due to joining heat during assembly of the secondary battery and/or external impact that may be applied to the secondary battery. Therefore, the secondary battery including the high-density region 40a at the end of the electrode-wound body 50 is more suitable for reducing the influence on the inside of the electrode-wound body due to heat and shock that may be applied from the outside. Injectability of the electrolytic solution can be realized.
  • the end of the electrode winding body 50 having the high-density region 40a is the end on the electrode terminal side. That is, the high density region 40a may be positioned at the end of the electrode winding body 50 on the electrode terminal 81 (see FIG. 3) side. In other words, the high density region 40 a may be positioned at the end of the current collector extension that is more proximal to the electrode terminal 81 . Further, it is more preferable that the high-density region 40a be positioned at the extreme end of the electrode-wound body 50, as shown in FIG.
  • the high-density region 40 a may be positioned outside the low-density region 40 b and constitute the end face of the electrode-wound body 50 .
  • the extreme end of the electrode winding body 50 may be composed of a plurality of current collector extension portions 40 that are folded over each other. The presence of the high-density region 40 a at the extreme end of the electrode-wound body 50 ensures a wider connection effective area in the electrical connection between the end face of the electrode-wound body 50 and the electrode terminal 81 .
  • the low density regions 40b may have voids 46 between the current collector extensions 40 while the high density regions 40a have voids 45 as described above. .
  • the voids 46 can have a relatively larger cross-sectional area than the void portions 45 of the high-density region 40a.
  • the voids 46 of the low-density region 40b are defined by the current collector extending portions 40 extending from the electrode winding body 50, and are elongated in the winding axis direction in a cross-sectional view passing through the winding axis P. may have.
  • the voids 46 may be arranged substantially regularly between adjacent current collector extensions 40 .
  • cavity 45 may be in fluid communication with cavity 46 .
  • the electrode windings 50 may be in fluid communication from the ends of the electrode windings 50 to the inside via the cavities 45 and voids 46 .
  • fluids such as electrolyte and air can enter and exit the electrode winding body 50 through the holes 45 and the gaps 46 in the liquid injection process.
  • At least a portion of the current collector extension portion 40 defining the voids 46 of the low density region 40b may be substantially linear in a cross-sectional view passing through the winding axis.
  • the term “substantially linear” is not limited to a linear shape, and as shown in FIG. including.
  • “substantially linear” includes bending and continuing at an internal angle of about 150° or more, or about 160° or more.
  • at least a portion of the current collector extension portion 40 may be bent in the low density region 40b.
  • the current collector extension 40 forming the void 46 may be bent in the vicinity of the high density region 40a. That is, the current collector extension portion 40 of the low density region 40b may extend substantially linearly and be bent in the vicinity of the high density region 40a.
  • the curvature of the current collector extension portion 40 in the low density region 40b may be smaller than the curvature of the current collector extension portion 40 in the high density region 40a. Due to the structure described above, the impact that may be applied from the high density region 40a side can be more preferably absorbed by the low density region 40b. Furthermore, in the low-density region 40b, the current collector extension portion 40 has a portion that bends with a relatively small curvature and extends substantially linearly, so that the voids 46 can be made wider, so that the electrolytic solution and fluids such as air can be more preferably fluidly communicable.
  • high density region and “low density region” in the present disclosure can be defined from the area ratio occupied by the current collector extension part 40 in a cross-sectional view passing through the winding axis P. That is, the area ratio of the current collector extending portion observed in a cross-sectional view passing through the winding axis P is, for example, about 30% or more, about 40% or more, about 50% or more, or about 60% or more. It may be referred to as a "high density area”. In other words, the area ratio of the current collector extending portion observed in a cross-sectional view passing through the winding axis P is, for example, less than about 30%, less than about 40%, less than about 50%, or less than about 60%.
  • a region may be referred to as a "low density region.”
  • the area occupied by the current collector extending portion in the high-density region and the low-density region is within the above range, an electrode winding body more suitable in terms of impact resistance and liquid pourability can be realized.
  • the "high density region” may be a region in which the current collector extension portion occupies an area ratio of about 30% or more and about 95% or less in a cross-sectional view passing through the winding axis P, for example, about 40%. % to about 95%, about 50% to about 95%, or about 60% to about 95%.
  • the area occupied by the current collector extending portion in the high-density region is within the above range, an electrode winding body more suitable in terms of impact resistance and liquid pourability can be realized.
  • the "low-density region” may be a region in which the current collector extension portion occupies an area ratio of about 3% or more and less than about 60% in a cross-sectional view passing through the winding axis P.
  • about The area may range from 3% to less than about 50%, from about 5% to less than about 40%, or from about 5% to less than about 60%.
  • the area ratio occupied by the current collector extension can be calculated, for example, by imaging and image processing the cross section of the current collector extension. Specifically, after the electrode winding body is resin-hardened, the section of the current collector extending portion is cut out by polishing the section. It can then be measured by imaging and processing the cross-sections using an electron microscope.
  • the current collector extending portion of the electrode winding body is cut out and hardened with resin.
  • a dicer ISOMET 4000/manufactured by Buehler
  • Epofix resin manufactured by Struers
  • Epofix curing agent manufactured by Struers
  • the polishing method is not particularly limited, but rough polishing can be performed using coarse abrasive paper, and then polishing can be performed using abrasive paper or an abrasive having a small abrasive grain size.
  • an automatic polishing machine Ecomet 300 manufactured by Buehler
  • polishing paper and/or chemical mechanical polishing (CMP) may be used.
  • the cross section is polished with abrasive paper No. 220 and/or No. 500 or the like, and then polished using CMP to level the surface.
  • the area ratio occupied by the current collector extension part in the cross section of the electrode winding body can be calculated.
  • An example of an electron microscope used for imaging a polished surface is VHX-5000 (Keyence).
  • Image processing software includes GIMP 2.1.0, for example. As image processing, an image captured by an electron microscope is grayscaled, then binarized, and the white-black ratio is calculated, whereby the area ratio occupied by the extended portion of the current collector can be calculated.
  • the thickness of the high density region 40a may be relatively smaller or larger than the thickness of the low density region 40b.
  • the low density regions 40b may have a relatively greater thickness than the high density regions 40a, or they may be thinner than the high density regions 40a.
  • the injection amount of the electrolytic solution that flows into the electrode wound body 50 can be increased, and more suitable electrolytic solution injection can be performed. can be realized.
  • the thicker low-density region 40b can more preferably absorb impacts applied from the outside, which can contribute to improving the impact resistance of the secondary battery.
  • the thickness of the high-density region 40a is preferably about 5% or more and about 40% or less, for example, about 5% or more and about 30% or less, with respect to the thickness of the low-density region 40b.
  • the thickness of the high-density region 40a with respect to the thickness of the low-density region 40b is within the above range, an electrode winding body more suitable in terms of impact resistance and liquid pourability can be realized.
  • the separator 3 may extend in the low density region 40b.
  • the separator 3 extending at the end of the electrode winding 50 may be positioned inside the void 46 of the low density region 40b.
  • the separator 3 extends outward in the direction along the winding axis P than the other electrode, which is different from either one of the positive electrode and the negative electrode having the current collector extension portion 40. .
  • the current collector extension portion 40 extends further outward than the separator 3 . Since the separator 3 extends further than the other electrode, electrical continuity between the electrode having the current collector extension portion 40 and the other electrode is inhibited, so that short circuits can be more suitably prevented.
  • the separator 3 since the current collector extension part 40 extends outside the separator 3, the separator 3 is prevented from being sandwiched between the adjacent current collector extension parts 40 in the high-density region 40a. , it may be possible to secure a larger pore volume. Therefore, the volume of fluid that can pass through the holes 45 can be increased, and more efficient electrolyte injection can be achieved.
  • FIG. 3 is a schematic cross-sectional view showing a cross section passing through the winding axis P of the secondary battery 100 according to one embodiment of the present disclosure.
  • the secondary battery 100 of the present disclosure includes the electrode terminal 81 electrically connected to the electrode wound body 50 and the exterior body 60 enclosing the electrode wound body 50 .
  • the lid portion 62 of the exterior body 60 may have an opening in the center.
  • An electrode terminal structure 80 may be provided to cover the opening.
  • the electrode terminal structure 80 is not particularly limited in its structure and configuration.
  • the electrode terminal structure 80 may include a gasket portion 82 provided between the electrode terminal 81 and the lid portion 62 .
  • a center pin 90 may be inserted into the cavity provided at the winding center of the electrode winding body 50 .
  • the shape and configuration of the gasket portion 82 are not particularly limited. Although it is only an example, the gasket part 82 is provided so as to fill the gap between the electrode terminal 81 and the outer package 60 as shown in FIG. can also As shown in FIG. 3 , the gasket portion 82 may have a shape along the cover portion 62 so as to extend to the area outside the electrode terminal 81 . That is, the gasket portion 82 may be provided on the lid portion 62 so as to protrude from the electrode terminal 81 to the outside.
  • the material of the gasket portion is not particularly limited as long as it exhibits insulating properties.
  • the electrode terminal 81 is not particularly limited in its shape and configuration.
  • the electrode terminal 81 may have, for example, a rivet shape or a plate shape.
  • the material of the electrode terminal is not particularly limited, and may contain at least one metal selected from the group consisting of aluminum, nickel, and copper.
  • the electrode terminal 81 may have a shape along the lid portion 62 .
  • the shape of the electrode terminal in plan view is also not particularly limited, and may be, for example, a substantially circular shape or a substantially rectangular shape.
  • the secondary battery of the present disclosure further includes a current collector plate 70 (71, 72) electrically connecting one of the electrode terminal 81 and the outer package 60 to the electrode winding body 50.
  • FIG. 6 is a schematic diagram for explaining assembly of the electrode winding body 50 and the current collector plate 70 according to an embodiment of the present disclosure.
  • the current collector plate 70 may be electrically connected to the current collector extensions 40 (41, 42) at the ends of the electrode winding body 50.
  • FIG. That is, the positive electrode and the negative electrode that constitute the electrode winding body 50 are electrically connected to the electrode terminal 81 and/or the exterior body 60 via the current collector plate 70 connected to the current collector extension portion 40, respectively.
  • the positive and negative current collector plates 70 may be electrically led out to the outside via the electrode terminals 81 and/or the exterior body 60 (see FIG. 3).
  • the current collector plate 70 may be made of a material that allows electron transfer to be achieved.
  • current collector plate 70 may be composed of conductive materials such as silver, gold, copper, iron, tin, platinum, aluminum, nickel, and/or stainless steel.
  • the shape of the current collector plate 70 is not particularly limited, and may be, for example, strip-shaped, flat plate-shaped, or disc-shaped.
  • the current collector plate 70 (71, 72) may include a long portion 76 for connection with the electrode terminal 81 and/or the exterior body 60.
  • the long portion 76 may be configured as an integral member with the current collector plate 70 . By configuring as an integral member, it is possible to omit the step of connecting the elongated portion 76 and the current collector plate 70 in the assembly of the secondary battery.
  • the current collector plates 70 on the side of the positive electrode current collector extension 41 and on the side of the negative electrode current collector extension 42 are electrically connected to the current collector extension 40 exposed on the endmost surface of the electrode wound body 50, respectively.
  • the positive electrode current collector extension 41 may be connected to the electrode terminal 81 via the current collector plate 71, and in such embodiments, the electrode terminal 81 is connected to the secondary battery. acts as the positive electrode of
  • the negative electrode current collector extension 42 may be connected to the package 60 via the current collector plate 72, and in this embodiment, the package 60 acts as the negative electrode of the secondary battery. That is, the electrical connection between the electrode winding body 50 and the collector plates 71 and 72 is achieved by directly connecting the collector plates 71 and 72 to the collector extensions 41 and 42, respectively. you can
  • the extension of the current collector extending from the electrode and the current collector plate are connected without requiring a separate connection member such as a lead wire or tab for connecting the electrode and the current collector plate. can do. Therefore, the manufacturing process of the connecting member and the connecting process of the connecting member in the assembly of the secondary battery can be omitted, and the manufacturing efficiency of the secondary battery can be further improved. Furthermore, by providing current collecting plates 71 and 72 between the electrode winding body 50 and the electrode terminal 81 and/or between the electrode winding body 50 and the exterior body 60, the end face of the electrode winding body 50 and the electrode terminal 81/the exterior body 60 can be provided with a space. As a result, the internal space of the secondary battery is increased, and it is possible to increase the injection amount of the electrolytic solution when the electrolytic solution is injected.
  • FIG. 7 and 8 are schematic partial cross-sectional enlarged views showing the electrode winding body 50 including the current collector plate 70 according to one embodiment of the present disclosure.
  • the current collector plate 70 may be joined together with the high density region 40a of the current collector extension 40 . That is, the connection between the current collector plate 70 and the current collector extension 40 is achieved by connecting the current collector extension 40 and the current collector plate 70 at the end surface of the electrode winding body 50 to form the high-density region 40a. may be implemented such that the are attached to each other.
  • the current collector plate 70 is connected to the current collector extension portion 40 present at the end face at a higher density, and a larger bonding area can be secured. Therefore, the current collector plate 70 and the current collector extension portion 40 are more firmly connected, and the durability of the secondary battery can be further improved.
  • the holes 45 of the high density region 40a may be positioned near the inner surface of the current collector plate 70.
  • the "inner surface” means the joint surface of the current collector plate 70 with the high-density region 40a. The inventors of the present disclosure have found that such a structure contributes to the formation of through holes in the current collector plate 70 when the current collector extension portion 40 and the current collector plate 70 are thermally bonded.
  • heat applied for joining causes the hole portion 45 near the inner surface of the current collector plate 70 to open.
  • the internal gas eg, air
  • the pushed-out portion of the metal solidifies as it is, and a through hole 75 is formed in the collector plate 70 (see FIG. 8). That is, when the current collector plate 70 is joined, the air in the hole 45 heated by the heat of joining can be discharged to the outside while forming the through hole 75 in the melted current collector plate 70 .
  • the through hole 75 formed in this manner may be in fluid communication with the inside of the electrode winding body 50 via the hole portion 45 . Therefore, the through hole 75 can contribute to injection and degassing of the electrolytic solution, and can function as an injection port for the electrolytic solution.
  • the thermal joint for example, welded portion
  • the thermal joint with the current collector plate 70 and/or the hole portion 45 existing in the vicinity of the thermal joint can realize more suitable electrolyte injection. .
  • the step of providing the liquid injection port in the current collector plate 70 can be omitted, the above structure can contribute to improving the manufacturing efficiency of the secondary battery.
  • the “nearby” broadly means a range that can be affected by the heat applied when the current collector plate 70 and the current collector extension portion 40 are joined together.
  • the “neighborhood” in the present disclosure is a range in which at least part of the current collector extension portion 40 forming the hole portion 45 can be melted by heat applied during bonding.
  • the radial distance from the welding point is, for example, 0 mm or more (excluding 0 mm) and about 3 mm or less, 0 mm or more (excluding 0 mm) and about 2 mm or less, or 0 mm.
  • a range of about 1 mm or less (not including 0 mm) may be regarded as the vicinity.
  • the hole portion 45 is positioned immediately below the thermal joint portion, the hole portion 45 is not particularly limited as long as the effect of forming the through hole described above can be obtained.
  • a through hole 75 formed in the current collector plate 70 may be in fluid communication with the hole portion 45 . Also, the through holes 75 may be in fluid communication with a plurality of voids 45 in the high density region. Such through-holes 75 include at least one of the through-holes 75 previously formed in the current collector plate 70 before thermal bonding with the current collector extension portion 40 and the through-holes 75 formed during thermal bonding. In other words, the through hole 75 may be formed in advance before the current collector 70 is thermally bonded. Due to the structure in which the through holes 75 and the holes 45 are in fluid communication, the electrolytic solution can flow into the holes through the through holes 75 at the time of injection. can be realized.
  • the through hole 75 fluidly communicating with the hole portion 45 may further fluidly communicate with the inside of the electrode wound body 50 . That is, the through holes 75 of the current collector plate 70 may be in fluid communication with the inside of the electrode winding body 50 via the holes 45 . In addition, the through holes 75 are in fluid communication with the inside of the electrode wound body 50 via a plurality of holes 45 (preferably a plurality of holes that can be seen in cross section) in the high-density region 40a. may In such a structure, the electrolyte may be injected into the electrode winding body 50 from the through hole 75 via one or more holes 45 .
  • the gas inside the electrode-wound body 50 may be degassed to the outside of the electrode-wound body 50 from the through-hole 75 via one or a plurality of holes 45 at the time of liquid injection. Therefore, the holes 45 formed in the high-density region 40 a can act as fluid paths between the inside of the electrode winding body 50 and the through holes 75 of the current collector plate 70 . Therefore, the flow of fluid between the inside and the outside of the electrode winding body 50 is made more efficient, and more suitable electrolyte injection can be realized.
  • the thickness of the current collector 70 is not particularly limited as long as thermal bonding with the current collector extension portion 40 is possible. More specifically, in a cross-sectional view passing through the winding axis P, the thickness of the current collector plate 70 is not particularly limited as long as the above-described through holes 75 can be formed during thermal bonding. For example, in a cross-sectional view passing through the winding axis P, the thickness of the current collector plate 70 may be about 0.2 times or more and about 10 times or less the thickness of the high-density region 40a, for example, about 0.5 times. Values can range from greater than or equal to about 5 times less.
  • the thickness of the high-density region 40a may be about 0.1 times or more and about 5 times or less the thickness of the current collector plate 70, for example, about 0.5 times. It can be a value in the range of greater than or equal to 5 times and less than or equal to about 4 times.
  • the thickness of the high-density region 40a may be relatively greater than the thickness of the current collector 70 in a cross-sectional view passing through the winding axis P. That is, in one embodiment of the present disclosure, the current collector extensions 40 are folded over each other so as to form a high-density region 40a having a thickness greater than that of the current collector 70 in cross-sectional view.
  • the thickness of the high-density region 40a may be about 1.05 times or more and about 5 times or less the thickness of the current collector plate 70, for example, about 1.5 times or more. Values in the range of about 4 times or less can be used.
  • the electrode winding body 50 having the high-density region 40a with a sufficient thickness can reduce the influence of heat for bonding on the components of the electrode winding body 50 when thermally bonding with the current collector plate 70. can.
  • the heat applied during bonding can cause damage to the separators 3 forming the electrode winding body 50 . Therefore, the secondary battery of the present embodiment, in which bonding heat is less likely to be transferred to the inside of the electrode, can contribute to further improving the durability of the secondary battery.
  • the through hole 75 is formed by joining the current collector extending portion 40 and the current collector plate 70 , the high density region 40 a having a thickness larger than the current collector plate 70 expands from the melted portion of the current collector plate 70 .
  • having the high-density region 40a have a greater thickness than the current collector facilitates the formation of the through-holes 75 and can assist in more suitable electrolyte injection.
  • a secondary battery according to the present disclosure can be manufactured by a manufacturing method including the following steps. That is, the method for manufacturing a secondary battery according to the present disclosure includes a step of winding the positive electrode 1, the negative electrode 2, and the separator 3 disposed therebetween to form the electrode-wound body 50 (electrode-wound body forming step ), a step of shaping the end surface of the electrode winding body 50 having the current collector extension portion (end face shaping step), and a step of attaching a current collector plate to the electrode winding body 50 (current collector mounting step), A step of injecting an electrolyte into the exterior body 60 while housing the electrode wound body 50 in the exterior body 60 (accommodation process) is included.
  • the method for manufacturing a secondary battery according to the present disclosure includes a step of winding the positive electrode 1, the negative electrode 2, and the separator 3 disposed therebetween to form the electrode-wound body 50 (electrode-wound body forming step ), a step of shaping the end surface of the electrode winding body 50
  • FIG. 9 is a schematic diagram for explaining constituent members of the electrode-wound body 50 that constitutes the secondary battery according to one embodiment of the present disclosure.
  • FIG. 10 is a schematic perspective view for explaining the winding mode of the electrode wound body 50 according to one embodiment of the present disclosure.
  • the electrode winding body 50 is obtained by winding the positive electrode 1, the negative electrode 2 and the separator 3 having a rectangular shape so as to overlap each other in a predetermined order.
  • a process of forming an electrode winding body according to an embodiment of the present disclosure will be described below.
  • the positive electrode 1, the negative electrode 2, and the two separators 3 are arranged in a predetermined order.
  • the positive electrode 1 or the negative electrode 2 has a positive electrode current collector extension portion 41 where the current collector is exposed at one of the long sides (before winding).
  • it has the negative electrode current collector extension portion 42 .
  • the separator 3 is superimposed between the positive electrode 1 and the negative electrode 2, and the positive electrode current collector extension part 41 extends outside the negative electrode 2 and the separator 3, and the negative electrode current collector
  • the body extension part 42 is arranged so as to extend outside the positive electrode and the separator 3 .
  • the positive electrode material layer and the negative electrode material layer are stacked so that they face each other with the separator interposed therebetween, and the positive electrode current collector is placed on one of the long sides (before winding) of the electrode configuration layer.
  • the extension part 41 is extended and the negative electrode current collector extension part 42 is extended at the other end side, and the electrode is arranged and wound.
  • FIG. 11 is a schematic perspective view showing the electrode winding body 50 after winding according to one embodiment of the present disclosure.
  • 12 is a schematic cross-sectional view of the wound electrode body 50 of FIG. 11, taken along the line CC passing through the winding axis P, viewed in the direction of the arrow.
  • the length w1 (see FIG. 9) of the current collector extending portion 40 in the winding axis direction is not particularly limited as long as a desired electrode winding can be obtained.
  • the length dimension w1 of the current collector extension portion 40 in the direction of the winding axis is usually about 0.5 mm or more and about 20 mm or less. is preferably about 1 mm or more and about 15 mm or less.
  • the positive electrode current collector extension portion 41 and the negative electrode current collector extension portion 42 may each have the same length dimension w1, or may have mutually different length dimensions w1.
  • the dimensions of the separator 3 and the positive and negative electrodes to be used are not particularly limited as long as the desired electrode winding body can be obtained.
  • the length dimension of the separator 3 in the longitudinal direction may be appropriately determined according to the dimensions of the intended secondary battery (in particular, the number of windings of the electrode winding body).
  • End face shaping process At the end of the electrode winding body 50 obtained in the previous step, at least a portion of the current collector extending portion 40 is bent to obtain a shaped end face of the electrode winding body 50 . Bending may be performed by pressing the current collector extension 40 . When shaping the end face, the end portion of the electrode winding body 50 is bent inside the electrode winding body 50 so that the current collector extension portion 40 does not protrude outside the outer circumference of the electrode winding body 50 . It may be bent so as to fold the current collector extension portion 40 toward the circumferential side. Moreover, in order to make the connection with the current collector plate 70 (see FIG.
  • the bent current collector extension portion 40 is bent in a direction perpendicular to the winding axis P.
  • the end faces may be shaped to provide a substantially flat surface to the .
  • substantially flat in the present disclosure means that it is not a flat surface in a strict physical sense, but includes a shape with fine unevenness, or a case where there is a fine distortion entirely or partially. . That is, at least a portion of the hole may be exposed on the shaped end face.
  • FIG. 13 is a schematic plan view for explaining an example of end face shaping according to an embodiment of the present disclosure.
  • the current collector extension part 40 may be spirally pressed from the outer peripheral side to the inner peripheral side of the electrode wound body 50 in plan view.
  • the current collector extension part 40 can be laid down so as to be folded over at the end surface, and can provide a substantially flat surface in a direction perpendicular to the winding axis P. As shown in FIG.
  • the means for shaping the end face of the electrode winding body 50 is not particularly limited as long as the desired end face can be obtained.
  • the end face is may be shaped.
  • the structure, material, number, etc. of the pressing member are not particularly limited as long as a desired end surface of the wound electrode body 50 can be obtained. Examples of the pressing member include a pressing roller and a pressing plate.
  • a collector plate 70 is electrically connected to the end surface of the electrode winding body 50 shaped in the previous step (see FIGS. 6 to 8).
  • the current collector plate 70 may be attached so as to join with the flat surface formed on the electrode winding body 50 .
  • the joining may be performed by thermal bonding, for example by welding, welding or the like.
  • the current collector plate 70 and the electrode winding body 50 may be welded by a laser irradiation method. For example, by irradiating the current collector plate 70 with a laser, the current collector plate 70 and the current collector extension portion 40 immediately below the current collector plate 70 are melted and alloyed to obtain electrical continuity.
  • a through hole 75 may be formed in the current collector plate 70 by thermal expansion.
  • the lid, the electrode terminals, and an insulating member for example, a gasket provided to fill the gap between the lid and the electrode terminals are adhered.
  • the elongated portion is connected to the electrode terminal or the exterior body.
  • the main body and the lid of the outer package are bonded together.
  • the electrolytic solution is injected from an injection port (not shown) of the outer package, and the injection port is closed with a sealing plug (not shown). Adhesion may be achieved by any method known in the field of secondary batteries, for example laser irradiation may be used.
  • the secondary battery according to the present disclosure can be used in various fields where power storage is assumed.
  • the secondary battery of the present disclosure is used in the electric, information, and communication fields where mobile devices are used (for example, mobile phones, smartphones, laptops and digital cameras, activity meters, arm computers, electronic Paper, RFID tags, card-type electronic money, electric and electronic equipment fields including small electronic devices such as smart watches, or mobile device fields), household and small industrial applications (e.g., power tools, golf carts, household and nursing care ⁇ Industrial robot field), large industrial applications (e.g. forklifts, elevators, harbor cranes), transportation system fields (e.g.
  • mobile devices for example, mobile phones, smartphones, laptops and digital cameras, activity meters, arm computers, electronic Paper, RFID tags, card-type electronic money, electric and electronic equipment fields including small electronic devices such as smart watches, or mobile device fields
  • household and small industrial applications e.g., power tools, golf carts, household and nursing care ⁇ Industrial robot field
  • large industrial applications e.g. forklifts
  • hybrid vehicles electric vehicles, buses, trains, power-assisted bicycles, electric motorcycles, etc.
  • power system applications for example, fields such as various power generation, load conditioners, smart grids, and general household electrical storage systems
  • medical applications medical device fields such as earphone hearing aids
  • pharmaceutical applications medication management systems, etc.
  • IoT field space/deep-sea applications (for example, fields of space probes, submersible research vessels, etc.), and the like.

Abstract

The present invention provides a secondary battery formed as a result of including an electrode winding comprising: a positive electrode; a negative electrode; and a separator that is arranged between the positive electrode and the negative electrode. For at least one of the ends of the electrode winding, either the positive electrode or negative electrode has a current collector extension portion that extends outward beyond the other electrode. The current collector extension portion has a high-density region in which the density of the current collector extension portion is relatively high and a low-density region where said density is relatively low.

Description

二次電池secondary battery
 本開示は、二次電池に関する。特に、正極、負極およびセパレータを含む電極構成層から成る電極組立体を備えた二次電池に関する。 The present disclosure relates to secondary batteries. In particular, the present invention relates to a secondary battery having an electrode assembly composed of electrode layers including a positive electrode, a negative electrode and a separator.
 二次電池は、充電および放電の繰返しが可能であり、様々な用途に用いられている。例えば、携帯電話、スマートフォンおよびノートパソコンなどのモバイル機器に二次電池が用いられている。 A secondary battery can be charged and discharged repeatedly and is used for various purposes. For example, secondary batteries are used in mobile devices such as mobile phones, smart phones, and laptop computers.
特表2015-519689号公報Japanese Patent Application Publication No. 2015-519689
 本願発明者は、従前の二次電池に克服すべき課題があることに気づき、そのための対策をとる必要性を見出した。具体的には、以下の課題があることを本願発明者は見出した。 The inventor of the present application realized that there were problems to be overcome with conventional secondary batteries, and found the need to take measures to address them. Specifically, the inventors of the present application have found that there are the following problems.
 特許文献1は、電極巻回体において、極板の端部の箔状体に集電体が溶接された二次電池を開示している。かかる二次電池では、箔状体に対して高周波振動による整形処理が施され、整形された箔状体に集電体が溶接される。整形処理に際して高周波振動を用いることによって、極板の箔状体は軟化され、箔状体同士が互いに絡み合うように整形される。 Patent Document 1 discloses a secondary battery in which a current collector is welded to a foil-shaped body at the end of an electrode plate in an electrode winding body. In such a secondary battery, the foil-like body is subjected to a shaping process using high-frequency vibration, and the current collector is welded to the shaped foil-like body. By using high-frequency vibration during the shaping process, the foils of the electrode plates are softened and shaped so that the foils are intertwined with each other.
 このような整形処理につき、本願発明者らは、互いに絡み合った箔状体が電極巻回体に不都合な現象をもたらし得ることを見出した。具体的には、互いに絡み合った箔状体によって電極巻回体の端部が覆われるため、電池製造に際して、電極巻回体への電解液の注液が阻害され得ることを見出した。 With respect to such shaping treatment, the inventors of the present application have found that the mutually entangled foil-like bodies can bring about an inconvenient phenomenon in the electrode winding body. Specifically, the inventors have found that since the ends of the electrode winding body are covered by the mutually entangled foil-like bodies, the injection of the electrolytic solution into the electrode winding body may be hindered during battery production.
 本開示は、かかる課題に鑑みてなされたものである。すなわち、本開示の主たる目的は、電解液の注液の点でより好適な構造を有する二次電池を提供することである。 The present disclosure has been made in view of such problems. That is, a main object of the present disclosure is to provide a secondary battery having a more suitable structure in terms of electrolyte injection.
 本開示に係る二次電池は、正極と、負極と、前記正極および前記負極の間に配置されたセパレータから構成される電極巻回体と、を有して成り、前記電極巻回体の端部の少なくとも一方において、前記正極または前記負極のいずれか一方の電極は、他方の電極よりも外側に集電体が延在している集電体延在部を有して成り、前記集電体延在部は、該集電体延在部の密度が相対的に高い高密度領域および前記密度が相対的に低い低密度領域を有して成り、前記高密度領域が空孔部を有する。 A secondary battery according to the present disclosure includes a positive electrode, a negative electrode, and an electrode roll composed of a separator disposed between the positive electrode and the negative electrode. In at least one of the parts, either one of the positive electrode and the negative electrode has a current collector extension part in which a current collector extends outside the other electrode, and the current collector The body extension portion has a high density region where the density of the current collector extension portion is relatively high and a low density region where the density is relatively low, and the high density region has voids. .
 本開示に係る二次電池は、電解液の注液の点でより好適な構造を有する。 The secondary battery according to the present disclosure has a more suitable structure in terms of electrolyte injection.
 具体的には、本開示の二次電池は、電極巻回体の端部において、正極または負極のいずれか一方の集電体が他方の電極よりも延在している集電体延在部を有して成る。電極巻回体の端部は、集電体延在部の密度が互いに異なる高密度領域および低密度領域の2つの領域を有して成り、高密度領域には空孔部が存在する。このような構造により、二次電池の製造時の電解液の注液に際して、注液された電解液は高密度領域の空孔部に流入することができ、より効率的な電解液の注液が実現され得る。 Specifically, in the secondary battery of the present disclosure, at the end of the electrode winding body, either one of the positive electrode and the negative electrode current collector extends beyond the other electrode. consists of The end portion of the electrode winding body has two regions, a high-density region and a low-density region, in which the densities of the extended portions of the current collector are different from each other, and the high-density region has voids. With such a structure, when the electrolyte is injected during the manufacture of the secondary battery, the injected electrolyte can flow into the pores in the high-density region, and the electrolyte can be injected more efficiently. can be realized.
図1は、電極構成層を例示的に示した模式的断面図である。FIG. 1 is a schematic cross-sectional view showing an example of an electrode-constituting layer. 図2は、本開示の二次電池の一例の外観を示す模式的斜視図である。FIG. 2 is a schematic perspective view showing the appearance of an example of the secondary battery of the present disclosure. 図3は、図2の二次電池において、巻回軸を通るA-A線断面を矢印方向で見たときの模式的断面図である。FIG. 3 is a schematic cross-sectional view of the secondary battery of FIG. 2 when the cross-section taken along line AA passing through the winding axis is viewed in the direction of the arrow. 図4は、本開示の一実施形態に係る端面整形後の電極巻回体を示す模式的斜視図である。FIG. 4 is a schematic perspective view showing an electrode winding body after end face shaping according to an embodiment of the present disclosure. 図5は、図4の電極巻回体のB-B断面を矢印方向で見たときの模式的部分断面拡大図である。FIG. 5 is a schematic partial cross-sectional enlarged view of the BB cross section of the electrode winding body of FIG. 4 when viewed in the direction of the arrow. 図6は、本開示の一実施形態に係る電極巻回体と集電板との組付けを説明するための模式図である。FIG. 6 is a schematic diagram for explaining assembly of an electrode winding body and a current collector according to an embodiment of the present disclosure. 図7は、本開示の一実施形態に係る、集電板を熱接合する前の電極巻回体を示す模式的部分断面拡大図である。FIG. 7 is a schematic partial cross-sectional enlarged view showing the electrode winding body before the current collector plate is thermally bonded according to one embodiment of the present disclosure. 図8は、本開示の一実施形態に係る、集電板を熱接合した後の電極巻回体を示す模式的部分断面拡大図である。FIG. 8 is a schematic partial cross-sectional enlarged view showing the electrode winding body after the current collector plate is thermally bonded according to one embodiment of the present disclosure. 図9は、本開示の一実施形態に係る二次電池を構成する電極巻回体の構成部材を説明するための模式図である。FIG. 9 is a schematic diagram for explaining constituent members of an electrode winding body that constitutes a secondary battery according to an embodiment of the present disclosure. 図10は、本開示の一実施形態に係る電極巻回体の巻回態様を説明するための模式的斜視図である。FIG. 10 is a schematic perspective view for explaining the winding mode of the electrode winding body according to one embodiment of the present disclosure. 図11は、本開示の一実施形態に係る巻回後の電極巻回体を示す模式的斜視図である。FIG. 11 is a schematic perspective view showing an electrode winding body after winding according to an embodiment of the present disclosure. 図12は、図11の電極巻回体において、巻回軸を通るC-C線断面を矢印方向で見たときの模式的断面図である。FIG. 12 is a schematic cross-sectional view of the electrode winding body of FIG. 11, taken along line CC passing through the winding axis, viewed in the direction of the arrow. 図13は、本開示の一実施形態に係る端面整形を説明するための模式的平面図である。FIG. 13 is a schematic plan view for explaining end face shaping according to an embodiment of the present disclosure.
 以下では、本開示の一実施形態に係る二次電池をより詳細に説明する。必要に応じて図面を参照して説明を行うものの、図面における各種の要素は、本開示の理解のために模式的かつ例示的に示したにすぎず、外観または寸法比などは実物と異なり得る。 Below, the secondary battery according to one embodiment of the present disclosure will be described in more detail. Although the description will be made with reference to the drawings as necessary, the various elements in the drawings are only schematically and exemplarily shown for understanding of the present disclosure, and the appearance, dimensional ratio, etc. may differ from the actual ones. .
 本明細書で直接的または間接的に説明される“上下方向”および“左右方向”は、図中における上下方向および左右方向に相当する。また、本明細書で直接的または間接的に説明される「断面視」は、二次電池を構成する電極巻回体の巻回軸に沿う方向、または巻回軸に対して垂直な方向に沿って二次電池を切り取った仮想的な断面に基づいている。また、本明細書で用いる「平面視」とは、巻回軸の方向に沿って対象物を上側または下側からみた場合の見取図に基づいている。特記しない限り、同じ符号または記号は、同じ部材もしくは部位または同じ意味内容を示すものとする。 The "vertical direction" and "horizontal direction" directly or indirectly described in this specification correspond to the vertical direction and the horizontal direction in the drawings. In addition, the “cross-sectional view” described directly or indirectly in this specification refers to a direction along the winding axis of the electrode winding body constituting the secondary battery, or a direction perpendicular to the winding axis. It is based on a virtual cross section of the secondary battery cut along. Further, the term “planar view” used in this specification is based on a sketch of the object viewed from above or below along the direction of the winding axis. Unless otherwise specified, the same reference numerals or symbols indicate the same members or parts or the same meanings.
 また、本明細書でいう「巻回軸に対して垂直」および「略垂直」とは、必ずしも完全な「垂直」でなくてよく、それから僅かにずれた態様(例えば、巻回軸と成す角度が、90°±20°の範囲、例えば90°±10°までの範囲)を含んでいる。 In addition, the terms “perpendicular to the winding axis” and “substantially perpendicular” as used herein do not necessarily have to be perfectly “perpendicular”, and are slightly deviated from it (for example, the angle formed with the winding axis is in the range of 90°±20°, eg up to 90°±10°).
 また、本明細書でいう「略平行」とは、必ずしも完全な「平行」でなくてよく、それから僅かにずれた態様(例えば、完全な平行から±20°の範囲、例えば±10°までの範囲)を含んでいる。 In addition, the term “substantially parallel” as used herein does not necessarily mean perfect “parallel”, and a slightly deviated form (for example, a range of ±20° from perfect parallel, for example, up to ±10° range).
[二次電池の基本構成]
 本明細書でいう「二次電池」は、充電および放電の繰り返しが可能な電池のことを指している。従って、本開示に係る二次電池は、その名称に過度に拘泥されるものでなく、例えば蓄電デバイスなども対象に含まれ得る。
[Basic configuration of secondary battery]
A "secondary battery" as used herein refers to a battery that can be repeatedly charged and discharged. Therefore, the secondary battery according to the present disclosure is not overly bound by its name, and can include, for example, power storage devices.
 図1は、例示的な電極巻回体50の模式的断面図を示している。本開示に係る二次電池は、正極1、負極2およびセパレータ3を含む電極構成層5を備える電極巻回体50を有して成る。図示されるように、電極巻回体50は、電極構成層5が巻回状に巻かれた巻回構造を有してよい。つまり、電極巻回体50は、正極1、負極2および正極1と負極2との間に配置されたセパレータ3を含む帯状または長尺状に比較的長く延在する電極構成層5が、ロール状に巻回した巻回構造を有してよい。本開示に係る二次電池では、このような電極巻回体50が電解質(例えば非水電解質)と共に外装体に封入されている。 FIG. 1 shows a schematic cross-sectional view of an exemplary electrode winding body 50. FIG. A secondary battery according to the present disclosure comprises an electrode roll 50 having an electrode configuration layer 5 including a positive electrode 1 , a negative electrode 2 and a separator 3 . As illustrated, the electrode winding body 50 may have a winding structure in which the electrode configuration layer 5 is wound in a winding shape. That is, the electrode winding body 50 includes the electrode-constituting layer 5 extending relatively long in a belt-like or elongated shape including the positive electrode 1, the negative electrode 2, and the separator 3 disposed between the positive electrode 1 and the negative electrode 2, which is a roll. It may have a winding structure wound in a shape. In the secondary battery according to the present disclosure, such electrode-wound body 50 is enclosed in an exterior body together with an electrolyte (eg, non-aqueous electrolyte).
 正極1は、少なくとも正極材層12および正極集電体11から構成されている(図5参照)。正極1では、正極集電体の少なくとも片面に正極材層が設けられており、正極材層には、電極活物質として正極活物質が含まれている。例えば、電極巻回体における正極は、正極集電体の両面に正極材層が設けられているものでもよいし、あるいは、正極集電体の片面のみに正極材層が設けられているものでもよい。正極集電体は、両面または片面の全面に正極材層を有さなければならないというわけではない。例えば、正極集電体の長尺辺側(巻回前)に位置する片側端部または両端部には、後述する“集電体延在部”が供されるべく、両面に正極材層が設けられていない部分を有していてよい。 The positive electrode 1 is composed of at least a positive electrode material layer 12 and a positive electrode current collector 11 (see FIG. 5). In the positive electrode 1, a positive electrode material layer is provided on at least one side of a positive electrode current collector, and the positive electrode material layer contains a positive electrode active material as an electrode active material. For example, the positive electrode in the electrode winding body may be provided with positive electrode material layers on both sides of the positive electrode current collector, or may be provided with a positive electrode material layer only on one side of the positive electrode current collector. good. The positive current collector does not have to have a layer of positive material on both sides or all over one side. For example, a positive electrode material layer is formed on both sides so that a “collector extension portion” described later is provided at one end or both ends located on the long side (before winding) of the positive electrode current collector. It may have a portion that is not provided.
 負極2は、少なくとも負極材層22および負極集電体21から構成されている(図5参照)。負極2では、負極集電体の少なくとも片面に負極材層が設けられており、負極材層には、電極活物質として負極活物質が含まれている。例えば、電極巻回体における負極は、負極集電体の両面に負極材層が設けられているものでもよいし、あるいは、負極集電体の片面にのみ負極材層が設けられているものでもよい。負極集電体は、両面または片面の全面に負極材層を有さなければならないというわけではない。例えば、負極集電体の長尺辺側(巻回前)に位置する片側端部または両端部には、“集電体延在部”が供されるべく、両面に負極材層が設けられていない部分を有していてよい。 The negative electrode 2 is composed of at least a negative electrode material layer 22 and a negative electrode current collector 21 (see FIG. 5). In the negative electrode 2, a negative electrode material layer is provided on at least one side of the negative electrode current collector, and the negative electrode material layer contains a negative electrode active material as an electrode active material. For example, the negative electrode in the electrode winding body may be provided with a negative electrode material layer on both sides of the negative electrode current collector, or may be provided with a negative electrode material layer only on one side of the negative electrode current collector. good. The negative electrode current collector does not have to have a layer of negative electrode material on both sides or the entire surface of one side. For example, one side end or both ends located on the long side (before winding) of the negative electrode current collector is provided with a negative electrode material layer on both sides so that a "current collector extension part" is provided. may have parts that are not
 正極1および負極2に含まれる電極活物質、即ち、正極活物質および負極活物質は、二次電池において電子の受け渡しに直接関与する物質であり、充放電、すなわち電池反応を担う正負極の主物質である。より具体的には、「正極材層に含まれる正極活物質」および「負極材層に含まれる負極活物質」に起因して電解質にイオンがもたらされ、かかるイオンが正極1と負極2の間で移動(又は伝導)して電子の受け渡しが行われて充放電がなされる。正極材層および負極材層は特にリチウムイオンを吸蔵放出可能な層であってよい。つまり、本開示に係る二次電池は、非水電解質を介してリチウムイオンが正極1と負極2との間で移動して電池の充放電が行われる非水電解質二次電池となっていてよい。充放電にリチウムイオンが関与する場合、本開示に係る二次電池は、いわゆる“リチウムイオン電池”に相当し、正極1および負極2がリチウムイオンを吸蔵放出可能な層を有する。 The electrode active material contained in the positive electrode 1 and the negative electrode 2, that is, the positive electrode active material and the negative electrode active material, is a substance directly involved in the transfer of electrons in the secondary battery, and is the main component of the positive and negative electrodes responsible for charging and discharging, that is, the battery reaction. It is matter. More specifically, ions are brought to the electrolyte due to the “positive electrode active material contained in the positive electrode material layer” and the “negative electrode active material contained in the negative electrode material layer”, and such ions are applied to the positive electrode 1 and the negative electrode 2. Electrons are transferred (or conducted) between them to charge and discharge. The positive electrode material layer and the negative electrode material layer may be layers capable of intercalating and deintercalating lithium ions. In other words, the secondary battery according to the present disclosure may be a non-aqueous electrolyte secondary battery in which charging and discharging of the battery are performed by moving lithium ions between the positive electrode 1 and the negative electrode 2 via the non-aqueous electrolyte. . When lithium ions are involved in charging and discharging, the secondary battery according to the present disclosure corresponds to a so-called "lithium ion battery", and the positive electrode 1 and the negative electrode 2 have layers capable of intercalating and deintercalating lithium ions.
 正極材層の正極活物質は例えば粒状体から構成されるところ、粒子同士のより十分な接触と形状保持のためにバインダーが正極材層に含まれていてよい。更には、電池反応を推進する電子の伝達を円滑にするために導電助剤が正極材層に含まれていてもよい。同様にして、負極材層の負極活物質は例えば粒状体から構成されるところ、粒子同士のより十分な接触と形状保持のためにバインダーが含まれてよく、電池反応を推進する電子の伝達を円滑にするために導電助剤が負極材層に含まれていてもよい。このように、複数の成分が含有されて成る形態ゆえ、正極材層および負極材層はそれぞれ“正極合材層”および“負極合材層”などと称すこともできる。 When the positive electrode active material of the positive electrode layer is composed of, for example, granules, the positive electrode layer may contain a binder for sufficient contact between particles and shape retention. Furthermore, the positive electrode material layer may contain a conductive aid in order to facilitate the transfer of electrons that promote the battery reaction. Similarly, when the negative electrode active material of the negative electrode layer is composed of, for example, granules, a binder may be included for more sufficient contact and shape retention between the particles, thereby promoting electron transfer that promotes the battery reaction. A conductive aid may be included in the negative electrode material layer for smoothing. Because of such a configuration in which a plurality of components are contained, the positive electrode material layer and the negative electrode material layer can also be called "positive electrode material layer" and "negative electrode material layer", respectively.
 正極活物質は、リチウムイオンの吸蔵放出に資する物質であってよい。かかる観点でいえば、正極活物質は例えばリチウム含有複合酸化物であってよい。より具体的には、正極活物質は、リチウムと、コバルト、ニッケル、マンガンおよび鉄から成る群から選択される少なくとも1種の遷移金属とを含むリチウム遷移金属複合酸化物であってよい。つまり、本開示に係る二次電池の正極材層においては、そのようなリチウム遷移金属複合酸化物が正極活物質として含まれていてよい。例えば、正極活物質はコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、リン酸鉄リチウム、または、それらの遷移金属の一部を別の金属で置き換えたものであってよい。このような正極活物質は、単独種として含まれてよいものの、二種以上が組み合わされて含まれていてもよい。 The positive electrode active material may be a material that contributes to absorption and release of lithium ions. From this point of view, the positive electrode active material may be, for example, a lithium-containing composite oxide. More specifically, the positive electrode active material may be a lithium transition metal composite oxide containing lithium and at least one transition metal selected from the group consisting of cobalt, nickel, manganese and iron. That is, the positive electrode material layer of the secondary battery according to the present disclosure may contain such a lithium-transition metal composite oxide as a positive electrode active material. For example, the positive electrode active material may be lithium cobaltate, lithium nickelate, lithium manganate, lithium iron phosphate, or a transition metal thereof partially replaced by another metal. Although such a positive electrode active material may be contained as a single species, it may be contained in combination of two or more species.
 正極材層に含まれ得るバインダーは、特に制限されない。例えば、正極材層のバインダーとしては、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体およびポリテトラフルオロエチレンなどから成る群から選択される少なくとも1種を挙げることができる。 The binder that can be contained in the positive electrode material layer is not particularly limited. For example, the binder for the positive electrode layer may be at least one selected from the group consisting of polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, polytetrafluoroethylene, and the like. Species can be mentioned.
 正極材層に含まれ得る導電助剤は、特に制限されない。例えば、正極材層の導電助剤としては、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブや気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから成る群から選択される少なくとも1種を挙げることができる。 The conductive aid that can be contained in the positive electrode material layer is not particularly limited. For example, the conductive additive for the positive electrode layer includes carbon black such as thermal black, furnace black, channel black, ketjen black and acetylene black, graphite, carbon fiber such as carbon nanotube and vapor growth carbon fiber, copper, nickel, and the like. , metal powders such as aluminum and silver, and at least one selected from the group consisting of polyphenylene derivatives and the like.
 負極活物質は、リチウムイオンの吸蔵放出に資する物質であってよい。かかる観点でいえば、負極活物質は例えば各種の炭素材料、酸化物および/またはリチウム合金などであってよい。 The negative electrode active material may be a material that contributes to intercalation and deintercalation of lithium ions. From this point of view, the negative electrode active material may be, for example, various carbon materials, oxides and/or lithium alloys.
 負極活物質の各種の炭素材料としては、黒鉛(例えば、天然黒鉛および/もしくは人造黒鉛)、ハードカーボン、ソフトカーボン、ならびに/またはダイヤモンド状炭素などを挙げることができる。特に、黒鉛は電子伝導性が高く、負極集電体との接着性が優れる。負極活物質の酸化物としては、酸化シリコン、酸化スズ、酸化インジウム、酸化亜鉛および酸化リチウムなどから成る群から選択される少なくとも1種を挙げることができる。負極活物質のリチウム合金は、リチウムと合金形成され得る金属であればよく、例えば、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、および/またはLaなどの金属とリチウムとの2元、3元または、それ以上の合金であってよい。このような酸化物は、例えば、その構造形態としてアモルファスとなっていてよい。結晶粒界または欠陥といった不均一性に起因する劣化が引き起こされにくくなるためである。 Examples of various carbon materials for the negative electrode active material include graphite (eg, natural graphite and/or artificial graphite), hard carbon, soft carbon, and/or diamond-like carbon. In particular, graphite has high electron conductivity and excellent adhesion to the negative electrode current collector. As the oxide of the negative electrode active material, at least one selected from the group consisting of silicon oxide, tin oxide, indium oxide, zinc oxide and lithium oxide can be used. The lithium alloy of the negative electrode active material may be any metal that can be alloyed with lithium, such as Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn and/or may be binary, ternary or higher alloys of lithium with metals such as La. Such oxides may, for example, be amorphous in their structural form. This is because deterioration due to non-uniformity such as grain boundaries or defects is less likely to occur.
 負極材層に含まれ得るバインダーは、特に制限されない。負極材層のバインダーとしては、例えば、スチレンブタジエンゴム、ポリアクリル酸、ポリフッ化ビニリデン、ポリイミド系樹脂およびポリアミドイミド系樹脂から成る群から選択される少なくとも1種を挙げることができる。 The binder that can be contained in the negative electrode material layer is not particularly limited. Examples of the binder for the negative electrode layer include at least one selected from the group consisting of styrene-butadiene rubber, polyacrylic acid, polyvinylidene fluoride, polyimide-based resins, and polyamide-imide-based resins.
 負極材層に含まれ得る導電助剤は、特に制限されない。負極材層の導電助剤としては、例えば、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブや気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから成る群から選択される少なくとも1種を挙げることができる。なお、負極材層には、電池製造時に使用された増粘剤成分(例えばカルボキシルメチルセルロース)に起因する成分が含まれていてもよい。 The conductive aid that can be contained in the negative electrode material layer is not particularly limited. Conductive agents for the negative electrode layer include, for example, carbon blacks such as thermal black, furnace black, channel black, ketjen black and acetylene black; graphite; carbon fibers such as carbon nanotubes and vapor-grown carbon fibers; , metal powders such as aluminum and silver, and at least one selected from the group consisting of polyphenylene derivatives and the like. In addition, the negative electrode material layer may contain a component resulting from a thickening agent component (for example, carboxylmethyl cellulose) used in manufacturing the battery.
 正極および負極に用いられる正極集電体および負極集電体は電池反応に起因して活物質で発生した電子を集めたり供給したりするのに資する部材である。このような集電体は、シート状の金属部材であってよく、多孔または穿孔の形態を有していてよい。例えば、集電体は金属箔、パンチングメタル、網および/またはエキスパンドメタル等であってよい。正極に用いられる正極集電体は、アルミニウム、ステンレスおよびニッケル等から成る群から選択される少なくとも1種を含んだ金属箔から成るものであってよい。例えば、正極集電体は、アルミニウム箔であってよい。一方、負極に用いられる負極集電体は、銅、ステンレスおよびニッケル等から成る群から選択される少なくとも1種を含んだ金属箔から成るものであってよい。例えば、負極集電体は銅箔であってよい。 The positive electrode current collector and negative electrode current collector used for the positive electrode and negative electrode are members that contribute to collecting and supplying electrons generated in the active material due to the battery reaction. Such a current collector may be a sheet metal member and may have a perforated or perforated morphology. For example, the current collector may be metal foil, perforated metal, mesh and/or expanded metal, and the like. The positive electrode current collector used for the positive electrode may be made of metal foil containing at least one selected from the group consisting of aluminum, stainless steel, nickel, and the like. For example, the positive electrode current collector may be aluminum foil. On the other hand, the negative electrode current collector used for the negative electrode may be made of metal foil containing at least one selected from the group consisting of copper, stainless steel, nickel, and the like. For example, the negative electrode current collector may be copper foil.
 正極および負極の間に用いられるセパレータは、正負極の接触による短絡防止および/または電解質保持などの観点から設けられる部材である。換言すれば、セパレータは、正極と負極との間の電子的接触を防止しつつ、イオンを通過させる部材であるといえる。例えば、セパレータは多孔性または微多孔性の絶縁性部材であり、その小さい厚みに起因して膜形態を有している。あくまでも例示にすぎないが、ポリオレフィン製の微多孔膜がセパレータとして用いられてよい。この点、セパレータとして用いられる微多孔膜は、例えば、ポリオレフィンとしてポリエチレン(PE)のみ、または、ポリプロピレン(PP)のみを含んだものであってよい。更にいえば、セパレータは、“PE製の微多孔膜”と“PP製の微多孔膜”とから構成される積層体であってもよい。 The separator used between the positive electrode and the negative electrode is a member provided from the viewpoint of preventing short circuits due to contact between the positive and negative electrodes and/or retaining the electrolyte. In other words, the separator is a member that allows ions to pass through while preventing electronic contact between the positive electrode and the negative electrode. For example, a separator is a porous or microporous insulating member that has a membrane morphology due to its small thickness. By way of example only, a polyolefin microporous membrane may be used as the separator. In this regard, the microporous membrane used as the separator may contain, for example, only polyethylene (PE) or only polypropylene (PP) as the polyolefin. Furthermore, the separator may be a laminate composed of a "PE microporous membrane" and a "PP microporous membrane".
 セパレータの表面は、無機粒子コート層や接着層等により覆われていてもよい。また、セパレータの表面は、接着性を有していてもよい。なお、本開示において、セパレータは、その名称によって特に拘泥されるべきでない。例えば、セパレータは、同様の機能を有する固体電解質、ゲル状電解質、絶縁性の無機粒子などであってもよい。 The surface of the separator may be covered with an inorganic particle coat layer, an adhesive layer, or the like. Moreover, the surface of the separator may have adhesiveness. In the present disclosure, the separator should not be specifically bound by its name. For example, the separator may be a solid electrolyte, a gel electrolyte, insulating inorganic particles, or the like having similar functions.
 本開示の二次電池では、正極、負極およびセパレータを含む電極構成層から成る電極巻回体が、電解質と共に外装体に封入されている。正極および負極がリチウムイオンを吸蔵放出可能な層を有する場合、電解質は有機電解質・有機溶媒などの“非水系”の電解質であってよい。すなわち、電解質は非水電解質であってよい。電解質には電極(正極および/または負極)から放出された金属イオンが存在することになり、それゆえ、電解質は電池反応における金属イオンの移動を助力することになる。 In the secondary battery of the present disclosure, an electrode winding body composed of electrode configuration layers including a positive electrode, a negative electrode, and a separator is enclosed in an exterior body together with an electrolyte. When the positive electrode and the negative electrode have layers capable of intercalating and deintercalating lithium ions, the electrolyte may be a “non-aqueous” electrolyte such as an organic electrolyte or an organic solvent. That is, the electrolyte may be a non-aqueous electrolyte. The electrolyte will have metal ions released from the electrodes (positive and/or negative electrodes) and will therefore assist in the movement of metal ions in the battery reaction.
 非水電解質は、溶媒と溶質とを含む電解質である。具体的な非水電解質の溶媒としては、少なくともカーボネートを含んで成るものであってよい。かかるカーボネートは、環状カーボネート類および/または鎖状カーボネート類であってもよい。特に制限されるわけではないが、環状カーボネート類としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)およびビニレンカーボネート(VC)から成る群から選択される少なくとも1種を挙げることができる。 A non-aqueous electrolyte is an electrolyte containing a solvent and a solute. A specific solvent for the non-aqueous electrolyte may contain at least carbonate. Such carbonates may be cyclic carbonates and/or linear carbonates. Although not particularly limited, cyclic carbonates include at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC) and vinylene carbonate (VC). be able to.
 鎖状カーボネート類としては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)およびジプロピルカーボネート(DPC)から成る群から選択される少なくも1種を挙げることができる。あくまでも例示にすぎないが、非水電解質として環状カーボネート類と鎖状カーボネート類との組合せが用いられてよく、例えばエチレンカーボネートとジエチルカーボネートとの混合物が用いられてよい。非水電解質の溶質は、常套の溶質であることができる。具体的な非水電解質の溶質としては、例えば、LiPFおよび/またはLiBFなどのLi塩が用いられてよい。 Examples of chain carbonates include at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC) and dipropyl carbonate (DPC). By way of example only, a combination of cyclic carbonates and linear carbonates may be used as the non-aqueous electrolyte, for example, a mixture of ethylene carbonate and diethyl carbonate may be used. The solute of the non-aqueous electrolyte can be any conventional solute. As a specific non-aqueous electrolyte solute, for example, Li salts such as LiPF 6 and/or LiBF 4 may be used.
 図2は、本開示の二次電池100の一例の外観を示す模式的斜視図である。電極巻回体を収容する外装体60はハードケースであってよく、本体部61および蓋部62などの2つの部材から成ってよい。例えば、本体部61は、外装体60の側面とそれに連続する主面(典型的には、例えば底面または下面)を備えるカップ状の部材であってよい。蓋部62は、かかるカップ状の本体部61に対して蓋をするように組み合わされる(好ましくは、本体部61の内側の中空部を、その外部から遮断するように設けられる)部材であってよい。外装体60が本体部61および蓋部62から構成される場合、本体部61と蓋部62とは、電極巻回体、電解質、および所望により電極端子などが収容された後、密封される。外装体60の密封方法としては、特に限定されず、例えばレーザー照射法などが挙げられる。 FIG. 2 is a schematic perspective view showing the appearance of an example of the secondary battery 100 of the present disclosure. The exterior body 60 that accommodates the electrode wound body may be a hard case, and may be composed of two members such as a body portion 61 and a lid portion 62 . For example, the body portion 61 may be a cup-shaped member that includes the side surface of the exterior body 60 and a main surface (typically, for example, a bottom surface or a lower surface) continuous therewith. The lid portion 62 is a member combined to cover the cup-shaped main body portion 61 (preferably provided so as to block the hollow portion inside the main body portion 61 from the outside). good. When the exterior body 60 is composed of the main body portion 61 and the lid portion 62, the main body portion 61 and the lid portion 62 are sealed after accommodating the wound electrode body, the electrolyte, and optionally the electrode terminals. A method for sealing the exterior body 60 is not particularly limited, and examples thereof include a laser irradiation method.
 本体部61および蓋部62を構成する材料としては、二次電池の分野でハードケース型外装体を構成し得るあらゆる材料が使用可能である。そのような材料は、電子の移動が達成され得る導電性材料であってもよいし、または電子の移動が達成され得ない絶縁材料であってもよい。外装体の材料は、電極取り出しの観点からいえば、導電性材料であることが好ましい。 As materials for forming the body portion 61 and the lid portion 62, any material capable of forming a hard case-type exterior body in the field of secondary batteries can be used. Such materials may be conductive materials in which electron transfer may be achieved, or insulating materials in which electron transfer may not be achieved. The material of the exterior body is preferably a conductive material from the viewpoint of electrode extraction.
 導電性材料としては、例えば銀、金、銅、鉄、スズ、プラチナ、アルミニウム、ニッケルおよび/またはステンレス鋼などの導電性材料が挙げられる。絶縁材料としては、例えば、ポリエステル(例えば、ポリエチレンテレフタレート)、ポリイミド、ポリアミド、ポリアミドイミド、ならびに/またはポリオレフィン(例えば、ポリエチレンおよび/もしくはポリプロピレン)などの絶縁ポリマー材料が挙げられる。 Conductive materials include, for example, conductive materials such as silver, gold, copper, iron, tin, platinum, aluminum, nickel and/or stainless steel. Insulating materials include, for example, insulating polymeric materials such as polyesters (eg, polyethylene terephthalate), polyimides, polyamides, polyamideimides, and/or polyolefins (eg, polyethylene and/or polypropylene).
 導電性および剛性の観点からいえば、本体部および蓋部はともに、ステンレス鋼から構成されていてよい。なお、ステンレス鋼とは、「JIS G 0203 鉄鋼用語」に規定されている通り、クロムまたはクロムとニッケルとを含有させた合金鋼で、一般にはクロム含有量が全体の約10.5%以上の鋼をいう。そのようなステンレス鋼の例示としては、マルテンサイト系ステンレス鋼、フェライト系ステンレス鋼、オーステナイト系ステンレス鋼、オーステナイト・フェライト系ステンレス鋼および/または析出硬化系ステンレス鋼が挙げられる。 In terms of conductivity and rigidity, both the body and lid may be constructed of stainless steel. As defined in "JIS G 0203 Iron and Steel Terms", stainless steel is an alloy steel containing chromium or chromium and nickel. refers to steel. Examples of such stainless steels include martensitic stainless steels, ferritic stainless steels, austenitic stainless steels, austenitic-ferritic stainless steels and/or precipitation hardening stainless steels.
 外装体の本体部および蓋部の寸法は、主として電極巻回体の寸法に応じて決定される。例えば、電極巻回体を収容したとき、外装体内での電極巻回体の移動が防止される程度の寸法を外装体が有していてよい。電極巻回体の移動を防止することにより、衝撃などによる電極巻回体の損傷を防止し、二次電池の安定性をより向上させることができる。 The dimensions of the main body and lid of the outer package are determined mainly according to the dimensions of the electrode winding body. For example, the outer package may have dimensions that prevent the electrode-wound body from moving within the outer package when the electrode-wound body is accommodated. By preventing the movement of the electrode winding body, damage to the electrode winding body due to impact or the like can be prevented, and the stability of the secondary battery can be further improved.
 外装体は、ラミネートフィルムから成るパウチなどのフレキシブルケースであってもよい。ラミネートフィルムとしては、少なくとも金属層(例えば、アルミニウムなど)と接着層(例えば、ポリプロピレンおよび/またはポリエチレンなど)とが積層される構成であり、付加的に保護層(例えば、ナイロンおよび/またはポリアミドなど)が積層される構成であってもよい。 The exterior body may be a flexible case such as a pouch made of laminated film. The laminate film has a configuration in which at least a metal layer (e.g., aluminum) and an adhesive layer (e.g., polypropylene and/or polyethylene) are laminated, and additionally a protective layer (e.g., nylon and/or polyamide, etc.) ) may be laminated.
 外装体の厚み寸法(すなわち、肉厚寸法)は、特に制限されるわけではないが、10μm以上200μm以下であってよく、例えば50μm以上100μm以下であってよい。外装体の厚み寸法は、任意の10箇所における測定値の平均値が用いられる。 The thickness dimension (that is, thickness dimension) of the exterior body is not particularly limited, but may be 10 μm or more and 200 μm or less, for example, 50 μm or more and 100 μm or less. The average value of the measured values at arbitrary 10 points is used as the thickness dimension of the outer package.
 二次電池には、一般に電極端子が設けられている。かかる電極端子は、例えば、正極の電極端子と負極の電極端子とが互いに外装体の別の面に設けられていてよい。具体的には、電極巻回体の巻回軸方向において、外装体の対向する2つの端面に、正極および負極の電極端子がそれぞれ設けられていてよい。 A secondary battery is generally provided with an electrode terminal. As for such electrode terminals, for example, a positive electrode terminal and a negative electrode terminal may be provided on different surfaces of the exterior body. Specifically, the electrode terminals of the positive electrode and the negative electrode may be provided on two opposite end surfaces of the outer package in the direction of the winding axis of the electrode winding body.
 電極端子には、導電率が大きい材料が用いられてよい。電極端子の材質としては、特に制限するわけではないが、銀、金、銅、鉄、スズ、プラチナ、アルミニウム、ニッケルおよびステンレス鋼から成る群から選択される少なくとも一種を挙げることができる。 A material with high conductivity may be used for the electrode terminals. The material of the electrode terminal is not particularly limited, but at least one selected from the group consisting of silver, gold, copper, iron, tin, platinum, aluminum, nickel and stainless steel can be used.
 電極端子は、特に制限されず、いずれの構成を有していてもよい。例えば、電極端子は、単一の材料から構成されてよく、または複数の材料から構成されてもよい。複数の材料から構成される電極端子(以下、「電極端子構造体」とも称する)は、例えばリベット部、内側端子、および/またはガスケット部から成ってよい。 The electrode terminal is not particularly limited and may have any configuration. For example, the electrode terminals may be constructed from a single material or may be constructed from multiple materials. Electrode terminals made of multiple materials (hereinafter also referred to as "electrode terminal structures") may consist of, for example, a rivet portion, an inner terminal and/or a gasket portion.
 リベット部および内側端子は、電子の移動が達成され得る材料から構成されていればよい。例えば、リベット部および内側端子は、それぞれ、銀、金、銅、鉄、錫、プラチナ、アルミニウム、ニッケルおよび/またはステンレス鋼などの導電性材料から構成される。ガスケット部は、絶縁材料から構成されていればよい。例えば、ガスケット部は、ポリエステル(例えば、ポリエチレンテレフタレート)、ポリイミド、ポリアミド、ポリアミドイミド、ならびに/またはポリオレフィン(例えば、ポリエチレンおよび/またはポリプロピレン)などの絶縁ポリマー材料から構成される。 The rivet part and the inner terminal need only be made of a material that allows electron transfer. For example, the rivet portion and inner terminal are each constructed from a conductive material such as silver, gold, copper, iron, tin, platinum, aluminum, nickel and/or stainless steel. The gasket portion may be made of an insulating material. For example, the gasket portion is constructed from an insulating polymeric material such as polyester (eg, polyethylene terephthalate), polyimide, polyamide, polyamideimide, and/or polyolefin (eg, polyethylene and/or polypropylene).
 電極端子構造体は、特に限定されないが、例えば、外装体の開口部に嵌合して挿通されていてよい。電極端子構造体は、主として電極を外部に導出するための導電性のリベット部、かかるリベット部と外装体との電気的な絶縁を確保しつつ、電解質の漏出を防止するための外側ガスケット部、リベット部と電極巻回体との電気的接続を確保するための内側端子、およびかかる内側端子と外装体との電気的な絶縁を確保しつつ、電解質の漏出を防止するための内側ガスケット部を含んでいてもよい。 Although the electrode terminal structure is not particularly limited, for example, it may be fitted and inserted through the opening of the exterior body. The electrode terminal structure mainly includes a conductive rivet portion for leading the electrode to the outside, an outer gasket portion for preventing electrolyte leakage while ensuring electrical insulation between the rivet portion and the exterior body, An inner terminal for ensuring electrical connection between the rivet portion and the electrode winding body, and an inner gasket portion for preventing electrolyte leakage while ensuring electrical insulation between the inner terminal and the exterior body. may contain.
[本開示の二次電池の特徴]
 図2は、本開示の二次電池100の一例の外観を示す模式的斜視図である。また、図4は、本開示の二次電池を構成する電極巻回体50の一例の外観を示す模式的斜視図である。図において、二次電池100および電極巻回体50は略円柱形状を有しているが、必ずしもそれに限定されない。例えば、電極巻回体50は、略楕円柱形状を有していてもよい。つまり、巻回軸に沿う方向から見た電極巻回体50の断面視形状は、特に限定されず、例えば、略円形、略楕円形または略角形であることができる。本明細書において、略角形とは、該形状における角や面の精度を問わず、角や隅に面取りや丸みなどを有する形状を包含する。
[Characteristics of the secondary battery of the present disclosure]
FIG. 2 is a schematic perspective view showing the appearance of an example of the secondary battery 100 of the present disclosure. Also, FIG. 4 is a schematic perspective view showing the appearance of an example of the electrode-wound body 50 that constitutes the secondary battery of the present disclosure. In the drawing, the secondary battery 100 and the electrode winding body 50 have a substantially cylindrical shape, but they are not necessarily limited to this. For example, the electrode winding body 50 may have a substantially cylindric shape. In other words, the cross-sectional shape of the electrode wound body 50 as seen from the direction along the winding axis is not particularly limited, and may be, for example, substantially circular, substantially elliptical, or substantially rectangular. In the present specification, the term "substantially rectangular" includes shapes having chamfered or rounded corners or corners regardless of the accuracy of the corners or surfaces of the shape.
 図3は、図2の二次電池において、巻回軸を通るA-A線断面を矢印方向で見たときの模式的断面図である。本開示に係る二次電池100は、電極巻回体50、およびそれを収容する外装体60と、外部機器との接続に供する電極端子構成部材80を有して成る二次電池であるところ、電極巻回体の端部の構造に少なくとも特徴を有する。以下、その特徴について説明する。 FIG. 3 is a schematic cross-sectional view of the secondary battery of FIG. 2 when the AA cross section passing through the winding axis is viewed in the direction of the arrow. The secondary battery 100 according to the present disclosure is a secondary battery comprising an electrode winding body 50, an exterior body 60 that accommodates the electrode winding body 50, and an electrode terminal forming member 80 that is used for connection with an external device. At least the structure of the ends of the electrode winding body is characterized. The features are described below.
 図4は、本開示の一実施形態に係る二次電池の電極構成層5(図1参照)が巻回された電極巻回体50の模式的斜視図を示す。図5は、図4に示した電極巻回体50の巻回軸Pを通るB-B線断面を矢印方向で見たときの模式的断面図である。図示されるように、本開示の二次電池は、正極1、負極2およびそれらの間に配置されているセパレータ3から構成される電極構成層5を含み、通常は電解質をさらに含む。また、本開示の一実施形態に係る二次電池の電極巻回体50において、正極1および負極2のいずれか一方の電極は、集電体延在部40を有している。 FIG. 4 shows a schematic perspective view of an electrode wound body 50 around which the electrode configuration layer 5 (see FIG. 1) of the secondary battery according to one embodiment of the present disclosure is wound. FIG. 5 is a schematic cross-sectional view of the BB line cross section passing through the winding axis P of the electrode winding body 50 shown in FIG. 4 as viewed in the direction of the arrow. As shown, the secondary battery of the present disclosure includes an electrode construction layer 5 composed of a positive electrode 1, a negative electrode 2 and a separator 3 disposed therebetween, and typically further includes an electrolyte. Further, in the electrode winding body 50 of the secondary battery according to the embodiment of the present disclosure, either one of the positive electrode 1 and the negative electrode 2 has the current collector extension portion 40 .
 本開示における「集電体延在部」とは、電極において、極材層を有していない集電体が、電極の端辺において延在している部分を意味する(図5参照)。換言すれば、「集電体延在部」とは、電極巻回体50の端面を構成する端面のいずれか一方において延在する集電体の露出部分(好ましくは、極材層が設けられていない部分)であってよい。また、既述したように、本開示の二次電池において、正極および/または負極の集電体は、金属箔であってよい。それゆえ、「集電体延在部」は「集電体露出部」、または「集電箔延在部」などと称すこともできる。 In the present disclosure, the term "current collector extension" means a portion of the electrode where the current collector having no electrode material layer extends along the edge of the electrode (see FIG. 5). In other words, the “collector extension portion” refers to an exposed portion of the current collector extending from one of the end faces forming the end faces of the electrode winding body 50 (preferably, a portion where the electrode material layer is provided). not part). Further, as described above, in the secondary battery of the present disclosure, the current collector of the positive electrode and/or the negative electrode may be metal foil. Therefore, the "collector extension portion" can also be referred to as "current collector exposed portion" or "collector foil extension portion".
 本開示の一実施形態の二次電池は、電極巻回体50の端部において、正極1および/または負極2の集電体延在部40を備える。ここで、電極巻回体50の「端部」とは、巻回軸Pが通る端部を意味する(図3参照)。つまり、電極巻回体50の「端部」は、電極巻回体50の端面を含む。例えば、電極巻回体50の「端部」は、電極端子構成部材80側の端面を含む端部、ならびに当該端面に対向する端面を含む端部を意味する。したがって、正極1および負極2のいずれか一方の電極は、電極巻回体50の端面の少なくとも一方において、集電体延在部40を有して成ってよい。つまり、集電体延在部40を備える端面において、一方の電極の集電体(集電体延在部40)は、他方の電極よりも外側に延在していてよい。 A secondary battery according to an embodiment of the present disclosure includes current collector extensions 40 of the positive electrode 1 and/or the negative electrode 2 at the ends of the electrode winding body 50 . Here, the "end" of the electrode winding body 50 means the end through which the winding axis P passes (see FIG. 3). That is, the “end portion” of the electrode-wound body 50 includes the end face of the electrode-wound body 50 . For example, the “end portion” of the electrode winding body 50 means an end portion including an end face on the side of the electrode terminal forming member 80 and an end portion including an end face opposite to the end face. Therefore, one of the positive electrode 1 and the negative electrode 2 may have the current collector extension portion 40 on at least one of the end surfaces of the electrode winding body 50 . In other words, the current collector of one electrode (collector extension part 40) may extend further outward than the other electrode on the end surface having the current collector extension part 40 .
 本明細書における「外側」とは、巻回軸P方向における電極巻回体50の外側を意味する。すなわち、本開示の二次電池は、巻回軸P方向について、負極2よりも長く延在している正極集電体延在部41、および正極1よりも長く延在している負極集電体延在部42の少なくとも一方を有して成ってよい(図12参照)。一実施形態において、電極巻回体50は、正極集電体延在部41および負極集電体延在部42の両方を備えていてもよい。つまり、正極集電体延在部41および負極集電体延在部42の各々は、電極巻回体50の互いに異なる端面にて延在していてよい。これは、正極集電体延在部41および負極集電体延在部42が、巻回軸P方向に沿って、互いに対向する方向に延在することを意味する。 "Outside" in this specification means the outside of the electrode wound body 50 in the winding axis P direction. That is, in the secondary battery of the present disclosure, the positive electrode current collector extension portion 41 extending longer than the negative electrode 2 and the negative electrode current collector extending longer than the positive electrode 1 in the direction of the winding axis P It may comprise at least one body extension 42 (see FIG. 12). In one embodiment, the electrode winding 50 may include both the positive electrode current collector extension portion 41 and the negative electrode current collector extension portion 42 . That is, each of the positive electrode current collector extension portion 41 and the negative electrode current collector extension portion 42 may extend on different end surfaces of the electrode wound body 50 . This means that the positive electrode current collector extension portion 41 and the negative electrode current collector extension portion 42 extend in directions facing each other along the winding axis P direction.
 集電体延在部40の少なくとも一部は、屈曲形状を成している。本開示において、屈曲は、湾曲および/または折曲を少なくとも包含する。本開示において、湾曲とは、断面視において湾状(または弓状)に曲がること(すなわち、略曲線的に曲がること)であって、丸みを帯びた曲がりをもたらし、撓曲も包含する。また、本開示における折曲とは、断面視において、鋭角状に、または角張って折れ曲がること(すなわち、略直線的に曲がること)である。 At least part of the current collector extension 40 has a curved shape. In the present disclosure, bending includes at least bending and/or bending. In the present disclosure, bending means bending in a curved (or arcuate) shape (that is, bending roughly curvilinearly) in a cross-sectional view, which results in rounded bending and also includes flexion. In addition, the term "bending" in the present disclosure refers to bending at an acute angle or angular shape (that is, bending substantially linearly) in a cross-sectional view.
 図5に示すように、電極巻回体50の端部は、屈曲した集電体延在部40の密度が互いに異なる2つの領域を少なくとも有する。具体的には、集電体延在部40は、集電体延在部40の密度が相対的に高い高密度領域40a、および当該密度が相対的に低い低密度領域40bを有して成る。すなわち、本開示において、「高密度領域」および「低密度領域」は、それぞれ、集電体延在部の密度が相対的に密である領域、および相対的に疎である領域を意味する。換言すれば、電極巻回体50の端部は2種の領域を有して成り、一方の領域が密であって他方の領域が疎となるように、集電体延在部40が配置され得る。集電体延在部の密度が異なる2種の領域を備えることで、電極巻回体の端面をより好適に保護しつつ、電解液の注液性においてもより優れた二次電池が得られ得る。 As shown in FIG. 5, the end portion of the electrode winding body 50 has at least two regions in which the densities of the bent current collector extension portions 40 are different from each other. Specifically, the current collector extension portion 40 has a high density region 40a where the density of the current collector extension portion 40 is relatively high and a low density region 40b where the density is relatively low. . That is, in the present disclosure, the terms "high density region" and "low density region" refer to a relatively dense region and a relatively sparse region of the current collector extension, respectively. In other words, the end portion of the electrode winding body 50 has two regions, and the current collector extension portions 40 are arranged so that one region is dense and the other region is sparse. can be By providing two types of regions with different densities in the current collector extension, it is possible to obtain a secondary battery that is more excellent in terms of electrolyte pourability while more preferably protecting the end faces of the electrode winding body. obtain.
 図5に示すように、断面視にて、高密度領域40aにおける集電体延在部40は、折り返すように曲がる形態を有していてよい。例えば、集電体延在部40は、断面視において凸状を成すように大きく曲がる形態を有してよい。より詳細には、集電体延在部40は、高密度領域40aの少なくとも一部で、巻回軸Pに対して略垂直な方向に凸である屈曲形状を有してよい。換言すれば、高密度領域40aにおける集電体延在部の少なくとも一部は、電極巻回体50の内周側または外周側に向かって凸を成すように曲がる屈曲形状を有してよい。かかる屈曲形状は、電極巻回体50の端面に平面部分を供するように屈曲していると解することもできる。 As shown in FIG. 5, in a cross-sectional view, the current collector extension part 40 in the high-density region 40a may have a shape that bends in a folded manner. For example, the current collector extension portion 40 may have a shape that is greatly curved to form a convex shape in a cross-sectional view. More specifically, the current collector extension portion 40 may have a curved shape that protrudes in a direction substantially perpendicular to the winding axis P in at least a portion of the high density region 40a. In other words, at least part of the current collector extending portion in the high density region 40 a may have a curved shape that is convex toward the inner or outer peripheral side of the electrode wound body 50 . It can also be understood that such a bent shape is bent so as to provide a flat portion on the end surface of the electrode winding body 50 .
 このような屈曲形状は、例えば「折り返し形状」、「略U字(または略V字)形状」、「極大点を有する曲線形状」または「鋭角を成して曲がる形状」などと称すことも可能である。また、本開示の一実施形態において、集電体延在部は、複数の屈曲形状を繰り返す波形状を有すると捉えることもできる。すなわち、巻回軸Pを通る断面視において、集電体延在部は、高密度領域において、屈曲形状に起因して蛇行するように延在していてよい。 Such a bent shape can also be referred to as, for example, a “folded shape”, a “substantially U-shaped (or substantially V-shaped) shape”, a “curved shape having a maximum point”, or a “sharp-angled shape”. is. Further, in one embodiment of the present disclosure, the current collector extension can also be regarded as having a wave shape that repeats a plurality of curved shapes. That is, in a cross-sectional view passing through the winding axis P, the current collector extension portion may extend in a meandering manner due to the curved shape in the high-density region.
 また、図5に示されるように、高密度領域40aは空孔部45を有する。本開示において、空孔部とは、屈曲した集電体延在部40の少なくとも一部によって形成された空間部分を意味し、高密度領域40aの内部の隙間部分、および端面に存在する凹部分を包含し得る。例えば、空孔部45は、集電体延在部40の屈曲箇所、および隣接する複数の集電体延在部の間などに位置付けられてよい。 In addition, as shown in FIG. 5, the high-density region 40a has voids 45. In the present disclosure, the pore portion means a space portion formed by at least a part of the bent current collector extension portion 40, and includes a gap portion inside the high-density region 40a and a concave portion existing on the end face. can include For example, the vacancies 45 may be positioned at bends of the current collector extension 40, between adjacent current collector extensions, and the like.
 空孔部45は、屈曲した集電体延在部40によって画定されていてよい。空孔部45は、集電体延在部40の屈曲形状に応じて、種々の形状で存在し得る。例えば、空孔部45は、断面視において偏平形状又は長尺形状を有していてよい。ある好適な例では、空孔部45の形状は、断面視で、巻回軸Pに対して垂直な方向に沿う偏平形状又は長尺形状であってよい。また、そのような形状に限定されず、空孔部45の形状は、例えば、巻回軸Pを通る断面視で、略円形状、略楕円形状、略矩形状、多角形状、および/または不定形状であってもよい。 The pore 45 may be defined by the bent current collector extension 40 . The holes 45 can exist in various shapes depending on the bent shape of the current collector extension portion 40 . For example, the hole portion 45 may have a flat shape or an elongated shape in a cross-sectional view. In a preferred example, the shape of the hole portion 45 may be a flat shape or an elongated shape along the direction perpendicular to the winding axis P in a cross-sectional view. In addition, the shape of the hole portion 45 is not limited to such a shape, and the shape of the hole portion 45 may be, for example, a substantially circular shape, a substantially elliptical shape, a substantially rectangular shape, a polygonal shape, and/or an indefinite shape in a cross-sectional view passing through the winding axis P. It may be in shape.
 空孔部45は、高密度領域40aの全体にわたって分布していてよい。すなわち、高密度領域40aは、全体にわたって分布している複数の空孔部45を有してよい。断面視において、複数の空孔部45は、高密度領域40aの全体に不規則に配置されていてよく、それぞれ異なる形状および/または大きさを有していてよい。上述の構造により、電極巻回体の内部に電解液を注液するに際して、電解液は空孔部45の内部に流入できるため、電解液の注液速度がより向上され、より好適な注液が実現され得る。 The voids 45 may be distributed throughout the high-density region 40a. That is, the high density region 40a may have a plurality of voids 45 distributed throughout. In a cross-sectional view, the plurality of holes 45 may be arranged irregularly throughout the high-density region 40a, and may have different shapes and/or sizes. With the above-described structure, when the electrolytic solution is injected into the electrode winding body, the electrolytic solution can flow into the inside of the holes 45, so that the injection speed of the electrolytic solution is further improved, and the injection is more suitable. can be realized.
 本開示の一実施形態において、高密度領域40aは、複数の集電体延在部40が互いに折り重ねられた構造を少なくとも一部に有する。つまり、複数の集電体延在部40は、高密度領域40aの少なくとも一部において、複数の屈曲した集電体延在部40が積層する構造を有してよい。換言すれば、複数の集電体延在部40は、隙間を形成するように重畳的に折り重ねられていてよい。すなわち、複数の集電体延在部40は、高密度領域40aの少なくとも一部において相互に折り重なるように屈曲し、集電体延在部40同士の間に空孔部45が形成されてよい。 In one embodiment of the present disclosure, the high density region 40a has at least a portion of a structure in which a plurality of current collector extension portions 40 are folded over each other. That is, the plurality of current collector extension portions 40 may have a structure in which a plurality of bent current collector extension portions 40 are laminated in at least a portion of the high density region 40a. In other words, the plurality of current collector extension portions 40 may be folded in an overlapping manner so as to form a gap. That is, the plurality of current collector extension portions 40 may be bent so as to overlap each other in at least a part of the high density region 40a, and the void portions 45 may be formed between the current collector extension portions 40. .
 一態様では、複数の集電体延在部40の少なくとも一部において、隣接する集電体延在部40は同程度の曲率で屈曲し、屈曲部分(例えば、曲率が相対的に大きい箇所または略U字形状の箇所など)に空間を残しつつ、折り畳まれていてよい(図5および図7参照)。このような構造において、空孔部45は、隣接する集電体延在部40の屈曲部分に位置付けられ得、断面視にて当該屈曲部分と同様の輪郭を少なくとも一部に有し得る。複数の集電体延在部40の間に存在する空孔部45は、屈曲する集電体延在部40に沿って存在し、電極巻回体50への電解液の円滑な流入を助力するため、より効率的な電解液の注液を実現し得る。 In one aspect, in at least a part of the plurality of current collector extension portions 40, the adjacent current collector extension portions 40 are bent at the same degree of curvature, and the bent portion (for example, a portion where the curvature is relatively large or It may be folded while leaving a space at a substantially U-shaped portion (see FIGS. 5 and 7). In such a structure, the hole portion 45 can be positioned at the bent portion of the adjacent current collector extension portion 40, and can have at least a part of the same contour as the bent portion in a cross-sectional view. The voids 45 existing between the plurality of current collector extensions 40 are present along the bent current collector extensions 40 and help the electrolytic solution to flow smoothly into the electrode wound body 50. Therefore, more efficient electrolyte injection can be realized.
 図5に示されるように、屈曲した集電体延在部40の少なくとも一部は、電極巻回体50の端面に露出していてよい。換言すれば、電極巻回体50の端面は、屈曲した集電体延在部40の少なくとも一部によって構成されていてよい。すなわち、集電体延在部40の少なくとも一部は、電極巻回体50の端面において、巻回軸Pに対して略垂直な略平面を供するように屈曲していてよい。電極巻回体50の端面に略平面が形成されることで、後述する集電板70(図6参照)と電極巻回体50の端面とがより広い接続面積で接続され得る。 As shown in FIG. 5 , at least part of the bent current collector extension portion 40 may be exposed on the end surface of the electrode wound body 50 . In other words, the end face of the electrode winding body 50 may be configured by at least a portion of the bent current collector extension portion 40 . That is, at least a portion of the current collector extension portion 40 may be bent so as to provide a substantially plane substantially perpendicular to the winding axis P at the end face of the electrode wound body 50 . By forming a substantially flat surface on the end face of the electrode winding body 50, a collector plate 70 (see FIG. 6), which will be described later, and the end face of the electrode winding body 50 can be connected with a wider connection area.
 ここで、「略平面」とは、端的に言えば、巨視的に見て平面状であることを意味する。つまり、物理的に厳密な意味で平らな面ではなく、微視的に見た場合、微小な凹凸が存在する形状、または全体的もしくは部分的に微小な歪みがある場合を含むことを意味する。高密度領域40aの集電体延在部40が折り重ねられた構造を有することで、集電体延在部40は、集電体延在部40の面部分が電極巻回体50の端面に露出するように折り倒される。そのため、後述する集電板と電極巻回体50との接合に際して、より大きな接合面積が供され得る。したがって、本開示の電極巻回体は、集電体延在部と集電板とのより強固な接続にも寄与し得る。 Here, "substantially planar" simply means that it is planar when viewed macroscopically. In other words, it is not a flat surface in a strict physical sense, but when viewed microscopically, it means that it includes a shape with minute unevenness, or a case where there is minute distortion in whole or part. . Since the current collector extension part 40 of the high-density region 40 a has a folded structure, the current collector extension part 40 has a surface portion that is aligned with the end face of the electrode winding body 50 . folded so that it is exposed to Therefore, a larger bonding area can be provided when the collector plate and the electrode winding body 50 are bonded to each other, which will be described later. Therefore, the electrode winding body of the present disclosure can also contribute to stronger connection between the current collector extension and the current collector plate.
 本開示の一実施形態において、高密度領域40aは、空孔部45を介して、電極巻回体50の端部から電極巻回体50の内部へと流体連通している。つまり、本開示の電極巻回体50では、高密度領域40aの空孔部45を介して、電極巻回体50の外部と内部との間で流体の出入りが可能である。このような構造は、二次電池の作製に際して、真空注液等を用いて電極巻回体50の内部に電解質を浸透させる際に有用となり得る。具体的には、空孔部45は、電解液の注液経路としてのみではなく、注液における脱気経路としても有用となり得る。すなわち、本開示の二次電池においては、屈曲した集電体延在部40によって形成された高密度領域40aの空孔部45によって、電解液および気体(例えば、空気)などの流体が電極巻回体50の内部に出入り可能となり得る。以上のことから、電極巻回体50の端部に位置付けられている空孔部45は、電極巻回体50の内部への電解液の注液効率をより向上させ得る。 In one embodiment of the present disclosure, the high density region 40 a is in fluid communication from the end of the electrode winding 50 to the interior of the electrode winding 50 via the voids 45 . That is, in the electrode-wound body 50 of the present disclosure, fluid can enter and exit between the outside and the inside of the electrode-wound body 50 via the pores 45 of the high-density region 40a. Such a structure can be useful when infiltrating the electrolyte into the wound electrode body 50 using vacuum injection or the like in manufacturing a secondary battery. Specifically, the hole portion 45 can be useful not only as an injection path for the electrolytic solution, but also as a degassing path during the injection. That is, in the secondary battery of the present disclosure, fluid such as electrolytic solution and gas (for example, air) flows through the electrode winding through the pores 45 of the high-density region 40a formed by the bent current collector extension 40. The inside of the rotating body 50 may be accessible. As described above, the holes 45 positioned at the ends of the electrode-wound body 50 can further improve the injection efficiency of the electrolytic solution into the electrode-wound body 50 .
 また、一態様では、高密度領域40aは、複数の空孔部45(例えば、断面視で把握されるような複数の空孔部)を介して、電極巻回体50の端部から内部へと流体連通していてよい。具体的には、高密度領域40aに位置付けられた空孔部45の少なくとも一部は、集電体延在部40の間に形成された隙間によって、互いにつながっていてよい。つまり、高密度領域40aは、空孔部45の少なくとも1つを介して、電極巻回体50の端部から内部へと流体連通していてよい。このような構造において、高密度領域40aにおける流体連通路は、蛇行形状を有していてよい。すなわち、電解液および/または空気などの流体は、空孔部の少なくとも1つを介して、屈曲する複数の集電体延在部の隙間に沿って出入り可能となる。したがって、上述の構造は、注液された電解液の円滑な流入を助力するため、電解液のより効率的な注液を実現し得る。 In one aspect, the high-density region 40a extends from the end of the electrode winding body 50 to the inside through a plurality of holes 45 (for example, a plurality of holes that can be grasped in a cross-sectional view). may be in fluid communication with the Specifically, at least some of the pore portions 45 positioned in the high density region 40 a may be connected to each other through gaps formed between the current collector extension portions 40 . That is, the high-density region 40 a may be in fluid communication with the end portion of the electrode winding body 50 to the inside through at least one of the holes 45 . In such a structure, the fluid communication passages in the high density region 40a may have a serpentine shape. That is, fluid such as electrolyte and/or air can enter and exit along the gaps between the plurality of curved current collector extensions via at least one of the pores. Therefore, the structure described above facilitates smooth inflow of the injected electrolyte, so that more efficient injection of the electrolyte can be achieved.
 高密度領域40aは、電極巻回体50の端部に位置付けられていてよい。つまり、本開示の一実施形態において、高密度領域40aは、集電体延在部40の端部に位置付けられる。換言すれば、集電体延在部40の最も端の部分が圧縮されるように屈曲した形状を有することで、電極巻回体50の端部に高密度領域40aが形成されていてよい。端部に高密度領域40aを有する電極巻回体50は、高密度領域40aに設けられた1つまたは複数の空孔部45によって、電解液の注液および/または電極巻回体内部の脱気がより好適に為され得る。また、端部に高密度で集電体延在部40が存在することで、電極巻回体50の端面と電極端子81との間の電気的接続において、より広い接続有効面積が確保され得る。さらに、二次電池の組立における接合熱、および/または二次電池に加えられ得る外部からの衝撃などに起因する電極巻回体50の破損の発生を減ずることにも寄与し得る。したがって、電極巻回体50の端部に高密度領域40aを備える二次電池は、外部から加えられ得る熱および衝撃などによる電極巻回体の内部への影響をより低減しつつ、より好適な電解液の注液性を実現し得る。 The high density region 40 a may be positioned at the end of the electrode winding body 50 . That is, in one embodiment of the present disclosure, the high density region 40 a is positioned at the end of the current collector extension 40 . In other words, the high-density region 40 a may be formed at the end of the electrode wound body 50 by having a bent shape such that the end portion of the current collector extension portion 40 is compressed. The electrode winding body 50 having the high-density region 40a at the end portion is provided with one or more holes 45 provided in the high-density region 40a to inject the electrolytic solution and/or remove the inside of the electrode winding body. can be made more suitable. In addition, since the current collector extension portions 40 are present at the ends at high density, a wider connection effective area can be ensured in the electrical connection between the end surfaces of the electrode winding body 50 and the electrode terminals 81 . . Furthermore, it can contribute to reducing the occurrence of breakage of the electrode winding body 50 due to joining heat during assembly of the secondary battery and/or external impact that may be applied to the secondary battery. Therefore, the secondary battery including the high-density region 40a at the end of the electrode-wound body 50 is more suitable for reducing the influence on the inside of the electrode-wound body due to heat and shock that may be applied from the outside. Injectability of the electrolytic solution can be realized.
 ある好適な態様では、高密度領域40aを有する電極巻回体50の端部は、電極端子側の端部である。つまり、高密度領域40aは、電極巻回体50において、電極端子81(図3参照)側の端部に位置付けられていてよい。換言すれば、高密度領域40aは、電極端子81により近位する集電体延在部の端部に位置付けられていてよい。また、高密度領域40aは、図5に示すように、電極巻回体50の最端に位置づけられているとなおよい。すなわち、電極巻回体50の端部において、高密度領域40aは低密度領域40bより外側に位置付けられ、電極巻回体50の最端面を構成していてよい。かかる構造において、電極巻回体50の最端は、互いに折り重なる複数の集電体延在部40から構成されていてよい。電極巻回体50の最端に高密度領域40aが存在することで、電極巻回体50の端面と電極端子81との間の電気的接続において、より広い接続有効面積が確保され得る。 In a preferred embodiment, the end of the electrode winding body 50 having the high-density region 40a is the end on the electrode terminal side. That is, the high density region 40a may be positioned at the end of the electrode winding body 50 on the electrode terminal 81 (see FIG. 3) side. In other words, the high density region 40 a may be positioned at the end of the current collector extension that is more proximal to the electrode terminal 81 . Further, it is more preferable that the high-density region 40a be positioned at the extreme end of the electrode-wound body 50, as shown in FIG. That is, at the end of the electrode-wound body 50 , the high-density region 40 a may be positioned outside the low-density region 40 b and constitute the end face of the electrode-wound body 50 . In such a structure, the extreme end of the electrode winding body 50 may be composed of a plurality of current collector extension portions 40 that are folded over each other. The presence of the high-density region 40 a at the extreme end of the electrode-wound body 50 ensures a wider connection effective area in the electrical connection between the end face of the electrode-wound body 50 and the electrode terminal 81 .
 図5に示されるように、高密度領域40aが上述のような空孔部45を有する一方で、低密度領域40bは、集電体延在部40の間に空隙46を有していてよい。巻回軸Pを通る断面視において、空隙46は、高密度領域40aの空孔部45より相対的に大きい断面積を有し得る。かかる低密度領域40bの空隙46は、電極巻回体50から延在している集電体延在部40によって画定され、巻回軸Pを通る断面視で、巻回軸方向に長い形状を有していてよい。本開示の一実施形態において、空隙46は、隣接する複数の集電体延在部40の間にて、略規則的に配置されていてよい。さらに、空孔部45の少なくとも一部は、空隙46と流体連通していてよい。換言すれば、電極巻回体50は、空孔部45および空隙46を介して、電極巻回体50の端部から内部へと流体連通していてよい。かかる構造により、注液工程において、電解液および空気などの流体は、空孔部45および空隙46を介して、電極巻回体50の内部に出入り可能となる。 As shown in FIG. 5, the low density regions 40b may have voids 46 between the current collector extensions 40 while the high density regions 40a have voids 45 as described above. . In a cross-sectional view passing through the winding axis P, the voids 46 can have a relatively larger cross-sectional area than the void portions 45 of the high-density region 40a. The voids 46 of the low-density region 40b are defined by the current collector extending portions 40 extending from the electrode winding body 50, and are elongated in the winding axis direction in a cross-sectional view passing through the winding axis P. may have. In one embodiment of the present disclosure, the voids 46 may be arranged substantially regularly between adjacent current collector extensions 40 . Additionally, at least a portion of cavity 45 may be in fluid communication with cavity 46 . In other words, the electrode windings 50 may be in fluid communication from the ends of the electrode windings 50 to the inside via the cavities 45 and voids 46 . With such a structure, fluids such as electrolyte and air can enter and exit the electrode winding body 50 through the holes 45 and the gaps 46 in the liquid injection process.
 巻回軸を通る断面視で、低密度領域40bの空隙46を画定する集電体延在部40は、少なくとも一部が略直線状であってよい。ここで、「略直線状」とは、直線状に限定されず、図5に示すように、集電体延在部40が僅かな角度(180度に近い内角)で屈曲して連続するものを含む。例えば、「略直線状」は、約150°以上、または約160°以上の内角で屈曲して連続するものを含む。一方で、集電体延在部40は、低密度領域40bにおいて、少なくとも一部が屈曲していてよい。具体的には、空隙46を形成する集電体延在部40は、高密度領域40aの近傍において屈曲していてよい。すなわち、低密度領域40bの集電体延在部40は、略直線状に延在し、高密度領域40aの近傍において屈曲していてよい。 At least a portion of the current collector extension portion 40 defining the voids 46 of the low density region 40b may be substantially linear in a cross-sectional view passing through the winding axis. Here, the term “substantially linear” is not limited to a linear shape, and as shown in FIG. including. For example, "substantially linear" includes bending and continuing at an internal angle of about 150° or more, or about 160° or more. On the other hand, at least a portion of the current collector extension portion 40 may be bent in the low density region 40b. Specifically, the current collector extension 40 forming the void 46 may be bent in the vicinity of the high density region 40a. That is, the current collector extension portion 40 of the low density region 40b may extend substantially linearly and be bent in the vicinity of the high density region 40a.
 また、低密度領域40bの集電体延在部40の曲率は、高密度領域40aの集電体延在部40の曲率よりも小さくてよい。上述の構造により、高密度領域40a側から加えられ得る衝撃は、低密度領域40bでより好適に吸収され得る。さらに、低密度領域40bにおいて、集電体延在部40が相対的に小さい曲率で屈曲し、かつ略直線状に延在する部分を有することによって、空隙46をより広く確保できるため、電解液および空気などの流体がより好適に流体連通可能となり得る。 Further, the curvature of the current collector extension portion 40 in the low density region 40b may be smaller than the curvature of the current collector extension portion 40 in the high density region 40a. Due to the structure described above, the impact that may be applied from the high density region 40a side can be more preferably absorbed by the low density region 40b. Furthermore, in the low-density region 40b, the current collector extension portion 40 has a portion that bends with a relatively small curvature and extends substantially linearly, so that the voids 46 can be made wider, so that the electrolytic solution and fluids such as air can be more preferably fluidly communicable.
 本開示における「高密度領域」および「低密度領域」なる用語は、巻回軸Pを通る断面視において、集電体延在部40が占める面積比率から定義され得る。つまり、巻回軸Pを通る断面視において観察される集電体延在部の面積比率が、例えば約30%以上、約40%以上、約50%以上、または約60%以上である領域を「高密度領域」としてよい。換言すれば、巻回軸Pを通る断面視において観察される集電体延在部の面積比率が、例えば約30%未満、約40%未満、約50%未満、または約60%未満である領域を「低密度領域」としてよい。高密度領域および低密度領域における集電体延在部の専有面積が上述の範囲であると、衝撃耐性および注液性の点でより好適な電極巻回体が実現され得る。 The terms "high density region" and "low density region" in the present disclosure can be defined from the area ratio occupied by the current collector extension part 40 in a cross-sectional view passing through the winding axis P. That is, the area ratio of the current collector extending portion observed in a cross-sectional view passing through the winding axis P is, for example, about 30% or more, about 40% or more, about 50% or more, or about 60% or more. It may be referred to as a "high density area". In other words, the area ratio of the current collector extending portion observed in a cross-sectional view passing through the winding axis P is, for example, less than about 30%, less than about 40%, less than about 50%, or less than about 60%. A region may be referred to as a "low density region." When the area occupied by the current collector extending portion in the high-density region and the low-density region is within the above range, an electrode winding body more suitable in terms of impact resistance and liquid pourability can be realized.
 例えば、「高密度領域」は、巻回軸Pを通る断面視において、集電体延在部が占める面積比率が約30%以上約95%以下の範囲の領域であってよく、例えば約40%以上約95%以下、約50%以上約95%以下、または約60%以上約95%以下の範囲の領域であってよい。高密度領域における集電体延在部の専有面積が上述の範囲であると、衝撃耐性および注液性の点でより好適な電極巻回体が実現され得る。 For example, the "high density region" may be a region in which the current collector extension portion occupies an area ratio of about 30% or more and about 95% or less in a cross-sectional view passing through the winding axis P, for example, about 40%. % to about 95%, about 50% to about 95%, or about 60% to about 95%. When the area occupied by the current collector extending portion in the high-density region is within the above range, an electrode winding body more suitable in terms of impact resistance and liquid pourability can be realized.
 一方で、「低密度領域」は、巻回軸Pを通る断面視において、集電体延在部が占める面積比率が約3%以上約60%未満の範囲の領域であってよく、例えば約3%以上約50%未満、約5%以上約40%未満、または約5%以上約60%未満の範囲の領域であってよい。 On the other hand, the "low-density region" may be a region in which the current collector extension portion occupies an area ratio of about 3% or more and less than about 60% in a cross-sectional view passing through the winding axis P. For example, about The area may range from 3% to less than about 50%, from about 5% to less than about 40%, or from about 5% to less than about 60%.
 巻回軸Pが通る断面視において、集電体延在部が占める面積比率は、例えば集電体延在部の断面の撮像および画像処理によって算出され得る。具体的には、電極巻回体を樹脂固めした後、断面研磨することで集電体延在部の断面を切り出す。その後、電子顕微鏡を用いて断面を撮像および画像処理することにより測定することができる。 In a cross-sectional view passing through the winding axis P, the area ratio occupied by the current collector extension can be calculated, for example, by imaging and image processing the cross section of the current collector extension. Specifically, after the electrode winding body is resin-hardened, the section of the current collector extending portion is cut out by polishing the section. It can then be measured by imaging and processing the cross-sections using an electron microscope.
例えば、電極巻回体の集電体延在部を切り出し、樹脂で固める。ここで、切り出しには、ダイサー(アイソメット4000/ビューラー社製)を使用することができる。樹脂固めに用いる樹脂としては、エポフィックス樹脂(ストルアス社製)、硬化剤として、エポフィックス硬化剤(ストルアス社製)を使用することができる。 For example, the current collector extending portion of the electrode winding body is cut out and hardened with resin. Here, a dicer (ISOMET 4000/manufactured by Buehler) can be used for the cutting. Epofix resin (manufactured by Struers) can be used as the resin used for resin hardening, and Epofix curing agent (manufactured by Struers) can be used as the curing agent.
切り出した集電体延在部を樹脂で固めた後、観察面付近まで切断し、その後、研磨紙などを用いて観察面の面出しを行う。研磨方法は特に限定されないが、粗目の研磨紙を用いて粗削りし、その後、砥粒サイズの小さい研磨紙や研磨剤を用いて研磨することができる。また、研磨には、自動研磨機エコメット300(ビューラー社製)、研磨紙および/または化学機械研磨(CMP:Chemical Mechanical Polishing)を用いてもよい。好ましくは、断面を研磨紙220番および/または500番などで研磨し、その後、CMPを使用して研磨して面出しを行うとよい。面出しを行った研磨面を電子顕微鏡で撮像し、画像処理ソフトを用いて2値化することで、電極巻回体の断面において集電体延在部が占める面積比率を算出できる。研磨面の撮像に用いられる電子顕微鏡としては、例えばVHX-5000(キーエンス)が挙げられる。また、画像処理ソフトとしては、例えばGIMP2.1.0が挙げられる。画像処理としては、電子顕微鏡で撮像した画像をグレースケール化し、その後、2値化し、白黒比率を算出することで、集電体延在部が占める面積比率を算出することができる。 After solidifying the cut-out current collector extension part with resin, it is cut to the vicinity of the observation surface, and then the observation surface is leveled using abrasive paper or the like. The polishing method is not particularly limited, but rough polishing can be performed using coarse abrasive paper, and then polishing can be performed using abrasive paper or an abrasive having a small abrasive grain size. For polishing, an automatic polishing machine Ecomet 300 (manufactured by Buehler), polishing paper and/or chemical mechanical polishing (CMP) may be used. Preferably, the cross section is polished with abrasive paper No. 220 and/or No. 500 or the like, and then polished using CMP to level the surface. By taking an image of the surface-exposed polished surface with an electron microscope and binarizing it using image processing software, the area ratio occupied by the current collector extension part in the cross section of the electrode winding body can be calculated. An example of an electron microscope used for imaging a polished surface is VHX-5000 (Keyence). Image processing software includes GIMP 2.1.0, for example. As image processing, an image captured by an electron microscope is grayscaled, then binarized, and the white-black ratio is calculated, whereby the area ratio occupied by the extended portion of the current collector can be calculated.
 巻回軸Pを通る断面視で、高密度領域40aの厚みは、低密度領域40bの厚みよりも相対的に小さくても大きくてもよい。換言すれば、低密度領域40bは、高密度領域40aよりも相対的に大きい厚みを有していてよいし、または高密度領域40aよりも薄くてもよい。なお、低密度領域40bの厚みが高密度領域40aよりも大きい場合、電極巻回体50の内部に流入する電解液の注液量を増加させることができ、より好適な電解液の注液が実現され得る。さらに、より厚い低密度領域40bは、外部から加えられた衝撃をより好適に吸収できるため、二次電池の衝撃耐性の向上にも寄与し得る。 In a cross-sectional view passing through the winding axis P, the thickness of the high density region 40a may be relatively smaller or larger than the thickness of the low density region 40b. In other words, the low density regions 40b may have a relatively greater thickness than the high density regions 40a, or they may be thinner than the high density regions 40a. Note that when the thickness of the low-density region 40b is larger than that of the high-density region 40a, the injection amount of the electrolytic solution that flows into the electrode wound body 50 can be increased, and more suitable electrolytic solution injection can be performed. can be realized. Furthermore, the thicker low-density region 40b can more preferably absorb impacts applied from the outside, which can contribute to improving the impact resistance of the secondary battery.
 例えば、高密度領域40aの厚みは、低密度領域40bの厚みに対して、約5%以上約40%以下であることが好ましく、例えば約5%以上約30%以下であることができる。低密度領域40bの厚みに対する高密度領域40aの厚みが上述の範囲であると、衝撃耐性および注液性の点でより好適な電極巻回体が実現され得る。 For example, the thickness of the high-density region 40a is preferably about 5% or more and about 40% or less, for example, about 5% or more and about 30% or less, with respect to the thickness of the low-density region 40b. When the thickness of the high-density region 40a with respect to the thickness of the low-density region 40b is within the above range, an electrode winding body more suitable in terms of impact resistance and liquid pourability can be realized.
 また、本開示の一実施形態において、低密度領域40bには、セパレータ3が延在していてよい。換言すれば、低密度領域40bの空隙46の内部には、電極巻回体50の端部にて延在するセパレータ3が位置付けられていてよい。かかる実施形態において、セパレータ3は、集電体延在部40を有する正極および負極のいずれか一方の電極とは異なる他方の電極よりも、巻回軸Pに沿う方向にて外側に延在する。集電体延在部40は、セパレータ3よりもさらに外側に延在する。セパレータ3が他方の電極よりも延在することで、集電体延在部40を備える電極と他方の電極との間の導通が阻害されるため、短絡がより好適に防止され得る。さらに、集電体延在部40がセパレータ3よりも外側に延在することで、高密度領域40aにおいて、隣接する集電体延在部40の間へのセパレータ3の挟み込みが防止されるため、より大きい空孔部体積を確保することが可能となり得る。したがって、空孔部45を通過し得る流体の体積をより大きくすることが可能となり、より効率的な電解液の注液が実現され得る。 Further, in one embodiment of the present disclosure, the separator 3 may extend in the low density region 40b. In other words, the separator 3 extending at the end of the electrode winding 50 may be positioned inside the void 46 of the low density region 40b. In such an embodiment, the separator 3 extends outward in the direction along the winding axis P than the other electrode, which is different from either one of the positive electrode and the negative electrode having the current collector extension portion 40. . The current collector extension portion 40 extends further outward than the separator 3 . Since the separator 3 extends further than the other electrode, electrical continuity between the electrode having the current collector extension portion 40 and the other electrode is inhibited, so that short circuits can be more suitably prevented. Furthermore, since the current collector extension part 40 extends outside the separator 3, the separator 3 is prevented from being sandwiched between the adjacent current collector extension parts 40 in the high-density region 40a. , it may be possible to secure a larger pore volume. Therefore, the volume of fluid that can pass through the holes 45 can be increased, and more efficient electrolyte injection can be achieved.
 図3は、本開示の一実施形態に係る二次電池100の、巻回軸Pを通る断面を示す模式的断面図である。上述したように、本開示の二次電池100は、電極巻回体50と電気的に接続される電極端子81、および電極巻回体50を包み込む外装体60を有して成る。本開示の一実施形態において、外装体60の蓋部62は、中央に開口部を備えていてよい。そして、当該開口部を覆うように、電極端子構造体80が設けられていてよい。本開示において、電極端子構造体80は、その構造および構成に特に制限はない。例えば、電極端子構造体80は、電極端子81と蓋部62との間に設けられるガスケット部82を含んでいてよい。また、電極巻回体50の巻回中心に設けられた空洞には、例えばセンターピン90が挿入されていてよい。 FIG. 3 is a schematic cross-sectional view showing a cross section passing through the winding axis P of the secondary battery 100 according to one embodiment of the present disclosure. As described above, the secondary battery 100 of the present disclosure includes the electrode terminal 81 electrically connected to the electrode wound body 50 and the exterior body 60 enclosing the electrode wound body 50 . In one embodiment of the present disclosure, the lid portion 62 of the exterior body 60 may have an opening in the center. An electrode terminal structure 80 may be provided to cover the opening. In the present disclosure, the electrode terminal structure 80 is not particularly limited in its structure and configuration. For example, the electrode terminal structure 80 may include a gasket portion 82 provided between the electrode terminal 81 and the lid portion 62 . Further, for example, a center pin 90 may be inserted into the cavity provided at the winding center of the electrode winding body 50 .
 本開示において、ガスケット部82は、その形状および構成に特に制限はない。あくまでも一例であるが、ガスケット部82は、図3に示されるように電極端子81と外装体60との隙間を埋めるように設けられるところ、二次電池100の“封止”に資すると解することもできる。図3に示されるように、ガスケット部82は、電極端子81の外側の領域にまで広がるように、蓋部62に沿う形状を有していてよい。つまり、ガスケット部82は、電極端子81から外側へとはみ出すように、蓋部62上に設けられてよい。ガスケット部は、絶縁性を呈するものであれば、その材質は特に制限されない。 In the present disclosure, the shape and configuration of the gasket portion 82 are not particularly limited. Although it is only an example, the gasket part 82 is provided so as to fill the gap between the electrode terminal 81 and the outer package 60 as shown in FIG. can also As shown in FIG. 3 , the gasket portion 82 may have a shape along the cover portion 62 so as to extend to the area outside the electrode terminal 81 . That is, the gasket portion 82 may be provided on the lid portion 62 so as to protrude from the electrode terminal 81 to the outside. The material of the gasket portion is not particularly limited as long as it exhibits insulating properties.
 本開示において、電極端子81は、その形状および構成などに特に制限はない。電極端子81は、例えばリベット形状または平板形状であってよい。電極端子は、その材質に特に制限はなく、アルミニウム、ニッケル、および銅から成る群から選択される少なくとも1種の金属を含んでよい。図3に示されるように、電極端子81は、蓋部62に沿う形状であってよい。電極端子の平面視形状も特に制限されず、例えば略円形状、または略矩形状であってよい。 In the present disclosure, the electrode terminal 81 is not particularly limited in its shape and configuration. The electrode terminal 81 may have, for example, a rivet shape or a plate shape. The material of the electrode terminal is not particularly limited, and may contain at least one metal selected from the group consisting of aluminum, nickel, and copper. As shown in FIG. 3 , the electrode terminal 81 may have a shape along the lid portion 62 . The shape of the electrode terminal in plan view is also not particularly limited, and may be, for example, a substantially circular shape or a substantially rectangular shape.
 図3に示すように、本開示の二次電池は、電極端子81および外装体60のいずれか一方と電極巻回体50とを電気的に接続する集電板70(71、72)をさらに有して成ってよい。図6は、本開示の一実施形態に係る電極巻回体50と集電板70との組付けを説明するための模式図である。図示されるように、集電板70は、電極巻回体50の端部において、集電体延在部40(41、42)と電気的に接続されてよい。すなわち、電極巻回体50を構成する正極および負極は、集電体延在部40に接続される集電板70を介して、電極端子81および/または外装体60と、それぞれ電気的に接続されてよい。すなわち、正負極の集電板70は、電極端子81および/または外装体60を介して、外部へと電気的に導出されてよい(図3参照)。 As shown in FIG. 3 , the secondary battery of the present disclosure further includes a current collector plate 70 (71, 72) electrically connecting one of the electrode terminal 81 and the outer package 60 to the electrode winding body 50. You can have it. FIG. 6 is a schematic diagram for explaining assembly of the electrode winding body 50 and the current collector plate 70 according to an embodiment of the present disclosure. As illustrated, the current collector plate 70 may be electrically connected to the current collector extensions 40 (41, 42) at the ends of the electrode winding body 50. FIG. That is, the positive electrode and the negative electrode that constitute the electrode winding body 50 are electrically connected to the electrode terminal 81 and/or the exterior body 60 via the current collector plate 70 connected to the current collector extension portion 40, respectively. may be That is, the positive and negative current collector plates 70 may be electrically led out to the outside via the electrode terminals 81 and/or the exterior body 60 (see FIG. 3).
 集電板70は、電子の移動が達成され得る材料から構成されてよい。例えば、集電板70は銀、金、銅、鉄、スズ、プラチナ、アルミニウム、ニッケル、および/またはステンレス鋼などの導電性材料から構成され得る。集電板70の形状は特に限定されず、例えば帯状、平板状、または円板状であってよい。また、図6に示されるように、集電板70(71、72)は、電極端子81および/または外装体60との接続のための長尺部76を備えてよい。長尺部76は、集電板70と一体部材として構成されてよい。一体部材として構成されることで、二次電池の組立における長尺部76と集電板70との接続工程を省略することができる。 The current collector plate 70 may be made of a material that allows electron transfer to be achieved. For example, current collector plate 70 may be composed of conductive materials such as silver, gold, copper, iron, tin, platinum, aluminum, nickel, and/or stainless steel. The shape of the current collector plate 70 is not particularly limited, and may be, for example, strip-shaped, flat plate-shaped, or disc-shaped. In addition, as shown in FIG. 6, the current collector plate 70 (71, 72) may include a long portion 76 for connection with the electrode terminal 81 and/or the exterior body 60. As shown in FIG. The long portion 76 may be configured as an integral member with the current collector plate 70 . By configuring as an integral member, it is possible to omit the step of connecting the elongated portion 76 and the current collector plate 70 in the assembly of the secondary battery.
 正極集電体延在部41側および負極集電体延在部42側の集電板70は、それぞれ電極巻回体50の最端面に露出する集電体延在部40と電気的に接続されてよい。例えば、図3および図6に示されるように、正極集電体延在部41は集電板71を介して電極端子81に接続されてよく、かかる実施形態において、電極端子81は二次電池の正極として作用する。一方、負極集電体延在部42は集電板72を介して外装体60に接続されてよく、かかる実施形態において、外装体60は二次電池の負極として作用する。つまり、電極巻回体50と集電板71,72との間の電気的な接続は、集電体延在部41,42に集電板71,72がそれぞれ直接接続されることによって達成されてよい。 The current collector plates 70 on the side of the positive electrode current collector extension 41 and on the side of the negative electrode current collector extension 42 are electrically connected to the current collector extension 40 exposed on the endmost surface of the electrode wound body 50, respectively. may be For example, as shown in FIGS. 3 and 6, the positive electrode current collector extension 41 may be connected to the electrode terminal 81 via the current collector plate 71, and in such embodiments, the electrode terminal 81 is connected to the secondary battery. acts as the positive electrode of On the other hand, the negative electrode current collector extension 42 may be connected to the package 60 via the current collector plate 72, and in this embodiment, the package 60 acts as the negative electrode of the secondary battery. That is, the electrical connection between the electrode winding body 50 and the collector plates 71 and 72 is achieved by directly connecting the collector plates 71 and 72 to the collector extensions 41 and 42, respectively. you can
 このような構造により、電極と集電板の接続のためのリード線またはタブなどの接続用部材を別途必要とせずに、電極から延在する集電体延在部と集電板とを接続することができる。そのため、接続用部材の製造工程、および二次電池の組立における当該接続用部材の接続工程が省略され、二次電池の製造効率がより向上され得る。さらに、電極巻回体50と電極端子81との間、および/または電極巻回体50と外装体60との間に集電板71,72をそれぞれ設けることで、電極巻回体50の端面と電極端子81/外装体60との間に空間を設けることが可能となる。そのため、二次電池の内部空間が増加され、電解液の注液に際して、電解液の注液量を増やすことが可能となり得る。 With such a structure, the extension of the current collector extending from the electrode and the current collector plate are connected without requiring a separate connection member such as a lead wire or tab for connecting the electrode and the current collector plate. can do. Therefore, the manufacturing process of the connecting member and the connecting process of the connecting member in the assembly of the secondary battery can be omitted, and the manufacturing efficiency of the secondary battery can be further improved. Furthermore, by providing current collecting plates 71 and 72 between the electrode winding body 50 and the electrode terminal 81 and/or between the electrode winding body 50 and the exterior body 60, the end face of the electrode winding body 50 and the electrode terminal 81/the exterior body 60 can be provided with a space. As a result, the internal space of the secondary battery is increased, and it is possible to increase the injection amount of the electrolytic solution when the electrolytic solution is injected.
 図7および図8は、本開示の一実施形態に係る、集電板70を備える電極巻回体50を示す模式的部分断面拡大図である。図示されるように、集電板70は、集電体延在部40の高密度領域40aと互いに接合されてよい。すなわち、集電板70と集電体延在部40との接続は、電極巻回体50の端面において、高密度領域40aを構成する屈曲した集電体延在部40と集電板70とが互いに接合するように実施されてよい。このような構造によって、より高密度で端面に存在する集電体延在部40に対して集電板70が接続され、より大きい接合面積を確保することが可能となる。そのため、集電板70と集電体延在部40とがより強固に接続され、二次電池の耐久性がより向上され得る。 7 and 8 are schematic partial cross-sectional enlarged views showing the electrode winding body 50 including the current collector plate 70 according to one embodiment of the present disclosure. As shown, the current collector plate 70 may be joined together with the high density region 40a of the current collector extension 40 . That is, the connection between the current collector plate 70 and the current collector extension 40 is achieved by connecting the current collector extension 40 and the current collector plate 70 at the end surface of the electrode winding body 50 to form the high-density region 40a. may be implemented such that the are attached to each other. With such a structure, the current collector plate 70 is connected to the current collector extension portion 40 present at the end face at a higher density, and a larger bonding area can be secured. Therefore, the current collector plate 70 and the current collector extension portion 40 are more firmly connected, and the durability of the secondary battery can be further improved.
 図7に示されるように、高密度領域40aの空孔部45は、集電板70の内側表面の近傍に位置付けられてよい。ここで、「内側表面」とは、集電板70における高密度領域40aとの接合面を意味する。本開示の発明者らは、このような構造が、集電体延在部40と集電板70との熱接合に際して、集電板70における貫通穴の形成に寄与することを見出した。 As shown in FIG. 7, the holes 45 of the high density region 40a may be positioned near the inner surface of the current collector plate 70. As shown in FIG. Here, the "inner surface" means the joint surface of the current collector plate 70 with the high-density region 40a. The inventors of the present disclosure have found that such a structure contributes to the formation of through holes in the current collector plate 70 when the current collector extension portion 40 and the current collector plate 70 are thermally bonded.
 具体的には、集電板70と集電体延在部40との接続に際して、接合(例えば、溶接)のために加えられる熱によって、集電板70の内側表面の近傍の空孔部45の内部気体(例えば、空気)が加熱される。空孔部45内の温度上昇に伴って、内部空気の容積膨張が発生し、膨張した空気は、接合熱(例えば、溶接熱)によって溶解された集電板70を押しのけるように外部へ逃げる。押しのけられた箇所の金属はそのまま固化し、集電板70に貫通穴75が形成される(図8参照)。すなわち、集電板70の接合に際して、接合熱によって熱された空孔部45内の空気は、溶解している集電板70に貫通穴75を形成しながら外部に放出され得る。 Specifically, when connecting the current collector plate 70 and the current collector extension 40 , heat applied for joining (for example, welding) causes the hole portion 45 near the inner surface of the current collector plate 70 to open. The internal gas (eg, air) of is heated. As the temperature inside the hole portion 45 rises, the volume of the internal air expands, and the expanded air escapes to the outside so as to push away the current collector plate 70 melted by the joining heat (for example, welding heat). The pushed-out portion of the metal solidifies as it is, and a through hole 75 is formed in the collector plate 70 (see FIG. 8). That is, when the current collector plate 70 is joined, the air in the hole 45 heated by the heat of joining can be discharged to the outside while forming the through hole 75 in the melted current collector plate 70 .
 このように形成された貫通穴75は、空孔部45を介して電極巻回体50の内部に流体連通していてよい。そのため、貫通穴75は、電解液の注液および脱気に資することができ、電解液の注液口として機能し得る。以上のことから、集電板70との熱接合部(例えば、溶接部)および/または当該熱接合部の近傍に存在する空孔部45は、より好適な電解液の注液を実現し得る。さらに、集電板70に注液口を設ける工程を省略できるため、上述の構造は、二次電池の製造効率を向上させることにも寄与し得る。 The through hole 75 formed in this manner may be in fluid communication with the inside of the electrode winding body 50 via the hole portion 45 . Therefore, the through hole 75 can contribute to injection and degassing of the electrolytic solution, and can function as an injection port for the electrolytic solution. From the above, the thermal joint (for example, welded portion) with the current collector plate 70 and/or the hole portion 45 existing in the vicinity of the thermal joint can realize more suitable electrolyte injection. . Furthermore, since the step of providing the liquid injection port in the current collector plate 70 can be omitted, the above structure can contribute to improving the manufacturing efficiency of the secondary battery.
 ここで、「近傍」とは、広義には集電板70と集電体延在部40との接合に際して加えられる熱による影響を受け得る範囲を意味する。狭義には、本開示における「近傍」は、空孔部45を形成する集電体延在部40の少なくとも一部が、接合に際して加えられる熱によって溶解し得る範囲である。具体的には、集電板70の内側表面において、溶接箇所からの径方向距離が、例えば0mm以上(0mmを含まず)約3mm以下、0mm以上(0mmを含まず)約2mm以下、または0mm以上(0mmを含まず)約1mm以下の範囲を近傍とみなしてよい。空孔部45は、熱接合部の直下に位置付けられることがより好ましいものの、上述の貫通穴形成の効果が得られる範囲である限り、特に限定されない。 Here, the "nearby" broadly means a range that can be affected by the heat applied when the current collector plate 70 and the current collector extension portion 40 are joined together. In a narrow sense, the “neighborhood” in the present disclosure is a range in which at least part of the current collector extension portion 40 forming the hole portion 45 can be melted by heat applied during bonding. Specifically, on the inner surface of the current collector plate 70, the radial distance from the welding point is, for example, 0 mm or more (excluding 0 mm) and about 3 mm or less, 0 mm or more (excluding 0 mm) and about 2 mm or less, or 0 mm. A range of about 1 mm or less (not including 0 mm) may be regarded as the vicinity. Although it is more preferable that the hole portion 45 is positioned immediately below the thermal joint portion, the hole portion 45 is not particularly limited as long as the effect of forming the through hole described above can be obtained.
 集電板70に形成された貫通穴75は、空孔部45と流体連通していてよい。また、貫通穴75は、高密度領域における複数の空孔部45と流体連通していてもよい。かかる貫通穴75は、集電体延在部40との熱接合前に予め集電板70に形成された貫通穴75、および熱接合に際して形成された貫通穴75の少なくとも一方を含む。つまり、貫通穴75は、集電体70を熱接合する前に予め形成されていてもよい。貫通穴75と空孔部45とが流体連通した構造により、注液に際して、電解液が貫通穴75を介して空孔部内に流入することが可能となるため、より好適な電解液の注液が実現され得る。 A through hole 75 formed in the current collector plate 70 may be in fluid communication with the hole portion 45 . Also, the through holes 75 may be in fluid communication with a plurality of voids 45 in the high density region. Such through-holes 75 include at least one of the through-holes 75 previously formed in the current collector plate 70 before thermal bonding with the current collector extension portion 40 and the through-holes 75 formed during thermal bonding. In other words, the through hole 75 may be formed in advance before the current collector 70 is thermally bonded. Due to the structure in which the through holes 75 and the holes 45 are in fluid communication, the electrolytic solution can flow into the holes through the through holes 75 at the time of injection. can be realized.
 また、空孔部45に流体連通する貫通穴75は、さらに電極巻回体50の内部にまで流体連通していてよい。つまり、集電板70の貫通穴75は、空孔部45を介して、電極巻回体50の内部にまで流体連通していてよい。また、貫通穴75は、高密度領域40aにおける複数の空孔部45(好ましくは、断面視で捉えられる複数の空孔部)を介して、電極巻回体50の内部にまで流体連通していてもよい。このような構造において、電解液は、1つまたは複数の空孔部45を経由して、貫通穴75から電極巻回体50の内部に注液されてよい。また、電極巻回体50の内部の気体は、注液に際して、1つまたは複数の空孔部45を経由して、貫通穴75から電極巻回体50の外部に脱気されてよい。したがって、高密度領域40aに形成された空孔部45は、電極巻回体50の内部と集電板70の貫通穴75との間の流体経路として作用することができる。このため、電極巻回体50の内部と外部との流体の出入りがより効率化され、より好適な電解液の注液が実現され得る。 Further, the through hole 75 fluidly communicating with the hole portion 45 may further fluidly communicate with the inside of the electrode wound body 50 . That is, the through holes 75 of the current collector plate 70 may be in fluid communication with the inside of the electrode winding body 50 via the holes 45 . In addition, the through holes 75 are in fluid communication with the inside of the electrode wound body 50 via a plurality of holes 45 (preferably a plurality of holes that can be seen in cross section) in the high-density region 40a. may In such a structure, the electrolyte may be injected into the electrode winding body 50 from the through hole 75 via one or more holes 45 . Further, the gas inside the electrode-wound body 50 may be degassed to the outside of the electrode-wound body 50 from the through-hole 75 via one or a plurality of holes 45 at the time of liquid injection. Therefore, the holes 45 formed in the high-density region 40 a can act as fluid paths between the inside of the electrode winding body 50 and the through holes 75 of the current collector plate 70 . Therefore, the flow of fluid between the inside and the outside of the electrode winding body 50 is made more efficient, and more suitable electrolyte injection can be realized.
 集電体70の厚みは、集電体延在部40との熱接合が可能である限り、特に制限されない。より詳細には、巻回軸Pが通る断面視において、集電板70の厚みは、熱接合に際して上述した貫通穴75が形成可能である限り、特に制限されない。例えば、巻回軸Pが通る断面視において、集電板70の厚みは、高密度領域40aの厚みに対して約0.2倍以上約10倍以下であってよく、例えば約0.5倍以上約5倍以下の範囲の値であることができる。換言すれば、巻回軸Pを通る断面視において、高密度領域40aの厚みは、集電板70の厚みに対して約0.1倍以上約5倍以下であってよく、例えば約0.5倍以上約4倍以下の範囲の値であることができる。 The thickness of the current collector 70 is not particularly limited as long as thermal bonding with the current collector extension portion 40 is possible. More specifically, in a cross-sectional view passing through the winding axis P, the thickness of the current collector plate 70 is not particularly limited as long as the above-described through holes 75 can be formed during thermal bonding. For example, in a cross-sectional view passing through the winding axis P, the thickness of the current collector plate 70 may be about 0.2 times or more and about 10 times or less the thickness of the high-density region 40a, for example, about 0.5 times. Values can range from greater than or equal to about 5 times less. In other words, in a cross-sectional view passing through the winding axis P, the thickness of the high-density region 40a may be about 0.1 times or more and about 5 times or less the thickness of the current collector plate 70, for example, about 0.5 times. It can be a value in the range of greater than or equal to 5 times and less than or equal to about 4 times.
 ある態様では、図7および図8に示されるように、巻回軸Pを通る断面視において、高密度領域40aの厚みは、集電体70の厚みよりも相対的に大きくてよい。すなわち、本開示の一実施形態において、断面視で集電体70の厚みよりも大きい厚みを有する高密度領域40aを構成するように、集電体延在部40が互いに折り重ねられる。例えば、巻回軸を通る断面視において、高密度領域40aの厚みは、集電板70の厚みに対して約1.05倍以上約5倍以下であってよく、例えば約1.5倍以上約4倍以下の範囲の値であることができる。 In one aspect, as shown in FIGS. 7 and 8, the thickness of the high-density region 40a may be relatively greater than the thickness of the current collector 70 in a cross-sectional view passing through the winding axis P. That is, in one embodiment of the present disclosure, the current collector extensions 40 are folded over each other so as to form a high-density region 40a having a thickness greater than that of the current collector 70 in cross-sectional view. For example, in a cross-sectional view passing through the winding axis, the thickness of the high-density region 40a may be about 1.05 times or more and about 5 times or less the thickness of the current collector plate 70, for example, about 1.5 times or more. Values in the range of about 4 times or less can be used.
 より十分な厚みの高密度領域40aを有する電極巻回体50は、集電板70との熱接合に際して、接合のための熱が電極巻回体50の構成要素に与え得る影響を減ずることができる。特に、接合に際して加えられる熱は、電極巻回体50を構成するセパレータ3を破損させる要因となり得る。そのため、電極内部に接合熱を伝えにくい本実施形態の二次電池は、二次電池の耐久性をより向上させることに寄与し得る。さらに、集電体延在部40と集電板70との接合によって貫通穴75を形成するに際して、集電板70より大きい厚みを有する高密度領域40aは、集電板70の溶解箇所から膨張した空気を優先的に脱気させることにも寄与し得る。したがって、高密度領域40aが集電体と比較してより大きい厚みを有することは、貫通穴75の形成を促進し、より好適な電解液の注液に助力し得る。 The electrode winding body 50 having the high-density region 40a with a sufficient thickness can reduce the influence of heat for bonding on the components of the electrode winding body 50 when thermally bonding with the current collector plate 70. can. In particular, the heat applied during bonding can cause damage to the separators 3 forming the electrode winding body 50 . Therefore, the secondary battery of the present embodiment, in which bonding heat is less likely to be transferred to the inside of the electrode, can contribute to further improving the durability of the secondary battery. Furthermore, when the through hole 75 is formed by joining the current collector extending portion 40 and the current collector plate 70 , the high density region 40 a having a thickness larger than the current collector plate 70 expands from the melted portion of the current collector plate 70 . It can also contribute to preferentially degassing the air that has been degassed. Therefore, having the high-density region 40a have a greater thickness than the current collector facilitates the formation of the through-holes 75 and can assist in more suitable electrolyte injection.
[本開示に係る二次電池の製造方法]
 次に、本開示の二次電池の製造方法について、図9~図13を参照しながら説明する。なお、以下に説明する方法は一例にすぎず、本開示の実施形態に係る二次電池の製造方法は、以下の方法に限定されるものではない。
[Manufacturing method of secondary battery according to the present disclosure]
Next, a method for manufacturing the secondary battery of the present disclosure will be described with reference to FIGS. 9 to 13. FIG. Note that the method described below is merely an example, and the method for manufacturing a secondary battery according to the embodiment of the present disclosure is not limited to the following method.
 本開示に係る二次電池は、以下の工程を含む製造方法によって製造することができる。つまり、本開示に係る二次電池の製造方法は、正極1、負極2およびそれらの間に配置されたセパレータ3を巻回し、電極巻回体50を形成する工程(電極巻回体の形成工程)、集電体延在部を有する電極巻回体50の端面を整形する工程(端面の整形工程)、ならびに電極巻回体50に集電板を取り付ける工程(集電板の取付工程)、電極巻回体50を外装体60に収容させつつ、外装体60内に電解質を注入する工程(収容工程)を含む。 A secondary battery according to the present disclosure can be manufactured by a manufacturing method including the following steps. That is, the method for manufacturing a secondary battery according to the present disclosure includes a step of winding the positive electrode 1, the negative electrode 2, and the separator 3 disposed therebetween to form the electrode-wound body 50 (electrode-wound body forming step ), a step of shaping the end surface of the electrode winding body 50 having the current collector extension portion (end face shaping step), and a step of attaching a current collector plate to the electrode winding body 50 (current collector mounting step), A step of injecting an electrolyte into the exterior body 60 while housing the electrode wound body 50 in the exterior body 60 (accommodation process) is included.
 (電極巻回体の形成工程)
 図9は、本開示の一実施形態に係る二次電池を構成する電極巻回体50の構成部材を説明するための模式図である。また、図10は、本開示の一実施形態に係る電極巻回体50の巻回態様を説明するための模式的斜視図である。本工程においては、矩形状を有する正極1、負極2およびセパレータ3を所定の順序で互いに重なるように巻回することで、電極巻回体50を得る。以下に、本開示の一実施形態に係る電極巻回体の形成工程について説明する。
(Step of Forming Electrode Winding Body)
FIG. 9 is a schematic diagram for explaining constituent members of the electrode-wound body 50 that constitutes the secondary battery according to one embodiment of the present disclosure. Moreover, FIG. 10 is a schematic perspective view for explaining the winding mode of the electrode wound body 50 according to one embodiment of the present disclosure. In this step, the electrode winding body 50 is obtained by winding the positive electrode 1, the negative electrode 2 and the separator 3 having a rectangular shape so as to overlap each other in a predetermined order. A process of forming an electrode winding body according to an embodiment of the present disclosure will be described below.
 本工程において、まずは、正極1、負極2、および2枚のセパレータ3を所定の順序で配置する。図9に示すように、正極1または負極2は、長尺辺側(巻回前)に位置するいずれか一方の端辺において、集電体が露出している正極集電体延在部41または負極集電体延在部42を有する。その際、図10に示すように、正極1と負極2との間にセパレータ3を重ねて、正極集電体延在部41が負極2およびセパレータ3より外側に延在し、かつ負極集電体延在部42が正極およびセパレータ3より外側に延在する状態で配置する。つまり、正極材層と負極材層とがセパレータを介して互いに対向するように互いに重ねて、電極構成層の長尺辺側(巻回前)のいずれか一方の端辺にて正極集電体延在部41が延在し、他方の端辺にて負極集電体延在部42が延在している状態で配置し、巻回する。 In this process, first, the positive electrode 1, the negative electrode 2, and the two separators 3 are arranged in a predetermined order. As shown in FIG. 9, the positive electrode 1 or the negative electrode 2 has a positive electrode current collector extension portion 41 where the current collector is exposed at one of the long sides (before winding). Alternatively, it has the negative electrode current collector extension portion 42 . At that time, as shown in FIG. 10, the separator 3 is superimposed between the positive electrode 1 and the negative electrode 2, and the positive electrode current collector extension part 41 extends outside the negative electrode 2 and the separator 3, and the negative electrode current collector The body extension part 42 is arranged so as to extend outside the positive electrode and the separator 3 . That is, the positive electrode material layer and the negative electrode material layer are stacked so that they face each other with the separator interposed therebetween, and the positive electrode current collector is placed on one of the long sides (before winding) of the electrode configuration layer. The extension part 41 is extended and the negative electrode current collector extension part 42 is extended at the other end side, and the electrode is arranged and wound.
 図11は、本開示の一実施形態に係る巻回後の電極巻回体50を示す模式的斜視図である。また、図12は、図11の電極巻回体50において、巻回軸Pを通るC-C線断面を矢印方向で見たときの模式的断面図である。集電体延在部40の巻回軸方向の長さ寸法w1(図9参照)は、所望の電極巻回体が得られる限り特に制限されない。例えば、集電体延在部40の巻回軸方向の長さ寸法w1(特に、巻回前または後述する端面整形前の長さ寸法)は、通常、約0.5mm以上約20mm以下であることが好ましく、例えば約1mm以上約15mm以下であってよい。正極集電体延在部41及び負極集電体延在部42は、それぞれ同じ長さ寸法w1を有していてよく、または互いに異なる長さ寸法w1であってもよい。 FIG. 11 is a schematic perspective view showing the electrode winding body 50 after winding according to one embodiment of the present disclosure. 12 is a schematic cross-sectional view of the wound electrode body 50 of FIG. 11, taken along the line CC passing through the winding axis P, viewed in the direction of the arrow. The length w1 (see FIG. 9) of the current collector extending portion 40 in the winding axis direction is not particularly limited as long as a desired electrode winding can be obtained. For example, the length dimension w1 of the current collector extension portion 40 in the direction of the winding axis (particularly, the length dimension before winding or before end face shaping, which will be described later) is usually about 0.5 mm or more and about 20 mm or less. is preferably about 1 mm or more and about 15 mm or less. The positive electrode current collector extension portion 41 and the negative electrode current collector extension portion 42 may each have the same length dimension w1, or may have mutually different length dimensions w1.
 使用するセパレータ3および正負極の寸法は、所望の電極巻回体が得られる限り特に限定されない。例えば、セパレータ3の長尺方向の長さ寸法は、目的とする二次電池の寸法(特に電極巻回体の巻回数)に応じて、適宜決定されてよい。 The dimensions of the separator 3 and the positive and negative electrodes to be used are not particularly limited as long as the desired electrode winding body can be obtained. For example, the length dimension of the separator 3 in the longitudinal direction may be appropriately determined according to the dimensions of the intended secondary battery (in particular, the number of windings of the electrode winding body).
(端面の整形工程)
 先の工程によって得られた電極巻回体50の端部において、集電体延在部40の少なくとも一部を屈曲させることで、整形された電極巻回体50の端面を得る。屈曲は、集電体延在部40を押圧することによって実施されてよい。端面の整形に際して、電極巻回体50の端部は、屈曲された集電体延在部40が電極巻回体50の外周より外側にはみ出すことのないように、電極巻回体50の内周側に向かって集電体延在部40を折り重ねるように屈曲されてよい。また、後続の工程において集電板70(図6参照)との接続をより強固にするため、屈曲された集電体延在部40の少なくとも一部が巻回軸Pに対して垂直な方向に略平面を供するように、端面を整形してよい。本開示における「略平面」とは、物理的に厳密な意味で平らな面ではなく、微小な凹凸が存在する形状、または全体的もしくは部分的に微小な歪みがある場合を含むことを意味する。すなわち、整形された端面には、空孔部の少なくとも一部が露出していてよい。
(End face shaping process)
At the end of the electrode winding body 50 obtained in the previous step, at least a portion of the current collector extending portion 40 is bent to obtain a shaped end face of the electrode winding body 50 . Bending may be performed by pressing the current collector extension 40 . When shaping the end face, the end portion of the electrode winding body 50 is bent inside the electrode winding body 50 so that the current collector extension portion 40 does not protrude outside the outer circumference of the electrode winding body 50 . It may be bent so as to fold the current collector extension portion 40 toward the circumferential side. Moreover, in order to make the connection with the current collector plate 70 (see FIG. 6) stronger in subsequent steps, at least a portion of the bent current collector extension portion 40 is bent in a direction perpendicular to the winding axis P. The end faces may be shaped to provide a substantially flat surface to the . The term "substantially flat" in the present disclosure means that it is not a flat surface in a strict physical sense, but includes a shape with fine unevenness, or a case where there is a fine distortion entirely or partially. . That is, at least a portion of the hole may be exposed on the shaped end face.
 整形は、例えば集電体延在部40を外側から押圧することによって実施されてよい。図13は、本開示の一実施形態に係る端面整形の一例を説明するための模式的平面図である。集電体延在部40は、平面視において、電極巻回体50の外周側から内周側に向かって渦巻状に押圧されてよい。かかる押圧方法により、集電体延在部40は、端面において折り重ねられるように倒され、巻回軸Pに対して垂直な方向に略平面を供し得る。 Shaping may be performed, for example, by pressing the current collector extension 40 from the outside. FIG. 13 is a schematic plan view for explaining an example of end face shaping according to an embodiment of the present disclosure; The current collector extension part 40 may be spirally pressed from the outer peripheral side to the inner peripheral side of the electrode wound body 50 in plan view. By such a pressing method, the current collector extension part 40 can be laid down so as to be folded over at the end surface, and can provide a substantially flat surface in a direction perpendicular to the winding axis P. As shown in FIG.
 電極巻回体50の端面の整形手段は、所望の端面が得られる限り特に限定されない。例えば、電極巻回体50の端面に対して、外側から押圧部材を押し当て、電極巻回体50および/または押圧部材を巻回軸Pに対して垂直な方向に移動させることによって、端面が整形されてよい。押圧部材は、所望の電極巻回体50の端面が得られる限り、その構造、材質、および個数などは特に限定されない。押圧部材としては、例えば、押圧ローラまたは押圧板などを挙げることができる。 The means for shaping the end face of the electrode winding body 50 is not particularly limited as long as the desired end face can be obtained. For example, by pressing a pressing member against the end face of the electrode wound body 50 from the outside and moving the electrode wound body 50 and/or the pressing member in a direction perpendicular to the winding axis P, the end face is may be shaped. The structure, material, number, etc. of the pressing member are not particularly limited as long as a desired end surface of the wound electrode body 50 can be obtained. Examples of the pressing member include a pressing roller and a pressing plate.
(集電板の取付工程)
 先の工程で整形された電極巻回体50の端面に対して、集電板70を電気的に接続する(図6~8参照)。集電板70は、電極巻回体50に形成された平面と互いに接合するように取り付けられてよい。接合は、熱接合によって実施され、例えば溶接、または溶着などによって接合されてよい。一例として、集電板70と電極巻回体50とは、レーザー照射法によって溶接されてよい。例えば、集電板70側からレーザーを照射することにより、集電板70と集電板70直下の集電体延在部40を溶解し、合金化させることで導通が得られる。また、集電板70の内側表面の近傍(好ましくは、熱接合部および/または熱接合部の近傍)に存在する空孔部45にレーザー熱を加えることで、空孔部45内の空気を熱膨張させ、集電板70に貫通穴75を形成させてよい。
(Mounting process of current collector)
A collector plate 70 is electrically connected to the end surface of the electrode winding body 50 shaped in the previous step (see FIGS. 6 to 8). The current collector plate 70 may be attached so as to join with the flat surface formed on the electrode winding body 50 . The joining may be performed by thermal bonding, for example by welding, welding or the like. As an example, the current collector plate 70 and the electrode winding body 50 may be welded by a laser irradiation method. For example, by irradiating the current collector plate 70 with a laser, the current collector plate 70 and the current collector extension portion 40 immediately below the current collector plate 70 are melted and alloyed to obtain electrical continuity. In addition, by applying laser heat to the holes 45 existing in the vicinity of the inner surface of the current collector plate 70 (preferably, the thermal joint and/or the vicinity of the thermal joint), the air in the holes 45 is removed. A through hole 75 may be formed in the current collector plate 70 by thermal expansion.
(収容工程)
 集電板が取り付けられた電極巻回体を外挿体に収容させつつ、集電板を電極端子または外装体に電気的に接続し、外装体内に電解液を注入する。以下、外装体が本体部および蓋部から構成され、蓋部に電極端子を設ける場合の一態様について、例示的に説明する。
(Accommodation process)
While the electrode winding body to which the current collector plate is attached is accommodated in the outer insert, the current collector plate is electrically connected to the electrode terminal or the outer package, and the electrolytic solution is injected into the outer package. An example of a case where the exterior body is composed of a main body portion and a lid portion and electrode terminals are provided on the lid portion will be described below by way of example.
 まず、蓋部、電極端子、および当該蓋部と当該電極端子との隙間を埋めるように設けられた絶縁部材(例えば、ガスケット部)とを接着させる。次いで、集電板から延在する長尺部、電極端子または外装体に向かって予め仮曲げして形状を整えた後、長尺部を電極端子または外装体に接続させる。次いで、外装体の本体部と蓋部とを接着する。最後に、電解液を外装体の注入口(図示せず)から注入し、注入口を封止プラグ(図示せず)で閉塞すればよい。接着は、二次電池の分野で公知であるあらゆる方法によって達成されてよく、例えば、レーザー照射法を用いてよい。 First, the lid, the electrode terminals, and an insulating member (for example, a gasket) provided to fill the gap between the lid and the electrode terminals are adhered. Next, after preliminarily bending the elongated portion extending from the current collector plate toward the electrode terminal or the exterior body to fix the shape, the elongated portion is connected to the electrode terminal or the exterior body. Next, the main body and the lid of the outer package are bonded together. Finally, the electrolytic solution is injected from an injection port (not shown) of the outer package, and the injection port is closed with a sealing plug (not shown). Adhesion may be achieved by any method known in the field of secondary batteries, for example laser irradiation may be used.
 以上、本開示の実施形態について説明してきたが、あくまでも典型例を例示したに過ぎない。本開示はこれに限定されず、本開示の要旨を変更しない範囲において種々の態様が考えられることを、当業者は容易に理解されよう。 Although the embodiments of the present disclosure have been described above, they are merely examples of typical examples. A person skilled in the art will easily understand that the present disclosure is not limited to this, and that various aspects are conceivable without changing the gist of the present disclosure.
 本開示に係る二次電池は、蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、本開示の二次電池は、モバイル機器などが使用される電気・情報・通信分野(例えば、携帯電話、スマートフォン、ノートパソコンおよびデジタルカメラ、活動量計、アームコンピューター、電子ペーパー、RFIDタグ、カード型電子マネー、スマートウォッチなどの小型電子機などを含む電気・電子機器分野あるいはモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、ならびに、医療用途(イヤホン補聴器などの医療用機器分野)、医薬用途(服用管理システムなどの分野)、IoT分野、宇宙・深海用途(例えば、宇宙探査機、潜水調査船などの分野)などにも本開示を利用することができる。 The secondary battery according to the present disclosure can be used in various fields where power storage is assumed. Although it is only an example, the secondary battery of the present disclosure is used in the electric, information, and communication fields where mobile devices are used (for example, mobile phones, smartphones, laptops and digital cameras, activity meters, arm computers, electronic Paper, RFID tags, card-type electronic money, electric and electronic equipment fields including small electronic devices such as smart watches, or mobile device fields), household and small industrial applications (e.g., power tools, golf carts, household and nursing care・Industrial robot field), large industrial applications (e.g. forklifts, elevators, harbor cranes), transportation system fields (e.g. hybrid vehicles, electric vehicles, buses, trains, power-assisted bicycles, electric motorcycles, etc.) ), power system applications (for example, fields such as various power generation, load conditioners, smart grids, and general household electrical storage systems), medical applications (medical device fields such as earphone hearing aids), pharmaceutical applications (medication management systems, etc.) field), IoT field, space/deep-sea applications (for example, fields of space probes, submersible research vessels, etc.), and the like.
1   正極
11  正極集電体
12  正極材層
2   負極
21  負極集電体
22  負極材層
3   セパレータ
5   電極構成層
50  電極巻回体
40  集電体延在部
40a 高密度領域
40b 低密度領域
41  正極集電体延在部
42  負極集電体延在部
45  空孔部
46  空隙
60  外装体
61  本体部
62  蓋部
70  集電板
71  正極集電板
72  負極集電板
75  貫通穴
76  長尺部
80  電極端子構造体
81  電極端子
82  ガスケット部
90  センターピン
100 二次電池
1 Positive Electrode 11 Positive Electrode Current Collector 12 Positive Electrode Material Layer 2 Negative Electrode 21 Negative Electrode Current Collector 22 Negative Electrode Material Layer 3 Separator 5 Electrode Configuration Layer 50 Electrode Winding Body 40 Current Collector Extension 40a High Density Region 40b Low Density Region 41 Positive Electrode Current collector extension portion 42 Negative electrode current collector extension portion 45 Hole portion 46 Air gap 60 Exterior body 61 Body portion 62 Lid portion 70 Current collector plate 71 Positive electrode current collector plate 72 Negative electrode current collector plate 75 Penetration hole 76 Elongated portion 80 electrode terminal structure 81 electrode terminal 82 gasket portion 90 center pin 100 secondary battery

Claims (13)

  1.  正極と、負極と、前記正極および前記負極の間に配置されたセパレータと、から構成される電極巻回体を有して成り、
     前記電極巻回体の端部の少なくとも一方において、前記正極または前記負極のいずれか一方の電極は、他方の電極よりも外側に集電体が延在している集電体延在部を有して成り、
     前記集電体延在部は、該集電体延在部の密度が相対的に高い高密度領域および前記密度が相対的に低い低密度領域を有して成り、
     前記高密度領域は、断面視において空孔部を有する、二次電池。
    comprising an electrode winding body composed of a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode;
    At least one of the ends of the electrode winding body, either one of the positive electrode and the negative electrode has a current collector extension portion in which a current collector extends outside the other electrode. formed by
    The current collector extension has a high density region where the density of the current collector extension is relatively high and a low density region where the density is relatively low,
    The secondary battery, wherein the high-density region has pores in a cross-sectional view.
  2.  前記高密度領域が、前記集電体延在部の端部に位置付けられている、請求項1に記載の二次電池。 The secondary battery according to claim 1, wherein the high-density region is positioned at the end of the current collector extension.
  3.  前記集電体延在部が、前記高密度領域において屈曲しており、
     前記空孔部は、前記屈曲した前記集電体延在部によって画定されている、請求項1または2に記載の二次電池。
    the current collector extension is bent in the high density region,
    3. The secondary battery according to claim 1, wherein said void is defined by said bent current collector extension.
  4.  前記空孔部を介して、前記高密度領域が前記電極巻回体の前記端部から内部へと流体連通している、請求項1~3のいずれかに記載の二次電池。 The secondary battery according to any one of claims 1 to 3, wherein the high-density region is in fluid communication from the end of the electrode winding body to the inside through the void.
  5.  断面視にて、前記集電体延在部に占める前記高密度領域が面積比率で40%以上95%以下である、請求項1~4のいずれかに記載の二次電池。 The secondary battery according to any one of claims 1 to 4, wherein the area ratio of the high-density region in the extended portion of the current collector is 40% or more and 95% or less in a cross-sectional view.
  6.  前記集電体延在部が、前記セパレータよりも外側に延在している、請求項1~5のいずれかに記載の二次電池。 The secondary battery according to any one of claims 1 to 5, wherein the current collector extending portion extends outside the separator.
  7.  前記電極巻回体と電気的に接続される電極端子と、前記電極巻回体を包み込む外装体と、ならびに前記電極端子および前記外装体の少なくとも一方と前記電極巻回体とを電気的に接続する集電板と、をさらに有して成り、
     前記集電板は、前記集電体延在部と電気的に接続される、請求項1~6のいずれかに記載の二次電池。
    an electrode terminal electrically connected to the electrode winding body; an exterior body enclosing the electrode winding body; and electrically connecting at least one of the electrode terminal and the exterior body to the electrode winding body. and a current collector plate for
    7. The secondary battery according to claim 1, wherein said current collector plate is electrically connected to said current collector extension.
  8.  前記集電板と前記高密度領域とが互いに接合している、請求項7に記載の二次電池。 The secondary battery according to claim 7, wherein the current collector plate and the high-density region are bonded to each other.
  9.  前記空孔部が、前記集電板の内側表面の近傍に少なくとも位置付けられている、請求項7または8に記載の二次電池。 The secondary battery according to claim 7 or 8, wherein the holes are positioned at least in the vicinity of the inner surface of the current collector plate.
  10.  前記集電板が貫通穴を有して成り、該貫通穴は前記空孔部と流体連通する、請求項9に記載の二次電池。 The secondary battery according to claim 9, wherein the current collector plate has a through hole, and the through hole is in fluid communication with the hole.
  11.  前記貫通穴が、前記空孔部を介して、前記電極巻回体の内部へと流体連通している、請求項10に記載の二次電池。 11. The secondary battery according to claim 10, wherein the through hole is in fluid communication with the inside of the electrode winding body through the hole.
  12.  断面視において、前記高密度領域の厚みが前記集電板の厚みよりも相対的に大きい、請求項7~11のいずれかに記載の二次電池。 The secondary battery according to any one of claims 7 to 11, wherein the thickness of the high-density region is relatively larger than the thickness of the current collector plate in a cross-sectional view.
  13.  前記高密度領域は、複数の前記集電体延在部が互いに折り重ねられた構造を少なくとも一部に有する、請求項1~12のいずれかに記載の二次電池。 The secondary battery according to any one of claims 1 to 12, wherein the high-density region has, at least in part, a structure in which a plurality of current collector extension portions are folded over each other.
PCT/JP2022/036421 2021-10-01 2022-09-29 Secondary battery WO2023054579A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-162869 2021-10-01
JP2021162869 2021-10-01

Publications (1)

Publication Number Publication Date
WO2023054579A1 true WO2023054579A1 (en) 2023-04-06

Family

ID=85782876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036421 WO2023054579A1 (en) 2021-10-01 2022-09-29 Secondary battery

Country Status (1)

Country Link
WO (1) WO2023054579A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243372A (en) * 1999-02-22 2000-09-08 Sanyo Electric Co Ltd Secondary battery
WO2014054733A1 (en) * 2012-10-03 2014-04-10 新神戸電機株式会社 Secondary battery
JP2020140863A (en) * 2019-02-28 2020-09-03 株式会社Gsユアサ Power storage element
WO2021020237A1 (en) * 2019-07-30 2021-02-04 株式会社村田製作所 Secondary battery, battery pack, electronic device, electric tool, electric airplane and electric vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243372A (en) * 1999-02-22 2000-09-08 Sanyo Electric Co Ltd Secondary battery
WO2014054733A1 (en) * 2012-10-03 2014-04-10 新神戸電機株式会社 Secondary battery
JP2020140863A (en) * 2019-02-28 2020-09-03 株式会社Gsユアサ Power storage element
WO2021020237A1 (en) * 2019-07-30 2021-02-04 株式会社村田製作所 Secondary battery, battery pack, electronic device, electric tool, electric airplane and electric vehicle

Similar Documents

Publication Publication Date Title
JP2010282846A (en) Secondary battery and method of manufacturing the same
JPWO2018154989A1 (en) Secondary battery and manufacturing method thereof
JP2010153140A (en) Non-aqueous electrolyte secondary battery
JP7014294B2 (en) Secondary battery
JP6919572B2 (en) Secondary battery and its manufacturing method
US20220029247A1 (en) Secondary battery and method for manufacturing the same
JP7215570B2 (en) secondary battery
JP7124960B2 (en) secondary battery
WO2023054579A1 (en) Secondary battery
US20220045404A1 (en) Secondary battery
JP7355235B2 (en) Secondary battery and its manufacturing method
WO2018186205A1 (en) Secondary battery and manufacturing method thereof
JP6773208B2 (en) Secondary battery and its manufacturing method
JP6849051B2 (en) Secondary battery
WO2023054582A1 (en) Secondary battery, and method for manufacturing same
JP6773133B2 (en) Rechargeable battery
JP6828751B2 (en) Rechargeable battery
WO2018163775A1 (en) Secondary battery production method
WO2022138334A1 (en) Secondary battery and method for producing secondary battery
JP2018206490A (en) Secondary battery and manufacturing method thereof
US20230207988A1 (en) Secondary battery and method of manufacturing the same
WO2024042915A1 (en) Secondary battery and method for manufacturing same
WO2022168502A1 (en) Secondary battery and method for producing secondary battery
WO2021006161A1 (en) Secondary battery
WO2023079974A1 (en) Secondary battery electrode and method for manufacturing the secondary battery electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876443

Country of ref document: EP

Kind code of ref document: A1