JP2024001412A - 新規な有機発光材料を用いた有機発光素子 - Google Patents

新規な有機発光材料を用いた有機発光素子 Download PDF

Info

Publication number
JP2024001412A
JP2024001412A JP2022100027A JP2022100027A JP2024001412A JP 2024001412 A JP2024001412 A JP 2024001412A JP 2022100027 A JP2022100027 A JP 2022100027A JP 2022100027 A JP2022100027 A JP 2022100027A JP 2024001412 A JP2024001412 A JP 2024001412A
Authority
JP
Japan
Prior art keywords
group
layer
ring structure
organic light
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022100027A
Other languages
English (en)
Inventor
香織 藤澤
Kaori Fujisawa
光伯 榎本
Terumichi Enomoto
寛晃 小澤
Hiroaki Ozawa
桃子 森尾
Momoko MORIO
幸誠 金原
Yukimasa Kanehara
清昌 末石
Kiyomasa SUEISHI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyulux Inc
Original Assignee
Kyulux Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyulux Inc filed Critical Kyulux Inc
Priority to JP2022100027A priority Critical patent/JP2024001412A/ja
Publication of JP2024001412A publication Critical patent/JP2024001412A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

【課題】新規な化合物を発光層に含む有機発光素子を提供する。【解決手段】有機発光素子の発光層は、下記式(I)で示される新規な化合物を含むものである。TIFF2024001412000197.tif87120【選択図】図1

Description

本発明は、新規な有機発光材料を用いた有機発光素子、および、新たな構造の有機発光材料に関する。
有機エレクトロルミネッセンス素子(有機EL素子)などの有機発光素子の発光効率を高め、長寿命の素子を得る研究が盛んに行われている。特に、有機発光素子の発光層に用いる材料を工夫することにより、発光効率を高め、素子の寿命を長期化する研究が種々なされている。
本発明者らは、有機発光素子の発光層に複数の発光材料(発光性ドーパント)を使用し、そのような発光材料の一つに遅延蛍光体(アシストドーパント)を用いることによって、高い発光効率を有する有機発光素子を提供できることを見出している。(特許文献1)
また、発光素子の発光効率に関して、外部量子効率(EQE:External Quantum Efficacy;発光素子に外部から注入した電子数に対する発生した光子数の割合)を挙げる様々な試みが、注目されている。この点に関しては、有機発光素子の発光層中の発光性ドーパント化合物の配向性がEQEに影響を及ぼすこと、該ドーパント化合物を水平配向することが高いEQEを得るために重要であることが見出され、その際の水平配向の程度を示す指標とともに、発光性化合物の配向性に着目した研究が行われてきている(非特許文献1~3)。また、有機発光素子の発光層中で使用される、発光性ドーパントのHOMO準位とアシストドーパントのHOMO準位(6eV程度)との差を小さくすることが、有機発光素子のデバイス寿命の長期化に重要であることも見出され(非特許文献4)、この観点からのアプローチも行われてきている。
一方で、これまでに様々な構造を有する新規な発光性ドーパント化合物が提案されている(特許文献2~4、非特許文献5)。
特許第5669163号 中国特許公開第110729408号 中国特許公開第110407858号 国際公開第2021/008374号
J. Mater. Chem., 2011, 21, 19187-19202 Bull. Chem. Soc. Jpn. 2019, 92, 716-728 Scientific Reports 2017, 7, 8405 Adv. Electron. Mater. 2021, 2001090 J. Am. Chem. Soc., 2020, 142, 46, 19468-19472
本発明は、新規な有機発光材料を用いた有機発光素子、それを提供することを可能にする高いEQEを有する新規な有機発光材料を提供することを目的とする。
本発明者らは、有機発光素子のEQEを上げる観点から研究を行い、アシストドーパン
トと組み合わせた際にその配向性が高く、また、広く知られているアシストドーパントのHOMO準位(6eV程度)に近いHOMO準位を有する新規な有機発光材料を見出した。また、本発明者らが見出した新規な有機発光材料は、高い分子吸光係数、蛍光量子収率を有していて、かつ、色純度にも優れたものであった。
具体的には、下記の態様を含むものである。
[1]有機発光素子であって、発光層に下記式(I)で示される化合物を含む、有機発光素子。
Figure 2024001412000002
[式(I)において、
1~R3は、それぞれ水素であるか、または、R1とR1と、R2とR2と、R3とR3とが結合して、環構造を構成することができ;
4は、それぞれ独立して、CHまたはNであり;
5は、水素、重水素、-CN、直鎖または分岐の低級アルキル、
Figure 2024001412000003
(*で、環構造に結合する)または
Figure 2024001412000004
(*で、環構造に結合する)であり;
Rは、いずれか1つは、
Figure 2024001412000005
(*で、環構造に結合する)であって、残りは、それぞれ独立して、水素、アルキルまたは
Figure 2024001412000006
(*で、環構造に結合する)であり、ここで、
Figure 2024001412000007
は、置換基X1がフェニル基にn個結合している構造(nは1~3)を表し、置換基X1は、それぞれ独立して、炭素数2以上のアルキル基またはCN基であり、また、
Figure 2024001412000008
は、置換基X2がフェニル基にm個結合している構造(mは0~3)を表し、置換基X2は、それぞれ独立して、アルキル基またはCN基である。]
[2]式(I)で示される化合物が、
Figure 2024001412000009
である、[1]の有機発光素子。
[3]有機発光材料であって、下記式(I)で示される化合物を含む、有機発光材料。
Figure 2024001412000010
[式(I)において、
1~R3は、それぞれ水素であるか、または、R1とR1と、R2とR2と、R3とR3とが結合して、環構造を構成することができ;
4は、それぞれ独立して、CHまたはNであり;
5は、水素、重水素、-CN、直鎖または分岐の低級アルキル、
Figure 2024001412000011
(*で、環構造に結合する)または
Figure 2024001412000012
(*で、環構造に結合する)であり;
Rは、いずれか1つは、
Figure 2024001412000013
(*で、環構造に結合する) であって、残りは、それぞれ独立して、水素、アルキルまたは
Figure 2024001412000014
(*で、環構造に結合する)であり、ここで、
Figure 2024001412000015
は、置換基X1がフェニル基にn個結合している構造(nは1~3)を表し、置換基X1は、それぞれ独立して、炭素数2以上のアルキル基またはCN基であり、また、
Figure 2024001412000016
は、置換基X2がフェニル基にm個結合している構造(mは0~3)を表し、置換基X2は、それぞれ独立して、アルキル基またはCN基である。]
[4]式(I)で示される化合物が、
Figure 2024001412000017
である、[3]の有機発光材料。
[5]下記式(I)で示される発光性化合物。
Figure 2024001412000018
[式(I)において、
1~R3は、それぞれ水素であるか、または、R1とR1と、R2とR2と、R3とR3とが結合して、環構造を構成することができ;
4は、それぞれ独立して、CHまたはNであり;
5は、水素、重水素、-CN、直鎖または分岐の低級アルキル、
Figure 2024001412000019
(*で、環構造に結合する)または
Figure 2024001412000020
(*で、環構造に結合する)であり;
Rは、いずれか1つは、
Figure 2024001412000021
(*で、環構造に結合する)であって、残りは、それぞれ独立して、水素、アルキルまたは
Figure 2024001412000022
(*で、環構造に結合する)であり、ここで、
Figure 2024001412000023
は、置換基X1がフェニル基にn個結合している構造(nは1~3)を表し、置換基X1は、それぞれ独立して、炭素数2以上のアルキル基またはCN基であり、また、
Figure 2024001412000024
は、置換基X2がフェニル基にm個結合している構造(mは0~3)を表し、置換基X2は、それぞれ独立して、アルキル基またはCN基である。]
[6]式(I)で示される化合物が、
Figure 2024001412000025
である、[5]の化合物。
有機発光素子の層構成例を示す概略断面図である。
本発明に係る有機発光素子について説明する。
ある種のエネルギー刺激を与えられたとき、それに対する応答として光(蛍光)を放出する機能を有する有機材料を「有機発光材料」いう。エネルギー源として電気エネルギーを使用した発光をエレクトロルミネッセンスとよばれている。エレクトロルミネッセンスとは、蛍光体に電気エネルギーを与えて励起させ、励起状態から失活する際のエネルギーを光として取り出す現象であるともいえる。このエレクトロルミネッセンス現象を利用した有機発光素子を有機EL素子という。
代表的な有機EL素子は、基板の上に、少なくとも陽極、陰極、および前記陽極と前記陰極との間の有機層を含むものであって、該有機層の例として、発光層、正孔輸送層、正孔注入層、電子注入層、電子輸送層、正孔障壁層、電子障壁層などが挙げられる。
有機EL素子の具体的な構成の例を図1に示すが、本発明の有機発光素子はそのような構成に限定されるものではない。
以下で、各層等について簡単に説明する。
[基板]
有機EL素子は、基板に支持されていることが好ましい。
この基板については、特に制限はなく、従来から有機EL素子に慣用されているものであればよく、例えば、ガラス、透明プラスチック、石英、シリコンなどからなるものを用いることができる。
[陽極]
いくつかの実施形態では、陽極は、金属、合金、導電性化合物またはそれらの組み合わせから製造される。例えば、CuI、酸化インジウム・スズ(ITO)、SnO2およびZnOが例示される。
いくつかの実施形態では、陽極の厚みは10~1,000nmである。いくつかの実施形態では、陽極の厚みは10~200nmである。いくつかの実施形態では、陽極の厚みは用いる材料に応じて変動する。
[陰極]
いくつかの実施形態では、陰極は、合金、導電性化合物またはその組み合わせなどの電極材料で作製される。そのような材料として、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム-銅混合物、マグネシウム-銀混合物、マグネシウム-アルミニウム混合物、マグネシウム-インジウム混合物、アルミニウム-酸化アルミニウム(Al23)混合物、インジウム、リチウム-アルミニウム混合物、希土類元素が例示される。
いくつかの実施形態では、前記陰極の厚は10nm~5μmである。いくつかの実施形態では、前記陰極の厚は50~200nmである。
[発光層]
発光層は、陽極および陰極のそれぞれから注入された正孔および電子が再結合することにより励起子が生成した後、発光する層であり、発光材料を単独で発光層に使用しても良いが、好ましくは発光材料とホスト材料を含む。
ホスト材料を用いる場合、発光材料である本発明の化合物が発光層中に含有される量は0.1重量%以上であることが好ましく、1重量%以上であることがより好ましく、また、50重量%以下であることが好ましく、20重量%以下であることがより好ましく、10重量%以下であることがさらに好ましい。
発光層におけるホスト材料は、正孔輸送能、電子輸送能を有する有機化合物であり、および/または、発光の長波長化を防ぐ化合物であり、および/または、高いガラス転移温度を有する有機化合物であることが好ましい。
ホスト材料として、以下のものを使用することができるが、これらに限られるわけではない。
Figure 2024001412000026
Figure 2024001412000027
Figure 2024001412000028
[正孔輸送層]
正孔輸送層は、正孔輸送材料を含む。いくつかの実施形態では、正孔輸送層は単層である。いくつかの実施形態では、正孔輸送層は複数の層を有する。
いくつかの実施形態では、正孔輸送材料は、正孔の注入または輸送特性および電子の障壁特性のうちの1つの特性を有する。いくつかの実施形態では、正孔輸送材料は有機材料である。いくつかの実施形態では、正孔輸送材料は無機材料である。
正孔輸送材料の例としては、限定されないが、トリアゾール誘導体、オキサジアゾール誘導剤、イミダゾール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリアリールアルカン誘導剤、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリルアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導剤、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリンコポリマーおよび導電性ポリマーオリゴマー(特にチオフェンオリ
ゴマー)、またはその組合せが挙げられる。いくつかの実施形態では、正孔輸送材料はポルフィリン化合物、芳香族三級アミン化合物およびスチリルアミン化合物から選択される。いくつかの実施形態では、正孔輸送材料は芳香族三級アミン化合物である。
正孔輸送材料として以下のものを使用することができるが、これらに限られるわけではない。
Figure 2024001412000029
Figure 2024001412000030
[電子輸送層]
電子輸送層は、電子輸送材料を含む。いくつかの実施形態では、電子輸送層は単層である。いくつかの実施形態では、電子輸送層は複数の層を有する。
いくつかの実施形態では、電子輸送材料は、陰極から注入された電子を発光層に輸送する機能さえあればよい。いくつかの実施形態では、電子輸送材料はまた、正孔障壁材料としても機能する。
電子輸送層の例としては、限定されないが、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フルオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体、オキサジアゾール誘導体、アゾール誘導体、アジン誘導体またはその組合せ、またはそのポリマーが挙げられる。いくつかの実施形態では、電子輸送材料はチアジアゾール誘導剤またはキノキサリン誘導体である。いくつかの実施形態では、電子輸送材料はポリマー材料である。(さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
電子輸送材料として以下のものを使用することができるが、これらに限られるわけでは
ない。
Figure 2024001412000031
[注入層]
注入層とは、駆動電圧低下や発光輝度向上のために、電極と有機層間に設けられる層のことで、正孔注入層と電子注入層とがある。陽極と発光層(正孔輸送層)の間に、あるいは、陰極と発光層(電子輸送層)との間に、必要に応じて設けることができる。
以下に、正孔注入材料として用いることができる好ましい化合物例を挙げるが、これらに限られるわけではない。
Figure 2024001412000032
次に、電子注入材料として用いることができる好ましい化合物例を挙げるが、これらに限られるわけではない。
Figure 2024001412000033
[障壁層]
障壁層は、発光層に存在する電荷(電子または正孔)および/または励起子が、発光層の外側に拡散することを阻止できる層である。
いくつかの実施形態では、電子障壁層は、発光層と正孔輸送層との間に(図1で、4:正孔輸送層と5:発光層との間に)存在し、電子が発光層を通過して正孔輸送層へ至ることを阻止する。いくつかの実施形態では、正孔障壁層は、発光層と電子輸送層との間に(図1で、5:発光層と6:電子輸送層との間に)存在し、正孔が発光層を通過して電子輸送層へ至ることを阻止する。いくつかの実施形態では、障壁層は、励起子が発光層の外側に拡散することを阻止する。いくつかの実施形態では、電子障壁層および正孔障壁層は励起子障壁層を構成する。本明細書で用いる用語「電子障壁層」または「励起子障壁層」には、電子障壁層の、および励起子障壁層の機能の両方を有する層が含まれる。
[電子障壁層]
電子障壁層は、正孔を輸送する。いくつかの実施形態では、正孔の輸送の間、電子障壁層は電子が正孔輸送層に至ることを阻止する。いくつかの実施形態では、電子障壁層は、発光層における電子と正孔との再結合の確率を高める。電子障壁層に用いる材料は、正孔輸送層について前述したのと同じ材料であってもよい。以下に電子障壁材料として用いることができる好ましい化合物の具体例を挙げるが、これらに限られるわけではない。
Figure 2024001412000034
Figure 2024001412000035
[正孔障壁層]
正孔障壁層は、電子輸送層として機能する。いくつかの実施形態では、電子の輸送の間、正孔障壁層は正孔が電子輸送層に至ることを阻止する。いくつかの実施形態では、正孔障壁層は、発光層における電子と正孔との再結合の確率を高める。正孔障壁層に用いる材料は、電子輸送層について前述したのと同じ材料であってもよい。
以下に、正孔障壁層に用いることができる好ましい化合物例を挙げるが、これらに限られるわけではない。
Figure 2024001412000036
本発明に係る有機発光素子で、発光層で使用される化合物は、以下の式(I)で示される化合物である。
Figure 2024001412000037
[式(I)において、
1~R3は、それぞれ水素であるか、または、R1とR1と、R2とR2と、R3とR3とが結合して、環構造を構成することができ;
4は、それぞれ独立して、CHまたはNであり;
5は、水素、重水素、-CN、直鎖または分岐の低級アルキル、
Figure 2024001412000038
(*で、環構造に結合する)または
Figure 2024001412000039
(*で、環構造に結合する)であり;
Rは、いずれか1つは、
Figure 2024001412000040
(*で、環構造に結合する) であって、残りは、それぞれ独立して、水素、アルキルまたは
Figure 2024001412000041
(*で、環構造に結合する)であり、ここで、
Figure 2024001412000042
は、置換基X1がフェニル基にn個結合している構造(nは1~3)を表し、置換基X1は、それぞれ独立して、炭素数2以上のアルキル基またはCN基であり、また、
Figure 2024001412000043
は、置換基X2がフェニル基にm個結合している構造(mは0~3)を表し、置換基X2は、それぞれ独立して、アルキル基またはCN基である。]
上記の化合物は、Rとして、置換されたフェニル基を有する点で、上記の先行技術に記載のものと相違するものである。
斯かる化合物において、アルキル基は、直鎖、分岐または環状のアルキル基であることができる。「低級アルキル」の炭素数は5以下であり、「炭素数2以上のアルキル」の炭素数は、例えば、2以上、4以上とすることができる。また、炭素数は30以下、20以下、10以下、6以下、4以下とすることができる。アルキル基の具体例として、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、n-ヘキシル基、イソヘキシル基、2-エチルヘキシル基、n-ヘプチル基、イソヘプチル基、n-オクチル基、イソオクチル基、n-ノニル基、イソノニル基、n-デカニル基、イソデカニル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基を挙げることができる。置換基たるアルキル基は、さらにアリール基で置換されていてもよい。
1とR1とが結合することによって、近傍のNを含む五員環を形成する。R2とR2とが結合することによって、あるいは、R3とR3とが結合することによって、同様に近傍のNを含む五員環を形成する。
式(I)で示される化合物の例を、以下の式(I)-A
Figure 2024001412000044
を用いて、以下に示す。しかしながら、本願発明の発光性化合物は、以下に限定されるものではない。たとえば、以下に示されるすべての化合物で、特許請求の範囲の一般式(I)のR4に相当する基がCHであり、また、R5に相当する基(上記の式(I)-AではY)が水素であるが、R4に相当する基がCHだけを意味するのではなく、また、R5に相当する基が水素だけを意味するものでないことは、特許請求の範囲に記載されたとおりである。また、各置換基の組み合わせも、以下に限定されるものではない。
各化合物での置換基の位置関係を理解し易くする観点を優先して以下の表を作成したので、同一の化合物が複数の箇所に記載されている可能性がある。
なお、化合物を示す以下の表で、置換基1~18は、以下の構造を示す。(各置換基は、そのベンゼン環の左端の結合子で式(I)の環構造に結合する。)
Figure 2024001412000045
Figure 2024001412000046
Figure 2024001412000047
Figure 2024001412000048
Figure 2024001412000049
Figure 2024001412000050
Figure 2024001412000051
Figure 2024001412000052
Figure 2024001412000053
Figure 2024001412000054
Figure 2024001412000055
Figure 2024001412000056
Figure 2024001412000057
Figure 2024001412000058
Figure 2024001412000059
Figure 2024001412000060
Figure 2024001412000061
Figure 2024001412000062
Figure 2024001412000063
Figure 2024001412000064
Figure 2024001412000065
Figure 2024001412000066
Figure 2024001412000067
Figure 2024001412000068
Figure 2024001412000069
Figure 2024001412000070
Figure 2024001412000071
Figure 2024001412000072
Figure 2024001412000073
Figure 2024001412000074
Figure 2024001412000075
Figure 2024001412000076
Figure 2024001412000077
Figure 2024001412000078
Figure 2024001412000079
Figure 2024001412000080
Figure 2024001412000081
Figure 2024001412000082
Figure 2024001412000083
Figure 2024001412000084
Figure 2024001412000085
Figure 2024001412000086
Figure 2024001412000087
Figure 2024001412000088
Figure 2024001412000089
Figure 2024001412000090
Figure 2024001412000091
Figure 2024001412000092
Figure 2024001412000093
Figure 2024001412000094
Figure 2024001412000095
Figure 2024001412000096
Figure 2024001412000097
Figure 2024001412000098
Figure 2024001412000099
Figure 2024001412000100
Figure 2024001412000101
Figure 2024001412000102
Figure 2024001412000103
Figure 2024001412000104
Figure 2024001412000105
Figure 2024001412000106
Figure 2024001412000107
Figure 2024001412000108
Figure 2024001412000109
Figure 2024001412000110
Figure 2024001412000111
Figure 2024001412000112
Figure 2024001412000113
Figure 2024001412000114
Figure 2024001412000115
Figure 2024001412000116
Figure 2024001412000117
Figure 2024001412000118
Figure 2024001412000119
Figure 2024001412000120
Figure 2024001412000121
Figure 2024001412000122
Figure 2024001412000123
Figure 2024001412000124
Figure 2024001412000125
Figure 2024001412000126
Figure 2024001412000127
Figure 2024001412000128
Figure 2024001412000129
Figure 2024001412000130
Figure 2024001412000131
Figure 2024001412000132
Figure 2024001412000133
Figure 2024001412000134
Figure 2024001412000135
Figure 2024001412000136
Figure 2024001412000137
Figure 2024001412000138
Figure 2024001412000139
Figure 2024001412000140
Figure 2024001412000141
Figure 2024001412000142
Figure 2024001412000143
Figure 2024001412000144
Figure 2024001412000145
また、式(I)-Aの代わりに、以下の式(I)-Bの場合では、
Figure 2024001412000146
同様に、化合物番号I-B-0001~I-B-7465の化合物になる。
同様に、以下の式(I)-Cの場合には、
Figure 2024001412000147
化合物番号I-C-0001~I-C-7465の化合物に;
以下の式(I)-Dの場合には、
Figure 2024001412000148
化合物番号I-D-0001~I-D-7465の化合物に;
以下の式(I)-Eの場合には、
Figure 2024001412000149
化合物番号I-E-0001~I-E-7465の化合物に;
以下の式(I)-Fの場合には、
Figure 2024001412000150
化合物番号I-F-0001~I-F-7465の化合物に;
以下の式(I)-Gの場合には、
Figure 2024001412000151
化合物番号I-G-0001~I-G-7465の化合物に;
以下の式(I)-Hの場合には、
Figure 2024001412000152
化合物番号I-H-0001~I-H-7465の化合物に;
以下の式(I)-Iの場合には、
Figure 2024001412000153
化合物番号I-I-0001~I-I-7465の化合物に;
以下の式(I)-Jの場合には、
Figure 2024001412000154
化合物番号I-J-0001~I-J-7465の化合物に;
以下の式(I)-Kの場合には、
Figure 2024001412000155
化合物番号I-K-0001~I-K-7465の化合物に;
以下の式(I)-Lの場合には、
Figure 2024001412000156
化合物番号I-L-0001~I-L-7465の化合物に;
以下の式(I)-Mの場合には、
Figure 2024001412000157
化合物番号I-M-0001~I-M-7465の化合物に;
以下の式(I)-Nの場合には、
Figure 2024001412000158
化合物番号I-N-0001~I-N-7465の化合物に;
以下の式(I)-Oの場合には、
Figure 2024001412000159
化合物番号I-O-0001~I-O-7465の化合物に;
以下の式(I)-Pの場合には、
Figure 2024001412000160
化合物番号I-P-0001~I-P-7465の化合物に;
それぞれなる。
上記式(I)で示される化合物は、以下のようにして製造することができる。
Figure 2024001412000161
本発明で使用することができるアシストドーパントである化合物としては、
Figure 2024001412000162
(Xは水素、アリール基、アルキル基;R1は電子供与性部位を示す。)や
Figure 2024001412000163
(R1は電子供与性部位を示す。)の一般式で示される構造の化合物(なお、電子供与性部位としては、置換、無置換のカルバゾール基が例示される)を使用することができるが、それ以外のものも使用できる。
具体的には、以下の化合物をアシストドーパントとして本発明で用いることができる。
本発明で用いることができるアシストドーパントはこれらの具体例により限定的に解釈されることはない。
Figure 2024001412000164
本発明に係る有機発光素子は、たとえば、膜厚100nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基材上に、真空蒸着法(真空度1×10-5Pa)で、以下の順に積層して製造することができる。しかしながら、使用している化合物の種類やその使用量、層の厚さなど、下記に限定されるわけではないし、また、当該技術分野で採用されている他の方法を用いることも当然にできる。
(1)ITO上にHAT-CNを10nmの厚さに形成。
(2)NPDを30nmの厚さに形成。
(3)TrisPCzを10nmの厚さに形成。
(4)H1を5nmの厚さに形成。
(5)H1、アシストドーパント、本発明に係る化合物を異なる蒸着源から共蒸着し、40nmの厚さの発光層を形成。(H1、遅延蛍光化合物、本発明に係る化合物の含有量は、順に64.5質量%、35.0質量%、0.5質量%)。
(6)SF3-TRZを10nmの厚さに形成。
(7)LiqとSF3-TRZを異なる蒸着源から共蒸着し、30nmの厚さの層を形成。(LiqとSF3-TRZの含有量はそれぞれ30質量%と70質量%)。
(8)Liqを2nmの厚さに形成。
(9)アルミニウム(Al)を100nmの厚さに蒸着することにより陰極を形成。
なお、上記で使用した各種化合物の構造は、以下のとおりである。
Figure 2024001412000165
Figure 2024001412000166
以下に、実施例を挙げて、本発明を具体的に説明する。
なお、以下に示す材料、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は、以下に具体的に示す実施例によって、限定的に解釈されるべきではない。
また、有機発光素子の発光特性の評価は、
・ハイパフォーマンス紫外可視近赤外分光光度計(パーキンエルマー社製:Lambda950)、
・蛍光分光光度計(堀場製作所社製:FluoroMax-4)、
・絶対PL量子収率測定装置(浜松ホトニクス社製:C11347)、
・ソースメータ(ケースレー社製:2400シリーズ)、
・半導体パラメータ・アナライザ(アジレント・テクノロジー社製:E5273A)、
・光パワーメータ測定装置(ニューポート社製:1930C)、
・光学分光器(オーシャンオプティクス社製:USB2000)、
・分光放射計(トプコン社製:SR-3)および
・ストリークカメラ(浜松ホトニクス(株)製C4334型)
を用いて行った。
実施例1(化合物1の製造)
Figure 2024001412000167
(1)中間体 IM-1-1の製造
窒素雰囲気下、3-ブロモカルバゾール(19.7 g, 80.0 mmol)、ビスピナコラートジボロン(21.3 g, 84.0 mmol)、 Pd(dppf)Cl2(1.50 g, 2.00 mmol)、酢酸カリウム(19.6 g, 200
mmol)、1,4-ジオキサン(200 mL)を入れ、100 ℃で15時間攪拌した。次に、1-ブロモ-2,4,6-トリイソプロピルベンゼン(25.1 mL, 100 mmol)、Pd(PPh3)4(9.25 g, 8.00 mmol)、炭酸カリウム(33.17 g, 240 mmol)、THF(200 mL)、水(100 mL)を加え、15時間加熱還流した。反応液をセライトでろ過し、有機層を濃縮した。残渣物をトルエンで抽出し、有機層を減圧濃縮した。粗生成物をシリカゲルカラムクロマトグラフィ(トルエン:ヘキサン = 1: 4) で分離し、目的物IM-1-1(20.2 g, 54.6 mmol、収率68%)を得た。
1H NMR (400 MHz, CDCl3) δ 8.11 (s, 1H), 8.02 (d, J = 7.8 Hz, 1H), 7.87 (s, 1H), 7.48-7.40 (m, 3H), 7.25-7.21 (m, 2H), 7.09 (s, 2H), 2.97 (sept, J = 6.8 Hz, 1H), 2.69 (sept, J = 6.8 Hz, 2H), 1.33 (d, J = 6.8 Hz, 6H), 1.09 (d, J = 6.8 Hz, 6H), 1.07 (d, J = 6.8 Hz, 6H).
MS(ASAP) m/z calcd for C27H32N [M+H]+: 370.25, found: 370.29.
(2)中間体 IM-1-2の製造
窒素雰囲気下、2,4-ジブロモ-1,3,5-トリフルオロベンゼン(2.38 g, 8.20 mmol)、IM-1-1(10.0 g, 27.1 mmol)、炭酸セシウム(18.7 g, 57.4 mmol)、DMF(100 mL)を加え、120
℃で15時間攪拌した。反応混合物に水(200 mL)を加え懸濁後固体をろ取し、クロロホルムに溶解させ、無水硫酸マグネシウムで乾燥させ、吸引ろ過したのち、減圧濃縮した。粗生成物をシリカゲルカラムクロマトグラフィ(トルエン:ヘキサン= 1: 9)で分離し、IM-1-2(4.97 g, 3.71 mmol、収率45%)を得た。
1H NMR (400 MHz, CDCl3) δ 9.75 (s, 1H), 9.06 (d, J = 7.5 Hz, 1H), 9.02-8.96 (m, 3H), 8.86 (d, J = 5.9 Hz, 2H), 8.50 (d, J = 7.5 Hz, 1H), 8.34 (d, J = 7.8 Hz,
3H), 8.30 (d, J = 8.2 Hz, 1H), 8.26 (s, 1H), 7.88-7.76 (m, 2H), 7.64-7.58 (m, 1H), 7.18 (s, 4H), 3.10-2.98 (m, 3H), 2.95-2.86 (m, 3H), 2.84-2.74 (m, 3H), 1.43 (d, J = 6.9 Hz, 9H), 1.39 (dd, J = 6.9, 1.9 Hz, 9H), 1.27-1.18 (m, 18H), 1.13 (d, J = 6.9 Hz, 9H), 1.08 (d, J = 6.9 Hz, 9H).
MS (ASAP) m/z calcd for C87H92Br2N3 [M+H]+: 1336.57, found: 1336.71.
(3)化合物1の製造
窒素雰囲気下、IM-1-2(0.90 g, 0.67 mmol)、トルエン(45 mL)を入れ、0 ℃に冷却し、つづいてn-ブチルリチウム―ヘキサン溶液(1.6 M, 1.26 mL, 2.02 mmol)を加えた。50 ℃に昇温して30分間反応させ、ただちに0 ℃で冷却した。つぎに、0 ℃で三臭化ホウ素 (0.32 mL, 3.36 mmol)を滴加し、室温で30分間反応させた。その後、1, 2, 2, 6, 6―ペンタメチルピペラジン(0.61 mL, 3.36 mmol)、oDCB(45 mL) を加え、トルエンを除去し、15時間加熱還流した。室温まで冷却したのち、反応液をシリカゲルでろ過し、ろ液を減圧濃縮した。残渣物をシリカゲルカラムクロマトグラフィ(ヘキサン→クロロホルム:ヘキサン= 10 : 90)で分離し、粗生成物を0.19 g得た。これをトルエン―メタノールで3回再結晶を行い、化合物1を0.12 g得た。真空昇華精製により、化合物1を0.09 g, 0.08 mmol、収率4%、純度99.3%で得た。
1H NMR (400 MHz, CDCl3) δ 9.73 (s, 1H), 9.04 (d, J = 7.6 Hz, 2H), 8.99-8.95 (m, 3H), 8.85 (d, J = 6.5 Hz, 1H), 8.50 (d, J = 6.5 Hz, 1H), 8.41 (s, 1H), 8.34-8.28 (m, 3H), 8.50 (d, J = 6.5 Hz, 1H), 7.86-7.54 (m, 5H), 7.23 (s, 3H), 7.16 (s,
3H), 3.12-2.74 (m, 9H), 1.41 (d, J = 6.8 Hz, 9H), 1.40-1.36 (m, 9H), 1.24-1.16 (m, 24H), 1.12 (d, J = 6.8 Hz, 6H), 1.07 (d, J = 6.8 Hz, 6H).
MS (ASAP) m/z calcd for C87H88B2N3 [M+H]+: 1196.72, found:1196.23.
実施例2(化合物2の製造)
Figure 2024001412000168
(1)中間体 IM-2-1の製造
窒素雰囲気下、4-ブロモカルバゾール(5.00 g, 20.3 mmol)、ビスピナコラートジボロン(5.42 g, 21.3 mmol)、Pd(dppf)Cl2(0.30 g, 0.41 mmol)、酢酸カリウム(5.00 g, 50.8
mmol)、1, 4-ジオキサン(50 mL)を入れ、100 ℃で終夜加熱した。次に、1-ブロモ-2, 4,
6-トリイソプロピルベンゼン(6.37 mL, 25.4 mmol)、Pd2(dba)3(0.93 g, 1.02 mmol)、SPhos(0.83 g, 2.03 mmol)、炭酸カリウム(8.42 g, 61.0 mmol)、THF(50 mL)、水(25 mL)を加え、終夜100 ℃で加熱還流した。反応液をセライトでろ過し、ロータリーエバポレーターで有機溶媒を減量した。残渣物をトルエンで抽出し、有機層を減圧濃縮した。粗生成物をシリカゲルカラムクロマトグラフィ(トルエン:ヘキサン=1:4)で分離し、IM-2-1(1.30
g, 3.53 mmol、収率17%)を得た。
1H NMR (400MHz, CDCl3) δ 8.08(s, 1H), 7.47-7.39 (m, 2H), 7.37 (d, J = 8.2Hz, 1H), 7.27(td, J = 7.0,0.9Hz, 1H),1.60 (s, 2H), 7.01 (dd, J = 6.5, 1.8Hz, 1H), 6.87 (td, J = 7.0, 0.9Hz, 1H), 6.67(d, J = 8.2Hz, 1H), 3.03 (Sept, J = 6.8Hz, 1H),
2.50 (Sept, J = 6.8Hz, 2H), 1.38 (d, J = 6.8Hz, 6H), 1.04(d, J = 6.8Hz, 6H), 0.83 (d, J = 6.8Hz, 6H).
MS(ASAP) m/z calcd for C27H32N [M+H]+: 370.25, found: 370.29.
(2)中間体 IM-2-2の製造
窒素雰囲気下、2,4-ジブロモ-1, 3, 5-トリフルオロベンゼン(0.31 g, 1.07 mmol)、IM-2-1(1.30 g, 3.53 mmol)、炭酸セシウム(2.44 g, 7.48 mmol)、DMF(11 mL)を加え、120 ℃で終夜加熱した。得られた反応液に水200mLを加え固体を析出させたのち、ブフナー漏斗で固体を吸引ろ取した。固体をクロロホルムに溶解させ、無水硫酸マグネシウムで乾燥させ、吸引ろ過したのち、減圧濃縮した。粗生成物をカラムクロマトグラフィ(トルエン:ヘキサン=1 : 9 → 1 : 4)で分離し、IM-2-2を0.72 g, 0.54 mmol、収率51%で得た。
1H NMR (400 MHz, CDCL3) δ 8.13 (d, J = 3.7 Hz, 1H), 7.59-7.48 (m, 3H), 7.43-7.10 (m, 18H), 7.01-6.96 (m, 3H), 6.72 (d, J = 7.8 Hz, 3H), 3.07-3.02 (m, 3H), 2.59-2.49 (m, 6H), 1.40 (d, J = 3.7 Hz, 9H), 1.38 (d, J = 3.7 Hz, 9H), 1.08-1.05 (m, 18H), 0.88 (d, J = 6.9 Hz, 6H), 0.81 (t, J = 7.1 Hz, 12H).
MS (ASAP) m/z calcd for C87H91Br2N3 [M]+: 1335.56, found: 1335.71.
(3)化合物2の製造
窒素雰囲気下、IM-2-2(0.60 g, 0.45 mmol)、トルエン(60 mL)を入れ、0 °Cに冷却し、つづいて1.6 M n-ブチルリチウム-ヘキサン溶液(0.64 mL, 1.35 mmol)を加えた。50 °Cに昇温して30分間反応させ、ただちに0 °Cで冷却した。つぎに、0 °Cで三臭化ホウ素(0.22 mL, 2.24 mmol)を滴加し、室温で30分間反応させた。その後、1, 2, 2, 6, 6-ペンタメチルピペラジン(0.40 mL, 2.24 mmol)、oDCB (60 mL)の順に加え、ディーンスターク反応管に接続し、還流温度で加温しトルエンを除去した。ディーンスターク反応管からジムロート冷却管に交換し、終夜加熱還流した。室温まで冷却したのち、反応液をシリカゲルパッドでろ過し、ろ液を減圧濃縮した。残渣物をシリカゲルカラムクロマトグラフィ(ヘキサン = 100 → クロロホルム : ヘキサン = 10 : 90)で分離し、粗生成物を0.06 g得た。これをトルエン-メタノールで2回再結晶を行い、粗-化合物2を0.05 g得た。真空昇華精製により、化合物2を0.03 g, 0.05 mmol、収率6%、純度99.7%で得た。
1H NMR(400MHz, CDCl3)δ9.82 (s, 1H), 9.27 (t, J = 7.8 Hz, 2H), 9.17 (d,J = 7.8
Hz, 1H),9.13 (d,J = 7.8 Hz, 1H), 9.06-8.98 (m, 1H), 8.91 (d, J = 7.8 Hz, 2H), 7.82―7.57 (m,6H), 7.52-7.20 (m,8H),7.11-6.99 (m, 2H), 3.20-3.04 (m, 3H), 2.84-2.60 (m, 6H),1.50-1.42 (m, 18H),1.22―1.12 (m, 18H), 1.04-0.94 (m, 18H).
MS (ASAP) m/z calcd for C87H88B2N3 [M+H]+: 1196.72, found:1196.24.
実施例3(化合物3の製造)
Figure 2024001412000169
(1)中間体 IM-3-1の製造
窒素気流下、1-ブロモ-3,5-ジフルオロベンゼン(12.5 g, 65.0 mmol)と3,6-ジフェニルカルバゾール(16.6 g, 52.0 mmol)のトルエン(130 mL) 溶液に、トリス(ジベンジリデンアセトン)ジパラジウム(0)(2.97 g, 3.25 mmol)、2-ジ-tert-ブチルホスフィノ-2′,4′,6′-トリイソプロピルビフェニル(1.93 g, 4.55 mmol)、ナトリウムtert-ブトキシド(195.0 g, 18.7 mmol)を加え110 ℃で15時間攪拌した。反応液に飽和塩化アンモニウム水溶液を加え、ジクロロメタンで抽出し、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィ(ヘキサン:クロロホルム= 9: 1)で精製し、白色固体の中間体IM-3-1(14.7 g, 34.0 mmol, 収率66%)を得た。
1H-NMR (400 MHz, CDCl3): δ 8.39 (d, J = 1.6 Hz, 2H), 7.74-7.70 (m, 6H), 7.56 (d, J = 8.5 Hz, 2H), 7.50 (t, J = 7.5 Hz, 4H), 7.37 (t, J = 7.5 Hz, 2H), 7.22 (dd, J = 7.5, 2.1 Hz, 2H), 6.95 (tt, J = 8.5, 2.3 Hz, 1H).
ASAP MSスペクトル分析: C30H19F2N: 理論値431.15, 観測値432.46 (M +).
(2)中間体 IM-3-2の製造
窒素気流下、中間体IM-3-1(2.16 g, 5.0 mmol)のTHF(100 mL)溶液にLDA ヘキサン-THF溶液(6.5 mL, 1.09 M)を-78 ℃で30分かけて滴下し、1時間撹拌した。 反応溶液に塩化トリイソプロピルシリル(1.2 mL, 6.0 mmol)を加え、室温で15時間撹拌した。反応液に飽和塩化アンモニウム水溶液を加え、ジクロロメタンで抽出し、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィ(ヘキサン:トルエン = 95: 5)で精製し、白色固体として中間体IM-3-2を2.20 g(3.74 mmol, 収率74 %)で得た。
1H-NMR (400 MHz, CDCl2CDCl2): δ 8.38 (d, J = 1.3 Hz, 2H), 7.74-7.70 (m, 6H), 7.65 (s, 2H), 7.49 (t, J = 7.5 Hz, 4H), 7.36 (s, 2H), 7.17 (d, J = 8.5 Hz, 2H), 1.17 (d, J = 7.5 Hz, 17H).
ASAP MSスペクトル分析: C39H39F2NSi: 理論値587.28, 観測値588.59 (M +).
(3)中間体 IM-3-3の製造
窒素気流下、中間体IM-3-2(1.18 g, 2.00 mmol)のTHF(20 mL)溶液にLDAヘキサン-THF溶液(2.4 mL, 1.09 M, 2.40 mmol)を-78 ℃で滴下し、1.5時間撹拌した。反応溶液にヨウ素(0.61 g, 2.40 mmol)のTHF(5.0 mL)溶液を加え、-78 ℃で1時間攪拌し、室温で15時間撹拌した。反応溶液を飽和ピロ亜硫酸ナトリウム水溶液で洗浄し、水層をジクロロメタンで抽出し、有機層を飽和食塩水で洗浄し無水硫酸マグネシウムで乾燥した。溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィ(ヘキサン:トルエン = 9: 1)で精製し、白色固体として中間体IM-3-3を1.18 g (1.85 mmol, 収率93%) 得た。
1H-NMR (400 MHz, CDCl3): δ 8.39 (d, J = 1.7 Hz, 2H), 7.73-7.71 (m, 4H), 7.68 (dd, J = 8.5, 1.7 Hz, 2H), 7.48 (t, J = 7.5 Hz, 4H), 7.35 (t, J = 7.5 Hz, 2H), 7.18 (d, J = 8.5 Hz, 2H), 7.06 (dd, J = 8.8, 1.2 Hz, 1H).
ASAP MSスペクトル分析: C39H38F2INSi: 理論値713.18, 観測値714.35 (M+H+).
(4)中間体 IM-3-4の製造
窒素気流下、中間体IM-3-3(2.25 g, 3.00 mmol)のTHF(30 mL)溶液にLDAヘキサン-THF溶液(3.60 mL, 1.09 M, 3.60 mmol)を-78 ℃で滴下し、1時間撹拌した。-78 ℃で1時間攪拌し、反応溶液にヨウ素(0.94 g, 3.60 mmol)のTHF(5.0 mL)溶液を加え、室温で15時間撹拌した。反応溶液を飽和ピロ亜硫酸ナトリウム水溶液で洗浄し、水層をジクロロメタンで抽出し、有機層を飽和食塩水で洗浄し無水硫酸マグネシウムで乾燥した。溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィ(ヘキサン:トルエン = 9: 1 - 8: 2)で精製し、白色固体として中間体IM-3-4を2.15 g(2.57 mmol, 収率86%)得た。
1H-NMR (400 MHz, CDCl3): δ 8.42 (d, J = 1.5 Hz, 2H), 7.74 (d, J = 7.5 Hz, 4H), 7.67 (d, J = 1.5 Hz, 2H), 7.48 (t, J = 7.5 Hz, 4H), 7.35 (s, 2H), 7.03 (d, J =
8.4 Hz, 2H), 1.18 (d, J = 7.5 Hz, 17H).
ASAP MSスペクトル分析: C39H37F2I2NSi: 理論値839.08, 観測値840.37 (M+H+)
(5)中間体 IM-3-5
窒素気流下、中間体IM-3-4(2.10 g, 2.50 mmol)のTHF(25 mL)溶液にフッ化テトラ-n-ブチルアンモニウム-THF溶液(5.0 mL, 1.0 M, 5.00 mmol)を室温で滴下し、2時間撹拌した。反応溶液に飽和塩化アンモニウム水溶液を加え、ジクロロメタンで抽出し、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィ(トルエン)で精製し、白色固体として中間体IM-3-5を1.43 g (2.1 mmol, 収率86%) 得た。
ASAP MSスペクトル分析: C30H17F2I2N: 理論値682.94, 観測値683.87 (M+H+)
(6)中間体 IM-3-6の製造
窒素気流下、3-[2,4,6-トリス(1-メチルエチル)フェニル]-9H-カルバゾール(0.83 g, 2.25 mmol)、中間体IM-3-5(0.62 g, 0.90 mmol)のDMF(18 mL) 溶液に炭酸カリウム(0.43 g, 3.15 mmol)を加え140 ℃で15時間攪拌した。反応混合物を室温に戻し、水を加えて、ろ過した。残渣をシリカゲルカラムクロマトグラフィ(ヘキサン:トルエン=9: 1 - 1: 1)で精製し、中間体IM-3-6を0.78 g(0.56 mmol, 収率62%)で得た。
1H-NMR (400 MHz, CDCl3): δ 8.45 (s, 2H), 7.96 (d, J = 2.7 Hz, 1H), 7.84-7.74
(m, 6H), 7.58-7.46 (m, 6H), 7.42-7.11 (m, 16H), 6.97 (q, J = 7.0 Hz, 2H), 6.71 (dd, J = 7.8, 2.7 Hz, 2H), 3.06-2.99 (m, 2H), 2.59-2.47 (m, 4H), 1.37 (d, J = 6.8 Hz, 12H), 1.06-1.02 (m, 12H), 0.88 (d, J = 6.8 Hz, 6H), 0.76 (d, J = 6.8 Hz, 6H).
ASAP MSスペクトル分析: C84H77I2N3: 理論値1381.42, 観測値1382.59 (M+H+)
(7)化合物3の製造
窒素気流下、中間体IM-3-6(1.31 g, 0.95 mmol)のtert-ブチルベンゼン(32 mL)溶液に-
40 ℃で n-BuLi(1.78 mL, 1.6 M ヘキサン溶液, 2.9 mmol)を加えて,-30 ℃で30分攪拌した。トリブロモボロン(0.45 mL, 4.8 mmol)を加え,室温で4時間攪拌した。反応液にN,N-ジイソプロピルエチルアミン(1.3 mL, 7.6 mmol)を加えて170 ℃で15時間攪拌した。反応混合物をリン酸緩衝液(0.1 M, pH 7.2)に加え、中和し、水層をクロロホルムで抽出した。溶媒を留去し、残渣をクロロホルムで洗浄し、シリカゲルカラムクロマトグラフィ(ODCB)で精製し,黄色固体として化合物3を0.44 g(0.38 mmol, 収率40%)で得た。
1H-NMR (400 MHz, CDCl3): δ 8.66-6.85 (brm, 31H), 3.11-2.65 (brm, 6H), 1.59-0.95 (brm, 36H).
ASAP MSスペクトル分析: C84H73B2N3, 理論値1145.60, 観測値1145.85 (M+)
実施例4(実施例1~3の化合物、比較化合物1の発光特性・その1)
実施例1~3の化合物および以下の比較化合物1を用いて、その発光特性を調べたところ、以下のとおりである。
なお、吸収波長と分子吸光係数は、トルエン中で測定した。
そして、発光波長、蛍光量子収率は、下記のHost1化合物をホストとし、試験対象化合物を0.5%ドープした薄膜で測定した。
また、S値は配向値とも呼ばれ、薄膜内における化合物の配向の程度を示す指標であり、S値が-0.5であるときが最も水平に配向している状態を示している。本願では、1質量%の対象化合物、30質量%の下記のTADF1化合物(アシストドーパント;HOMO5.83eV)、69質量%の下記のHost1化合物からなる薄膜を形成し、非特許文献3(ScientificReports2017,7,8405)に記載される方法により決定した。ちなみに、30質量%の下記のTADF1化合物、70質量%の下記のHost1化合物からなる薄膜での値は-0.16であり、斯かる値よりも-0.5により近い値を示すものが、高い配向性を示すものである。
また、化合物3は、トルエン溶液中で、吸収波長454nm,分子吸光係数65000,発光波長461nm,FWHM16nm,発光量子収率99%の高い分子吸光係数をする狭帯発光材料であることがわかった。
化合物1~3はいずれも、FWHMが20nm以下であり、狭帯発光を示した。また、CIE(x,y)のy値が0.15以下であり、色純度の高いものであった。
Figure 2024001412000170
Figure 2024001412000171
実施例5(実施例1~3の化合物、比較化合物1の発光特性・その2)
B3LYPを用いてDFT計算した、実施例1~3の化合物及び比較化合物1のそれぞれのHOMO準位は以下のとおりである。
Figure 2024001412000172
以上の実施例4、5から、上記式(I)で示される発光性化合物は、高い分子吸光係数を有し、また、アシストドーパントと組わせたときに配向性が高く、さらに、広く知られているアシストドーパントのHOMO準位(6eV程度)に近いエネルギー順位を示すことが確認できた。
上記式(I)で示される発光性化合物は、高い分子吸光係数、蛍光量子収率を有していて、かつ、色純度にも優れる、狭帯発光性のものであり、斯かる化合物を含む有機発光素子は、有機発光素子として求められる性能を発揮するものである。
1:基板
2:陽極
3:正孔注入層
4:正孔輸送層
5:発光層
6:電子輸送層
7:陰極

Claims (6)

  1. 有機発光素子であって、発光層に下記式(I)で示される化合物を含む、有機発光素子。
    Figure 2024001412000173
    [式(I)において、
    1~R3は、それぞれ水素であるか、または、R1とR1と、R2とR2と、R3とR3とが結合して、環構造を構成することができ;
    4は、それぞれ独立して、CHまたはNであり;
    5は、水素、重水素、-CN、直鎖または分岐の低級アルキル、
    Figure 2024001412000174
    (*で、環構造に結合する)または
    Figure 2024001412000175
    (*で、環構造に結合する)であり;
    Rは、いずれか1つは、
    Figure 2024001412000176
    (*で、環構造に結合する) であって、残りは、それぞれ独立して、水素、アルキルまたは
    Figure 2024001412000177
    (*で、環構造に結合する)であり、ここで、
    Figure 2024001412000178
    は、置換基X1がフェニル基にn個結合している構造(nは1~3)を表し、置換基X1は、それぞれ独立して、炭素数2以上のアルキル基またはCN基であり、また、
    Figure 2024001412000179
    は、置換基X2がフェニル基にm個結合している構造(mは0~3)を表し、置換基X2は、それぞれ独立して、アルキル基またはCN基である。]
  2. 式(I)で示される化合物が、
    Figure 2024001412000180
    である、請求項1に記載の有機発光素子。
  3. 有機発光材料であって、下記式(I)で示される化合物を含む、有機発光材料。
    Figure 2024001412000181
    [式(I)において、
    1~R3は、それぞれ水素であるか、または、R1とR1と、R2とR2と、R3とR3とが結合して、環構造を構成することができ;
    4は、それぞれ独立して、CHまたはNであり;
    5は、水素、重水素、-CN、直鎖または分岐の低級アルキル、
    Figure 2024001412000182
    (*で、環構造に結合する)または
    Figure 2024001412000183
    (*で、環構造に結合する)であり;
    Rは、いずれか1つは、
    Figure 2024001412000184
    (*で、環構造に結合する)であって、残りは、それぞれ独立して、水素、アルキルまたは
    Figure 2024001412000185
    (*で、環構造に結合する)であり、ここで、
    Figure 2024001412000186
    は、置換基X1がフェニル基にn個結合している構造(nは1~3)を表し、置換基X1は、それぞれ独立して、炭素数2以上のアルキル基またはCN基であり、また、
    Figure 2024001412000187
    は、置換基X2がフェニル基にm個結合している構造(mは0~3)を表し、置換基X2は、それぞれ独立して、アルキル基またはCN基である。]
  4. 式(I)で示される化合物が、
    Figure 2024001412000188
    である、請求項3に記載の有機発光材料。
  5. 下記式(I)で示される発光性化合物。
    Figure 2024001412000189
    [式(I)において、
    1~R3は、それぞれ水素であるか、または、R1とR1と、R2とR2と、R3とR3とが結合して、環構造を構成することができ;
    4は、それぞれ独立して、CHまたはNであり;
    5は、水素、重水素、-CN、直鎖または分岐の低級アルキル、
    Figure 2024001412000190
    (*で、環構造に結合する)または
    Figure 2024001412000191
    (*で、環構造に結合する)であり;
    Rは、いずれか1つは、
    Figure 2024001412000192
    (*で、環構造に結合する)であって、残りは、それぞれ独立して、水素、アルキルまたは
    Figure 2024001412000193
    (*で、環構造に結合する)であり、ここで、
    Figure 2024001412000194
    は、置換基X1がフェニル基にn個結合している構造(nは1~3)を表し、置換基X1は、それぞれ独立して、炭素数2以上のアルキル基またはCN基であり、また、
    Figure 2024001412000195
    は、置換基X2がフェニル基にm個結合している構造(mは0~3)を表し、置換基X2は、それぞれ独立して、アルキル基またはCN基である。]
  6. 式(I)で示される化合物が、
    Figure 2024001412000196
    である、請求項5に記載の化合物。
JP2022100027A 2022-06-22 2022-06-22 新規な有機発光材料を用いた有機発光素子 Pending JP2024001412A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022100027A JP2024001412A (ja) 2022-06-22 2022-06-22 新規な有機発光材料を用いた有機発光素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022100027A JP2024001412A (ja) 2022-06-22 2022-06-22 新規な有機発光材料を用いた有機発光素子

Publications (1)

Publication Number Publication Date
JP2024001412A true JP2024001412A (ja) 2024-01-10

Family

ID=89455028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022100027A Pending JP2024001412A (ja) 2022-06-22 2022-06-22 新規な有機発光材料を用いた有機発光素子

Country Status (1)

Country Link
JP (1) JP2024001412A (ja)

Similar Documents

Publication Publication Date Title
JP5681179B2 (ja) 発光性アリール−ヘテロアリール化合物
KR101788793B1 (ko) 피리딘 유도체 화합물 및 이를 포함하는 유기전계발광소자
KR101996649B1 (ko) 피렌 유도체 화합물 및 이를 포함하는 유기전계발광소자
KR101861263B1 (ko) 안트라센 유도체 및 이를 포함하는 유기전계발광소자.
JP5746701B2 (ja) 有機発光ダイオード発光層のための化合物
KR102002031B1 (ko) 고효율을 갖는 유기 발광 소자
KR102244235B1 (ko) 유기 전계발광 소자용 재료 및 이것을 사용한 유기 전계발광 소자
KR101897632B1 (ko) 디아릴플루오렌 아민 유도체 유기화합물 및 이를 포함하는 유기 전계 발광 소자
KR102111535B1 (ko) 유기전계발광 소자용 재료 및 이것을 사용한 유기전계발광 소자
EP3915979A1 (en) Compound for organic light emitting element, and organic light emitting element comprising same and having long lifespan
KR20160088229A (ko) 고효율과 장수명을 갖는 유기 발광 소자
KR102241664B1 (ko) 유기 전계발광 소자용 재료 및 이것을 사용한 유기 전계발광 소자
KR102258147B1 (ko) 유기 전계발광 소자용 재료 및 이것을 사용한 유기 전계발광 소자
KR20140027030A (ko) 유기 발광 화합물 및 이를 이용한 유기 발광 소자
KR20150100890A (ko) 유기전계발광 소자용 재료 및 이것을 사용한 유기전계발광 소자
TW201704242A (zh) 有機電致發光元件用材料及使用其之有機電致發光元件
JP2022542129A (ja) 有機発光化合物及び有機発光素子
JP6672774B2 (ja) 新規カルバゾール化合物及びその用途
KR102004385B1 (ko) 신규한 화합물 및 이를 포함하는 유기전계발광소자
JP7361564B2 (ja) 第14族元素を有するトリアジン化合物
TWI684595B (zh) 有機電場發光元件用材料及使用其的有機電場發光元件
US9911922B2 (en) Organic compound for electroluminescence device
KR102659372B1 (ko) 신규 화합물 및 이를 포함하는 유기발광소자
KR102225901B1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
JP7408125B2 (ja) 電荷輸送材料および有機発光素子