JP2023538624A - 画像取得システム - Google Patents

画像取得システム Download PDF

Info

Publication number
JP2023538624A
JP2023538624A JP2023512243A JP2023512243A JP2023538624A JP 2023538624 A JP2023538624 A JP 2023538624A JP 2023512243 A JP2023512243 A JP 2023512243A JP 2023512243 A JP2023512243 A JP 2023512243A JP 2023538624 A JP2023538624 A JP 2023538624A
Authority
JP
Japan
Prior art keywords
radiation
light source
waveguide layer
image
image acquisition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023512243A
Other languages
English (en)
Inventor
ブティノン,ベンジャミン
デクルー,デルフィーヌ
ミシャロン,ジェローム
Original Assignee
イソルグ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イソルグ filed Critical イソルグ
Publication of JP2023538624A publication Critical patent/JP2023538624A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • G06F21/32User authentication using biometric data, e.g. fingerprints, iris scans or voiceprints
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/141Control of illumination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/143Sensing or illuminating at different wavelengths
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1347Preprocessing; Feature extraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1382Detecting the live character of the finger, i.e. distinguishing from a fake or cadaver finger
    • G06V40/1394Detecting the live character of the finger, i.e. distinguishing from a fake or cadaver finger using acquisition arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • G02B6/4203Optical features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/14Vascular patterns

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Computer Security & Cryptography (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Hardware Design (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Image Input (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Facsimile Heads (AREA)

Abstract

【解決手段】本明細書は、画像取得システムに関し、画像取得システムは、1つの有機の画像センサ(13)と、画像センサを覆う導波路層(17)であって、400 nm~600 nmの範囲内の少なくとも1つの波長を有する第1の放射光(21)を放射するように適合されている第1の光源(19)、及び600 nm~1,100 nmの範囲内の一又は複数の波長を有する第2の放射光(25)を放射するように適合されている第2の光源(23)によって面に照射される導波路層(17)と、画像センサによって画像化された手(27)の指紋及び静脈に関する情報を抽出するように適合されている画像処理部(18)とを備えている。

Description

本開示は一般に画像取得システムに関し、より具体的には生体画像取得システムに関する。
生体情報取得システム、より具体的には指紋取得システムは、例えば、機器の安全確保、建物の安全確保、アクセスの制御、又は個人の同一性の制御のために多くの分野で使用されている。
指紋センサによって保護されるデータ、情報、アクセスが増加する一方、指紋取得システムは重大な不正行為の標的になっている。
最新の不正行為の種類として、指若しくは指紋のフォトコピー、又は指若しくは指紋のシリコーン、ラテックスなどでの再構築がある。
指紋取得システムを改良して保護する必要がある。
実施形態は、既知のシステムの欠点の全て又は一部を克服する。
実施形態は、1つの有機の画像センサと、
前記画像センサを覆う導波路層であって、
400 nm~600 nmの範囲内の少なくとも1つの波長を有する第1の放射光を放射するように適合されている第1の光源、及び
600 nm~1,100 nmの範囲内の一又は複数の波長を有する第2の放射光を放射するように適合されている第2の光源
によって面に照射される前記導波路層と、
前記画像センサによって画像化される手の指紋及び静脈に関する情報を抽出するように適合されている画像処理部と
を備えている、画像取得システムを提供する。
実施形態によれば、前記第1の光源及び前記第2の光源は対向している。
実施形態によれば、前記第1の光源及び前記第2の光源は、前記第1の放射光及び前記第2の放射光が互いに垂直であるように配置されているか、又は
前記第1の光源及び前記第2の光源は、前記導波路層の同じ側に一列に又は隣り合って配置されている。
実施形態によれば、前記第1の放射光は、470 nm~600 nmの範囲内の波長のみを含み、
前記第2の放射光は、600 nm~940 nmの範囲内の波長のみを含む。
実施形態によれば、前記第1の光源は、一又は複数の発光ダイオードで形成されており、
前記第2の光源は、一又は複数の発光ダイオードで形成されている。
実施形態によれば、前記導波路層は、
前記画像センサと反対の前記導波路層の側で前記導波路層から第1の放射光の波を逸らすように適合されているミクロ構造体の第1のアレイ、及び
前記画像センサと反対の前記導波路層の側で前記導波路層から第2の放射光の波を逸らすように適合されているミクロ構造体の第2のアレイ
を有している。
実施形態によれば、前記ミクロ構造体の第1のアレイは前記導波路層の長さ全体に亘って延びており、
前記ミクロ構造体の第2のアレイは前記導波路層の長さ全体に亘って延びている。
実施形態によれば、前記ミクロ構造体の第2のアレイは、前記第2の光源から前記導波路層の第1の距離に亘って延びており、
前記ミクロ構造体の第1のアレイは、前記第1の光源から前記導波路層の第2の距離に亘って延びている。
実施形態によれば、前記第1の距離及び前記第2の距離は同一であるか、又は、
前記第1の距離及び前記第2の距離は異なる。
実施形態によれば、指紋に関する情報は、前記第2の放射光を用いて前記画像センサによって取得された少なくとも1つの画像から得られる。
実施形態によれば、静脈に関する情報は、前記第1の放射光を用いて前記画像センサによって取得された少なくとも1つの画像から得られる。
前述及び他の特徴及び利点は、添付図面を参照して本発明を限定するものではない例として与えられる以下の特定の実施形態に詳細に記載されている。
画像取得システムの例を示す部分的な断面略図である。 図1に示されている画像取得システムを示す部分的な平面略図である。 図1に示されている画像取得システムの一部の実施形態を示す部分的な断面略図及び平面略図である。 図1に示されている画像取得システムの別の部分の実施形態を示す部分的な断面略図である。 カラーフィルタの2つの実施形態を示す2つの部分的な平面略図である。 画像取得システムの別の例を示す部分的な断面略図である。 図6に示されている画像取得システムの実施形態を示す部分的な平面略図である。 図6に示されている画像取得システムの別の実施形態を示す部分的な平面略図である。 画像取得方法の例を示すブロック図である。 偏光子を有する構造体を示す部分的な断面略図である。
同様の特徴が、様々な図で同様の参照符号によって示されている。特に、様々な実施形態に共通する構造的特徴及び/又は機能的特徴は同一の参照符号を有してもよく、同一の構造特性、寸法特性及び材料特性を有してもよい。
明瞭化のために、本明細書に記載されている実施形態の理解に有用な工程及び要素のみが示されて詳細に記載されている。特に、画像取得システム及びその部品の形成は簡単に記載されているだけであり、記載される実施形態及び実施モードは、携帯電話及びこれらの他の要素の通常の実施形態と適合する。
特に示されていない場合、共に接続された2つの要素を参照するとき、これは、導体以外のいかなる中間要素も無しの直接接続を表し、共に連結された2つの要素を参照するとき、これは、これら2つの要素が接続され得るか、又は一若しくは複数の他の要素を介して連結され得ることを表す。
以下の開示では、特に指定されていない場合、「前」、「後ろ」、「最上部」、「底部」、「左」、「右」などの絶対位置を限定する文言、「上方」、「下方」、「上側」、「下側」などの相対位置を限定する文言、又は「水平」、「垂直」などの向きを限定する文言を参照するとき、この文言は図面の向きを指す。
特に指定されていない場合、「約」、「略」、「実質的に」及び「程度」という表現は、該当する値の10%の範囲内、好ましくは5%の範囲内を表す。
特に指定されていない場合、「全ての要素」、「各要素」という表現は、要素の95%~100 %の範囲を表す。
特に指定されていない場合、「要素のみを備えている」という表現は、要素を少なくとも90%備えていることを表し、好ましくは要素を少なくとも95%備えていることを表す。
以下の記載では、特に指定されていない場合、層又は膜を通る放射光の透過率が10%未満であるとき、その層又は膜は放射光を通さないとする。本開示の残り部分では、層又は膜を通る放射光の透過率が10%を超えるとき、好ましくは50%を超えるとき、その層又は膜は放射光を通すとする。実施形態によれば、同一の光学系に関して、放射光を通さない光学系の全ての要素の透過率は、前記放射光を通す光学系の要素の最も低い透過率の半分より低く、好ましくは5分の1より低く、より好ましくは10分の1より低い。本開示の残り部分では、「有用な放射光」という表現は、動作中に光学系を横切る電磁放射線を表す。
以下の記載では、「マイクロメートルサイズの光学素子」という表現は、支持体の表面と平行に測定された最大寸法が1μmより大きく1mmより小さい、前記表面に形成された光学素子を表す。
光学系の実施形態は、マイクロメートルサイズの光学素子が2ジオプトリで形成されたマイクロメートルサイズのレンズ又はマイクロレンズに夫々相当する場合のマイクロメートルサイズの光学素子のアレイを備えた光学系について記載される。しかしながら、これらの実施形態が他のタイプのマイクロメートルサイズの光学素子を用いて更に実施されてもよいことは明らかなはずであり、マイクロメートルサイズの光学素子は、例えばマイクロメートルサイズのフレネルレンズ、マイクロメートルサイズの屈折率分布型レンズ又はマイクロメートルサイズの回折アレイに夫々相当してもよい。
以下の記載では、可視光線は、400 nm~700 nmの範囲内の波長を有する電磁放射線を表し、この範囲内で赤色の光は、600 nm~700 nmの範囲内の波長を有する電磁放射線を表す。赤外線は、700 nm~1mmの範囲内の波長を有する電磁放射線を表す。赤外線では、700 nm~1.1 μmの範囲内の波長を有する近赤外線を特に識別することができる。
本明細書の必要性のために、媒体の屈折率は、画像センサによって取り込まれる放射光の波長領域に関して媒体を形成する材料の屈折率として定められる。屈折率は、有用な放射光の波長領域に亘って実質的に一定とみなされ、例えば、画像センサによって取り込まれる放射光の波長範囲に亘る屈折率の平均と等しいとみなされる。
図1は、画像取得システムの例を示す部分的な断面略図である。
図2は、図1に示されている画像取得システムを示す部分的な平面略図である。
画像取得システムは、図面の向きで下から上に、
1つの有機の画像センサ13、及び
画像センサ13の上面を覆って、導波路と称される層17
を含むデバイス11を備えている。
デバイス11は、画像センサ13と導波路層17との間に光学フィルタ15、例えば角度フィルタを更に備えていることが好ましい。
本明細書では、図1~図8の実施形態が、直接直交する基準座標系XYZに従った空間に示されており、基準座標系XYZのY軸は画像センサ13の上面に直交している。
デバイス11は、好ましくは図1に示されていない、デバイス11によって送信される信号を処理するための手段を有する処理部18に連結されている。処理部18は、例えばマイクロプロセッサを有している。デバイス11及び処理部18は、例えば同一の回路に一体化されている。
デバイス11は、第1の放射光21を放射するように適合されている第1の光源19と、第2の放射光25を放射するように適合されている第2の光源23とを備えている。第1の光源19及び第2の光源23は対向している。第1の光源19及び第2の光源23は、例えば層17に横方向に連結されており、画像センサ13、角度フィルタ15及び層17の積層体とY方向に沿って垂直に一列に配置されていない。
図1及び図2に示されている実施形態によれば、デバイス11は、部分的に示されている対象27、好ましくは手の画像応答を取り込む。画像処理部18は、センサ13によって画像化された手27の指紋及び静脈網に関する情報を抽出するように適合されている。
放射光21は、赤色及び/又は赤外線の放射光に相当し、すなわち600 nm~1,700 nmの範囲内で放射光を形成する一又は複数の波長を有する放射光に相当する。より好ましくは、放射光21は、600 nm~1,100 nmの範囲内、更により好ましくは630 nm~940 nmの範囲内で放射光を形成する全ての波長を有する放射光に相当する。
放射光25は、可視域の放射光、すなわち400 nm~800 nmの範囲内の波長の少なくとも1つを有する放射光に相当する。例えば、放射光25は、400 nm~600 nmの範囲内の少なくとも1つの波長を有する放射光に相当する。放射光25は、400 nm~600 nmの範囲内で放射光を形成する全ての波長を有する放射光に相当することがより好ましい。放射光25は、470 nm~600 nmの範囲内で放射光を形成する全ての波長を有する放射光に相当することが更により好ましい。例えば、放射光25は、530 nm(緑色)又は500 nm(シアン色)に略等しい波長を有する放射光に相当する。
層17の構造については、以降に図3に関連して記載し、角度フィルタ15及びセンサ13については、以降に図4に関連して記載する。
実施形態によれば、光源19, 23は層17の周縁部に配置されている。例えば、光源19は、図1及び図2の向きで層17の右側に配置されており、光源23は、図1及び図2の向きで層17の左側に配置されている。
図示されていない変形例によれば、光源19及び光源23は互いに無関係に配置されている。2つの光源19, 23は、例えば層17の同じ側に、一列に、隣り合って又は放射光21及び放射光25が直交するように配置されている。
実施形態によれば、光源19, 23は順々にオンされて、連続的に手27を第1の放射光21のみを用いて撮像し、次に第2の放射光25のみを用いて撮像するか又はその逆で撮像する。
実施形態によれば、光源19, 23は同時的にオンされる。
実施形態によれば、光源19は、一又は複数の発光ダイオード(LED) で形成されている。光源19は、層17に沿って「アレイ」状に編成された複数のLED で形成されていることが好ましい。
実施形態によれば、光源23は、一又は複数の発光ダイオードで形成されている。光源23は、層17に沿って「アレイ」状に編成された複数のLED で形成されていることが好ましい。
図3は、図1に示されている画像取得システムの一部を示す4つの部分的な簡略図である。
より具体的には、図3は、長さLの導波路層17の2つの実施形態を示す。
図3は、平面図A1及び断面図A2で層17の第1の実施形態を示し、断面図A2は、平面図A1の断面AAに沿った図である。
図3は、平面図B1及び断面図B2で層17の第2の実施形態を示し、断面図B2は、平面図B1の断面BBに沿った図である。
導波路層と称される層17は、屈折率が異なる2又は3の媒体の構造を有している。
導波路層は、電磁波の閉込め及び伝播を可能にするように構造的に適合されている。媒体は、例えば3つのサブ層の積層体の形態で配置されており、中央層が上側シースと下側シースとの間に挟持されており、シースを形成する材料の屈折率は、中央層を形成する材料の屈折率より小さく、下側シースは角度フィルタ15の側に配置されている。ミクロ構造体は、中央層と下側シースとの間にナノインプリントによって形成されていることが好ましい。ミクロ構造体は、最上部、すなわち頂点の角度が45°である二等辺プリズム、二等辺直角プリズム、又は撮像対象に向いた先端を有する歯の形状を有することが好ましい。ミクロ構造体は半球、円錐体、角錐体又は四面体などの形状を有してもよい。伝播される波が逸れてミクロ構造体の幾何学的構造に沿うように、各ミクロ構造体は、波の伝播方向に僅かに傾斜した、例えば平坦な表面を有してもよい。中央層の下面に対するミクロ構造体の表面の傾きは、例えば5°~80°の範囲内である。傾斜角は45°程度であることが好ましい。例えば、ミクロ構造体は波の経路に沿って均一に分散していない。ミクロ構造体は、導波路の出力に向かうほどより接近していることが好ましい。ミクロ構造体の密度は、これらのミクロ構造体によって逸れる放射光の放射源までの距離が増大するにつれて、より高くなることが好ましい。ミクロ構造体は、中央層の光学指数より低い光学指数の材料又は空気で充填されていることが好ましい。中央層は、例えばポリ(メタクリル酸メチル)(PMMA)、ポリカーボネート(PC)、環状オレフィンポリマ(COP) 又はポリ(エチレンテレフタレート)(PET) で形成されている。シースは、例えば中央層を形成する材料の屈折率より低い屈折率を有するエポキシ樹脂又はアクリル樹脂で形成されている。
ミクロ構造体29の第1のアレイは、例えば第1の光源19から放射される第1の放射光21の第1の波を導くように適合されている(図1及び図2)。そのため、第1のアレイは、第1の光源19から放射される波の方向に傾斜したミクロ構造体29を有している。
ミクロ構造体31の第2のアレイは、例えば第2の光源23から放射される第2の放射光25の第2の波を導くように適合されている(図1及び図2)。そのため、第2のアレイは、第2の光源23から放射される波の方向に傾斜したミクロ構造体31を有している。
実施形態によれば、層17の厚さは200 μm~600 μmの範囲内であり、好ましくは300 μm~500 μmの範囲内である。実施形態によれば、中央層の厚さは1μm~40μmの範囲内であり、好ましくは1μm~20μmの範囲内である。ミクロ構造体の厚さは、例えば1μm~15μmの範囲内であり、好ましくは2μm~10μmの範囲内である。
図3(平面図A1及び断面図A2)に示されている実施形態によれば、ミクロ構造体31の各アレイは、光源23に隣り合う層17の側縁部から長さLに沿って延びている。ミクロ構造体31の各アレイは、例えば最も遠くで光源23と反対側の層17の側縁部まで延びている。長さLは実質的に層17の長さに相当する。長さLは、10mm~250 mmの範囲内であってもよい。更に、ミクロ構造体29の各アレイは、光源19に隣り合う層17の側縁部から同一の長さLに沿って延びている。ミクロ構造体29の各アレイは、例えば最も遠くで光源19と反対側の層17の側縁部まで延びている。
図3(平面図B1及び断面図B2)に示されている実施形態によれば、ミクロ構造体31の各アレイは、光源23に隣り合う層17の側縁部から長さL1に沿って延びており、ミクロ構造体29の各アレイは、光源19に隣り合う層17の側縁部から長さL2に沿って延びている。
長さLは、長さL1及び長さL2の加算結果以上であることが好ましい。長さL1及び長さL2は異なってもよく又は同一であってもよい。長さL2は、例えば長さL1の3倍である。
図示されていない実施形態によれば、ミクロ構造体の1つのアレイは、第2の光源23によって放射される第2の放射光25の第2の波を導いて、更に第1の光源19によって放射される第1の放射光21の第1の波を導くように適合されている。
図3に示されていない実施形態によれば、層17は、画像取得デバイス11の積層体内で保護層に覆われている。保護層によって特に、画像取得デバイス11のユーザによる層17の引っ掻きを回避することが可能である。
図4は、図1に示されている画像取得デバイスの別の部分を示す部分的な断面略図である。
より具体的には、図4は、デバイス11の角度フィルタ15及びセンサ13を備えた構造体33を示している。
センサ13は、好ましくはアレイに配置されている光検出器35を有している。光検出器35は、好ましくは全て同一の構造及び同一の特性/特徴を有している。言い換えれば、全ての光検出器は製造上の差の範囲内で実質的に同一である。センサ13は、放射光21, 25を取り込むように適合されていることが好ましい。
フォトダイオード35は、例えばCMOS(相補型金属酸化物半導体)基板又は薄膜トランジスタ(TFT) 基板上に一体化された有機フォトダイオード(OPD) である。基板は、例えばシリコン、好ましくは単結晶シリコンで形成されている。TFT トランジスタのチャネル領域、ソース領域及びドレイン領域は、例えばアモルファスシリコン(a-Si)、インジウム・ガリウム・亜鉛酸化物(IGZO)又は低温ポリシリコン(LTPS)で形成されている。
画像センサ13のフォトダイオード35は、例えば有機半導体ポリマの混合物、例えばP3HTとして公知のポリ(3-ヘキシルチオフェン)又はポリ(3-ヘキシルチオフェン-2, 5-ジイル)とPCBMとして公知の[6,6] -フェニル-C61-酪酸メチルエステル(N型半導体)との混合物を含んでいる。
画像センサ13のフォトダイオード35は、例えば低分子、すなわち、モル質量が500g/molより小さく、好ましくは200g/molより小さい分子を含んでいる。
フォトダイオード35は、例えばアモルファスシリコン又は結晶シリコンに基づき形成された非有機フォトダイオードであってもよい。例として、フォトダイオード35は量子ドットで形成されている。
図4に示されている角度フィルタ15は、図4の向きで下から上に、
開口部41又は孔、及び放射光21, 25を通さない壁43を含む第1の層39(開口部41は、例えば第1の層39の下面で層45を形成する材料で充填されている)と、
第1の層39の上面に載置されている基板又は支持体47と、
基板47の上面に配置されているマイクロメートルサイズのレンズ49のアレイ(レンズ49の平面及び基板47の上面は対向している)(レンズ49のアレイの上に平坦化層51が配置されている)と
を有している。
基板47は、ここでは可視域及び赤外域の対象とする波長を少なくとも吸収しない透明なポリマで形成されてもよい。ポリマは、特にポリエチレンテレフタレート(PET) 、ポリ(メタクリル酸メチル)(PMMA)、環状オレフィンポリマ(COP) 、ポリイミド(PI)、ポリカーボネート(PC)で形成されてもよい。基板47の厚さは、例えば1μm~100 μmの範囲内であってもよく、好ましくは10μm~100 μmの範囲内であってもよい。基板は、カラーフィルタ、偏光子、1/2波長板又は1/4波長板に相当してもよい。
レンズ49は、シリカ、PMMA、ポジ型レジスト、PET 、ポリ(エチレンナフタレート)PEN 、COP 、ポリジメチルシロキサン(PDMS)/シリコーン、エポキシ樹脂又はアクリル樹脂で形成されてもよい。レンズ49は、レジストブロックを変形させることによって形成されてもよい。レンズ49は更に、PET 、PEN 、COP 、PDMS/シリコーン、エポキシ樹脂又はアクリル樹脂の層上に成型によって形成されてもよい。レンズ49は、焦点距離fが夫々1μm~100 μmの範囲、好ましくは1μm~70μmの範囲である集光レンズである。実施形態によれば、全てのレンズ49は実質的に同一である。
この実施形態によれば、レンズ49及び基板47は透明又は部分的に透明な材料で形成されており、すなわち、露出中に使用される波長に対応する波長領域に亘って、目標とする分野、例えば撮像のために対象とするスペクトルの一部で透明な材料で形成されていることが好ましい。
実施形態によれば、平坦化層51はレンズ49の形状に沿う層である。層51は、光学透明接着剤(OCA) 、特に液状光学透明接着剤、又は低屈折率の材料、又はエポキシ系/アクリル系接着剤、又はガス若しくはガス状混合物、例えば空気の膜から形成されてもよい。
開口部41は、例えば空気、部分真空、又は、可視域及び赤外域で少なくとも部分的に透明な材料で充填されている。
記載された実施形態は、角度フィルタを構成する角度フィルタ15の場合を例として挙げている。しかしながら、これらの実施形態は他の種類の光学フィルタに適用されてもよい。
角度フィルタ15は、レンズ49の光軸に対する放射光の入射角に応じて入射放射光をフィルタ処理するように適合されている。
より具体的には、画像センサ13の各光検出器35が、この光検出器35に関連付けられたレンズ49の夫々の光軸に対して最大入射角より小さく、45°より小さく、好ましくは30°より小さく、より好ましくは10°より小さく、更により好ましくは4°より小さい入射角を夫々有する光線のみを受けるように、角度フィルタ15は適合されている。角度フィルタ15は、角度フィルタ15のレンズ49の光軸に対して最大入射角より大きい入射角を夫々有する入射放射光の光線を遮断することができる。
各開口部41は1つのレンズ49に関連付けられていることが好ましい。レンズ49の光軸は層39の開口部41の中心を中心とすることが好ましい。レンズ49の直径は、開口部41の(レンズ49の光軸に垂直な)断面の最大寸法より大きいことが好ましい。
各光検出器35は、少なくとも4つの開口部41(及び4つのレンズ49)と関連付けられていることが好ましい。各光検出器35は、正確に4つの開口部41に関連付けられていることが好ましい。
構造体33は、画素37に分割されていることが好ましい。「画素」という用語は、1つの光検出器35を有する画像センサ13の部分を定めるために本明細書全体に亘って使用されている。画素という用語は画像センサ13のスケールに適用されるだけでなく、構造体33のスケールにも適用されてもよい。構造体33のスケールでは、画素は、画像センサ13の画素37と垂直方向に一列に並ぶ構造体33を形成する積層体全体である。本明細書全体に亘って、画素37という用語は、特に指定されていない場合、構造体33のスケールの画素を指す。
図4の例では、画素37は、特に4つの開口部41が上に設けられている光検出器35及び4つのレンズ49が上に設けられている開口部を有する構造体33の夫々の部分に相当する。各画素37は、画像センサ13の上面に垂直な方向に見ると、実質的に正方形の形状を有することが好ましい。例えば、各画素の表面領域は、辺の1つの大きさが32μm~100 μm、好ましくは50.8μm~80μmの範囲内である正方形に相当する。
各画素37は、レンズ49の直径及び画素37の大きさに応じて4とは異なる数のレンズ49と関連付けられてもよい。
図4の例では、画素37は、4つの開口部41が上に設けられている光検出器35を有している。実際には、開口部41を有する角度フィルタ15は、事前に画像センサ13上に整列することなく画像センサ13上に積層されてもよい。そのため、一部のレンズ49及び開口部41は、2つの光検出器35に跨って積層体の向きに、すなわちY方向に配置されてもよい。
図5は、カラーフィルタ50の2つの実施形態を示す2つの部分的な平面略図である。
より具体的には、図5は、好ましくは角度フィルタ15(図4)の上面に配置されるように構成されているカラーフィルタ50を示す。
カラーフィルタ50は2つの部分に分割されている。
カラーフィルタ50の一又は複数の第1部分501 は、図B1及び図B2に示されている実施形態に応じて、全ての可視光線及び赤外線、好ましくは可視光線のみ、更により好ましくは可視光線の一部のみ、特には緑色の放射線のみを通すように適合されている。第1部分501 (G) は、図A1及び図A2に示されている実施形態に応じて、400 nm~600 nmの範囲内、より好ましくは470 nm~600 nmの範囲内の少なくとも1つの波長のみを通すように適合されている。特定の実施形態によれば、第1部分501 は、530 nm又は500 nmの波長のみを通すように適合されている。
カラーフィルタ50の一又は複数の第2部分502 (R) は、600 nm~1,100 nmの範囲外、好ましくは630 nm~940 nmの範囲外の全ての波長を遮断するように適合されている。
図5に示されている実施形態によれば、カラーフィルタ50の第2部分502 は、画素37が第2部分502 で夫々覆われるように角度フィルタ15の表面に夫々形成されている。
図5に示されている実施形態によれば、カラーフィルタ50の第2部分502 は、図5では正方形の形状を夫々有する。例えば、カラーフィルタ50の第2部分502 の表面は夫々、画素の大きさ、すなわち略50.8μm×50.8μmの正方形に等しい。
例として、カラーフィルタ50の第2部分502 の繰返しピッチは、2つの画素37から20の画素37の範囲内である。第2部分502 の繰返しピッチは、およそZ軸に沿って10の画素37であり、X軸に沿って10の画素37であることが好ましい。言い換えれば、第2部分502 で覆われるZ軸(又はX軸)に沿って連続する2つの画素が、9つの画素で分離される。更に言い換えれば、100 の画素の正方形の集合体(すなわち、Z軸に沿った10の画素及びX軸に沿った10の画素の正方形)では、1つの画素が第2部分502 で覆われている。
図A1及び図B1に示されている実施形態によれば、第2部分502 は、例えば8つの画素(2列の画素及び4行の画素)の集合体内で、2つの第2部分502 が同一列の2つの画素を覆うために角度フィルタ15の表面に形成されるように配置されている。図A2及び図B2に示されている実施形態によれば、第2部分502 は、例えば8つの画素(2列の画素及び4行の画素)の集合体内で、2つの第2部分502 が2つの異なる列の2つの画素を覆うために角度フィルタ15の表面に形成されるように配置されている。これら2つの実施形態では、第2部分502 の繰返しピッチは2つの画素であるが、これら2つの実施形態は、2つの画素より多い第2部分の繰返しピッチに容易に適用可能である。
実施形態によれば、第2部分502 を形成する材料は、600 nm~1,100 nmの範囲内(近赤外線フィルタ)、好ましくは630 nm~940 nmの範囲内の波長のみを通す材料であり、例えば、上記の帯域に含まれない全ての波長をフィルタ処理するように適合された染料を含む有機樹脂である。第2部分502 は、例えば干渉フィルタに基づき形成されてもよい。
図5に示されている実施形態によれば、他の画素37はカラーフィルタ50の第1部分501 で覆われている。第1部分501 は2つの隣り合う画素37間で連続しており、すなわち、第1部分501 は画素化されておらず、画像センサ13の対象とする全ての画素に亘って同時的に形成されていることが好ましい。
実施形態によれば、第1部分501 を形成する材料は空気又は部分真空である。
実施形態によれば、第1部分501 を形成する材料は、400 nm~600 nmの範囲内(可視フィルタ)、好ましくは470 nm~600 nmの範囲内の波長のみを通す材料であり、例えば「Orgalon Green 520」という商標名で知られている染料を含む樹脂、又は富士フィルムによって製造されている商用シリーズの「COLOR MOSAIC」の樹脂である。第1部分501 は、例えば干渉フィルタに基づき形成されてもよい。
実施形態によれば、第1部分501 を形成する材料は、500 nm(シアンフィルタ)のみを通す材料、又は、530 nm(緑色フィルタ)のみを通す材料であり、例えば「PC GREEN 123P」という商標名で知られている染料を含む樹脂、又は富士フィルムによって製造されている商用シリーズの「COLOR MOSAIC」の樹脂である。第1部分501 は、例えば干渉フィルタに基づき形成されてもよい。
図6は、画像取得デバイスの別の例を示す部分的な断面略図である。
より具体的には、図6は、2つの偏光子を備えている点を除いて、図1に示されているデバイス11と同様のデバイス52を示す。
デバイス52は、
少なくとも1つの第1の偏光子53、及び
第2の偏光子55
を備えている。
第1の光源19からの放射光21が、好ましくは光センサ13に達する前に第1の偏光子53を横切るように、第1の偏光子53はデバイス52に夫々配置されている。より具体的には、放射光21は第1の偏光子53を横切って、次に手27で反射して第2の偏光子55を横切った後に光センサ13に達する。従って、第1の偏光子53は光源19を横方向に(Y軸に沿って)覆っている。
実施形態によれば、第1の光源19が1つの第1の偏光子53に夫々関連付けられて、第1の偏光子53が1つの第1の光源19に夫々関連付けられるように、第1の偏光子53の数は第1の光源19の数と同様である。従って、第1の偏光子53の(XY面での)表面積は夫々、第1の偏光子53が関連付けられている第1の光源19の表面積以上である。
変形例として、第1の偏光子53の数は第1の光源19の数より小さく、そのため、第1の偏光子の表面積は夫々第1の光源19の表面積より大きい。言い換えれば、第1の偏光子は、2以上の第1の光源19に関連付けられ、2以上の第1の光源19を横方向に覆っている。例えば、デバイス52は、全ての光源19を横方向に覆う1つの偏光子を備えている。
図6に示されている実施形態によれば、第2の偏光子55は、角度フィルタ15及び画像センサ13間又は層17及び角度フィルタ15間に配置されている。
図6に示されている実施形態によれば、一又は複数の第1の偏光子53及び第2の偏光子55は直線的であり、言い換えれば線形である。
図6に示されている実施形態によれば、一又は複数の第1の偏光子53は、以降、水平方向とも称される第1の方向に偏光させる。
図6に示されている実施形態によれば、第2の偏光子55は、
以降、垂直方向とも称される、第1の方向に垂直な第2の方向に直接偏光させる一又は複数の第1部分、及び
水平方向に沿って偏光させる一又は複数の第2部分
で形成されている。
実施形態によれば、光源19は、小さな発散の放射光21を放射する、すなわち、放射光21の光線は、角度が15°より小さく、好ましくは5°より小さい放射円錐形内にある。
変形例として、光源19は、光源19及び第1の偏光子53間又は第1の偏光子53及び層17間に配置されている角度フィルタ(不図示)に連結されている。上記の角度フィルタは、Z軸に対して測定される入射角が15°を超え、好ましくは5°を超える、光源19から放射される全ての光線を遮断するように適合されている。
第2の偏光子55の第1部分及び第2部分の配置が図7及び図8に示されている。
図7は、図6に示されているデバイスの実施形態を示す部分的な平面略図である。
より具体的には、図7は、第2の偏光子55の第1部分57及び第2部分59の配置の実施形態を示している。
図7に示されている実施形態によれば、第2の偏光子55の第1部分57及び第2部分59は、2つの画素の内の1つの画素37が第1部分57で覆われて、前記1つの画素37とは異なる、2つの画素の内の1つの画素37が第2部分59で覆われているように層17の表面に形成されている。4つの画素37の正方形群毎に、画素37の2つが第1部分57で覆われて、先の画素とは異なる画素37の2つが、例えば第2部分59で覆われている。
図7に示されている実施形態によれば、第2の偏光子55の第1部分57及び第2部分59は、図7では実質的に正方形の形状を夫々有する。例えば、第2の偏光子55の第1部分57及び第2部分59の表面領域は夫々、略50.8μm×50.8μmの正方形である。
実施モードによれば、第2の偏光子55は、例えば層17の表面で第1部分57及び第2部分59を連続的に堆積させることにより形成されている。
変形例として、4つの画素37の正方形群毎に、1つの画素37のみが第1部分57で覆われて、他の3つの画素が第2部分59で覆われている。
変形例として、第1部分57の繰返しピッチは2つの画素より大きくてもよい。第1部分の繰返しピッチは、2つの画素37から20の画素37の範囲内であってもよく、好ましくは5つの画素37から15の画素37の範囲内であってもよく、より好ましくは略10の画素37であってもよい。
図8は、図6に示されているデバイスの別の実施形態を示す部分的な平面略図である。
より具体的には、図8は、第2の偏光子55の第1部分57及び第2部分59の配置の別の実施形態を示している。
第2の偏光子55の第1部分57及び第2部分59は、センサ13の表面に任意に形成されていることが好ましい。
図8では、第2の偏光子55の第1部分57の(XZ面での)表面積は夫々、図7に示されている第2の偏光子55の第1部分57の表面積より大きい。
図8に示されている実施形態によれば、第2の偏光子55の第1部分57は、事前に下にある光検出器35又はレンズ49と整列することなく層17上に夫々形成されている。
図8に示されている実施形態によれば、第1部分57は、図8では実質的に正方形の形状を夫々有する。第1部分57は、層17の上面の位置に関係なく層17の上面で少なくとも1つの画素37(又は光検出器35)を一体的に覆うことを可能にする表面積を夫々有することが好ましい。従って、第1部分57の表面積は夫々、4つの画素37の表面積と少なくとも等しい。第1部分57の表面積は夫々、4つの画素37の表面積から6つの画素37の表面積の範囲内であることが好ましい。例えば、第1部分57の表面積は、4つの画素37の表面積と夫々等しい。第1部分57で覆われていない層17の上面は第2部分59で覆われている。画素37と第1部分57及び第2部分59との相対位置は未知であり、例えば、第1部分で覆われた画素のみが放射光を取り込むように例えば水平方向に偏光した放射光で画像取得デバイスを照射することにより、第1部分57で覆われた画素の位置を決定するために、較正工程を行ってもよい。
実施モードによれば、第2の偏光子55は、例えば層17の表面で第1部分57及び第2部分59を連続的に堆積させることにより形成されている。
実施形態によれば、第1部分57の繰返しピッチは、3つの画素の大きさに相当する距離から20の画素の大きさに相当する距離の範囲内である。繰返しピッチは、10の画素の大きさに相当する距離と実質的に等しいことが好ましい。第1部分57の分布は整列しており、すなわち、繰返しは行及び列で行われるか又はシフトするように行われ、すなわち、分布は、ある行から次の行に又はある列から次の列に一又は複数の画素分シフトしている。同様に、第2部分59の分布は整列しており、すなわち、繰返しは行及び列で行われるか又はシフトするように行われ、すなわち、分布は、ある行から次の行に又はある列から次の列に一又は複数の画素分シフトしている。
図6~図8に関連して前述した実施形態及び実施モードの利点は、同時的に、水平方向に偏光した放射光21の下で、ひいては手27で反射した後に水平方向に撮像し(すなわち2つの整列した偏光子を横切った放射光21の下で撮像し)、水平方向に偏光した放射光21の下で、ひいては手27で反射した後に垂直方向に撮像する(すなわち2つの交差した偏光子を横切った放射光21の下で撮像する)ことが可能であるということである。
図9は、画像取得方法の例を示すブロック図である。
より具体的には、図9は、光源19及び光源23を備えたデバイス(図1及び図2)の場合に画像を取得して処理することを可能にする方法を示す。
この方法は2つのフローに分かれる。第1のフローは、画像センサ13による画像の取得に関する。第2のフローは、取得した画像に対して行われる処理に関する。
図9に示されている実施モードによれば、第1のフローは、層17の上面に手27を置く工程61(ディスプレイ上への指の載置)から開始する。工程61の後、手27の位置を検出して(指の位置の検出)、層17上の位置を特定する工程63を行う。手27の位置の検出を、画像取得デバイスに含まれる検出素子又は画像センサ13の内部素子、例えば電極の内の1つによって行ってもよい。
第1のフローでは、その後の工程65で光源19及び光源23をオンする(可視光源及びIR源のオン)。
工程65の後、画像を取得して、画素が第2の偏光子55の第1部分57に関連付けられているか又は第2部分58に関連付けられているかに応じて、この画像を2つの別個の画像に分割し、これらの画像を記憶する工程67(画像の取得)を行う。
第1の画像は、第2の偏光子55の第1部分57が上に設けられている光検出器35(図4)に関連した画像である。従って、光検出器35に達する前、放射光21は第1の偏光子53によって水平方向(H)に偏光し、次に手27で反射した後、第2の偏光子55の第1部分57によって垂直方向(V)に偏光して画像センサ13に達する。
第2の画像は、第2の偏光子55の第2部分59が上に設けられている光検出器35(図4)に関連した画像である。従って、光検出器35に達する前、放射光21は第1の偏光子53によって水平方向(H)に偏光し、次に手27で反射した後、第2の偏光子55の第2部分59によって水平方向(H)に偏光して画像センサ13に達する。
第2のフローは、2つの画像の別々の処理及び2つの画像の組み合わせの処理に夫々特化した2つの段階を有する。
第2のフローの第1段階では、第1の取得画像を処理し(ブロック67の出力HV)、工程69で、処理した第1の取得画像から手27に関する体積情報を含む画像を抽出する(体積の情報(静脈))。体積情報は、手の体積に光を透過させて取得する必要がある情報を表す。静脈に関する情報、例えば、それらの数、形状及び手の中での配置が、例えば体積情報である。
第2のフローの第1段階では更に、第2の取得画像を処理し(ブロック67の出力HH)、工程71で、処理した第2の取得画像から手27に関する表面及び体積の情報を含む画像を抽出する(表面及び体積の情報)。
第2のフローの第2段階は、第1の画像からの情報及び第2の画像からの情報を共に処理して表面情報のみを抽出する工程73(表面情報(指紋))を有する。第2の画像と第1の画像との、場合によっては重みが加えられる差に対応する第3の画像を決定してもよい。表面情報は、手の表面で光を反射させて取得する必要がある情報を表す。指紋に関する情報は、例えば表面情報である。指紋に関する情報は、例えば指紋の溝及び隆起の画像である。
図10は、偏光子を有する構造体を示す部分的な断面略図である。
より具体的には、図10は、第2の偏光子55が支持体77の表面に形成されている構造体75の実施形態を示している。
図10に示されている第2の偏光子55は、図6に示されている第2の偏光子55と同一であることが好ましい。しかしながら、第2の偏光子55が画像センサ13上に形成されている図6とは異なり、第2の偏光子55は支持体77上に形成されている。このため、画像取得デバイス52の他の要素とは別に第2の偏光子55の形成が可能であることが有利である。
支持体77は、ここでは可視域及び赤外域の少なくとも対象とする波長を吸収しない透明なポリマで形成されてもよい。このポリマは、特にポリエチレンテレフタレート(PET) 、ポリ(メタクリル酸メチル)(PMMA)、環状オレフィンポリマ(COP) 、ポリイミド(PI)又はポリカーボネート(PC)で特に形成されてもよい。支持体77はPET で形成されていることが好ましい。支持体77の厚さは、1μm~100 μmの範囲内であってもよく、好ましくは10μm~50μmの範囲内であってもよい。支持体77は、カラーフィルタ、1/2波長板又は1/4波長板に相当してもよい。
図10に示されている第2の偏光子55の第1部分57及び第2部分59の配置は、図7及び図8に示されている第2の偏光子55の第1部分57及び第2部分59の配置と同様である。
実施形態によれば、構造体75は、角度フィルタ15と層17との間に第2の偏光子55に置き換えるために図6の画像取得デバイス52に組み立てられている。
実施形態によれば、構造体75は、角度フィルタ15と画像センサ13との間に第2の偏光子55に置き換えるために図6の画像取得デバイス52に組み立てられている。
変形例として、第2の偏光子55は基板77の下に形成されている。従って、構造体75の移動中、構造体75が角度フィルタ15と層17との間に配置されるか又は角度フィルタ15と画像センサ13との間に配置されるかに応じて、第2の偏光子55の下面は画像センサ13の上面に接するか又は角度フィルタ15の上面に接する。
記載されている実施形態及び実施モードの利点は、指紋センサでの不正行為の可能性を大幅に減らし得るということである。
記載されている実施形態及び実施モードの更に別の利点は、可視光線及び赤外線を取り込むために1つのセンサが使用されるので製造コストを削減できるということである。
様々な実施形態及び変形例が記載されている。当業者は、これらの様々な実施形態及び変形例のある特徴を組み合わせることができると理解し、他の変形例が当業者に想起される。特に、実施形態及び実施モードを組み合わせてもよい。記載されている実施形態は、例えば上述した大きさ及び材料の例に限定されない。
最後に、記載されている実施形態及び変形例の実際の実施は、上述されている機能的な表示に基づく当業者の技能の範囲内である。
本願は、2020年8月17日付で出願されて「systeme d'acquisition d'images」という題名の仏国特許出願第2008532 号の優先権を主張しており、その内容は法律で認められているように参照によって本明細書に組み込まれている。

Claims (10)

  1. 1つの有機の画像センサ(13)と、
    前記画像センサを覆う導波路層(17)であって、
    400 nm~600 nmの範囲内の少なくとも1つの波長を有する第1の放射光(21)を放射するように適合されている第1の光源(19)、及び
    600 nm~1,100 nmの範囲内の一又は複数の波長を有する第2の放射光(25)を放射するように適合されている第2の光源(23)
    によって面に照射される前記導波路層(17)と、
    前記画像センサによって画像化される手(27)の指紋及び静脈に関する情報を抽出するように適合されている画像処理部(18)と
    を備えており、
    前記導波路層(17)は、
    前記画像センサ(13)と反対の前記導波路層の側で前記導波路層から第1の放射光(21)の波を逸らすように適合されているミクロ構造体(29)の第1のアレイ、及び
    前記画像センサ(13)と反対の前記導波路層の側で前記導波路層から第2の放射光(25)の波を逸らすように適合されているミクロ構造体(31)の第2のアレイ
    を有している、画像取得システム。
  2. 前記第1の光源(19)及び前記第2の光源(23)は対向している、請求項1に記載の画像取得システム。
  3. 前記第1の光源(19)及び前記第2の光源(23)は、前記第1の放射光及び前記第2の放射光が互いに垂直であるように配置されているか、又は
    前記第1の光源(19)及び前記第2の光源(23)は、前記導波路層(17)の同じ側に一列に又は隣り合って配置されている、請求項1に記載の画像取得システム。
  4. 前記第1の放射光(21)は、470 nm~600 nmの範囲内の波長のみを含み、
    前記第2の放射光(25)は、600 nm~940 nmの範囲内の波長のみを含む、請求項1~3のいずれか1つに記載の画像取得システム。
  5. 前記第1の光源(19)は、一又は複数の発光ダイオードで形成されており、
    前記第2の光源(23)は、一又は複数の発光ダイオードで形成されている、請求項1~4のいずれか1つに記載の画像取得システム。
  6. 前記ミクロ構造体(29)の第1のアレイは前記導波路層(17)の長さ(L) 全体に亘って延びており、
    前記ミクロ構造体(31)の第2のアレイは前記導波路層(17)の長さ(L) 全体に亘って延びている、請求項1~5のいずれか1つに記載の画像取得システム。
  7. 前記ミクロ構造体(31)の第2のアレイは、前記第2の光源(23)から前記導波路層(17)の第1の距離(L1)に亘って延びており、
    前記ミクロ構造体(29)の第1のアレイは、前記第1の光源(19)から前記導波路層(17)の第2の距離(L2)に亘って延びている、請求項1~5のいずれか1つに記載の画像取得システム。
  8. 前記第1の距離(L1)及び前記第2の距離(L2)は同一であるか、又は、
    前記第1の距離(L1)及び前記第2の距離(L2)は異なる、請求項7に記載の画像取得システム。
  9. 指紋に関する情報は、前記第1の放射光(21)を用いて前記画像センサ(13)によって取得された少なくとも1つの画像から得られる、請求項1~8のいずれか1つに記載の画像取得システム。
  10. 静脈に関する情報は、前記第2の放射光(25)を用いて前記画像センサ(13)によって取得された少なくとも1つの画像から得られる、請求項1~9のいずれか1つに記載の画像取得システム。
JP2023512243A 2020-08-17 2021-08-12 画像取得システム Pending JP2023538624A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR2008537 2020-08-17
FR2008537A FR3113431B1 (fr) 2020-08-17 2020-08-17 Système d'acquisition d'images
PCT/EP2021/072465 WO2022038032A1 (fr) 2020-08-17 2021-08-12 Systeme d'acquisition d'images

Publications (1)

Publication Number Publication Date
JP2023538624A true JP2023538624A (ja) 2023-09-08

Family

ID=74045584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023512243A Pending JP2023538624A (ja) 2020-08-17 2021-08-12 画像取得システム

Country Status (6)

Country Link
US (1) US20240013569A1 (ja)
EP (1) EP4196904A1 (ja)
JP (1) JP2023538624A (ja)
CN (1) CN216817444U (ja)
FR (1) FR3113431B1 (ja)
WO (1) WO2022038032A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3135794A1 (fr) * 2022-05-19 2023-11-24 Isorg Filtre optique pour photodétecteurs

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU426280B2 (en) 1968-05-15 1972-07-19 Touma Door Company Pty. Limited Sliding door
US7623689B2 (en) * 2003-11-18 2009-11-24 Canon Kabushiki Kaisha Image pick-up apparatus including luminance control of irradiation devices arranged in a main scan direction
JP6075069B2 (ja) * 2013-01-15 2017-02-08 富士通株式会社 生体情報撮像装置及び生体認証装置ならびに生体情報撮像装置の製造方法
JP2017196319A (ja) * 2016-04-28 2017-11-02 ソニー株式会社 撮像装置、認証処理装置、撮像方法、認証処理方法およびプログラム
US10713458B2 (en) * 2016-05-23 2020-07-14 InSyte Systems Integrated light emitting display and sensors for detecting biologic characteristics
CN113228307A (zh) * 2018-12-28 2021-08-06 株式会社日本显示器 检测装置

Also Published As

Publication number Publication date
FR3113431A1 (fr) 2022-02-18
WO2022038032A1 (fr) 2022-02-24
US20240013569A1 (en) 2024-01-11
CN216817444U (zh) 2022-06-24
FR3113431B1 (fr) 2023-09-15
EP4196904A1 (fr) 2023-06-21

Similar Documents

Publication Publication Date Title
CN107103307B (zh) 触控面板和显示装置
CN108885693B (zh) 具有发散光学元件的生物计量传感器
CN110520863A (zh) 利用屏下光学传感器模块对指纹进行三维光学形貌感测
WO2021072753A1 (zh) 指纹检测装置和电子设备
TW201915818A (zh) 光學識別模組
TWI408429B (zh) 光學感測模組
WO2021077259A1 (zh) 识别指纹的方法、指纹识别装置和电子设备
CN104992158A (zh) 提高光学指纹识别性能的方法
US20210264128A1 (en) Light detection apparatus and application thereof
CN111108509B (zh) 指纹检测装置和电子设备
TWM593009U (zh) 光學指紋感測模組
JP2023538624A (ja) 画像取得システム
CN108803781B (zh) 具有光学成像传感器的平板显示器
US11928888B2 (en) Image acquisition device
JP2023513953A (ja) Cmosセンサ上の角度フィルタの構造
US20180293422A1 (en) Optical Fingerprint Module
CN217641336U (zh) 图像采集系统
CN210015428U (zh) 图像感测装置及显示装置
CN116635763A (zh) 光学角度滤波器
JP5991370B2 (ja) ケミカルセンサ、ケミカルセンサの製造方法、化学物質検出装置
US20240045125A1 (en) Optical angular filter
CN111095287A (zh) 光学指纹装置和电子设备
KR20190019880A (ko) 지문인식센서가 결합된 디스플레이 장치
US20240036240A1 (en) Optical angular filter
CN116583765A (zh) 光学角度滤波器