JP2023519566A - 荷電粒子評価ツール、検査方法 - Google Patents

荷電粒子評価ツール、検査方法 Download PDF

Info

Publication number
JP2023519566A
JP2023519566A JP2022556551A JP2022556551A JP2023519566A JP 2023519566 A JP2023519566 A JP 2023519566A JP 2022556551 A JP2022556551 A JP 2022556551A JP 2022556551 A JP2022556551 A JP 2022556551A JP 2023519566 A JP2023519566 A JP 2023519566A
Authority
JP
Japan
Prior art keywords
array
sub
beams
elongated electrodes
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022556551A
Other languages
English (en)
Other versions
JP7477635B2 (ja
Inventor
ウィーラント,マルコ,ジャン-ジャコ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Original Assignee
ASML Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASML Netherlands BV filed Critical ASML Netherlands BV
Publication of JP2023519566A publication Critical patent/JP2023519566A/ja
Application granted granted Critical
Publication of JP7477635B2 publication Critical patent/JP7477635B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1472Deflecting along given lines
    • H01J37/1474Scanning means
    • H01J37/1477Scanning means electrostatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1471Arrangements for directing or deflecting the discharge along a desired path for centering, aligning or positioning of ray or beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/045Diaphragms
    • H01J2237/0451Diaphragms with fixed aperture
    • H01J2237/0453Diaphragms with fixed aperture multiple apertures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/15Means for deflecting or directing discharge
    • H01J2237/1504Associated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/15Means for deflecting or directing discharge
    • H01J2237/151Electrostatic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/153Correcting image defects, e.g. stigmators
    • H01J2237/1536Image distortions due to scanning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31774Multi-beam

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

荷電粒子ツールであって、荷電粒子のビームをそれぞれのビーム経路に沿って第1の複数のサブビームに分割し、各サブビームをそれぞれの中間焦点に集束させるように構成された集光レンズアレイと;複数の荷電粒子ビームのうちの1つをサンプルに投影するようにそれぞれ構成された対物レンズのアレイと;細長い電極のアレイを含む補正器であって、細長い電極が、第1の複数のサブビームのビーム経路に実質的に垂直に延び、第2の複数のサブビームが1対の細長い電極の間を伝播するように構成され、第2の複数のサブビームが第1の複数のサブビームのサブセットである、補正器と、第2の複数のサブビームを所望の量だけ偏向させるために、1対の細長い電極の間に電位差を印加するように構成された電源と、を含む荷電粒子ツール。【選択図】図6

Description

関連出願の相互参照
[0001] 本出願は、2020年4月6日出願の欧州特許出願第20168278.8号の優先権を主張するものであり、上記特許文献全体を参照により本明細書に援用する。
[0002] 本明細書で提供される実施形態は、一般に、荷電粒子評価ツール及び検査方法に関し、詳細には、荷電粒子の複数のサブビームを使用する荷電粒子評価ツール及び検査方法、並びにそのようなツール又は方法で使用するための補正器構成に関する。
[0003] 半導体集積回路(IC)チップを製造する際に、例えば、光学効果及び偶発的粒子の結果として、望ましくないパターン欠陥が、製作プロセス中に、基板(すなわち、ウェーハ)又はマスク上で不可避的に生じ、それによって歩留まりが低下する。したがって、望ましくないパターン欠陥の程度をモニタリングすることは、ICチップの製造において重要なプロセスである。より一般的に、基板又は他の物体/材料の表面の検査及び/又は測定は、それの製造中及び/又は製造後において重要なプロセスである。
[0004] 荷電粒子ビームを用いたパターン検査ツールは、物体を検査するために、例えば、パターン欠陥を検出するために使用されてきた。これらのツールは、一般的に、走査電子顕微鏡(SEM)などの電子顕微鏡法技術を使用する。SEMでは、比較的高いエネルギーの電子の一次電子ビームが、比較的低い着地エネルギーでサンプル上に着地するために、最終減速ステップでターゲットにされる。電子ビームは、サンプル上にプロービングスポットとして集束される。プロービングスポットにおける材料構造と、電子ビームからの着地電子の相互作用により、二次電子、後方散乱電子、又はオージェ電子などの電子が表面から放出される。発生した二次電子は、サンプルの材料構造から放出され得る。サンプル表面に渡り、プロービングスポットとして一次電子ビームを走査することによって、サンプルの表面に渡り二次電子を放出させることができる。サンプル表面からのこれらの放出二次電子を収集することによって、パターン検査ツールは、サンプルの表面の材料構造の特徴を表す画像を取得し得る。
[0005] 荷電粒子検査装置のスループット及び他の特性を向上させる一般的必要性が存在する。
[0006] 本明細書で提供する実施形態は、荷電粒子ビーム検査装置を開示する。
[0007] 本発明の第1の態様によれば、荷電粒子ツールが提供され、この荷電粒子ツールは、
荷電粒子のビームをそれぞれのビーム経路に沿って第1の複数のサブビームに分割し、各サブビームをそれぞれの中間焦点に集束させるように構成された集光レンズアレイと、
複数の荷電粒子ビームのうちの1つをサンプルに投影するようにそれぞれ構成された対物レンズのアレイと、
細長い電極のアレイを含む補正器であって、細長い電極が、第1の複数のサブビームのビーム経路に実質的に垂直に延び、第2の複数のサブビームが1対の細長い電極の間を伝播するように構成され、第2の複数のサブビームが第1の複数のサブビームのサブセットである、補正器と、
第2の複数のサブビームを所望の量だけ偏向させるために、1対の細長い電極の間に電位差を印加するように構成された電源と、
を含む。
[0008] 本発明の第2の態様によれば、荷電粒子ツールが提供され、この荷電粒子ツールは、
荷電粒子のビームをそれぞれのビーム経路に沿って複数のサブビームに分割し、各サブビームをそれぞれの中間焦点に集束させるように構成された集光レンズアレイと、
複数の荷電粒子ビームをサンプルに投影するように構成された対物レンズアレイと、
複数の細長い電極を含む補正器アレイであって、細長い電極が、ビーム経路に実質的に直交して、ビーム経路のラインの各側に対として配置される、補正器アレイと、を含み、
補正器アレイが、ビーム経路を所望の量だけ偏向させるように1対の細長い電極の間に電位差を印加するように制御可能である。
[0009] 本発明の第3の態様によれば、荷電粒子ツールが提供され、この荷電粒子ツールは、
荷電粒子のビームをそれぞれのビーム経路に沿って複数のサブビームに分割し、各サブビームをそれぞれの中間焦点に集束させるように構成された集光レンズアレイと、
複数の荷電粒子ビームをサンプルに投影するように構成された対物レンズアレイと、
複数の細長い電極を含む補正器アレイであって、細長い電極が、ビーム経路に実質的に直交して、各ビーム経路の各側に対として配置される、補正器アレイと、を含み、
補正器アレイが、細長い電極の伸長方向に直交するサブビームにマクロ収差補正を適用するように制御可能である。
[0010] 本発明の第4の態様によれば、検査方法が提供され、この検査方法は、
荷電粒子のビームを複数のサブビームに分割することと、
各サブビームをそれぞれの中間焦点に集束することと、
補正器を使用してサブビームを偏向させて、サブビームのマクロ収差を補正することと、
複数の対物レンズを使用して、複数の荷電粒子ビームをサンプルに投影することと、を含み、補正器が、細長い電極のアレイを含み、細長い電極が、第1の複数のサブビームのビーム経路に実質的に垂直に延び、第2の複数のサブビームが1対の細長い電極の間を伝播するように構成され、第2の複数のサブビームが第1の複数のサブビームのサブセットである。
[0011] 本発明の第5の態様によれば、マルチビーム荷電粒子光学システムが提供され、このマルチビーム荷電粒子光学システムは、
荷電粒子のビームをそれぞれのビーム経路に沿って第1の複数のサブビームに分割し、各サブビームをそれぞれの中間焦点に集束させるように構成された集光レンズアレイと、
複数の荷電粒子ビームのうちの1つをサンプルに投影するようにそれぞれ構成された対物レンズのアレイと、
細長い電極のアレイを含む補正器であって、細長い電極が、第1の複数のサブビームのビーム経路に実質的に垂直に延び、第2の複数のサブビームが1対の細長い電極の間を伝播するように構成され、第2の複数のサブビームが第1の複数のサブビームのサブセットである、補正器と、
第2の複数のサブビームを所望の量だけ偏向させるために、1対の細長い電極の間に電位差を印加するように構成された電源と、を含む。
[0012] 本発明の第6の態様によれば、複数の荷電粒子ビームをサンプルに投影するように構成されたマルチビーム投影システム用の荷電粒子光学要素が提供され、この荷電粒子光学要素は、
細長い電極のアレイであって、細長い電極が、第1の複数のサブビームのビーム経路に実質的に垂直に延び、第2の複数のサブビームが1対の細長い電極の間を伝播するように構成され、第2の複数のサブビームが第1の複数のサブビームのサブセットである、アレイと、
第2の複数のサブビームを所望の量だけ偏向させるために、1対の細長い電極の間に電位差を印加するように構成された電源と、を含む。
[0013] 本発明の第7の態様によれば、複数の荷電粒子ビームをサンプルに投影するように構成されたマルチビーム投影システム用の荷電粒子光学要素が提供され、この荷電粒子光学要素は、
第1のプレートセクションと、第1のプレートセクションの縁部から突出する複数の第1のフィンガとを含む第1の支持部材と、
第2のプレートセクションと、第2のプレートセクションの縁部から突出する複数の第2のフィンガとを含む第2の支持部材と、
第1のフィンガから第2のプレートセクションに延びる第1の複数の電極と、
第2のフィンガから第1のプレートセクションに延びる第2の複数の電極と、を含む。
[0014] 本開示の上記及び他の態様は、添付の図面と併せた例示的実施形態の説明からより明白となるだろう。
[0015]例示的な荷電粒子ビーム検査装置を示す概略図である。 [0016]図1の例示的な荷電粒子ビーム検査装置の一部である例示的なマルチビーム装置を示す概略図である。 [0017]一実施形態による、例示的なマルチビーム装置の概略図である。 [0018]収差を検出するためのデバイスの概略図である。 [0019]補正器のアレイの概略側面図である。 [0020]補正器のアレイの概略平面図である。 [0021]補正器の六角形アレイの概略平面図である。 [0022]位置に対する補正のグラフである。 [0022]位置に対する補正のグラフである。 [0023]補正器アレイでの印加電圧を説明するグラフである。 [0024]補正器のアレイでの印加電圧の別の構成を説明するグラフである。 [0025]2層補正器アレイの概略側面図である。 [0026]2層補正器の概略側面図である。 [0027]3層補正器の概略側面図である。 [0028]一実施形態による例示的なマルチビーム装置の概略図である。 [0029]電極を取り付けるための構成の概略平面図である。
[0030] これより、例示的な実施形態を詳細に参照し、その例を、添付の図面に示す。以下の説明は、添付の図面を参照し、別段の表示がない限り、異なる図面における同一の番号は、同一又は類似の要素を表す。例示的な実施形態の以下の説明に記載される実装形態は、本発明と一致する全ての実装形態を表すわけではない。代わりに、それらの実装形態は、添付の請求項において記述されるように、本発明に関連する態様と一致する装置及び方法の単なる例である。
[0031] デバイスの物理的サイズを減少させる、電子デバイスの計算能力の向上は、ICチップ上のトランジスタ、キャパシタ、ダイオードなどの回路コンポーネントの実装密度を大幅に増加させることによって達成することができる。これは、更に小さい構造の作製を可能にする分解能の向上によって可能にされてきた。例えば、親指の爪の大きさであり、2019年以前に利用可能なスマートフォンのICチップは、20億を超えるトランジスタを含むことができ、各トランジスタのサイズは、人間の毛髪の1/1000未満である。したがって、半導体IC製造が、数百の個々のステップを有する、複雑で時間のかかるプロセスであることは驚くに値しない。たとえ1つのステップのエラーであっても、最終製品の機能に劇的に影響を与える可能性がある。たった1つの「キラー欠陥」が、デバイスの故障を生じさせ得る。製造プロセスの目標は、プロセスの全体的な歩留まりを向上させることである。例えば、50のステップを有するプロセス(ここでは、ステップが、ウェーハ上に形成される層の数を示し得る)に関して75%の歩留まりを得るためには、個々のステップは、99.4%を超える歩留まりを有していなければならない。個々のそれぞれのステップが95%の歩留まりを有した場合、全体的なプロセス歩留まりは、7%と低い。
[0032] ICチップ製造設備において、高いプロセス歩留まりが望ましい一方で、一時間当たりに処理される基板の数と定義される高い基板(すなわち、ウェーハ)スループットを維持することも必須である。高いプロセス歩留まり及び高い基板スループットは、欠陥の存在による影響を受け得る。これは、欠陥を調査するためにオペレータの介入が必要な場合に特に当てはまる。したがって、検査ツール(走査電子顕微鏡(「SEM」)など)によるマイクロスケール及びナノスケール欠陥の高スループット検出及び識別は、高い歩留まり及び低いコストを維持するために必須である。
[0033] SEMは、走査デバイス及び検出器装置を含む。走査デバイスは、一次電子を発生させるための電子源を含む照明装置と、一次電子の1つ又は複数の集束ビームで基板などのサンプルを走査するための投影装置とを含む。共に、少なくとも照明装置又は照明システム、及び投影装置又は投影システムは、合わせて電子-光学システム又は装置と呼ばれることがある。一次電子は、サンプルと相互作用し、二次電子を発生させる。検出装置は、SEMがサンプルの走査エリアの画像を生成できるように、サンプルが走査されるときに、サンプルからの二次電子を捕捉する。高スループットの検査のために、検査装置の一部は、一次電子の複数の集束ビーム、すなわち、マルチビームを使用する。マルチビームの成分ビームは、サブビーム又はビームレットと呼ばれることがある。マルチビームは、サンプルの異なる部分を同時に走査することができる。マルチビームにはサブビーム又はビームレットが構成されることがあり、したがって、マルチビームは、マルチビーム構成を有すると表されることがある。マルチビーム構成は、直線形、例えば長方形や正方形、又は六角形、例えば正六角形であり得る繰り返しパターンを有することがある。したがって、マルチビーム検査装置は、単一ビーム検査装置よりもはるかに高速でサンプルを検査することができる。
[0034] 既知のマルチビーム検査装置の実装形態を以下に説明する。
[0035] 図は、概略図である。したがって、図面では、コンポーネントの相対寸法は、明瞭にするために拡大される。以下の図面の説明では、同じ又は同様の参照番号は、同じ又は同様のコンポーネント又はエンティティを指し、個々の実施形態に対する違いのみを説明する。説明及び図面は電子光学装置を対象とするが、実施形態は、本開示を特定の荷電粒子に限定するためには使用されないことが理解される。したがって、本文書全体を通して、電子への言及は、より一般的に、荷電粒子への言及であるとみなすことができ、荷電粒子は、必ずしも電子ではない。
[0036] ここで図1を参照すると、図1は、例示的な荷電粒子ビーム検査装置100を示す概略図である。図1の荷電粒子ビーム検査装置100は、メインチャンバ10、装填ロックチャンバ20、電子ビームツール40、機器フロントエンドモジュール(EFEM)30、及びコントローラ50を含む。電子ビームツール40は、メインチャンバ10内に位置する。
[0037] EFEM30は、第1の装填ポート30a及び第2の装填ポート30bを含む。EFEM30は、追加の1つ又は複数の装填ポートを含むことがある。第1の装填ポート30a及び第2の装填ポート30bは、例えば、基板(例えば、半導体基板若しくは他の材料でできている基板)又は検査対象のサンプル(以降では、基板、ウェーハ、及びサンプルはまとめて「サンプル」と呼ばれる)を収容する、基板前面開口式一体型ポッド(FOUP(front opening unified pod))を受け取ることがある。EFEM30内の1つ又は複数のロボットアーム(図示せず)は、サンプルを装填ロックチャンバ20に運ぶ。
[0038] 装填ロックチャンバ20は、サンプルの周囲の気体を取り除くために使用される。これは、周囲環境の圧力より低い局所気体圧力である真空を生じさせる。装填ロックチャンバ20は、装填ロック真空ポンプシステム(図示せず)に接続されてもよく、装填ロック真空ポンプシステムは、装填ロックチャンバ20内の気体粒子を取り除く。装填ロック真空ポンプシステムの動作により、装填ロックチャンバが大気圧を下回る第1の圧力に達することが可能になる。第1の圧力に達した後、1つ又は複数のロボットアーム(図示せず)が、装填ロックチャンバ20からメインチャンバ10にサンプルを運ぶ。メインチャンバ10は、メインチャンバ真空ポンプシステム(図示せず)に接続される。メインチャンバ真空ポンプシステムは、サンプルの周囲の圧力が第1の圧力を下回る第2の圧力に達するように、メインチャンバ10内の気体粒子を取り除く。第2の圧力に達した後に、サンプルは、電子ビームツールに運ばれ、サンプルは、電子ビームツールによって検査され得る。電子ビームツール40は、マルチビーム電子光学装置を含み得る。
[0039] コントローラ50は、電子ビームツール40に電子的に接続される。コントローラ50は、荷電粒子ビーム検査装置100を制御するように構成されたプロセッサ(コンピュータなど)でもよい。コントローラ50は、様々な信号及び画像処理機能を実行するように構成された処理回路も含み得る。図1では、コントローラ50は、メインチャンバ10、装填ロックチャンバ20、及びEFEM30を含む構造の外部のものとして示されているが、コントローラ50は、構造の一部でもよいことが理解される。コントローラ50は、荷電粒子ビーム検査装置のコンポーネント要素の1つの内部に位置してもよく、又はコントローラ50は、コンポーネント要素の少なくとも2つに分散されてもよい。本開示は、電子ビーム検査ツールを収納するメインチャンバ10の例を提供しているが、本開示の態様は、広い意味で、電子ビーム検査ツールを収納するチャンバに限定されないことに留意すべきである。むしろ、前述の原理は、第2の圧力下で動作する装置の他のツール及び他の配置にも適用できることが理解される。
[0040] ここで図2を参照すると、図2は、図1の例示的な荷電粒子ビーム検査装置100の一部であるマルチビーム検査ツールを含む例示的な電子ビームツール40を示す概略図である。マルチビーム電子ビームツール40(本明細書では、装置40とも呼ばれる)は、電子源201、投影装置230、電動ステージ209、及びサンプルホルダ207を含む。電子源201及び投影装置230は、まとめて、照明装置と呼ばれることがある。サンプルホルダ207は、検査のためにサンプル208(例えば、基板又はマスク)を保持するように、電動ステージ209によって支持される。マルチビーム電子ビームツール40は、電子検出デバイス240を更に含む。
[0041] 電子源201は、カソード(図示せず)、及び抽出器又はアノード(図示せず)を含み得る。動作中に、電子源201は、一次電子として電子をカソードから放出するように構成される。一次電子は、抽出器及び/又はアノードによって抽出又は加速されて、一次電子ビーム202を形成する。
[0042] 投影装置230は、一次電子ビーム202を複数のサブビーム211、212、213に変換し、且つ各サブビームをサンプル208上に誘導するように構成される。簡潔にするために3つのサブビームが示されているが、何十、何百、又は何千ものサブビームが存在することがある。サブビームは、ビームレットと呼ばれることがある。
[0043] コントローラ50は、電子ソース201、電子検出デバイス240、投影装置230、及び電動ステージ209などの図1の荷電粒子ビーム検査装置100の様々な部分に接続され得る。コントローラ50は、様々な画像及び信号処理機能を行い得る。コントローラ50は、荷電粒子マルチビーム装置を含む荷電粒子ビーム検査装置の動作を制御するための様々な制御信号を生成することもできる。
[0044] 投影装置230は、検査のためにサブビーム211、212、及び213をサンプル208上に集束させるように構成されることがあり、サンプル208の表面に3つのプローブスポット221、222、及び223を形成することがある。投影装置230は、サンプル208の表面の一セクション内の個々の走査エリアに渡ってプローブスポット221、222、及び223を走査するために、一次サブビーム211、212、及び213を偏向させるように構成されることがある。サンプル208上のプローブスポット221、222、及び223への一次サブビーム211、212、及び213の入射に応答して、二次電子及び後方散乱電子を含む電子が、サンプル208から発生する。二次電子は、一般的に、50eV以下の電子エネルギーを有し、後方散乱電子は、一般的に、50eVと一次サブビーム211、212、及び213の着地エネルギーとの間の電子エネルギーを有する。
[0045] 電子検出デバイス240は、二次電子及び/又は後方散乱電子を検出し、対応する信号を生成するように構成され、これらの信号は、例えば、サンプル208の対応する走査エリアの画像を構築するために、コントローラ50又は信号処理システム(図示せず)に送られる。電子検出デバイスは、投影装置に組み込まれているか、又は投影装置からは分離されていることがあり、二次光学コラムが、二次電子及び/又は後方散乱電子を電子検出デバイスに向けるように設けられる。
[0046] コントローラ50は、画像取得器(図示せず)及びストレージデバイス(図示せず)を含む画像処理システムを含み得る。例えば、コントローラは、プロセッサ、コンピュータ、サーバ、メインフレームホスト、端末、パーソナルコンピュータ、任意の種類のモバイルコンピューティングデバイスなど、又はそれらの組み合わせを含み得る。画像取得器は、コントローラの処理機能の少なくとも一部を含み得る。したがって、画像取得器は、少なくとも1つ又は複数のプロセッサを含み得る。画像取得器は、数ある中でも特に、導電体、光ファイバケーブル、ポータブル記憶媒体、IR、Bluetooth、インターネット、ワイヤレスネットワーク、ワイヤレス無線機、又はこれらの組み合わせなどの信号通信を可能にする装置40の電子検出デバイス240に通信可能に結合され得る。画像取得器は、電子検出デバイス240から信号を受信し、信号に含まれるデータを処理し、そこから画像を構築することができる。したがって、画像取得器は、サンプル208の画像を取得することができる。画像取得器は、輪郭の生成、及び取得画像へのインジケータの重畳などの様々な後処理機能を行うこともできる。画像取得器は、取得画像の明度及びコントラストなどの調整を行うように構成され得る。ストレージは、ハードディスク、フラッシュドライブ、クラウドストレージ、ランダムアクセスメモリ(RAM)、他のタイプのコンピュータ可読メモリなどの記憶媒体でもよい。ストレージは、画像取得器と結合されてもよく、走査された生の画像データをオリジナルの画像として保存したり、後処理された画像を保存したりするために使用することができる。
[0047] 画像取得器は、電子検出デバイス240から受信された撮像信号に基づいてサンプルの1つ又は複数の画像を取得することができる。撮像信号は、荷電粒子撮像を実施するための走査動作に対応し得る。取得画像は、複数の撮像エリアを含む単一の画像であり得る。単一の画像は、ストレージに保存することができる。単一の画像は、複数の領域に分割され得るオリジナルの画像であり得る。各領域は、サンプル208の特徴を含む1つの撮像エリアを含み得る。取得画像は、ある期間に渡って複数回サンプリングされたサンプル208の単一の撮像エリアの複数の画像を含み得る。複数の画像は、ストレージに保存することができる。コントローラ50は、サンプル208の同じ場所の複数の画像を用いて画像処理ステップを行うように構成され得る。
[0048] コントローラ50は、検出された二次電子の分布を得るために、測定回路(例えば、アナログ-デジタル変換器)を含み得る。検出時間窓の間に収集された電子分布データは、サンプル表面に入射した一次サブビーム211、212、及び213の各々の対応する走査パスデータと組み合わせて、検査中のサンプル構造の画像を再構築するために使用することができる。再構築された画像は、サンプル208の内部又は外部の構造の様々なフィーチャを明らかにするために使用することができる。したがって、再構築された画像は、サンプルに存在し得るいかなる欠陥も明らかにするために使用することができる。
[0049] コントローラ50は、サンプル208の検査中にサンプル208を移動させるように電動ステージ209を制御することができる。コントローラ50は、電動ステージ209が、少なくともサンプルの検査中に、好ましくは継続的に、例えば、一定の速度で、ある方向にサンプル208を移動させることを可能にし得る。コントローラ50は、電動ステージ209が、様々なパラメータに依存するサンプル208の移動の速度を変えるように、電動ステージ209の移動を制御することができる。例えば、コントローラは、走査プロセスの検査ステップの特性に応じて、ステージ速度(その方向を含む)を制御することができる。
[0050] 図3は、評価ツールの概略図である。電子源201は、電子を、投影システム230の一部を形成する集光レンズ231のアレイに向ける。電子源は、明度と全放出電流との間の良好な妥協点を持つ高明度の熱電界放出器であることが望ましい。何十、何百、又は何千もの集光レンズ231が存在することがある。集光レンズ231は、多電極レンズを含むことがあり、欧州特許出願公開第1602121A1号に基づく構成を有することがあり、この文書は、特に電子ビームを複数のサブビームに分割するためのレンズアレイ(このアレイは、サブビーム毎に1つのレンズを提供する)の開示を参照することにより本明細書に組み込まれる。レンズアレイは、電極として機能する少なくとも2つのプレートの形を取ることができ、各プレートのアパーチャが互いに位置合わせされ、サブビームの位置に対応する。これらのプレートのうちの少なくとも2つは、所望のレンズ効果を達成するために、動作中に異なる電位に維持される。
[0051] ある構成では、集光レンズアレイは、荷電粒子が各レンズに入るときと出るときで同じエネルギーを有する3つのプレートのアレイから形成され、この構成は、アインツェルレンズと呼ばれることがある。ビームエネルギーは、アインツェルレンズへの入射時と出射時で同じである。したがって、分散はアインツェルレンズ自体の内部(レンズの入口電極と出口電極との間)でのみ発生し、それによって、オフアクシス色収差が制限される。集光レンズの厚さが薄い場合、例えば、数mmである場合、そのような収差の影響は小さいか又は無視できる。
[0052] アレイ中の各集光レンズは、電子を、それぞれの中間焦点233で集束するそれぞれのサブビーム211、212、213に向ける。中間焦点233には偏向器235がある。偏向器235は、主光線(ビーム軸とも呼ばれる)がサンプル208に実質的に垂直に(すなわち、サンプルの公称表面に対して実質的に90°で)入射することを保証するのに効果的な量だけ、それぞれのビームレット211、212、213を曲げるように構成される。偏向器235は、コリメータと呼ばれることもある。中間焦点233のダウンビームには、複数の対物レンズ234があり、各対物レンズ234は、それぞれのサブビーム211、212、213をサンプル208に向ける。対物レンズ234は、10よりも大きな倍率、望ましくは50~100以上の範囲の倍率で、電子ビームを縮小するように構成することができる。
[0053] 電子検出デバイス240は、対物レンズ234とサンプル208との間に設けられ、サンプル208から放出された二次電子及び/又は後方散乱電子を検出する。電子検出システムの例示的な構成について、以下で説明する。
[0054] 図3のシステムは、サンプル上の電子の着地エネルギーを制御するように構成されることがある。着地エネルギーは、評価対象のサンプルの性質に応じて、二次電子の放出及び検出を増加させるように選択されることがある。対物レンズ234を制御するために設けられるコントローラは、着地エネルギーを、所定の範囲内の任意の所望の値、又は複数の所定の値のうちの所望の値に制御するように構成されることがある。一実施形態では、着地エネルギーは、1000eVから5000eVまでの範囲内の所望の値に制御されることがある。着地エネルギーを制御するために使用することができる電極構造及び電位の詳細は、欧州特許出願第20158804.3号に開示されており、その特許文献を参照により本明細書に援用する。
[0055] いくつかの実施形態では、荷電粒子評価ツールは、サブビーム中の1つ又は複数の収差を低減する1つ又は複数の収差補正器を更に含む。一実施形態では、収差補正器の少なくともサブセットのそれぞれが、中間焦点のうちのそれぞれ1つに配置されるか、又はそれと直接的に隣接する(例えば、中間像面に配置されるか、又はそれと隣接する)。サブビームは、中間平面などの焦点面で又はその近傍で、最小の断面積を有する。これは、他の場所で、すなわち、中間平面のアップビーム若しくはダウンビームで利用可能なスペースよりも(又は中間像面を持たない代替の配置で利用可能となるスペースよりも)多くのスペースを収差補正器に提供する。
[0056] 一実施形態では、中間焦点(若しくは中間像面)に、又はそれらに直接隣接して配置された収差補正器は、異なるビームにとって異なる位置にあるように見えるソース201を補正するための偏向器を含む。補正器は、各サブビームと対応する対物レンズとの間の良好なアライメントを阻む、ソースに起因した巨視的収差を補正するために使用されることがある。
[0057] 収差補正器は、適切なコラムアライメントを阻む収差を補正することができる。そのような収差は、サブビームと補正器との間のミスアライメントにつながることもある。この理由のため、これに加えて又はその代わりに、収差補正器を集光レンズ231に、又はその近くに配置することが望ましいことがある(例えば、そのような収差補正器のそれぞれは、集光レンズ231のうちの1つ又は複数と一体化されるか、又はそれらと直接隣接する)。これは、集光レンズ231がビームアパーチャと垂直方向に近いか、又はビームアパーチャと一致するので、集光レンズ231では、又はその近傍では、収差が、対応するサブビームのシフトをまだ引き起こしていないことから、望ましい。しかしながら、集光レンズ231に、又はその近傍に補正器を配置することの課題は、更にダウンビームの場所と比べて、この場所では各サブビームの断面積が比較的大きくなり、ピッチが比較的小さくなる、という点である。
[0058] いくつかの実施形態では、収差補正器の少なくともサブセットのそれぞれが、対物レンズ234のうちの1つ又は複数と一体化されるか、又はそれらと直接的に隣接する。一実施形態では、これらの収差補正器は、像面湾曲、フォーカスエラー、及び非点収差、のうちの1つ又は複数を低減する。これに加えて又はその代わりに、サンプル208に渡ってサブビーム211、212、214を走査するために、1つ又は複数の走査偏向器(図示せず)が、対物レンズ234のうちの1つ又は複数と一体化されるか、又はそれらと直接的に隣接することがある。一実施形態では、米国特許出願公開第2010/0276606号に記載の走査偏向器が使用されてもよく、この文書は、参照によりその全体が本明細書に組み込まれる。
[0059] 収差補正器は、欧州特許出願公開第2702595A1号に開示されるようなCMOSベースの個々のプログラマブル偏向器、又は欧州特許出願公開第2715768A2号に開示されるような多極偏向器のアレイであることがあり、両文書におけるビームレットマニピュレータの説明は、参照により本明細書に組み込まれる。
[0060] ある実施形態では、前述の実施形態で参照された対物レンズは、アレイ対物レンズである。アレイ内の各要素は、マルチビームにおける異なるビーム又は異なるビームの一群を操作するマイクロレンズである。静電アレイ対物レンズは、少なくとも2つのプレートを有し、各プレートは、複数の孔又はアパーチャを有する。一方のプレートにおける各孔の位置は、他方のプレートにおける対応する孔の位置に対応する。対応する孔は、使用時に、マルチビームにおける同じビーム又は同じビームの一群に対して作用する。アレイ内の各要素のレンズのタイプの適切な例は、2電極減速レンズである。対物レンズの底部電極は、CMOSチップ検出器であり、マルチビームマニピュレータアレイと一体化される。対物レンズに検出器アレイを統合すると、二次コラムが置き換えられる。CMOSチップは、サンプルと向き合うように向けられることが好ましい(ウェーハと電子光学システムの底部との間の距離が短い(例えば、100μm)ため)。一実施形態では、二次電子信号を捕捉する電極が、CMOSデバイスの上部金属層内に形成される。電極は、他の層に形成されてもよい。CMOSの電力及び制御信号は、スルーシリコンビアによってCMOSに接続され得る。ロバスト性のために、底部電極は、好ましくは2つの要素:CMOSチップ、及び孔を有するパッシブSiプレートから成る。このプレートは、高電界からCMOSをシールドする。
[0061] 検出効率を最大にするために、(アパーチャを除く)アレイ対物レンズの実質的に全てのエリアが電極によって占められるように、電極表面をできる限り大きくすることが望ましい。各電極は、アレイピッチに実質的に等しい直径を有する。ある実施形態では、電極の外形は、円形であるが、これは、検出エリアを最大にするために正方形にされてもよい。また、基板スルーホールの直径を最小にすることができる。電子ビームの一般的なサイズは、約5~15ミクロンである。
[0062] 一実施形態では、単一の電極が各アパーチャを取り囲む。別の実施形態では、複数の電極要素が、各アパーチャの周りに設けられる。1つのアパーチャを取り囲む電極要素によって捕捉される電子は、単一の信号に合成されるか、又は独立した信号を生成するために使用されることがある。電極要素は、半径方向に分割されるか(即ち、複数の同心の環を形成するか)、角度的に分割されるか(即ち、複数の扇状の部分を形成するか)、半径方向と角度的の両方で分割されるか、又は他の任意の便利な態様で分割されることがある。
[0063] しかしながら、電極表面の拡大は、寄生容量の増大、したがって、帯域幅の低下をもたらす。このため、電極の外径を制限することが望ましい場合がある。特に、電極の拡大が、わずかな検出効率の向上を与えるにすぎず、しかしキャパシタンスの大幅な増加を与える場合。円形(環状)電極は、収集効率と寄生容量の良い妥協点を提供し得る。
[0064] 電極の外径の増大は、クロストーク(隣接した孔の信号に対する感度)の増加ももたらし得る。これは、電極の外径をより小さくする理由にもなり得る。特に、電極が大きくなると検出効率はわずかに向上するが、クロストークは大幅に増加する。
[0065] 電極によって収集された後方散乱電子及び/又は二次電子の電流は、トランスインピーダンスアンプによって増幅される。
[0066] 本発明の一実施形態では、中間焦点233にある補正器は、スリット偏向器300によって具現化される。スリット偏向器300は、マニピュレータの一例であり、スリット補正器と呼ばれることもある。一構成において、スリット偏向器は、(例えば本明細書の他の箇所で述べる偏向器アレイ235としての)コリメータアレイの一部を備えることがあり、又は、ビーム経路内の補正器として、コリメータアレイ若しくはそのようなコリメータの一部に、例えば隣り合って近接することができる。図5及び6に示されるように、スリット偏向器300は、1組のスリット302を画定する1組の細長い電極301、例えば平行板又は平行ストリップを備える。細長い電極は、静電的であり得る。細長い電極のアレイは、例えば各電極への1つ又は複数の電気的接続を有することができる。電極、例えば各電極に電位差を印加することができる。印加される電位は、交互の電極又は少なくとも交互の極性に関して同様であり得る。細長い電極301の組又はアレイは、共通の平面内にあり得る。細長い電極301のアレイの共通面は、例えばマルチビーム構成のビーム経路に直交していることがある。細長い電極は、好ましくはサブビーム経路に直接面する平坦面を有することがある。電極の平坦面は相互に平行でよい。電極は、図示されるように、互いに対して、及び例えばマルチビーム構成のサブビームに対して等距離に離間されることがある。電極は、例えばコリメートされたときに、マルチビーム構成のサブビーム経路に直交することがある。電極の平坦面は、例えばコリメートされたときに、マルチビーム構成のサブビームの経路と実質的に位置合わせされることがある。電極301は、シリコン又は金属、例えば、基板のドープされたシリコン領域及び基板に形成されたメタライゼーション層から形成されることがある。シリコン電極は、シリコンウェハの選択的エッチングによって形成することができる。
[0067] 図6は、電極を取り付けて細長い電極のアレイを形成するための構成を示す。電極を支持するために、例えばガラスなどのセラミックから成るフレーム303が提供される。電極に高電圧が供給されたときの表面クリープ又は絶縁破壊を防止するために、例えばガラスなどのセラミックから成るシールド304を電極の端部に設けることができる。図示されるように、電極300は、フレーム303に渡って、例えばフレームの向かい合う側面の間に延びる。電極は、例えば図示されるようなサブビーム経路のラインとして、サブビーム211のマルチビーム構成に渡って全てのサブビーム経路の間に延びることができる。電位は、導電性トレース309(見やすくするために図にはいくつかしか示されていない)を介して電極に提供される。シールド304は、アレイの電極が取り付けられるフレーム304の側面303a、303bから突出する。シールドは、隣接する電極間に介在し、隣接する電極間のクリープ長を増加させることによって、隣接する電極間の高電圧放電を抑制する。
[0068] 代替として又は追加として、収差補正器235aとして機能するスリット偏向器300が集光レンズ231のすぐ下に位置決めされることがある。これは、修正すべき角度誤差が大きな位置シフトに変換されないという点で有利であり得る。収差補正器235aは、適切なコラム位置合わせを妨げる収差を補正することができる。そのような収差は、サブビーム211、212、213と補正器235との間のミスアライメントにつながることもある。このため、追加として又は代替として、収差補正器235aを集光レンズ231又はその近くに位置決めする(例えば、そのような収差補正器235aがそれぞれ、集光レンズ231の1つ又は複数と一体化される、又は直接隣接する)ことが望ましいことがある。集光レンズ231がビームアパーチャ111aと垂直方向で近接又は一致しているので、集光レンズ231又はその近くでは、対応するサブビーム211、212、213のシフトが収差によってまだ引き起こされていないため、これは望ましい。しかし、集光レンズ116又はその近くに補正器235aを位置決めする場合の問題は、この位置において、より下流の位置に比べて、サブビーム212、213、214がそれぞれ比較的大きい断面積及び比較的小さいピッチを有することである。
[0069] 例えばツールの動作時のサブビームのためのサブビーム経路のラインは、ストリップのアレイの形を取ることがある1対の細長い電極に介在し、したがって電極間の電位差がサブビームの偏向を引き起こす。偏向の方向は、光軸に対するある方向での電位差の相対極性によって決定される。偏向の大きさは、電位差の大きさ、電極間の距離、及びサブビームの伝播に平行な方向での電極の幅によって決定される。これらの寸法は、それぞれスリットの幅及び深さと呼ばれることがある。一実施形態では、スリットの幅は、10~100μmの範囲内、望ましくは50μmである。一実施形態では、スリットのピッチは、50~200μmの範囲内、望ましくは100μmである。一実施形態では、スリットの深さは、50~200μmの範囲内である。
[0070] 一実施形態では、電極はそれらの長さに沿って同じ電位にあり、スリットは一定の幅又は深さであり、したがって、所与のスリットを通過する全てのサブビームは、それらが全て実質的に同じエネルギーを有するときには実質的に同じ偏向を受ける。
[0071] 一実施形態では、スリットは、一定でない断面、例えば幅又は深さの変化を有することがあり、スリットの長さに沿ったサブビームの位置に従って、サブビームの偏向に所定の変化を提供する。
[0072] 一実施形態では、細長い電極は、サブビームのそれぞれがスリットを通過するように1組の平行なスリットを画定する。スリットを部分的に画定する各電極の表面は、サブビーム経路と平行であり得る平坦面を有することがある。したがって、それぞれの細長い電極の向かい合う細長い表面が、対応するスリットを画定する。スリットの向かい合う表面は、それぞれ平面状であり互いに平行でよい。スリットは、例えば図5を参照して図6に示されるように、サブビーム経路のアレイに渡って、例えばマルチビーム構成に渡って延びることがある。望ましくは、スリットの長手方向に垂直な方向でのビーム位置の関数として偏向を制御することができるように、各電極表面に印加される電位は個別に制御可能である。一実施形態では、所定の1組の偏向を提供するために、所定の1組の電圧が電極に印加される。例えば、スリットが直交座標系のY軸に沿って延びる場合(すなわち、電極の伸長方向がY方向である場合)、X方向でのサブビーム位置の関数として偏向を制御することができる。
[0073] 一実施形態では、各スリットは、2つの専用電極によって画定される。例えば、図8に示されるように、スリット302-1は、電極301-1及び301-2の対向する表面によって画定され、スリット302-2は、電極301-3及び301-4他の対向する表面によって画定され、スリット301-mは、電極301-(2m-1)及び302-2mによって画定される。交互の電極に反対の電位が印加され、例えば、奇数番号の電極は負であり、偶数番号の電極は正である。印加される電位の大きさは位置と共に変化させることができ、電極の長さに垂直な方向での位置と共に変化する所望の偏向を提供する。例えば、図8に示されているように、電位(図の上部に示されている)は線形に増加し、電位差(図の下部に示されている)も同様に線形に増加する。例えば、1組の電極、例えば偶数の電極を一定の電位、例えば接地に保つことができる。
[0074] 代替実施形態では、各電極(アレイの端部にある電極を除く)は、2つのスリットそれぞれの片側を画定する働きをする。すなわち、一般に、ビーム経路の方向に延びる電極の対向する表面は、隣接するスリットを部分的に画定する。例えば、図9に示されるように、スリット302-1は、電極301-0及び301-1の表面によって画定され、スリット302-2は、電極301-1及び301-2他の向かい合う表面によって画定され、スリット302-nは、電極301-(n-1)及び301-nの表面によって画定される。そのような構成では、電極302-0に印加される電位に対する電極302-nに印加される電位は、スリット302-1~302-nに渡って印加される電位差の和である。したがって、電位差の線形増加により、電極に印加される絶対電位は、線形よりも急速に増加する。一般に、図9に示されている構成では、電位差はアレイに渡って単調増加する。
[0075] 図9の構成と比較した図8の構成の利点は、電極に印加される電位の大きさが、所望の偏向を実現するのに必要な電位差以下でよいことである。図8の構成と比較した図9の構成の利点は、必要な電極が少なく、補正器をよりコンパクトにすることができることである。図9の構成は、サブビームが互いにより近く、スリット間の距離を小さくして図9の構成を作成することができるので、補正器が集光レンズ231の近くに位置決めされる場合に有利である。
[0076] 一実施形態では、複数のスリット偏向器がビーム伝播方向で隣接して設けられる。そのような構成は、スリット偏向器のスタックと呼ばれることがある。スタック内のスリット偏向器は、向きが異なる。
[0077] 一実施形態では、サブビームは矩形アレイとして配置され、2つのスリット偏向器が設けられ、第1のスリット偏向器のスリットが第2のスリット偏向器のスリットに対して垂直に向けられる。例えば、第1のスリット偏向器は、Y方向に延びるスリットを有し、X方向でのサブビーム位置の関数として制御可能なX方向での偏向を提供する。第2のスリット偏向器は、X方向に延びるスリットを有し、Y方向でのサブビーム位置の関数として制御可能なY方向での偏向を提供する。スリット偏向器は、スタック内で任意の順序で提供することができる。スリット偏向器の更なる詳細は、欧州特許出願第20156253.5号で見ることができ、マルチビーム偏向器装置の説明を参照により本明細書に援用する。
[0078] 一実施形態では、サブビームは六角形アレイとして配置され、2つのスリット偏向器が提供される。第1のスリット偏向器のスリットは、第2のスリット検出器のスリットに直交する。例えば、第1のスリット偏向器は、Y方向に延びるスリットを有し、X方向でのサブビーム位置の関数として制御可能なX方向での偏向を提供する。第2のスリット偏向器は、X方向に延びるスリットを有し、Y方向でのサブビーム位置の関数として制御可能なY方向での偏向を提供する。第2のスリット検出器は、第1のスリット検出器よりもピッチが小さく、第1のスリット検出器よりもスリット当たりのサブビームが少ない。スリット偏向器は、スタック内で任意の順序で提供することができる。
[0079] 一実施形態では、サブビームは六角形アレイとして配置され、スタック内の3つのスリット偏向器が提供される。3つのスリット偏向器は、異なるスリット検出器のスリット間に60°の角度があるように配置される。例えば、図16に示されるように、第1のスリット偏向器は、X軸(0°)に平行に向けられたスリット302aを有することがあり、第2のスリット偏向器は、X軸に対して+60°でのスリット302bを有することがあり、第3のスリット偏向器は、X軸に対して-60°でのスリット302cを有することがある。スリット偏向器は、スタック内で任意の順序で提供することができる。欧州特許出願第20156253.5号に開示されているように、スリット302a、302b、302cを画定する電極に電位を適切に印加することによって、任意の方向での所望の偏向を実現することができる。上記特許文献のうち、3つのスリット偏向器の六角形アレイの開示を参照により本明細書に援用する。一構成において、正六角形アレイを述べたが、非正六角形アレイの3軸に対応するように偏向器スリットが配置された不定アレイでも同じタイプの補正器を実現することができる。
[0080] 図7に示されているような構成を使用して、以下の補正を実現することができる。
[0081]
Figure 2023519566000002
[0082] すなわち、
・0度方向での位置の関数である0度方向での任意の偏向
・60度方向での位置の関数である60度方向での任意の偏向
・120度方向での位置の関数である120度方向での任意の偏向
[0083] 図10及び11は、例えば、これらの自由度を使用して以下のマクロ収差を補正することができることを示す。
・1次(レンズ効果):完全補正
・3次:完全補正
・5次:10分の1に縮小
[0084] 図10は、任意単位での位置rの関数として、3次補正に必要であり実現可能な(任意単位での)角度偏向を示す。図11は、任意単位での位置rの関数として、5次補正に必要であり実現可能な(任意単位での)角度偏向を示す。
[0085] 2つのスリット偏向器アレイ(0、90度)よりも3つのスリット偏向器アレイ(0、60、120度)を使用することの追加の利点は、1次効果(完全なレンズ)に関して、各アレイが、2つのスリット偏向器の場合と比較して2/3の角度のみ偏向すればよいことである。
[0086] サブビームの他の配置のために、複数のスリット偏向器の他の配置を提供することもできる。例えば、スリットは同心の六角形として配置することができる。
[0087] 本発明の一実施形態では、複数のビームが、1対の電極によって画定されるスリットを通過する。これは、偏向電位を提供するために必要な接続の数を大幅に減少する。多数のビームを有するマルチビームツールでは、配線又は回路トレース(ルーティング)のためのスペースが限られているので、サブビームごとに独立した偏向電位を提供することは、不可能ではないにせよ困難である。本発明によって、必要なトレースの数が大幅に減少されるので、この問題が対処される。いくつかの場合には、本発明の実施形態は、例えば3次回転対称収差などの収差を完全に補正することができないことがある。しかし、本発明の実施形態は、完全に補正することができない収差でさえ、有意であり有用な低減を行うことができる。
[0088] 本発明の実施形態によって補正され得るエラーは、電子源201の仮想源位置が全ての放出角度に関して一定でない場合に発生する。この影響は、電子源グリッドエラーとして知られている。図4は、電子源グリッドエラーを測定するためのデバイス400を示す。電子源201は、アパーチャアレイ401に向けて電子を放出するようにセットアップされる。これは、投影システムの集光レンズアレイからのアパーチャアレイであり得る。アパーチャアレイ401は、アパーチャの既知の配置を有し、電子源201によって放出された電子を複数のサブビームに分割する。蛍光スクリーン402が、サブビームの経路内の既知の位置に提供される。蛍光スクリーン402は、入射電子に応答して光、例えば可視光を放出する。投影レンズ403は、蛍光スクリーン402の像を撮像デバイス404、例えばCCDに投影する。撮像デバイス404によって捕捉された像は、電子源グリッドエラーが存在しない場合には、予想される輝点のパターンをアパーチャアレイ401のアパーチャの配置から直接予測することができるので、電子源グリッドエラーの容易な決定を可能にする。この構成を使用して、ツール内でその場で(in situ)電子源位置エラーを測定することができる。
[0089] 上述したスリット偏向器は、ビームが偏向される方向でわずかな集束効果を導入することがある。2つ以上の異なる向きのスリット偏向器アレイが使用される場合、2つ以上の方向で集束効果がある。この集束効果の大きさは、偏向の大きさに比例する。いくつかの場合には、この集束効果は望ましくないことがある。
[0090] スリット偏向器の集束効果を補償するために、スリットレンズを追加することができる。図12に示されているように、スリットレンズ800は、細長い電極301のアレイ300(細長いスリットの第1のアレイを画定する)と、対応する細長い電極501(305として示される)の少なくとも1つの更なるアレイ500(細長いフィーチャ、例えばスリットの第2のアレイを画定する)とを備える。細長い電極501の更なるアレイ500は、それぞれのビーム経路に沿って、細長い電極301のアレイ300に対して例えばアップビーム又はダウンビームに変位される。図12に示されている構成では、更なるアレイは、細長い電極のアレイ300のダウンビームにある。更なるアレイ500の細長い電極501は、アレイ300の対応する細長い電極301と好ましくは平行に位置合わせすることができる。細長い電極の各アレイは、本明細書で前述したスリット偏向器の形状と同様の形状を有する構造で形成される。レンズは、2つの偏向器電極と2つのスリット電極との平均値の間の電位差を有することによって形成される。これは、スリット電極の電位を変えることによって、又は偏向器電極に電圧オフセットを追加することによって行われる。細長い電極301は、それぞれの電位に設定することができ、対応する細長い電極501は、接地電位又はそれぞれの異なる電位に設定することができる。各スリットレンズの強度は、非点収差が、最大の偏向を有するスリット偏向器の非点収差と等しくなるように選択することができる。補正器が、偏向器と、各軸のスリットレンズアレイ(通常は2つ、X軸及びY軸のそれぞれに1つずつ)からなる実施形態では、得られる非点収差は、マイクロレンズアレイの特性を有する。
[0091] 図13は、1対の偏向器電極301と1対のスリットレンズ電極501とを示す拡大図である。スリット偏向器電極とスリットレンズ電極とはどちらの順序でもよい。図14に示されているように、例えばスリット偏向器電極の各側に1つの、2対のスリットレンズ電極501、502を使用することも可能であり、例えば、細長い電極502の追加のアレイが、細長い電極のアレイ300及び細長い電極501の更なるアレイ500のアップビームにある。図14の構成では、スリットレンズ電極501、502は、同じ電位、例えば接地又は上昇された電位に保持することができ、スリット偏向器の電位は、所望の全体的な偏向及び集束効果を有するように制御される。この場合、3レンズ構造はアインツェルレンズと同様である。更なるアレイ500と追加のアレイとの両方が細長い電極301のアレイ300のアップビーム又はダウンビームにあってもよいが、これは、その構成において追加のアレイと更なるアレイとを各側に有する場合よりも好ましくないことがある。例えば、アレイは、アインツェルレンズのアレイとして使用することができる。
[0092] 荷電粒子評価ツール109の別の実施形態が、図15に概略的に示されている。この実施形態は、サブビーム114内の1つ又は複数の収差を減少する1つ又は複数の収差補正器124、125、126を更に備える。一実施形態では、収差補正器124の少なくともサブセットがそれぞれ、中間焦点115のそれぞれ1つに、又は直接隣接して(例えば中間像面120に、又は隣接して)位置決めされる。サブビーム114は、中間面120などの焦点面内又はその近くで最小の断面積を有する。これは、利用可能な他の場所、すなわち中間面120のアップビーム又はダウンビームよりも(又は中間像面120を有さない代替構成で利用可能なよりも)収差補正器124のために多くのスペースを提供する。
[0093] 一実施形態では、中間焦点115(又は中間像面120)に、又はそれに直接隣接して位置決めされた収差補正器124は偏向器を備え、電子源201から放出されたビーム112から導出される異なるサブビーム114に関して異なる位置にあるように見える電子源201を補正する。補正器124を使用して、各サブビーム114と対応する対物レンズ118との良好な位置合わせを妨げるビーム源201から生じる巨視的な収差を補正することができる。
[0094] 収差補正器124は、適切なコラム位置合わせを妨げる収差を補正することができる。そのような収差は、サブビーム114と補正器124との間のミスアライメントにつながることもある。このため、追加として又は代替として、収差補正器125を集光レンズ116又はその近くに位置決めする(例えば、そのような収差補正器125がそれぞれ、集光レンズ116の1つ又は複数と一体化される、又は直接隣接する)ことが望ましいことがある。集光レンズ116がビームアパーチャ110と鉛直方向で近接又は一致しているので、集光レンズ116又はその近くでは、対応するサブビーム114のシフトが収差によってまだ引き起こされていないため、これは望ましい。しかし、集光レンズ116又はその近くに補正器125を位置決めする場合の問題は、この位置において、より下流の位置に比べて、サブビーム114がそれぞれ比較的大きい断面積及び比較的小さいピッチを有することである。
[0095] いくつかの実施形態では、図15に例示されるように、収差補正器126の少なくともサブセットはそれぞれ、対物レンズ118のうちの1つ又は複数と一体化される、又は直接隣接する。一実施形態では、これらの収差補正器126は、像面湾曲、焦点誤差、及び非点収差のうちの1つ又は複数を減少させる。
[0096] 図15の装置では、補正器124、125、126の何れか又は全てが、上述したようなスリット偏向器でよい。
[0097] 図16は、電極を取り付けて、スリット偏向器又はスリットレンズ用の細長い電極のアレイを形成するための代替構成を示す。フレーム303には、フレームの対向する側でベース部分306から内方向に突出する2組のフィンガ307が設けられている。すなわち、電極301が取り付けられるフレームの対向する側が、1組のフィンガ307を有する。フィンガはフレームと一体でよい。隣接するフィンガの端部に対して、介在するベース部分は、凹んでいるとみなすことができ、例えば凹面308を提供する。フィンガと凹部とは、電極301が取り付けられるフレームの側面に沿って交互に位置する。各電極は、一端でフィンガ307に取り付けられ、他端でベース部分306、例えば凹部に取り付けられる。電極は、凹部及びフィンガで交互にフレームに接続される。隣接する電極の一方は、フレームの一方の側にフィンガを介して接続され、他方の電極は、凹部を介して接続される。フレームの対向する側にある電極は、各電極がフィンガ及び凹部を介してフレームに接続されるように、異なる様式で接続されることがある。例えば、奇数番号の電極301-1などは、フレームの第1の側(図面の下側)でフィンガに取り付けられることがあり、偶数番号の電極302-2などは、フレームの第2の側(図では上側)でフィンガに取り付けられる。
[0098] 電極は、それらの取付部を介して凹部に電気的に接続することができる。別の構成では、電極はフィンガに電気的に接続されるが、これはあまり好ましくないことがある。交互の電極は凹部又はフィンガで接続されるので、交互の電極に同様の電位差を印加することができる。電位は、ベース部分又は凹部で電極に接続された導電性トレース309(見やすくするために図にはいくつかしか示されていない)を介して電極に提供される。クリープ長cl、すなわちクリープ放電が生じ得る表面の長さは、凹部及びフィンガの端部に沿った横方向の距離、並びにフィンガの長さである。クリープ長は、凹部での電極の接続部から、フレームから延びるフィンガの表面までのフレームの表面に渡る横方向距離と、フレームから延びるフィンガの側面の長さと、フィンガの側面から、隣接する電極へのフィンガの接続部までのフィンガの端部での距離とである。したがって、例えば隣接する電極間のクリープ長は、フィンガ307の長さだけ増加される。したがって、電極間の絶縁が改良される。フレームでの電極間の高電圧放電のリスクが低減される。
[0099] フレーム303及びフィンガ307は、絶縁体、好ましくはセラミック、好ましくは酸化ケイ素、好ましくはガラスから形成される。一実施形態では、フレームは、基板、例えばシリコンウェハの選択的エッチングによって形成される。好ましくは、フレーム、又は少なくとも各側面はモノリシックである。
[0100] 本発明の一実施形態による評価ツールは、サンプルの定性的評価(例えば合格/不合格)を行うツールでも、サンプルの定量的測定(例えばフィーチャのサイズ)を行うツールでも、又はサンプルのマップの画像を生成するツールでもよい。評価ツールの例は、検査ツール(例えば欠陥を識別するため)、レビューツール(例えば欠陥を分類するため)、及び計測ツール、又は、検査ツール、レビューツール、若しくは計測ツールに関連する評価機能の任意の組合せを実施することができるツール(例えば計測-検査ツール)である。電子光学コラム40は、検査ツール若しくは計測-検査ツールなど評価ツールの構成要素、又は電子ビームリソグラフィツールの一部でよい。本明細書でのツールへの言及は、デバイス、装置、又はシステムを包含することを意図されており、ツールは様々な構成要素を含み、それらの構成要素は、並置されていてもいなくてもよく、特に例えばデータ処理要素に関しては別々の空間に位置されていてもよい。
[0101] マルチビーム電子ビームツールは、一次投影装置、電動ステージ、及びサンプルホルダを備えることがある。一次投影装置は、マルチビーム電子ビームツールによって含まれる照明装置である。一次投影装置は、以下の構成要素の少なくとも任意のものの1つ又は複数を備えることがある:電子源、ガンアパーチャプレート、集光レンズ、アパーチャアレイ、ビームマニピュレータ(MEMS構造を備えることがある)、対物レンズ、及びビーム分離器(例えばウィーンフィルタ)。サンプルホルダは、電動ステージによって支持される。サンプルホルダは、検査のためにサンプル(例えば基板又はマスク)を保持するように構成される。
[0102] マルチビーム電子ビームツールは、二次投影装置及び関連の電子検出デバイスを更に備えることがある。電子検出デバイスは、複数の電子検出要素を備えることがある。
[0103] 一次投影装置は、サンプルを照明するように構成される。サンプルへの一次サブビーム又はプローブスポットの入射に応答して、二次電子及び後方散乱電子を含む電子がサンプルから生成される。二次電子は、複数の二次電子ビーム中で伝播する。二次電子ビームは、典型的には、二次電子(電子エネルギー≦50eVを有する)を含み、後方散乱電子(50eVと一次サブビームの着地エネルギーとの間の電子エネルギーを有する)の少なくとも一部も含むことがある。一次投影装置内のビーム分離器は、二次電子ビームの経路を二次投影装置に向けて偏向するように構成されることがある。二次投影装置は、その後、二次電子ビームの経路を電子検出デバイスの複数の要素に集束させる。検出要素は、対応する信号を生成し、これらの信号をコントローラ又は信号処理システムに送信して、例えば、サンプルの対応する走査領域の画像を構成することができる。
[0104] 特定の方法で荷電粒子ビームを操作するために制御可能な構成要素又は構成要素若しくは要素のシステムへの言及は、コントローラ又は制御システム又は制御ユニットを構成して、上述した方法で荷電粒子ビームを操作し、任意選択で他のコントローラ又はデバイス(例えば電圧供給源及び/又は電流供給源)を使用して構成要素を制御し、その方法で荷電粒子ビームを操作することを含む。例えば、電圧源は、コントローラ又は制御システム又は制御ユニットの制御下で、限定はしないが、対物レンズアレイ234、集光レンズ231、補正器235a、及びコリメータアレイ235などの構成要素に電位を印加するために、1つ又は複数の構成要素に電気的に接続されることがある。ステージなどの作動可能な構成要素は、構成要素の作動を制御するために1つ又は複数のコントローラ、制御システム、又は制御ユニットを使用して作動する、したがってビーム経路などの別の構成要素に対して移動するように制御可能であり得る。
[0105] 本明細書で述べる実施形態は、ビーム又はマルチビーム経路に沿ってアレイとして配置された一連のアパーチャアレイ又は電子光学要素の形態を取ることができる。そのような電子光学要素は、静電的であり得る。一実施形態では、例えばビーム制限アパーチャアレイからサンプル前のサブビーム経路内の最後の電子光学要素までの全ての電子光学要素が静電的でよく、及び/又はアパーチャアレイ若しくはプレートアレイの形態でよい。いくつかの構成では、電子光学要素の1つ又は複数が微小電気機械システム(MEMS)として(すなわち、MEMS製造技法を使用して)製造される。
[0106] ビーム経路に沿って隣接する電子光学要素は、例えばスペーサなどの電気絶縁要素を用いて互いに構造的に接続することができる。絶縁要素は、電気絶縁材料、例えばガラスなどのセラミックで作ることができる。
[0107] 上側及び下側、上及び下、上方及び下方への言及は、サンプル208に衝突する電子ビーム又はマルチビームのアップビーム及びダウンビーム方向(典型的には常に垂直であるとは限らない)に平行な方向を指すものとして理解すべきである。したがって、アップビーム及びダウンビームへの言及は、存在する重力場とは無関係に、ビーム経路に関する方向を指すことを意図されている。
[0108] 本発明の例示的実施形態を、以下の番号付きの段落で以下に述べる。
[0109] 1.荷電粒子ツールであって、
荷電粒子のビームをそれぞれのビーム経路に沿って第1の複数のサブビームに分割し、各サブビームをそれぞれの中間焦点に集束させるように構成された集光レンズアレイと、
複数の荷電粒子ビームのうちの1つをサンプルに投影するようにそれぞれ構成された対物レンズのアレイと、
細長い電極のアレイを含む補正器であって、細長い電極が、第1の複数のサブビームのビーム経路に実質的に垂直に延び、第2の複数のサブビームが1対の細長い電極の間を伝播するように構成され、第2の複数のサブビームが第1の複数のサブビームのサブセットである、補正器と、
第2の複数のサブビームを所望の量だけ偏向させるために、1対の細長い電極の間に電位差を印加するように構成された電源と、
を含む、荷電粒子ツール。
[0110] 1a.荷電粒子ツールであって、荷電粒子のビームをそれぞれのビーム経路に沿って第1の複数のサブビームに分割し、各サブビームをそれぞれの中間焦点に集束させるように構成された集光レンズアレイと;複数の荷電粒子ビームのうちの1つをサンプルに投影するようにそれぞれ構成された対物レンズのアレイと;ビーム経路に沿って、細長い電極の第1のアレイ及び細長い電極の第2のアレイを含む補正器であって、細長い電極の第2のアレイが、細長い電極の第1のアレイに実質的に平行であり、第1のアレイが、ビーム経路に沿って第2のアレイに隣接し、第1のアレイの細長い電極が、第1の複数のサブビームのビーム経路に実質的に垂直に延び、第2の複数のサブビームが細長い電極の第1のアレイの1対の細長い電極の間を伝播するように構成され、第2の複数のサブビームが第1の複数のサブビームのサブセットであり、細長い電極が、第2の複数のサブビームの伝播方向に平行に延びる平行板を含む、補正器と;第2の複数のサブビームを所望の量だけ偏向させるために、第1のアレイの1対の細長い電極の間に電位差を印加するように構成された電源と、を含み、好ましくは、細長い電極が平坦面を有することがあり、より好ましくはサブビーム経路に直接面し、好ましくは細長い電極が静電的である、荷電粒子ツール。
[0111] 2.それぞれの第2の複数のサブビームが各対の細長い電極の間を伝播するように構成された複数対の細長い電極が存在し;電源が、各対の細長い電極の間にそれぞれの電位差を印加するように構成され;好ましくは、複数対の細長い電極が、第2の複数のサブビームのライン、好ましくはサブビームのマルチビーム構成に渡って延びるラインの各側に延び;及び/又は好ましくは、複数対の細長い電極が、サブビームのマルチビーム構成に渡って延びる、条項1又は1aに記載のツール。
[0112] 3.細長い電極がそれぞれ、その片側のみに隣接するサブビームを有する、条項2に記載のツール。
[0113] 4.電源が、隣接する細長い電極に反対の極性の電位を印加するように構成される、条項1、1a、又は2に記載のツール。
[0114] 5.細長い電極のいくつかが、その両側に隣接するサブビームを有し、好ましくは両側がサブビーム経路に直接面し、好ましくは各側に面するサブビーム経路が、好ましくはマルチビーム構成に渡ってサブビームの異なるラインからのものである、条項2に記載のツール。
[0115] 6.電源が、細長い電極のアレイに渡る位置の連続的に増加する、例えば単調増加する関数によって、細長い電極それぞれに印加される電位が与えられるように構成される、条項5に記載のツール。
[0116] 7.細長い電極が、第2の複数のサブビームの伝播方向に平行に延びる平行板を含む、先行する条項の何れか一項に記載のツール。
[0117] 8.補正器が、ビーム経路に沿って、第1の組の細長い電極及び第2の組の細長い電極を含み、第2の組の細長い電極が第1の組の細長い電極に垂直であり;又は、補正器が、ビーム経路に沿って、細長い電極の追加のアレイを含み、細長い電極の追加のアレイが、細長い電極の第1のアレイに垂直又は平行である、先行する条項の何れか一項に記載のツール。
[0118] 9.補正器が、第1の組の細長い電極、第2の組の細長い電極、及び第3の組の細長い電極を含み、第1の組の細長い電極と第2の組の細長い電極との間の角度が60°であり、第2の組の細長い電極と第3の組の細長い電極との間の角度が60°であり;又は、補正器が、第1の組の細長い電極、第2の組の細長い電極、及び第3の組の細長い電極を含む細長い電極の第1のアレイを含み、第1、第2、及び第3の組の細長い電極のうちの1つが、第1のアレイの細長い電極に対応し、第1の組の細長い電極と第2の組の細長い電極との間の角度が60°であり、第2の組の細長い電極と第3の組の細長い電極との間の角度が60°である、条項1~7の何れか一項に記載のツール。
[0119] 10.補正器が、好ましくは第1のアレイの細長い電極の間に中間焦点があるように構成される、先行する条項の何れか一項に記載のツール。
[0120] 11.補正器が、集光レンズアレイに隣接して、及び/又は対物レンズアレイに隣接して、若しくは一体化されて配置される、条項1~9の何れか一項に記載のツール。
[0121] 11a.補正器が、像面湾曲、焦点誤差、及び非点収差の少なくとも1つを減少するように構成される、先行する条項の何れか一項に記載のツール。
[0122] 12.補正器が、第1の複数のサブビームのマクロ収差を補正するように構成される、先行する条項の何れか一項に記載のツール。
[0123] 12a.集光レンズアレイに隣接して、及び/又は対物レンズアレイに隣接して、若しくは一体化されて配置される追加の補正器を更に含む、条項1~12の何れか一項に記載のツール。
[0124] 12b.追加の補正器が、条項1~10の何れか一項に記載の補正器を含む、条項12aに記載のツール。
[0125] 13.荷電粒子ツールであって、
荷電粒子のビームをそれぞれのビーム経路に沿って複数のサブビームに分割し、各サブビームをそれぞれの中間焦点に集束させるように構成された集光レンズアレイと、
複数の荷電粒子ビームをサンプルに投影するように構成された対物レンズアレイと、
複数の細長い電極を含む補正器アレイであって、細長い電極が、ビーム経路に実質的に直交して、ビーム経路のラインの各側に対として配置される、補正器アレイと、を含み、
補正器アレイが、ビーム経路を所望の量だけ偏向させるように1対の細長い電極の間に電位差を印加するように制御可能である、
荷電粒子ツール。
[0126] 13a.検査方法であって、荷電粒子のビームを複数のサブビームに分割することと;各サブビームをそれぞれの中間焦点に集束させることと;補正器を使用してサブビームを偏向させて、サブビームのマクロ収差を補正することと;複数の対物レンズを使用して、複数の荷電粒子ビームをサンプルに投影することとを含み、補正器が、ビーム経路に沿って、細長い電極の第1のアレイ及び細長い電極の第2のアレイを含み、細長い電極の第2のアレイが、細長い電極の第1のアレイと実質的に平行であり、第1のアレイが、ビーム経路に沿って第2のアレイに隣接し、第1のアレイの細長い電極が、第1の複数のサブビームのビーム経路に実質的に垂直に延び、第2の複数のサブビームが細長い電極の第1のアレイの1対の細長い電極の間を伝播するように構成され、第2の複数のサブビームが第1の複数のサブビームのサブセットであり、細長い電極が、第2の複数のサブビームの伝播方向に平行に延びる平行板を含み、好ましくは、細長い電極が、平坦面を有することができ、より好ましくはサブビーム経路に直接面する、方法。
[0127] 14.荷電粒子ツールであって、
荷電粒子のビームをそれぞれのビーム経路に沿って複数のサブビームに分割し、各サブビームをそれぞれの中間焦点に集束させるように構成された集光レンズアレイと、
複数の荷電粒子ビームをサンプルに投影するように構成された対物レンズアレイと、
複数の細長い電極を含む補正器アレイであって、細長い電極が、ビーム経路に実質的に直交して、各ビーム経路の各側に対として配置される、補正器アレイと、を含み、
補正器アレイが、細長い電極の伸長方向に直交するサブビームにマクロ収差補正を適用するように制御可能である、
荷電粒子ツール。
[0128] 15.検査方法であって、
荷電粒子のビームを複数のサブビームに分割することと、
各サブビームをそれぞれの中間焦点に集束することと、
補正器を使用してサブビームを偏向させて、サブビームのマクロ収差を補正することと、
複数の対物レンズを使用して、複数の荷電粒子ビームをサンプルに投影することと、を含み、補正器が、細長い電極のアレイを含み、細長い電極が、第1の複数のサブビームのビーム経路に実質的に垂直に延び、第2の複数のサブビームが1対の細長い電極の間を伝播するように構成され、第2の複数のサブビームが第1の複数のサブビームのサブセットである、
検査方法。
[0129] 16.マルチビーム荷電粒子光学システムであって、
荷電粒子のビームをそれぞれのビーム経路に沿って第1の複数のサブビームに分割し、各サブビームをそれぞれの中間焦点に集束させるように構成された集光レンズアレイと、
複数の荷電粒子ビームのうちの1つをサンプルに投影するようにそれぞれ構成された対物レンズのアレイと、
細長い電極のアレイを含む補正器であって、細長い電極が、第1の複数のサブビームのビーム経路に実質的に垂直に延び、第2の複数のサブビームが1対の細長い電極の間を伝播するように構成され、第2の複数のサブビームが第1の複数のサブビームのサブセットである、補正器と、
第2の複数のサブビームを所望の量だけ偏向させるために、1対の細長い電極の間に電位差を印加するように構成された電源と、
を含む、マルチビーム荷電粒子光学システム。
[0130] 17.複数の荷電粒子ビームをサンプルに投影するように構成されたマルチビーム投影システム用の荷電粒子光学要素であって、
細長い電極のアレイであって、細長い電極が、第1の複数のサブビームのビーム経路に実質的に垂直に延び、第2の複数のサブビームが1対の細長い電極の間を伝播するように構成され、第2の複数のサブビームが第1の複数のサブビームのサブセットである、アレイと、
第2の複数のサブビームを所望の量だけ偏向させるために、1対の細長い電極の間に電位差を印加するように構成された電源と、
を含む、荷電粒子光学要素。
[0131] 18.複数の荷電粒子ビームをサンプルに投影するように構成されたマルチビーム投影システム用の荷電粒子光学要素であって、
第1のプレートセクションと、第1のプレートセクションの縁部から突出する複数の第1のフィンガとを含む第1の支持部材と、
第2のプレートセクションと、第2のプレートセクションの縁部から突出する複数の第2のフィンガとを含む第2の支持部材と、
第1のフィンガから第2のプレートセクションに延びる第1の複数の電極と、
第2のフィンガから第1のプレートセクションに延びる第2の複数の電極と、
を含む、荷電粒子光学要素。
[0132] 19.第1のプレートセクションに設けられ、第2の複数の電極に接続する第1の組の導電性トレースと、第2のプレートセクションに設けられ、第1の複数の電極に接続された第2の組の導電性トレースとを更に含む、条項18に記載の荷電粒子光学要素。
[0133] 20.第1及び第2の支持部材が基板の一体部品である、条項18又は19に記載の荷電粒子光学要素。
[0134] 21.第1及び第2の支持部材が、基板の選択的エッチングによって形成されている、条項20に記載の荷電粒子光学要素。
[0135] 22.第1及び第2のプレートセクションが、隣接するフィンガの間に凹部を含む、条項19~21の何れか一項に記載の荷電粒子光学要素。
[0136] 23.支持部材が、絶縁体、好ましくはセラミック、好ましくは酸化ケイ素、好ましくはガラスを含む、条項19~22の何れか一項に記載の荷電粒子光学要素。
[0137] 「サブビーム」及び「ビームレット」という用語は、本明細書では互換的に使用され、両方とも、親の放射ビームを分割又は分裂させることにより、親の放射ビームから導出された任意の放射ビームを包含するものと理解される。「マニピュレータ」という用語は、レンズ又は偏向器などの、サブビーム又はビームレットの経路に影響を与える任意の要素を包含するように使用される。
[0138] 本発明について様々な実施形態と関連付けて説明してきたが、当業者には、本明細書で開示される発明の明細及び実施を考慮することから、他の実施形態が明らかであろう。この明細書及び例は、単なる例とみなされることが意図されており、本発明の真の範囲及び趣旨は、以降の特許請求の範囲によって示される。

Claims (15)

  1. 荷電粒子ツールであって、
    荷電粒子のビームをそれぞれのビーム経路に沿って第1の複数のサブビームに分割し、各前記サブビームをそれぞれの中間焦点に集束させるように構成された集光レンズアレイと、
    前記複数の荷電粒子ビームのうちの1つをサンプルに投影するようにそれぞれ構成された対物レンズのアレイと、
    前記ビーム経路に沿って、細長い電極の第1のアレイ及び細長い電極の第2のアレイを含む補正器であって、細長い電極の前記第2のアレイが、細長い電極の前記第1のアレイと実質的に平行であり、前記第1のアレイが、前記ビーム経路に沿って前記第2のアレイに隣接し、前記第1のアレイの前記細長い電極が、前記第1の複数のサブビームの前記ビーム経路に実質的に垂直に延び、第2の複数の前記サブビームが細長い電極の前記第1のアレイの前記1対の細長い電極の間を伝播するように構成され、前記第2の複数のサブビームが前記第1の複数のサブビームのサブセットであり、前記細長い電極が、前記第2の複数のサブビームの前記伝播方向に平行に延びる平行板を含む、補正器と、
    前記第2の複数のサブビームを所望の量だけ偏向させるために、前記第1のアレイの前記1対の細長い電極の間に電位差を印加するように構成された電源と、
    を含む、荷電粒子ツール。
  2. それぞれの第2の複数のサブビームが各対の細長い電極の間を伝播するように構成された複数対の細長い電極が存在し、前記電源が、各対の細長い電極の間にそれぞれの電位差を印加するように構成される、請求項1に記載のツール。
  3. 前記細長い電極がそれぞれ、その片側のみに隣接するサブビームを有する、請求項2に記載のツール。
  4. 前記電源が、隣接する細長い電極に反対の極性の電位を印加するように構成される、請求項2又は3に記載のツール。
  5. 前記細長い電極のいくつかが、その両側に隣接するサブビームを有する、請求項2に記載のツール。
  6. 前記電源が、細長い電極の前記アレイに渡る位置の連続的に増加する、例えば単調増加する関数によって、前記細長い電極それぞれに印加される前記電位が与えられるように構成される、請求項5に記載のツール。
  7. 前記補正器が、前記ビーム経路に沿って、細長い電極の追加のアレイを含み、細長い電極の前記追加のアレイが、細長い電極の前記第1のアレイに垂直又は平行である、請求項1~6の何れか一項に記載のツール。
  8. 前記補正器が、第1の組の細長い電極、第2の組の細長い電極、及び第3の組の細長い電極を含む細長い電極の前記第1のアレイを含み、前記第1、第2、及び第3の組の細長い電極のうちの1つが、前記第1のアレイの前記細長い電極に対応し、前記第1の組の細長い電極と前記第2の組の細長い電極との間の角度が60°であり、前記第2の組の細長い電極と前記第3の組の細長い電極との間の角度が60°である、請求項1~6の何れか一項に記載のツール。
  9. 前記補正器が、前記第1のアレイの前記細長い電極の間に前記中間焦点があるように構成される、請求項1~8の何れか一項に記載のツール。
  10. 前記補正器が、前記集光レンズアレイに隣接して、及び/又は前記対物レンズアレイに隣接して、若しくは一体化されて配置される、請求項1~9の何れか一項に記載のツール。
  11. 前記補正器が、像面湾曲、焦点誤差、及び非点収差の少なくとも1つを減少するように構成される、請求項1~10の何れか一項に記載のツール。
  12. 前記補正器が、前記第1の複数のサブビームのマクロ収差を補正するように構成される、請求項1~11の何れか一項に記載のツール。
  13. 前記集光レンズアレイに隣接して、及び/又は前記対物レンズアレイに隣接して、若しくは一体化されて配置される追加の補正器を更に含む、請求項1~12の何れか一項に記載のツール。
  14. 前記追加の補正器が、請求項1~9の何れか一項に記載の補正器を含む、請求項13に記載のツール。
  15. 検査方法であって、
    荷電粒子のビームを複数のサブビームに分割することと、
    各前記サブビームをそれぞれの中間焦点に集束することと、
    補正器を使用して前記サブビームを偏向させて、前記サブビームのマクロ収差を補正することと、
    複数の対物レンズを使用して、前記複数の荷電粒子ビームを前記サンプルに投影することと、を含み、前記補正器が、前記ビーム経路に沿って、細長い電極の第1のアレイ及び細長い電極の第2のアレイを含み、細長い電極の前記第2のアレイが、細長い電極の前記第1のアレイと実質的に平行であり、前記第1のアレイが、前記ビーム経路に沿って前記第2のアレイに隣接し、前記第1のアレイの前記細長い電極が、前記第1の複数のサブビームの前記ビーム経路に実質的に垂直に延び、第2の複数の前記サブビームが細長い電極の前記第1のアレイの前記1対の細長い電極の間を伝播するように構成され、前記第2の複数のサブビームが前記第1の複数のサブビームのサブセットであり、前記細長い電極が、前記第2の複数のサブビームの前記伝播方向に平行に延びる平行板を含む、検査方法。
JP2022556551A 2020-04-06 2021-04-04 荷電粒子評価ツール、検査方法 Active JP7477635B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP20168278.8 2020-04-06
EP20168278.8A EP3893264A1 (en) 2020-04-06 2020-04-06 Charged particle assessment tool, inspection method
PCT/EP2021/058824 WO2021204734A1 (en) 2020-04-06 2021-04-04 Charged particle assessment tool, inspection method

Publications (2)

Publication Number Publication Date
JP2023519566A true JP2023519566A (ja) 2023-05-11
JP7477635B2 JP7477635B2 (ja) 2024-05-01

Family

ID=70224280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022556551A Active JP7477635B2 (ja) 2020-04-06 2021-04-04 荷電粒子評価ツール、検査方法

Country Status (8)

Country Link
US (1) US20230125800A1 (ja)
EP (2) EP3893264A1 (ja)
JP (1) JP7477635B2 (ja)
KR (1) KR20220150958A (ja)
CN (1) CN115380356A (ja)
IL (1) IL296996A (ja)
TW (2) TWI815101B (ja)
WO (1) WO2021204734A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4202970A1 (en) 2021-12-24 2023-06-28 ASML Netherlands B.V. Alignment determination method and computer program
EP4280252A1 (en) * 2022-05-16 2023-11-22 ASML Netherlands B.V. Charged particle optical device and method
WO2023202819A1 (en) 2022-04-18 2023-10-26 Asml Netherlands B.V. Charged particle optical device and method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3411034A1 (de) 1984-03-26 1985-09-26 Ruhrchemie Ag, 4200 Oberhausen Verfahren zur rueckgewinnung von rhodium aus reaktionsprodukten der oxosynthese
JP4484868B2 (ja) 2003-03-10 2010-06-16 マッパー・リソグラフィー・アイピー・ビー.ブイ. 複数の小ビームを発生させるための装置
EP2279515B1 (en) * 2008-04-15 2011-11-30 Mapper Lithography IP B.V. Projection lens arrangement
TWI497557B (zh) * 2009-04-29 2015-08-21 Mapper Lithography Ip Bv 包含靜電偏轉器的帶電粒子光學系統
NL1036912C2 (en) 2009-04-29 2010-11-01 Mapper Lithography Ip Bv Charged particle optical system comprising an electrostatic deflector.
TW201239943A (en) * 2011-03-25 2012-10-01 Canon Kk Drawing apparatus and method of manufacturing article
NL2007604C2 (en) 2011-10-14 2013-05-01 Mapper Lithography Ip Bv Charged particle system comprising a manipulator device for manipulation of one or more charged particle beams.
NL2006868C2 (en) 2011-05-30 2012-12-03 Mapper Lithography Ip Bv Charged particle multi-beamlet apparatus.
JP2013102060A (ja) * 2011-11-09 2013-05-23 Canon Inc 荷電粒子光学系、及びそれを用いた描画装置
JP2014007261A (ja) * 2012-06-22 2014-01-16 Canon Inc 静電偏向器、描画装置およびデバイスの製造方法
JP2014041936A (ja) 2012-08-22 2014-03-06 Canon Inc 描画装置および物品の製造方法
NL2013411B1 (en) * 2014-09-04 2016-09-27 Univ Delft Tech Multi electron beam inspection apparatus.
US10504687B2 (en) * 2018-02-20 2019-12-10 Technische Universiteit Delft Signal separator for a multi-beam charged particle inspection apparatus
JP2019186140A (ja) 2018-04-16 2019-10-24 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム照射装置及びマルチ荷電粒子ビーム照射方法

Also Published As

Publication number Publication date
TW202204886A (zh) 2022-02-01
CN115380356A (zh) 2022-11-22
IL296996A (en) 2022-12-01
WO2021204734A1 (en) 2021-10-14
KR20220150958A (ko) 2022-11-11
EP3893264A1 (en) 2021-10-13
TWI815101B (zh) 2023-09-11
TW202407737A (zh) 2024-02-16
JP7477635B2 (ja) 2024-05-01
US20230125800A1 (en) 2023-04-27
EP4133515A1 (en) 2023-02-15

Similar Documents

Publication Publication Date Title
US11984295B2 (en) Charged particle assessment tool, inspection method
JP7477635B2 (ja) 荷電粒子評価ツール、検査方法
US20230037583A1 (en) Aperture assembly, beam manipulator unit, method of manipulating charged particle beams, and charged particle projection apparatus
US20230238215A1 (en) Charged-particle multi-beam column, charged-particle multi-beam column array, inspection method
TWI815231B (zh) 帶電粒子工具、校正方法、檢測方法
TWI813948B (zh) 帶電粒子評估工具及檢測方法
JP7457820B2 (ja) 荷電粒子検査ツール、検査方法
EP3937204A1 (en) Inspection apparatus
EP3975222A1 (en) Charged particle assessment tool, inspection method
CN118266056A (en) Detector assembly, charged particle apparatus, device and method
CN117730392A (zh) 补偿电极畸变的影响的方法、评估系统

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240418

R150 Certificate of patent or registration of utility model

Ref document number: 7477635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150