JP2023554297A - Steel material for vibration damper with excellent impact toughness and its manufacturing method - Google Patents
Steel material for vibration damper with excellent impact toughness and its manufacturing method Download PDFInfo
- Publication number
- JP2023554297A JP2023554297A JP2023535055A JP2023535055A JP2023554297A JP 2023554297 A JP2023554297 A JP 2023554297A JP 2023535055 A JP2023535055 A JP 2023535055A JP 2023535055 A JP2023535055 A JP 2023535055A JP 2023554297 A JP2023554297 A JP 2023554297A
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel material
- content
- relational expression
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 114
- 239000010959 steel Substances 0.000 title claims abstract description 114
- 239000000463 material Substances 0.000 title claims abstract description 92
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- 239000002344 surface layer Substances 0.000 claims abstract description 39
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 30
- 239000013078 crystal Substances 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 16
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000012535 impurity Substances 0.000 claims abstract description 10
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 6
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 6
- 238000010438 heat treatment Methods 0.000 claims description 24
- 238000005096 rolling process Methods 0.000 claims description 24
- 238000005422 blasting Methods 0.000 claims description 21
- 229910052799 carbon Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 229910052755 nonmetal Inorganic materials 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 238000013016 damping Methods 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 22
- 239000002244 precipitate Substances 0.000 description 15
- 239000000203 mixture Substances 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 238000003303 reheating Methods 0.000 description 7
- 230000007704 transition Effects 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 239000006104 solid solution Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000001953 recrystallisation Methods 0.000 description 5
- 238000005728 strengthening Methods 0.000 description 5
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000005266 casting Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- RMLPZKRPSQVRAB-UHFFFAOYSA-N tris(3-methylphenyl) phosphate Chemical compound CC1=CC=CC(OP(=O)(OC=2C=C(C)C=CC=2)OC=2C=C(C)C=CC=2)=C1 RMLPZKRPSQVRAB-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/0081—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/02—Modifying the physical properties of iron or steel by deformation by cold working
- C21D7/04—Modifying the physical properties of iron or steel by deformation by cold working of the surface
- C21D7/06—Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H9/00—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
- E04H9/02—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
- E04H9/021—Bearing, supporting or connecting constructions specially adapted for such buildings
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Architecture (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Environmental & Geological Engineering (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Heat Treatment Of Steel (AREA)
- Laminated Bodies (AREA)
Abstract
【課題】低い降伏強度を有し、低温衝撃靭性に優れた地震から構造物の耐震性を確保するために使用可能な制震ダンパー用鋼材及びその製造方法を提供する。本発明は、重量%で、C:0.006%以下、Si:0.05%以下、Mn:0.3%以下、P:0.02%以下、S:0.01%以下、Al:0.005~0.05%、N:0.005%以下、Ti:48/14×[N]~0.05%(ここで、[N]は窒素の重量%含量を意味する)、Nb:0.04~0.15%を含み、残部がFe及びその他の不可避不純物からなり、フェライト単一組織を有し、表面から全厚さの30%の領域までの表層部におけるフェライト結晶粒の平均粒径は150~500μmであることを特徴とする。【選択図】図1aThe present invention provides a steel material for seismic dampers that has low yield strength and excellent low-temperature impact toughness and can be used to ensure earthquake resistance of structures from earthquakes, and a method for manufacturing the same. In the present invention, C: 0.006% or less, Si: 0.05% or less, Mn: 0.3% or less, P: 0.02% or less, S: 0.01% or less, Al: 0.005 to 0.05%, N: 0.005% or less, Ti: 48/14 x [N] to 0.05% (here, [N] means the weight% content of nitrogen), Nb : Contains 0.04 to 0.15%, the remainder consists of Fe and other unavoidable impurities, has a single ferrite structure, and contains ferrite crystal grains in the surface layer from the surface to a region of 30% of the total thickness. It is characterized by an average particle size of 150 to 500 μm. [Selection diagram] Figure 1a
Description
本発明は、衝撃靭性に優れた制震ダンパー用鋼材及びその製造方法に係り、より詳しくは、地震から構造物の耐震性を確保するために使用される衝撃靭性に優れた制震ダンパー用鋼材及びその製造方法に関する。 The present invention relates to a steel material for seismic dampers with excellent impact toughness and a method for manufacturing the same, and more specifically, a steel material for seismic dampers with excellent impact toughness used to ensure the seismic resistance of structures from earthquakes. and its manufacturing method.
従来、韓国内で主に使用されていた耐震設計では、地震時に、柱や梁の構造物に使用される鋼材の降伏比を下げて構造物の破壊に至る時点を遅らせる技術が主に使用されてきた。しかし、このような低降伏比の鋼材を用いた耐震設計は、構造物に使用される鋼材の再使用が不可能であるだけでなく、構造物自体に対しても安定性が確保されないため、再建築を行わなければならないという問題があった。 Traditionally, seismic design, which has been mainly used in Korea, mainly uses technology that lowers the yield ratio of the steel materials used in structures such as columns and beams to delay the point at which the structure will fail in the event of an earthquake. It's here. However, seismic design using such low yield ratio steel materials not only makes it impossible to reuse the steel materials used in the structure, but also does not ensure the stability of the structure itself. The problem was that it had to be rebuilt.
近年では、耐震設計技術が発展し、制震又は免震構造の実用化が進められているが、特に、地震による構造物に加わるエネルギーを特定部位に吸収させて耐震性能を確保する技術が多様に開発されている。このような地震エネルギーを吸収する装置として制震ダンパーが用いられており、制震ダンパー用鋼材の場合には極低降伏点の特性を有する。制震ダンパー用鋼材は、既存の柱や梁の構造材よりも降伏点を下げることで、地震時に先に降伏を起こして地震による振動エネルギーを吸収し、他の構造材は弾性の範囲に維持させることで、構造物の変形を抑制するようになる。 In recent years, seismic design technology has developed and the practical use of seismic control or seismic isolation structures is progressing.In particular, there are various technologies that ensure seismic performance by absorbing the energy applied to structures due to earthquakes in specific parts. has been developed. A seismic damper is used as a device to absorb such seismic energy, and the steel material for the seismic damper has the characteristic of an extremely low yield point. Steel materials for seismic dampers have a lower yield point than existing structural materials for columns and beams, allowing them to yield first in the event of an earthquake and absorb the vibration energy caused by the earthquake, while maintaining other structural materials within their elastic range. By doing so, deformation of the structure can be suppressed.
本発明が目的とするところは、低い降伏強度を有し、地震から構造物の耐震性を確保するために使用可能な制震ダンパー用鋼材及びその製造方法を提供しようとするものである。 An object of the present invention is to provide a steel material for a seismic damper that has a low yield strength and can be used to ensure the earthquake resistance of a structure from an earthquake, and a method for manufacturing the same.
また、本発明は、低い降伏強度を有するとともに、低温衝撃靭性に優れた制震ダンパー用鋼材及びその製造方法を提供しようとするものである。 Further, the present invention aims to provide a steel material for seismic dampers that has low yield strength and excellent low-temperature impact toughness, and a method for manufacturing the same.
本発明の課題は、前述の内容に限定されない。本発明が属する技術分野において通常の知識を有する者であれば、誰でも本発明の明細書全体にわたる内容から本発明の更なる課題を理解する上で何ら困難がない。 The object of the present invention is not limited to the above-mentioned contents. Anyone having ordinary knowledge in the technical field to which the present invention pertains will have no difficulty in understanding the further objects of the present invention from the content throughout the specification of the present invention.
本発明は、
重量%で、C:0.006%以下、Si:0.05%以下、Mn:0.3%以下、P:0.02%以下、S:0.01%以下、Al:0.005~0.05%、N:0.005%以下、Ti:48/14×[N]~0.05%(ここで、[N]は窒素の重量%含量を意味する)、Nb:0.04~0.15%を含み、残部がFe及びその他の不可避不純物からなり、
フェライト単一組織を有し、
表面から全厚さの30%の領域までの表層部におけるフェライト結晶粒の平均粒径は150~500μmである、制震ダンパー用鋼材を提供する。
The present invention
In weight%, C: 0.006% or less, Si: 0.05% or less, Mn: 0.3% or less, P: 0.02% or less, S: 0.01% or less, Al: 0.005~ 0.05%, N: 0.005% or less, Ti: 48/14×[N] ~ 0.05% (here, [N] means the weight% content of nitrogen), Nb: 0.04 ~0.15%, with the remainder consisting of Fe and other unavoidable impurities,
Has a single ferrite structure,
Provided is a steel material for a seismic damper, in which the average grain size of ferrite crystal grains in the surface layer region from the surface to 30% of the total thickness is 150 to 500 μm.
また、本発明は、
重量%で、C:0.006%以下、Si:0.05%以下、Mn:0.3%以下、P:0.02%以下、S:0.01%以下、Al:0.005~0.05%、N:0.005%以下、Ti:48/14×[N]~0.05%(ここで、[N]は窒素の重量%含量を意味する)、Nb:0.04~0.15%を含み、残部がFe及びその他の不可避不純物からなる鋼スラブを1050~1250℃の 温度範囲に加熱する段階と、
加熱された鋼スラブをAr3-80℃以上Ar3以下の温度範囲で仕上げ圧延する段階と、
仕上げ圧延された鋼材の表面にショットブラスト処理する段階と、を含み、
上記ショットブラスト処理する段階は、金属材ボール又は非金属材ボールを1,500~2,500rpmの速度で回転させて、60~100m/sの速度で板材の表面に噴射するように行われる、制震ダンパー用鋼材の製造方法を提供する。
Moreover, the present invention
In weight%, C: 0.006% or less, Si: 0.05% or less, Mn: 0.3% or less, P: 0.02% or less, S: 0.01% or less, Al: 0.005~ 0.05%, N: 0.005% or less, Ti: 48/14×[N] ~ 0.05% (here, [N] means the weight% content of nitrogen), Nb: 0.04 heating a steel slab containing ~0.15% Fe and other unavoidable impurities to a temperature range of 1050~1250°C;
Finish rolling the heated steel slab in a temperature range of Ar3-80°C or higher and Ar3 or lower;
shot blasting the surface of the finish-rolled steel material;
The shot blasting step is performed by rotating the metal balls or non-metal balls at a speed of 1,500 to 2,500 rpm and spraying them onto the surface of the plate material at a speed of 60 to 100 m/s. Provided is a method for manufacturing steel materials for seismic dampers.
本発明によれば、地震から構造物の耐震性を確保するために使用される制震ダンパーとして好適に使用できる鋼材及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a steel material that can be suitably used as a seismic damper used to ensure the earthquake resistance of a structure from an earthquake, and a method for manufacturing the same.
また、本発によれば、降伏強度が低く、低温衝撃靭性に優れた制震ダンパー用鋼材及びその製造方法を提供することができる。 Further, according to the present invention, it is possible to provide a steel material for a seismic damper that has low yield strength and excellent low-temperature impact toughness, and a method for manufacturing the same.
本発明の多様かつ有益な利点及び効果は、前述した内容に限定されず、本発明の具体的な実施形態を説明する過程でより容易に理解することができる。 Various beneficial advantages and effects of the present invention are not limited to the above-mentioned contents, but can be more easily understood in the course of describing specific embodiments of the present invention.
以下、本発明の好ましい実施形態を説明する。しかし、本発明の実施形態は様々な他の形態に変形することができ、本発明の範囲は以下で説明する実施形態に限定されるものではない。また、本発明の実施形態は、当技術分野において平均的な知識を有する者に本発明をより完全に説明するために提供されるものである。 Preferred embodiments of the present invention will be described below. However, the embodiments of the present invention can be modified into various other forms, and the scope of the present invention is not limited to the embodiments described below. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
地震から構造物の耐震性を確保するために使用される鋼材として、従来は純鉄に近い成分を使用し、且つ、910~960℃の温度範囲で追加の熱処理を行う技術が知られていた。 Conventionally, steel materials used to ensure the seismic resistance of structures against earthquakes have been known to use compositions close to pure iron, and to perform additional heat treatment in the temperature range of 910 to 960 degrees Celsius. .
しかし、このような技術は、仕上げ圧延後に900℃以上の高温で追加の熱処理を行う必要があるため、Siが添加されていない極低降伏点の鋼材の場合、過度なスケールが発生して不良を起こしたり、粗大なNb又はTi析出物が形成され、衝撃靭性の劣化が発生するという問題があった。また、900℃以上の高温における追加の熱処理工程が伴うため、製造コストの上昇を招くという問題もあった。 However, such technology requires additional heat treatment at a high temperature of 900°C or higher after finish rolling, which can lead to excessive scale and failure in the case of steel materials with extremely low yield points that do not contain Si. There were problems in that the impact toughness deteriorated due to the formation of coarse Nb or Ti precipitates. Furthermore, since an additional heat treatment step at a high temperature of 900° C. or higher is involved, there is also a problem of an increase in manufacturing costs.
そこで、本発明者らは、前述の問題点を解決するために鋭意検討を行った結果、鋼の組成、表層部の微細組織及び製造条件等を最適化することにより、降伏強度が120MPa以下と低いながらも、低温衝撃靭性に優れた制震ダンパー用鋼材を提供できることを見出し、本発明を完成するに至った。 Therefore, as a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention achieved a yield strength of 120 MPa or less by optimizing the composition of the steel, the microstructure of the surface layer, manufacturing conditions, etc. The present inventors have discovered that it is possible to provide a steel material for seismic dampers that has excellent low-temperature impact toughness, although it is low, and has completed the present invention.
以下では、本発明に係る[制震ダンパー用鋼材]について詳細に説明する。 Below, the [steel material for seismic damper] according to the present invention will be explained in detail.
具体的に、本発明の制震ダンパー用鋼材は、重量%で、C:0.006%以下、Si:0.05%以下、Mn:0.3%以下、P:0.02%以下、S:0.01%以下、Al:0.005~0.05%、N:0.005%以下、Ti:48/14×[N]~0.05%、Nb:0.04~0.15%を含み、残部がFe及びその他の不可避不純物からなる組成を有する。以下、本発明の主な特徴の一つである鋼組成を構成する各合金成分を添加する理由、及びそれらの適切な含量範囲について先ず説明する。 Specifically, the steel material for a seismic damper of the present invention has, in weight percent, C: 0.006% or less, Si: 0.05% or less, Mn: 0.3% or less, P: 0.02% or less, S: 0.01% or less, Al: 0.005 to 0.05%, N: 0.005% or less, Ti: 48/14×[N] to 0.05%, Nb: 0.04 to 0.05%. 15%, with the remainder consisting of Fe and other unavoidable impurities. Hereinafter, the reason for adding each alloy component constituting the steel composition, which is one of the main features of the present invention, and the appropriate content range thereof will be explained first.
C:0.006%以下(0%を除く)
Cは、固溶強化を引き起こし、自由な状態では転位に固着して降伏強度を高め、伸び率を下げる元素である。前述の効果を確保するために、本発明においてC含量が0%である場合を除く(すなわち、C含量は0%超過)。したがって、制震ダンパー用鋼材として好適に使用するためには、C含量が低ければ低いほど良いため、その含量を0.006%以下に制御し、より好ましくは0.0045%以下に制御することができる。また、より好ましくは、上記C含量は0.0005%以上であってもよい。
C: 0.006% or less (excluding 0%)
C is an element that causes solid solution strengthening and, in a free state, fixes to dislocations, increases yield strength, and lowers elongation. In order to ensure the above effects, the present invention excludes the case where the C content is 0% (ie, the C content exceeds 0%). Therefore, in order to suitably use the steel material for seismic dampers, the lower the C content, the better, so the content should be controlled to 0.006% or less, more preferably 0.0045% or less. I can do it. More preferably, the C content may be 0.0005% or more.
Si:0.05%以下(0%を除く)
Siは、Cと同様に固溶強化を引き起こす元素であって、降伏強度を高め、伸び率を下げる元素であり、前述の効果を確保するために、Si含量が0%である場合を除く(すなわち、Si含量は0%超過)。但し、制震ダンパー用鋼材として好適に使用するためには、Si含量が低いほど良い。したがって、本発明では、低い降伏強度を確保する観点から、Si含量を0.03%以下に制御し、より好ましくは0.013%以下に制御することができる。また、上記Si含量は0.001%以上であってもよい。
Si: 0.05% or less (excluding 0%)
Like C, Si is an element that causes solid solution strengthening, increases the yield strength, and decreases the elongation rate. That is, the Si content exceeds 0%). However, in order to suitably use the steel material for seismic dampers, the lower the Si content, the better. Therefore, in the present invention, from the viewpoint of ensuring low yield strength, the Si content can be controlled to 0.03% or less, more preferably 0.013% or less. Further, the Si content may be 0.001% or more.
Mn:0.3%以下(0%を除く)
Mnは、Siと同様に固溶強化を引き起こす元素であって、降伏強度を高め、伸び率を下げる元素である。前述の効果を確保するために、Mn含量が0%である場合を除く(すなわち、Mn含量は0%超過)。但し、制震ダンパー用鋼材として好適に使用するために、本発明では、低い降伏強度を確保する観点から、Mn含量を0.3%以下に制御し、より好ましくは0.2%以下に制御することができる。また、上記Mn含量は0.06%以上であってもよく、より好ましくは0.1%以上であってもよい。
Mn: 0.3% or less (excluding 0%)
Like Si, Mn is an element that causes solid solution strengthening, and is an element that increases yield strength and decreases elongation. In order to ensure the above effect, except when the Mn content is 0% (ie, the Mn content is more than 0%). However, in order to suitably use the steel material for seismic dampers, in the present invention, the Mn content is controlled to 0.3% or less, more preferably 0.2% or less, from the viewpoint of ensuring low yield strength. can do. Further, the Mn content may be 0.06% or more, more preferably 0.1% or more.
P:0.02%以下(0%を除く)
Pは、強度向上及び耐食性に有利な元素であるため、前述の効果を確保するために、P含量が0%である場合を除く(すなわち、P含量は0%超過)。但し、Pは、衝撃靭性を大きく阻害することがあるため、P含量はできるだけ低く維持することが好ましい。したがって、本発明では、P含量を0.02%以下に制御し、より好ましくは0.013%以下に制御することができる。また、上記P含量は0.001%以上であってもよく、より好ましくは0.004%以上であってもよい。
P: 0.02% or less (excluding 0%)
Since P is an element that is advantageous for improving strength and corrosion resistance, in order to ensure the above-mentioned effects, the case where the P content is 0% is excluded (that is, the P content is more than 0%). However, since P can greatly inhibit impact toughness, it is preferable to keep the P content as low as possible. Therefore, in the present invention, the P content can be controlled to 0.02% or less, more preferably 0.013% or less. Further, the P content may be 0.001% or more, more preferably 0.004% or more.
S:0.01%以下(0%を除く)
Sは、MnS等を形成して衝撃靭性を大きく阻害する元素であるため、できるだけその含量を低く維持することが好ましい。したがって、本発明では、S含量を0.01%以下に制御し、より好ましくは0.004%以下に制御することができる。また、上記S含量は0.0005%以上であってもよく、より好ましくは0.001%以上であってもよい。
S: 0.01% or less (excluding 0%)
Since S is an element that forms MnS and the like and greatly inhibits impact toughness, it is preferable to keep its content as low as possible. Therefore, in the present invention, the S content can be controlled to 0.01% or less, more preferably 0.004% or less. Further, the S content may be 0.0005% or more, more preferably 0.001% or more.
Al:0.005~0.05%
Alは、溶鋼を安価に脱酸できる元素であって、降伏強度を十分に下げながらも衝撃靭性を確保する観点から、Al含量の上限を0.05%に制御する。あるいは、より好ましくはAl含量の上限を0.035%に制御することができ、最小限の脱酸性能を確保する観点から、Al含量の下限を0.005%に制御することができ、より好ましくは0.023%であってもよい。
Al: 0.005-0.05%
Al is an element that can deoxidize molten steel at low cost, and the upper limit of the Al content is controlled to 0.05% from the viewpoint of ensuring impact toughness while sufficiently lowering yield strength. Alternatively, more preferably, the upper limit of the Al content can be controlled to 0.035%, and from the viewpoint of ensuring minimum deoxidizing performance, the lower limit of the Al content can be controlled to 0.005%, and more preferably Preferably, it may be 0.023%.
N:0.005%以下(0%を除く)
Nは、固溶強化を引き起こし、自由な状態では転位に固着して降伏強度を高め、伸び率を下げる元素である。前述の効果を確保するために、N含量が0%である場合を除く(すなわち、N含量は0%超過)。但し、N含量は低ければ低いほど良いため、低い降伏強度を確保する観点からN含量を0.005%以下に制御する。また、上記N含量は0.001%以上であってもよい。
N: 0.005% or less (excluding 0%)
N is an element that causes solid solution strengthening and, in a free state, fixes to dislocations, increases yield strength, and decreases elongation. To ensure the above effects, except when the N content is 0% (ie, the N content is more than 0%). However, the lower the N content, the better; therefore, from the viewpoint of ensuring low yield strength, the N content is controlled to 0.005% or less. Further, the N content may be 0.001% or more.
Nb:0.04~0.15%
Nbは、TMCP鋼の製造において重要な元素であって、NbC又はNbCNの形態で析出してCが転位に固着することを防止する非常に重要な元素である。また、高温に再加熱する際に固溶したNbは、オーステナイトの再結晶を抑制し、組織が微細化する効果を奏する。
Nb: 0.04-0.15%
Nb is an important element in the production of TMCP steel, and is a very important element that precipitates in the form of NbC or NbCN and prevents C from sticking to dislocations. Furthermore, Nb dissolved in solid solution during reheating to a high temperature has the effect of suppressing recrystallization of austenite and making the structure finer.
一方、変形誘起析出物を導入するためには、広い未再結晶領域を確保することが必要であるが、図2に示すように、Ar3とTnrとの間に50℃以上の温度領域を確保する観点から、Nbを0.04%以上添加することが好ましい。また、析出物の粗大化により衝撃靭性が劣化することを防止するためには、Nbを0.15%以下添加することが好ましい。 On the other hand, in order to introduce deformation-induced precipitates, it is necessary to secure a wide unrecrystallized region, but as shown in Figure 2, a temperature region of 50°C or higher is secured between Ar3 and Tnr. From this viewpoint, it is preferable to add 0.04% or more of Nb. Further, in order to prevent impact toughness from deteriorating due to coarsening of precipitates, it is preferable to add 0.15% or less of Nb.
具体的に、図2では、本発明の鋼材について、Nbの添加量による再結晶停止温度(Tnr)の変化をグラフで示している。すなわち、本発明のように、炭素の含量を極低量に制御した極低炭素鋼の場合にはAr3が890℃程度と非常に高く、Ar3の変化が僅かである。よって、Ar3の変化値は無視可能なレベルとなるため、図2のようにAr3を890℃程度に固定して表すことができ、Nb含量を0.04~0.15%添加した場合にのみ極低炭素鋼の再結晶停止温度(Tnr)を高く制御することができる。したがって、本発明のように、Nb含量を0.04~0.15%の範囲に制御することにより、極低炭素鋼のTnrとAr3との差を50℃以上確保することができ、これにより変形誘起析出物が微細に発生し、Cを析出物として固着することができる。一方、前述の効果を向上させる観点から、より好ましくは、上記Nb含量の下限は0.07%であってもよく、あるいは、上記Nb含量の上限は0.1%であってもよい。 Specifically, FIG. 2 graphically shows changes in recrystallization stop temperature (Tnr) depending on the amount of Nb added for the steel material of the present invention. That is, in the case of ultra-low carbon steel in which the carbon content is controlled to an extremely low amount as in the present invention, Ar3 is extremely high at about 890°C, and the change in Ar3 is small. Therefore, since the change value of Ar3 becomes a negligible level, it can be expressed by fixing Ar3 at about 890°C as shown in Figure 2, and only when the Nb content is added from 0.04 to 0.15%. The recrystallization stop temperature (Tnr) of ultra-low carbon steel can be highly controlled. Therefore, by controlling the Nb content in the range of 0.04 to 0.15% as in the present invention, it is possible to maintain a difference of 50°C or more between Tnr and Ar3 in ultra-low carbon steel, and thereby Fine deformation-induced precipitates are generated, and C can be fixed as the precipitates. On the other hand, from the viewpoint of improving the above-mentioned effects, more preferably, the lower limit of the Nb content may be 0.07%, or the upper limit of the Nb content may be 0.1%.
Ti:48/14×[N]~0.05%
Tiは、TiNの形態で析出することにより、Nが転位に固着することを防止する役割を果たす元素である。したがって、鋼中のNを適正範囲に固着させるためには、添加したN含量(重量%)を考慮して、Tiを48/14×[N]%以上添加しなければならず(ここで、[N]は重量%で示した窒素の含量を意味する)、あるいは0.02%以上添加しなければならない。一方、Tiが過度に添加される場合には、析出物が粗大化して衝撃靭性が劣化するおそれがあるため、衝撃靭性を確保する観点から、Tiを0.05%以下に制御し、より好ましくは0.04%以下に制御することができる。
Ti: 48/14×[N] ~ 0.05%
Ti is an element that plays a role of preventing N from sticking to dislocations by precipitating in the form of TiN. Therefore, in order to fix N in steel within an appropriate range, Ti must be added at 48/14 x [N]% or more, taking into account the added N content (wt%) (here, [N] means the nitrogen content expressed in weight percent), or 0.02% or more must be added. On the other hand, if Ti is added excessively, the precipitates may become coarse and impact toughness may deteriorate. Therefore, from the viewpoint of ensuring impact toughness, it is more preferable to control Ti to 0.05% or less. can be controlled to 0.04% or less.
すなわち、本発明によれば、Ti含量を48/14×[N]~0.05%の範囲に制御することにより、鋼中のNを析出物として固着させることができ、Nb含量を0.04~0.15%の範囲に制御することにより、鋼中のCを 析出物として固着させることができる。よって、本発明では、Ti及びNb含量を最適化することにより、変形誘起析出物を適正サイズに微細に形成するように制御可能となり、これにより、低い降伏強度を有しながらも低温衝撃靭性に優れた制震ダンパー用鋼材を効果的に提供することができる。 That is, according to the present invention, by controlling the Ti content within the range of 48/14×[N] to 0.05%, N in the steel can be fixed as a precipitate, and the Nb content can be reduced to 0.05%. By controlling the content within the range of 0.04 to 0.15%, C in the steel can be fixed as a precipitate. Therefore, in the present invention, by optimizing the Ti and Nb contents, it is possible to control the formation of deformation-induced precipitates finely to an appropriate size, thereby achieving good low-temperature impact toughness while having low yield strength. It is possible to effectively provide excellent steel materials for vibration control dampers.
具体的に、C又はNが自由な状態になると、転位にC又はNが固着して上部降伏点現象を起こし、これにより、降伏強度が120MPa超過となってしまう。また、フェライト単一組織において粗大な析出物が存在すると、衝撃靭性が劣化する。ところが、圧延時に変形誘起で析出する場合には、そのサイズが微細になり、衝撃靭性の劣化を抑制することができ、上部降伏点の発現を抑制して極低降伏点の鋼材が得られるようになる。したがって、本発明によれば、降伏強度が120MPa以下と非常に低いながらも、シャルピー衝撃遷移温度が-20℃以下である低温衝撃靭性に優れた鋼材を提供することができる。 Specifically, when C or N becomes free, C or N sticks to dislocations and causes an upper yield point phenomenon, resulting in the yield strength exceeding 120 MPa. Furthermore, the presence of coarse precipitates in a single ferrite structure deteriorates impact toughness. However, when precipitation occurs due to deformation during rolling, its size becomes fine and deterioration of impact toughness can be suppressed, and the development of the upper yield point can be suppressed to obtain steel materials with extremely low yield points. become. Therefore, according to the present invention, it is possible to provide a steel material with excellent low-temperature impact toughness and a Charpy impact transition temperature of -20° C. or less, although the yield strength is very low at 120 MPa or less.
一方、本発明によれば、特に限定するものではないが、上記制震ダンパー用鋼材は、下記関係式1で定義されるR1値が0.8以上を満たすことができ、あるいは、より好ましくは上記R1値が0.8~150の範囲であることができる。上記R1値が0.8以上であると、120MPa以下の非常に低い降伏強度を有する鋼材をより効果的に提供することができる。また、上記R1値が150以下であると、Nb析出物が微細に形成されるため、より優れた衝撃靭性を確保することができる。 On the other hand, according to the present invention, although not particularly limited, the above-mentioned steel material for seismic damper can satisfy the R1 value defined by the following relational expression 1 of 0.8 or more, or more preferably, The R1 value may be in the range of 0.8 to 150. When the R1 value is 0.8 or more, it is possible to more effectively provide a steel material having a very low yield strength of 120 MPa or less. Further, when the R1 value is 150 or less, fine Nb precipitates are formed, so that better impact toughness can be ensured.
[関係式1]
R1=[Nb]/[Si]
(上記関係式1中、[Nb]はNbの重量%含量を示し、[Si]はSiの重量%含量を示す。)
[Relational expression 1]
R1=[Nb]/[Si]
(In the above relational expression 1, [Nb] indicates the weight % content of Nb, and [Si] indicates the weight % content of Si.)
一方、前述の効果を向上させる観点から、より好ましくは、上記関係式1で定義されるR1値の下限は3.33であってもよく、あるいは、上記R1値の上限は90であってもよい。 On the other hand, from the viewpoint of improving the above-mentioned effects, more preferably, the lower limit of the R1 value defined by the above relational expression 1 may be 3.33, or the upper limit of the above R1 value may be 90. good.
あるいは、本発明の一側面によれば、上記制震ダンパー用鋼材は、下記関係式2で定義されるR2値が0.8以上を満たすことができる。あるいは、より好ましくは、上記R2値が0.8~200の範囲であってもよく、最も好ましくは4~200の範囲であってもよい。上記R2値が0.8以上であると、120MPa以下の低い降伏強度を有する鋼材をより効果的に提供することができる。また、上記R2値が200以下であると、Nb析出物が微細に形成され、より優れた衝撃靭性を確保することができる。 Alternatively, according to one aspect of the present invention, the above-mentioned steel material for a seismic damper can satisfy an R2 value of 0.8 or more as defined by the following relational expression 2. Alternatively, more preferably, the R2 value may be in the range of 0.8 to 200, most preferably in the range of 4 to 200. When the R2 value is 0.8 or more, it is possible to more effectively provide a steel material having a low yield strength of 120 MPa or less. Further, when the R2 value is 200 or less, fine Nb precipitates are formed, and more excellent impact toughness can be ensured.
[関係式2]
R2=([Ti]+[Nb])/[Si]
(上記関係式2中、[Ti]はTiの重量%含量を示し、[Nb]はNbの重量%含量を示し、[Si]はSiの重量%含量を示す。)
[Relational expression 2]
R2=([Ti]+[Nb])/[Si]
(In the above relational expression 2, [Ti] indicates the weight% content of Ti, [Nb] indicates the weight% content of Nb, and [Si] indicates the weight% content of Si.)
一方、前述の効果を向上させる観点から、より好ましくは、上記関係式2で定義されるR2値の下限は4.33であってもよく、上記R2値の上限は130であってもよい。 On the other hand, from the viewpoint of improving the above-mentioned effects, more preferably, the lower limit of the R2 value defined by the above relational expression 2 may be 4.33, and the upper limit of the above R2 value may be 130.
本発明において、残りの成分はFe及びその他の不可避不純物である。すなわち、本発明に係る制震ダンパー用鋼材は、通常の製造過程において原料又は周囲環境から意図しない不純物が不可避に混入することがあるため、これを排除することはできない。このような不純物は、通常の技術者であれば、誰でも分かるものであるため、本明細書では、その全ての内容については言及しない。 In the present invention, the remaining components are Fe and other unavoidable impurities. That is, in the steel material for a seismic damper according to the present invention, unintended impurities may inevitably be mixed in from raw materials or the surrounding environment during the normal manufacturing process, and this cannot be excluded. Since such impurities are known to those of ordinary skill in the art, they will not be discussed in their entirety in this specification.
本発明によれば、上記制震ダンパー用鋼材はフェライト単一組織を有する。これを満たすことにより、地震の発生時に効果的にエネルギーを吸収し、地震ダンパーとしての役割を果たすことができる。 According to the present invention, the steel material for a seismic damper has a single ferrite structure. By meeting this requirement, it can effectively absorb energy during an earthquake and serve as an earthquake damper.
また、本発明によれば、表層部におけるフェライト結晶粒の平均粒径は150~500μmであってもよい。上記表層部におけるフェライト結晶粒の平均粒径が150μm未満であると、降伏強度が目標とする降伏強度を超えるという問題が生じる可能性があり、500μmを超えると、ダンパー鋼材の降伏強度が目標とする強度より低くなるという問題が生じる可能性がある。一方、上記表層部におけるフェライト結晶粒の平均粒径の下限は、より好ましくは175μmであってもよく、最も好ましくは200μmであってもよい。あるいは、上記表層部におけるフェライト結晶粒の平均粒径の上限は、より好ましくは310μmであってもよく、最も好ましくは300μmであってもよい。 Further, according to the present invention, the average grain size of the ferrite crystal grains in the surface layer portion may be 150 to 500 μm. If the average grain size of the ferrite crystal grains in the surface layer is less than 150 μm, a problem may occur in which the yield strength exceeds the target yield strength, and if it exceeds 500 μm, the yield strength of the damper steel material may exceed the target yield strength. The problem may arise that the strength is lower than the actual strength. On the other hand, the lower limit of the average grain size of the ferrite crystal grains in the surface layer portion may be more preferably 175 μm, and most preferably 200 μm. Alternatively, the upper limit of the average grain size of the ferrite crystal grains in the surface layer portion may be more preferably 310 μm, and most preferably 300 μm.
なお、本明細書において、上記表層部とは、鋼材の表面から全厚さの30%までの領域を意味する。したがって、後述する表層部以外の内部領域というのは、上記鋼材の厚さ方向への上下部にそれぞれ存在する表層部(上部表層部及び下部表層部)を除いた領域を意味する。 In addition, in this specification, the said surface layer part means the area|region from the surface of a steel material to 30% of the total thickness. Therefore, the internal region other than the surface layer described below means the region excluding the surface layer portions (upper surface layer portion and lower surface layer portion) that are present at the upper and lower portions of the steel material in the thickness direction.
本発明によれば、上記表層部におけるフェライト結晶粒の平均粒径は、上記表層部以外の内部領域におけるフェライト結晶粒の平均粒径より大きくてもよく、より好ましくは、上記内部領域におけるフェライト結晶粒の平均粒径より150μm以上大きくてもよい。これを満たすことにより、目的とする降伏強度を確保する効果を発揮することができる。 According to the present invention, the average grain size of the ferrite crystal grains in the surface layer portion may be larger than the average grain size of the ferrite crystal grains in the internal region other than the surface layer portion, and more preferably, the average grain size of the ferrite crystal grains in the internal region. It may be 150 μm or more larger than the average particle size of the particles. By satisfying this requirement, it is possible to exhibit the effect of ensuring the desired yield strength.
あるいは、本発明によれば、上記表層部以外の内部領域におけるフェライト結晶粒の平均粒径は10~50μmの範囲であってもよく、より好ましくは30~50μmの範囲であってもよい。上記内部領域におけるフェライト結晶粒の平均粒径が10μm未満であると、目標とする降伏強度を超えるという問題が生じる可能性があり、50μmを超えると、ダンパ全体の降伏強度が目標とする強度より低くなるという問題が生じる可能性がある。 Alternatively, according to the present invention, the average grain size of the ferrite crystal grains in the internal region other than the surface layer portion may be in the range of 10 to 50 μm, and more preferably in the range of 30 to 50 μm. If the average grain size of the ferrite crystal grains in the internal region is less than 10 μm, there is a possibility that the target yield strength will be exceeded, and if it exceeds 50 μm, the yield strength of the entire damper will be lower than the target strength. There may be a problem of lowering.
前述したフェライト結晶粒の平均粒径は、鋼材の厚さ方向(すなわち、圧延方向に垂直な方向)への切断面を基準にして、結晶粒に対する円相当径を測定した値の平均値を意味し、具体的には、結晶粒の内部を貫通する最も長い長さを粒径として描かれる球状の粒子を仮定したとき、上記粒径を測定した値の平均値である。 The average grain size of the ferrite crystal grains mentioned above is the average value of the equivalent circle diameters measured for the crystal grains, based on the cut plane in the thickness direction of the steel material (i.e., perpendicular to the rolling direction). Specifically, it is the average value of the measured values of the particle size, assuming a spherical particle whose particle size is the longest length that penetrates the inside of a crystal grain.
本発明の一例に該当する後述の発明例1-2の鋼材について、光学顕微鏡を用いて微細組織を撮影した光学写真を図1に示した。図1から分かるように、表層部におけるフェライト結晶粒サイズが上記表層部以外の内部領域におけるフェライト結晶粒サイズより大きいことが確認できる。 FIG. 1 shows an optical photograph of the microstructure of a steel material of Invention Example 1-2 described later, which corresponds to an example of the present invention, using an optical microscope. As can be seen from FIG. 1, it can be confirmed that the ferrite crystal grain size in the surface layer portion is larger than the ferrite crystal grain size in the internal region other than the surface layer portion.
また、本発明によれば、特に限定するものではないが、鋼材の厚さ方向(すなわち、圧延方向と垂直な方向)を基準にして、上記鋼材の全厚さ(Dt)に対する上記表層部の厚さ(Ds)比率(Ds/Dt)は0.1~0.3の範囲であってもよい。このように、鋼材の全厚さに対する表層部の厚さ比率(Ds/Dt)が0.1~0.3を満たすことにより、図5から確認できるように、本発明で目標とする120MPa以下の非常に低い降伏強度を有する制震ダンパー用鋼材を効果的に提供することができる。 Further, according to the present invention, although not particularly limited, the surface layer portion of the steel material relative to the total thickness (Dt) of the steel material is based on the thickness direction of the steel material (that is, the direction perpendicular to the rolling direction). The thickness (Ds) ratio (Ds/Dt) may range from 0.1 to 0.3. In this way, by satisfying the thickness ratio (Ds/Dt) of the surface layer to the total thickness of the steel material from 0.1 to 0.3, as can be confirmed from FIG. It is possible to effectively provide a steel material for seismic dampers having a very low yield strength.
一方、本発明において、上記比率(Ds/Dt)が0.1未満であると、目標とする降伏強度を超えてダンパーとしての十分なエネルギーを吸収できないという問題が生じる可能性があり、上記比率(Ds/Dt)が0.3を超えると、図3に示すように、降伏強度が低くなりすぎて構造物に対する安全な支えを行う上で問題が生じる可能性がある。 On the other hand, in the present invention, if the ratio (Ds/Dt) is less than 0.1, there is a possibility that the target yield strength is exceeded and sufficient energy cannot be absorbed as a damper. When (Ds/Dt) exceeds 0.3, as shown in FIG. 3, the yield strength becomes too low, which may cause problems in safely supporting the structure.
なお、特に限定するものではないが、前述の効果を向上させる観点から、より好ましくは、上記比率(Ds/Dt)の下限は0.14であってもよく、あるいは、上記比率(Ds/Dt)の上限は0.25であってもよい。 Although not particularly limited, from the viewpoint of improving the above-mentioned effect, the lower limit of the ratio (Ds/Dt) may be more preferably 0.14, or the lower limit of the ratio (Ds/Dt) may be more preferably 0.14. ) may be 0.25.
このとき、上記表層部は、鋼材の上下部のそれぞれに形成された表層部を全て包括する概念であることに留意する必要がある。 At this time, it is necessary to keep in mind that the above-mentioned surface layer section is a concept that includes all the surface layer sections formed on the upper and lower parts of the steel material.
本発明によれば、前述した制震ダンパー用鋼材の降伏強度(YS)は120MPa以下であってもよく、特に限定するものではないが、より好ましくは80~120MPaの範囲であってもよい。上記鋼材の降伏強度が120MPaを超えると、地震の発生時に、エネルギーを十分に吸収できないという問題が生じる可能性があり、上記鋼材の降伏強度が80MPa未満であると、構造物の安定的な維持に問題が生じる可能性がある。 According to the present invention, the yield strength (YS) of the above-mentioned steel material for a seismic damper may be 120 MPa or less, and although not particularly limited, it may be more preferably in the range of 80 to 120 MPa. If the yield strength of the above-mentioned steel exceeds 120 MPa, there may be a problem that energy cannot be absorbed sufficiently in the event of an earthquake, and if the yield strength of the above-mentioned steel is below 80 MPa, it may be difficult to maintain the structure stably. may cause problems.
以下では、本発明に係る[制震ダンパー用鋼材の製造方法]について詳細に説明する。 Below, the [method for manufacturing a steel material for vibration control damper] according to the present invention will be explained in detail.
スラブの加熱段階
本発明の制震ダンパー用鋼材の製造方法は、前述した組成を満たす鋼スラブを再加熱する段階を含むことができ、上記再加熱は1050~1250℃の範囲で行うことができる。このとき、鋳造中に形成されたTi及び/又はNbの炭窒化物を十分に固溶させるために、鋼スラブの加熱温度を1050℃以上に制御する。但し、過度に高い温度に加熱する場合は、オーステナイトが粗大化するおそれがあり、粗圧延の後に表面の温度が表層部の冷却開始温度に至るまで過度な時間がかかるため、スラブの加熱を1250℃以下で行うことが好ましい。一方、特に限定するものではないが、前述の効果を向上させる観点から、より好ましくは、上記スラブの再加熱温度の下限は1075℃であってもよく、あるいは、上記スラブの再加熱温度の上限は1125℃であってもよい。
Heating step of slab The method for manufacturing a steel material for a seismic damper according to the present invention can include a step of reheating a steel slab satisfying the above-mentioned composition, and the reheating can be performed at a temperature in the range of 1050 to 1250°C. . At this time, the heating temperature of the steel slab is controlled to 1050° C. or higher in order to sufficiently dissolve Ti and/or Nb carbonitrides formed during casting. However, if the slab is heated to an excessively high temperature, there is a risk that the austenite will become coarse and it will take an excessive amount of time for the surface temperature to reach the cooling start temperature of the surface layer after rough rolling. It is preferable to carry out the reaction at a temperature below ℃. On the other hand, although not particularly limited, from the viewpoint of improving the above-mentioned effects, more preferably, the lower limit of the reheating temperature of the slab may be 1075°C, or the upper limit of the reheating temperature of the slab. may be 1125°C.
粗圧延段階
本発明によれば、上記加熱された鋼スラブは、後述する仕上げ圧延段階の前に、スラブの形状調整のために粗圧延を行う段階をさらに含むことができ、このような粗圧延の温度はオーステナイトの再結晶が停止する温度(Tnr)以上に制御されることができる。粗圧延により鋳造中に形成されたデンドライト等の構造組織を破壊する効果を得ることができ、さらにオーステナイトのサイズを小さくする効果も得ることができる。一方、特に限定するものではないが、前述の効果を向上させる観点から、より好ましくは、上記粗圧延終了温度の下限は995℃であってもよく、あるいは、上記粗圧延終了温度の上限は1035℃であってもよい。
Rough Rolling Stage According to the present invention, the heated steel slab may further include a stage of rough rolling for shape adjustment of the slab before the finish rolling stage described below, and such rough rolling The temperature can be controlled to be higher than the temperature at which austenite recrystallization stops (Tnr). Rough rolling can have the effect of destroying structural structures such as dendrites formed during casting, and can also have the effect of reducing the size of austenite. On the other hand, although not particularly limited, from the viewpoint of improving the above-mentioned effects, more preferably, the lower limit of the rough rolling end temperature may be 995°C, or the upper limit of the rough rolling end temperature may be 1035°C. It may be ℃.
仕上げ圧延段階
前述の加熱された鋼スラブ(又は粗圧延されたバー)を、Ar3-80℃以上Ar3以下の温度範囲で仕上げ圧延する段階を含む。次いで、仕上げ圧延後、必要に応じて冷却する段階を含むことができ、上記冷却は空冷であってもよい。
Finish rolling step This includes a step of finish rolling the heated steel slab (or rough rolled bar) described above at a temperature range of Ar3-80° C. or higher and Ar3 or lower. Next, after finish rolling, a step of cooling may be included if necessary, and the cooling may be air cooling.
一方、上記仕上げ圧延の温度がAr3-80℃未満であると、鋼材内部のフェライト結晶粒サイズが過度に微細になるという問題が生じる可能性がある。また、上記仕上げ圧延の温度がAr3を超えると、鋼材内部のフェライト粒径が粗大になるという問題が生じる可能性がある。一方、特に限定するものではないが、前述の効果を向上させる観点から、より好ましくは、上記仕上げ圧延開始温度の下限は955℃であってもよく、あるいは、上記仕上げ圧延開始温度の上限は980℃であってもよい。また、上記仕上げ圧延終了温度の下限は860℃であってもよく、あるいは、上記仕上げ圧延終了温度の上限は905℃であってもよい。 On the other hand, if the temperature of the finish rolling is less than Ar3-80°C, a problem may arise in that the ferrite grain size inside the steel material becomes excessively fine. Moreover, if the temperature of the finish rolling exceeds Ar3, a problem may arise in that the ferrite grain size inside the steel material becomes coarse. On the other hand, although not particularly limited, from the viewpoint of improving the above-mentioned effects, more preferably, the lower limit of the finish rolling start temperature may be 955°C, or the upper limit of the finish rolling start temperature may be 980°C. It may be ℃. Further, the lower limit of the finish rolling finish temperature may be 860°C, or the upper limit of the finish rolling finish temperature may be 905°C.
ショットブラスト処理段階
前述した仕上げ圧延鋼材の表面にショットブラスト処理する段階を含み、上記ショットブラスト処理は、金属材ボール又は非金属材ボールを1,500~2,500rpmの速度で回転させ、60~100m/sの速度で板材の表面に噴射するように実施することができる。ショットブラスト処理を行うことで、鋼材の表層部に粗大なフェライト結晶粒が成長することができ、且つ、鋼材の全厚さに対する表層部の厚さ比率が増大して降伏強度を下げることができる。
Shot blasting step The shot blasting step includes a step of shot blasting the surface of the finished rolled steel material described above, and the shot blasting process involves rotating a metal ball or a non-metal ball at a speed of 1,500 to 2,500 rpm, and It can be carried out such that it is sprayed onto the surface of the plate at a speed of 100 m/s. By performing shot blasting, coarse ferrite crystal grains can grow in the surface layer of the steel material, and the ratio of the thickness of the surface layer to the total thickness of the steel material increases, reducing the yield strength. .
上記ショットブラスト処理時に、金属材ボール又は非金属材ボールの回転速度が1,500rpm未満であると、十分な速度を確保できず、表面部のフェライト結晶粒サイズを確保できないという問題が発生する可能性があり、2,500rpmを超えると、機械の安定した運営に問題が発生する可能性がある。一方、特に限定するものではないが、前述の効果を向上させる観点から、より好ましくは、上記回転速度の下限は1,550rpmであってもよく、あるいは、上記回転速度の上限は2,350rpmであってもよい。 If the rotational speed of the metal ball or non-metal ball is less than 1,500 rpm during the above shot blasting process, it may not be possible to secure a sufficient speed and the problem may occur that the ferrite crystal grain size on the surface cannot be secured. If the speed exceeds 2,500 rpm, problems may arise in stable operation of the machine. On the other hand, although not particularly limited, from the viewpoint of improving the above-mentioned effects, the lower limit of the rotation speed may be 1,550 rpm, or the upper limit of the rotation speed may be 2,350 rpm. There may be.
また、上記噴射速度が60m/s未満であると、鋼材の表面に効果的な応力の付与が不足し、目的とする物性を確保できないという問題が発生する可能性があり、100m/sを超えると、鋼材の表面に深い溝が発生して製品不良を引き起こす可能性がある。一方、特に限定するものではないが、前述の効果を向上させる観点から、より好ましくは、上記噴射速度の下限は62m/sであってもよく、あるいは、上記噴射速度の上限は94m/sであってもよい。 In addition, if the above-mentioned injection speed is less than 60 m/s, there is a possibility that the effective application of stress to the surface of the steel material will be insufficient, resulting in the inability to secure the desired physical properties. If this occurs, deep grooves may occur on the surface of the steel material, which may cause product defects. On the other hand, although not particularly limited, from the viewpoint of improving the above-mentioned effects, the lower limit of the injection speed may be more preferably 62 m/s, or the upper limit of the injection speed may be 94 m/s. There may be.
本発明によれば、上記ショットブラスト処理時には、平均直径が0.8~1.2mmの金属材ボール又は非金属材ボールを用いることができる。上記ボールの直径が0.8mm未満であると、鋼材の表面に伝達するエネルギーが不足するという問題が生じる可能性があり、上記ボールの直径が1.2mmを超えると、鋼材の表面にエネルギーを均一に伝達できないという問題が生じる可能性がある。一方、特に限定するものではないが、前述の効果を向上させる観点から、より好ましくは、上記金属材ボール(又は非金属材ボール)の平均直径の下限は0.9mmであってもよく、あるいは、上記金属材ボール(又は非金属材ボール)の平均直径の上限は1.1mmであってもよい。 According to the present invention, metal balls or non-metal balls having an average diameter of 0.8 to 1.2 mm can be used during the shot blasting process. If the diameter of the ball is less than 0.8 mm, there may be a problem that the energy transmitted to the surface of the steel material is insufficient, and if the diameter of the ball exceeds 1.2 mm, energy may be transferred to the surface of the steel material. There may be a problem that the information cannot be transmitted uniformly. On the other hand, although not particularly limited, from the viewpoint of improving the above-mentioned effects, more preferably, the lower limit of the average diameter of the metal balls (or non-metal balls) may be 0.9 mm, or The upper limit of the average diameter of the metal balls (or non-metal balls) may be 1.1 mm.
また、本発明によれば、上記ショットブラスト処理は10~30分間行われることができる。上記ショットブラスト処理時間が10分未満であると、鋼材の表面に伝達するエネルギーが不足するという問題が生じる可能性があり、上記ショートブラスト処理時間が30分を超えると、鋼材の表面品質に不良を誘発するという問題が生じる可能性がある。一方、特に限定するものではないが、前述の効果を向上させる観点から、より好ましくは、上記ショットブラスト処理時間の下限は15分であってもよく、あるいは、上記ショットブラスト処理時間の上限は25分であってもよい。 Further, according to the present invention, the shot blasting treatment can be performed for 10 to 30 minutes. If the above-mentioned shot blasting time is less than 10 minutes, there may be a problem that the energy transmitted to the surface of the steel material is insufficient, and if the above-mentioned short blasting time exceeds 30 minutes, the surface quality of the steel material may be deteriorated. There is a possibility that the problem of inducing On the other hand, although not particularly limited, from the viewpoint of improving the above-mentioned effects, more preferably, the lower limit of the shot blasting time may be 15 minutes, or the upper limit of the shot blasting time may be 25 minutes. It may be a minute.
熱処理段階
本発明によれば、特に限定するものではないが、上記ショットブラスト処理する段階の後に、下記関係式3により定義されるLMP値が23.5~24.5の範囲を満たすように熱処理する段階をさらに含むことができる。
Heat Treatment Step According to the present invention, although not particularly limited, after the shot blasting step, heat treatment is performed so that the LMP value defined by the following relational expression 3 satisfies the range of 23.5 to 24.5. The method may further include the step of:
[関係式3]
LMP=T×[log(t)+20]/1000
(上記関係式3中、上記Tは熱処理温度を示し、単位は℃である。また、上記tは熱処理時間を示し、単位は分である。)
[Relational expression 3]
LMP=T×[log(t)+20]/1000
(In the above relational expression 3, the above T indicates the heat treatment temperature, and the unit is °C. Also, the above t indicates the heat treatment time, and the unit is minutes.)
このとき、下記関係式3の値は経験的に得られる数値であるため、特に単位を定めなくてもよい。すなわち、下記関係式3において、後述するT、tの各単位を満たせばよい。 At this time, since the value of Relational Expression 3 below is a numerical value obtained empirically, there is no need to specify a unit in particular. That is, in the following relational expression 3, each unit of T and t, which will be described later, may be satisfied.
本発明によれば、前述の関係式3により定義されるLMP値が23.5~24.5の範囲を満たすことにより、図4に示すように、鋼材の全厚さに対する表層部の厚さ比率を0.1~0.3の範囲に制御することができ、これにより、目標の降伏強度である120MPa以下(より好ましくは、80~120MPaの範囲)を満たす鋼材を得ることができる。 According to the present invention, since the LMP value defined by the above-mentioned relational expression 3 satisfies the range of 23.5 to 24.5, as shown in FIG. The ratio can be controlled within the range of 0.1 to 0.3, thereby making it possible to obtain a steel material that satisfies the target yield strength of 120 MPa or less (more preferably in the range of 80 to 120 MPa).
ショットブラスト処理を経た鋼板に熱処理を施すと、表層部に導入された応力により鋼材の表面部から粗大なフェライトが成長する。このように、熱処理条件を制御して鋼材の表層部に、図1のように粗大なフェライトを形成させることにより、鋼材に対する降伏強度の変化を導入できるようになる。 When a steel plate that has undergone shot blasting is heat treated, coarse ferrite grows from the surface of the steel material due to the stress introduced into the surface layer. In this way, by controlling the heat treatment conditions to form coarse ferrite in the surface layer of the steel material as shown in FIG. 1, it becomes possible to introduce a change in yield strength to the steel material.
一方、特に限定するものではないが、前述の効果を向上させる観点から、より好ましくは、上記関係式3により定義されるLMP値の下限は23.7であってもよく、あるいは、上記関係式3により定義されるLMP値の上限は24.3であってもよい。 On the other hand, although not particularly limited, from the viewpoint of improving the above-mentioned effects, more preferably, the lower limit of the LMP value defined by the above relational expression 3 may be 23.7, or the above relational expression The upper limit of the LMP value defined by 3 may be 24.3.
また、本発明によれば、特に限定するものではないが、上記熱処理する段階は850~900℃の範囲で行われることができる。上記熱処理温度が850℃未満であると、表面において十分に粗大なフェライトの成長を確保できなくなるという問題が生じる可能性があり、900℃を超えると、目標とするフェライト結晶粒より過度に粗大なフェライト結晶粒が形成されるという問題が生じる可能性がある。一方、特に限定するものではないが、前述の効果を向上させる観点から、より好ましくは、上記熱処理温度の下限は855℃であってもよく、あるいは、上記熱処理温度の上限は880℃であってもよい。 Further, according to the present invention, the heat treatment step can be performed at a temperature of 850 to 900° C., although it is not particularly limited. If the above heat treatment temperature is less than 850°C, there is a possibility that it will not be possible to ensure the growth of sufficiently coarse ferrite on the surface. A problem may arise with the formation of ferrite grains. On the other hand, although not particularly limited, from the viewpoint of improving the above-mentioned effects, more preferably, the lower limit of the heat treatment temperature may be 855°C, or the upper limit of the heat treatment temperature may be 880°C. Good too.
また、本発明によれば、特に限定するものではないが、上記熱処理時間は5~30分の範囲であってもよい。なお、より好ましくは、上記熱処理時間の下限は10分であってもよく、あるいは、上記熱処理時間の上限は25分であってもよい。 Further, according to the present invention, the heat treatment time may be in the range of 5 to 30 minutes, although it is not particularly limited. More preferably, the lower limit of the heat treatment time may be 10 minutes, or the upper limit of the heat treatment time may be 25 minutes.
以下、実施例を挙げて本発明についてより具体的に説明する。但し、下記の実施例は例示を通じて本発明を説明するためのものであり、本発明の権利範囲を制限するためのものではないことに留意する必要がある。本発明の権利範囲は、特許請求の範囲に記載された事項、及びこれにより合理的に類推される事項によって決定されるものである。 Hereinafter, the present invention will be explained in more detail with reference to Examples. However, it should be noted that the following examples are for explaining the present invention through illustrations, and are not intended to limit the scope of the present invention. The scope of rights to the present invention is determined by the matters stated in the claims and matters reasonably inferred therefrom.
(実施例)
下記表1の合金組成及び性質を有する鋼スラブを準備した。このとき、下記表1において、各成分の含量は重量%であり、残りはFe及びその他の不可避不純物である。すなわち、下記表1に記載の鋼スラブ(残部はFe)において、発明鋼A~Dは本発明で定義する合金組成の範囲と一致する例であり、比較鋼E~Iは本発明で定義する合金組成の範囲から外れる例である。一方、下記表1に記載の鋼スラブについては、極低炭素鋼をもって高温Torsion実験を通じて温度による応力が変曲する地点からAr3及びTnrを実験的に測定した値を示した。
(Example)
A steel slab having the alloy composition and properties shown in Table 1 below was prepared. At this time, in Table 1 below, the content of each component is expressed in weight %, and the remainder is Fe and other unavoidable impurities. That is, in the steel slabs listed in Table 1 below (the remainder is Fe), invention steels A to D are examples that match the range of alloy composition defined in the present invention, and comparative steels E to I are examples defined in the present invention. This is an example outside the alloy composition range. Meanwhile, for the steel slabs listed in Table 1 below, Ar3 and Tnr values were experimentally measured from a point where the stress changes due to temperature through a high-temperature torsion experiment using ultra-low carbon steel.
準備した鋼スラブを1050~1250℃の温度範囲で再加熱した後、下記表2に記載の条件でスラブ再加熱-粗圧延-仕上げ圧延を行った。次いで、平均直径1.0mの金属材ボールを用いて下記表3の条件で15分間ショットブラスト処理した後、熱処理を行って鋼材を製造した。 After reheating the prepared steel slab in a temperature range of 1050 to 1250°C, slab reheating, rough rolling, and finish rolling were performed under the conditions listed in Table 2 below. Next, shot blasting was performed for 15 minutes using metal balls having an average diameter of 1.0 m under the conditions shown in Table 3 below, followed by heat treatment to produce steel materials.
上記表2、3に記載の条件で鋼材を製造した後、このようにして得られた鋼材についてポリシング-エッチングした後に、光学顕微鏡で観察することによりフェライト単相組織を有することを確認した。 After manufacturing steel materials under the conditions listed in Tables 2 and 3 above, the steel materials thus obtained were polished and etched, and then observed with an optical microscope to confirm that they had a ferrite single-phase structure.
また、各実験例から得られる鋼材に対する表層部及び表層部以外の内部領域におけるそれぞれに対する結晶粒の平均粒径、降伏強度(YS)、引張強度(TS)及びシャルピー衝撃遷移温度を測定した結果を下記表4に示した。 In addition, the results of measuring the average grain size, yield strength (YS), tensile strength (TS), and Charpy impact transition temperature in the surface layer and internal regions other than the surface layer of the steel materials obtained from each experimental example are shown below. It is shown in Table 4 below.
このとき、結晶粒の平均粒径はライン測定法を用いて測定し、ASTM規格に従って引張試験機を使用して降伏が起こる点を降伏強度とし、ネッキングが起こるときの強度を引張強度とした。シャルピー衝撃遷移温度は、シャルピー衝撃試験機を用いて衝撃吸収エネルギーを測定し、延性から脆性に破断が遷移するときの温度を示した。 At this time, the average grain size of the crystal grains was measured using a line measurement method, and the point at which yielding occurred was defined as the yield strength using a tensile tester according to ASTM standards, and the strength at which necking occurred was defined as the tensile strength. The Charpy impact transition temperature is the temperature at which the fracture transitions from ductile to brittle by measuring the impact absorption energy using a Charpy impact tester.
上記表4において、実施例1-1、1-2、2-1、2-2、3-1、3-2、4-1及び4-2は、本発明の鋼組成及び製造条件を全て満たす場合であって、鋼材の全厚さに対する上下部表層部の厚さ比率が0.1~0.3の範囲であり、鋼材の物性がいずれも降伏強度80~120MPa及びシャルピー衝撃遷移温度-20℃以下を満たしている。 In Table 4 above, Examples 1-1, 1-2, 2-1, 2-2, 3-1, 3-2, 4-1 and 4-2 have all the steel compositions and manufacturing conditions of the present invention. In the case where the thickness ratio of the upper and lower surface layers to the total thickness of the steel material is in the range of 0.1 to 0.3, and the physical properties of the steel material are both yield strength of 80 to 120 MPa and Charpy impact transition temperature - The temperature is below 20℃.
一方、参考例1~4は、本発明の鋼組成は満たしているものの、製造条件が本発明から外れる場合である。これらのうち、参考例1~4はLMPが24.5を超える場合である。このような参考例1~4の場合には、表層部の厚さ比率である0.1~0.3の範囲から外れ、降伏強度が全て80MPa未満を示している。 On the other hand, Reference Examples 1 to 4 are cases in which the steel composition of the present invention is satisfied, but the manufacturing conditions deviate from the present invention. Among these, Reference Examples 1 to 4 are cases where LMP exceeds 24.5. In the case of Reference Examples 1 to 4, the thickness ratio of the surface layer part falls outside the range of 0.1 to 0.3, and the yield strengths are all less than 80 MPa.
また、比較例1は、Cが本発明で規定する含量の上限を超え、降伏強度が120MPaを超えている。比較例2は、固溶強化元素であるSiが本発明で規定する含量の上限を超え、降伏強度が120MPaを超えている。比較例3は、Nbを過剰に添加した場合であって、粗大な析出物の形成により衝撃靭性が劣化し、シャルピー衝撃遷移温度が-20℃を上回った。比較例4は、本発明の製造条件を全て満たしてはいるものの、Tiの含量が本発明で規定する上限を超える場合であって、粗大な析出物の生成によりシャルピー衝撃遷移温度が-20℃を上回った。比較例5は、本発明の製造条件を全て満たしてはいるものの、Tiの含量が本発明で規定する下限に達していない場合であって、Tiの含量が不足して自由N(Free N)を窒化物として析出させるには不十分であり、降伏点現象が発現し、降伏強度が120MPaを超えている。 Furthermore, in Comparative Example 1, C exceeds the upper limit of the content specified in the present invention, and the yield strength exceeds 120 MPa. In Comparative Example 2, the content of Si, which is a solid solution strengthening element, exceeds the upper limit of the content specified in the present invention, and the yield strength exceeds 120 MPa. In Comparative Example 3, excessive Nb was added, the impact toughness deteriorated due to the formation of coarse precipitates, and the Charpy impact transition temperature exceeded -20°C. Comparative Example 4 satisfies all the manufacturing conditions of the present invention, but the Ti content exceeds the upper limit specified by the present invention, and the Charpy impact transition temperature is -20°C due to the formation of coarse precipitates. exceeded. Comparative Example 5 is a case in which all the manufacturing conditions of the present invention are met, but the Ti content does not reach the lower limit specified by the present invention, and the Ti content is insufficient and Free N is insufficient to precipitate as nitrides, a yield point phenomenon occurs, and the yield strength exceeds 120 MPa.
Claims (11)
フェライト単一組織を有し、
表面から全厚さの30%の領域までの表層部におけるフェライト結晶粒の平均粒径は150~500μmであることを特徴とする制震ダンパー用鋼材。 In weight%, C: 0.006% or less, Si: 0.05% or less, Mn: 0.3% or less, P: 0.02% or less, S: 0.01% or less, Al: 0.005~ 0.05%, N: 0.005% or less, Ti: 48/14×[N] ~ 0.05% (here, [N] means the weight% content of nitrogen), Nb: 0.04 ~0.15%, with the remainder consisting of Fe and other unavoidable impurities,
Has a single ferrite structure,
A steel material for a seismic damper, characterized in that the average grain size of ferrite crystal grains in the surface layer from the surface to a region of 30% of the total thickness is 150 to 500 μm.
[関係式1]
R1=[Nb]/[Si]
(前記関係式1中、[Nb]はNbの重量%含量を示し、[Si]はSiの重量%含量を示す。) The steel material for seismic damper according to claim 1, characterized in that the R1 value defined by the following relational expression 1 is in the range of 0.8 to 150.
[Relational expression 1]
R1=[Nb]/[Si]
(In the above relational expression 1, [Nb] indicates the weight% content of Nb, and [Si] indicates the weight% content of Si.)
[関係式2]
R2=([Ti]+[Nb])/[Si]
(前記関係式2中、[Ti]はTiの重量%含量を示し、[Nb]はNbの重量%含量を示し、[Si]はSiの重量%含量を示す。) The steel material for seismic damper according to claim 1, characterized in that the R2 value defined by the following relational expression 2 is in the range of 4 to 200.
[Relational expression 2]
R2=([Ti]+[Nb])/[Si]
(In the above relational expression 2, [Ti] indicates the weight% content of Ti, [Nb] indicates the weight% content of Nb, and [Si] indicates the weight% content of Si.)
加熱された鋼スラブをAr3-80℃以上Ar3以下の温度範囲で仕上げ圧延する段階と、
仕上げ圧延された鋼材の表面にショットブラスト処理する段階と、を含み、
前記ショットブラスト処理する段階は、金属材ボール又は非金属材ボールを1500~2500rpmの速度で回転させて、60~100m/sの速度で板材の表面に噴射するように行われることを特徴とする制震ダンパー用鋼材の製造方法。 In weight%, C: 0.006% or less, Si: 0.05% or less, Mn: 0.3% or less, P: 0.02% or less, S: 0.01% or less, Al: 0.005~ 0.05%, N: 0.005% or less, Ti: 48/14×[N] ~ 0.05% (here, [N] means the weight% content of nitrogen), Nb: 0.04 heating a steel slab containing ~0.15% Fe and other unavoidable impurities to a temperature range of 1050~1250°C;
Finish rolling the heated steel slab in a temperature range of Ar3-80°C or higher and Ar3 or lower;
shot blasting the surface of the finish-rolled steel material;
The shot blasting step is characterized in that the metal balls or non-metal balls are rotated at a speed of 1500 to 2500 rpm and sprayed onto the surface of the plate material at a speed of 60 to 100 m/s. A method for manufacturing steel materials for seismic dampers.
[関係式3]
LMP=T×[log(t)+20]/1000
(前記関係式3中、前記Tは熱処理温度を示し、単位は℃である。また、前記tは熱処理時間を示し、単位は分である。) 8. The method according to claim 7, further comprising the step of heat-treating after the shot blasting step so that the LMP value defined by the following relational expression 3 satisfies a range of 23.5 to 24.5. A method for manufacturing steel materials for seismic dampers.
[Relational expression 3]
LMP=T×[log(t)+20]/1000
(In the above-mentioned relational expression 3, the above-mentioned T indicates the heat treatment temperature, and the unit is °C. Also, the above-mentioned t indicates the heat treatment time, and the unit is minutes.)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200172341A KR102443928B1 (en) | 2020-12-10 | 2020-12-10 | Steel sheet for seismic damper having superior toughness property and manufacturing method of the same |
KR10-2020-0172341 | 2020-12-10 | ||
PCT/KR2021/017978 WO2022124682A1 (en) | 2020-12-10 | 2021-12-01 | Steel material for seismic damper having superior impact toughness, and manufacturing method for same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2023554297A true JP2023554297A (en) | 2023-12-27 |
Family
ID=81973793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023535055A Pending JP2023554297A (en) | 2020-12-10 | 2021-12-01 | Steel material for vibration damper with excellent impact toughness and its manufacturing method |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230416857A1 (en) |
EP (1) | EP4261304A1 (en) |
JP (1) | JP2023554297A (en) |
KR (1) | KR102443928B1 (en) |
CN (1) | CN116568843A (en) |
WO (1) | WO2022124682A1 (en) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3451007B2 (en) * | 1997-12-05 | 2003-09-29 | 新日本製鐵株式会社 | Structural steel having low yield strength and low anisotropy in yield strength and method for producing the same |
JP2000026936A (en) | 1998-07-10 | 2000-01-25 | Nippon Steel Corp | Hot rolled steel plate having residual stress and excellent in shape freezability, and its manufacture |
JP4003401B2 (en) | 2001-02-13 | 2007-11-07 | 住友金属工業株式会社 | Steel sheet having high formability and low yield ratio with small variation in yield strength and elongation at break, and method for producing the same |
JP4705508B2 (en) | 2006-04-17 | 2011-06-22 | 新日本製鐵株式会社 | Low yield point steel for damper and manufacturing method thereof |
US20080171145A1 (en) | 2007-01-15 | 2008-07-17 | Basf Corporation | Two-tone painting method |
US20100323194A1 (en) | 2007-02-09 | 2010-12-23 | Yoshifumi Matsuda | Vibration damper and vibration damping structure |
JP5141073B2 (en) | 2007-03-30 | 2013-02-13 | Jfeスチール株式会社 | X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same |
KR101053414B1 (en) * | 2008-07-04 | 2011-08-01 | 주식회사 포스코 | Descaling method and removal equipment of hot rolled steel strip |
KR101086327B1 (en) * | 2008-12-24 | 2011-11-24 | 주식회사 포스코 | Method for manufacturing ferritic stainless steel with excellent surface luster and high corrosion resistance |
-
2020
- 2020-12-10 KR KR1020200172341A patent/KR102443928B1/en active IP Right Grant
-
2021
- 2021-12-01 US US18/038,757 patent/US20230416857A1/en active Pending
- 2021-12-01 EP EP21903728.0A patent/EP4261304A1/en active Pending
- 2021-12-01 WO PCT/KR2021/017978 patent/WO2022124682A1/en active Application Filing
- 2021-12-01 JP JP2023535055A patent/JP2023554297A/en active Pending
- 2021-12-01 CN CN202180082461.6A patent/CN116568843A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
EP4261304A1 (en) | 2023-10-18 |
KR102443928B1 (en) | 2022-09-19 |
CN116568843A (en) | 2023-08-08 |
WO2022124682A1 (en) | 2022-06-16 |
US20230416857A1 (en) | 2023-12-28 |
KR20220082432A (en) | 2022-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5776398B2 (en) | Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same | |
JP4825025B2 (en) | High-yield ratio high-tensile steel sheet with excellent fatigue crack growth suppression and weld heat-affected zone toughness | |
KR102045641B1 (en) | High strength steel for arctic environment having excellent resistance to fracture in low temperature, and method for manufacturing the same | |
JP2020509156A (en) | Low yield ratio type ultra-high strength steel material and its manufacturing method | |
KR101585724B1 (en) | A thick plate of pipeline with excellent DWTT at low temperature and YR ratio characteristics, and method of the same | |
JP4344073B2 (en) | High strength steel excellent in high temperature strength and method for producing the same | |
CN115386808A (en) | Corrosion-resistant oil casing pipe and preparation method and application thereof | |
JP2007119861A (en) | Method for producing high tensile-strength steel for welding structure excellent in high temperature strength and low temperature toughness | |
KR100957968B1 (en) | High strength and toughness thick steel plate having excellent base metal ctod property and method for producing the same | |
JP7344962B2 (en) | High-strength steel material with excellent sulfide stress corrosion cracking resistance and method for producing the same | |
WO2017150665A1 (en) | H-shaped steel for low temperatures and method for manufacturing same | |
JPH0920922A (en) | Production of high toughness steel plate for low temperature use | |
JP2023554297A (en) | Steel material for vibration damper with excellent impact toughness and its manufacturing method | |
KR101406527B1 (en) | Thick steel plate having excellent property in haz of large-heat-input welded joint and method for producing same | |
JPH11199926A (en) | Production of bar steel for high strength bolt, excellent in cold workability and delayed fracture resistance | |
JP7265008B2 (en) | Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method | |
JP7197699B2 (en) | Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method | |
KR101899694B1 (en) | Thick steel plate having excellent low-temperature impact toughness and ctod properties, and method for manufacturing the same | |
JPH08209239A (en) | Production of thick steel for low temperature use having brittle fracture propagation stop characteristic at lower than-50×c | |
KR101839238B1 (en) | High-carbon wire rod having excellent ductility and method for manufacturing the same | |
KR102488496B1 (en) | Steel sheet for seismic damper having superior toughness property and manufacturing method of the same | |
KR102255829B1 (en) | Steel sheet for seismic damper having superior toughness property and manufacturing method of the same | |
JP3249210B2 (en) | Method for producing low hardness and high toughness seamless steel pipe with excellent SSC resistance | |
KR20200114349A (en) | Wire rod for high strength steel fiber, high strength steel fiber and manufacturing method thereof | |
KR102366990B1 (en) | Hot rolled steel having excellent low-temperature toughness and low yield ratio and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230609 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230608 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240716 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240806 |