JP2023517482A - 液晶反射偏光子およびこれを有するパンケーキレンズアセンブリ - Google Patents

液晶反射偏光子およびこれを有するパンケーキレンズアセンブリ Download PDF

Info

Publication number
JP2023517482A
JP2023517482A JP2022548449A JP2022548449A JP2023517482A JP 2023517482 A JP2023517482 A JP 2023517482A JP 2022548449 A JP2022548449 A JP 2022548449A JP 2022548449 A JP2022548449 A JP 2022548449A JP 2023517482 A JP2023517482 A JP 2023517482A
Authority
JP
Japan
Prior art keywords
light
polarized light
clc
optical
reflective polarizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022548449A
Other languages
English (en)
Inventor
バリー デーヴィッド シルヴァースタイン,
フェンリン ペン,
ジュンレン ワン,
ユンゲ フアン,
ルー ルー,
ユスフ ニョニ バマクサム スライ,
イン ゲン,
ジャック ゴーリエ,
ユイ-ジェン ワン,
ユン-ハン リー,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meta Platforms Technologies LLC
Original Assignee
Meta Platforms Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meta Platforms Technologies LLC filed Critical Meta Platforms Technologies LLC
Publication of JP2023517482A publication Critical patent/JP2023517482A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0056Means for improving the coupling-out of light from the light guide for producing polarisation effects, e.g. by a surface with polarizing properties or by an additional polarizing elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133541Circular polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133543Cholesteric polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/13362Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133636Birefringent elements, e.g. for optical compensation with twisted orientation, e.g. comprising helically oriented LC-molecules or a plurality of twisted birefringent sublayers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0112Head-up displays characterised by optical features comprising device for genereting colour display
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • G02B2027/012Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility comprising devices for attenuating parasitic image effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • G02B2027/0174Head mounted characterised by optical features holographic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/34Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 reflector
    • G02F2201/343Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 reflector cholesteric liquid crystal reflector
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/02Number of plates being 2
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/13Positive birefingence

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Planar Illumination Modules (AREA)

Abstract

光学デバイスが提供される。本光学デバイスは、1つまたは複数の所定の偏光楕円パラメータを有する楕円偏光を出力するように構成された第1の光学素子を含む。本光学デバイスは、キラリティを有する複屈折材料を含み、第1の光学素子から楕円偏光を受け入れ、楕円偏光を円偏光として反射させるように構成された第2の光学素子も含む。【選択図】図2A

Description

本開示は、概して、光学デバイス、ならびにより詳細には、液晶反射偏光子およびこれを有するパンケーキレンズアセンブリに関する。
キラリティを有する複屈折材料は、様々な光学素子またはデバイスにおいて使用され得る。キラリティを有する複屈折材料のタイプとして、キラルネマチック液晶としても知られるコレステリック液晶(「CLC」)が、入射光の掌性に応じて円偏光を反射または透過させるために、光学素子において使用されてきた。例えば、CLCは、特定の円偏光を有する光を主として反射させ、反対の円偏光を有する光を主として透過させるように構成され得る。CLCの掌性の選択性に起因して、CLC層(または、CLCフィルム、CLC板など)またはCLC層スタックは、円反射偏光子として機能し得る。例えば、左旋CLC(「LHCLC」)を含む円反射偏光子は、左旋円偏光した(「LHCP」)光を反射させ、右旋円偏光した(「RHCP」)光を透過させるように構成され得、右旋CLC(「RHCLC」)を含む円反射偏光子は、右旋円偏光した(「RHCP」)光を反射させ、左旋円偏光した(「LHCP」)光を透過させるように構成され得る。CLCは、スペクトル内に異なる波長を有する光が反射または透過され得るように、広帯域幅にわたって機能するように構成され得る。CLCに基づく円反射偏光子は、偏光変換部品、輝度増強部品、または光路折り畳み部品など、多種多様の用途において多機能光学部品として使用され得る。
したがって、本発明は、添付の特許請求の範囲に記載の光学デバイス、光学レンズアセンブリ、および照明システムを対象とする。
本開示の開示された実施形態と一貫して、光学デバイスが提供される。本光学デバイスは、1つまたは複数の所定の偏光楕円パラメータを有する楕円偏光を出力するように構成された第1の光学素子を含む。本光学デバイスは、キラリティを有する複屈折材料を含む第2の光学素子も含む。第2の光学素子は、第1の光学素子から楕円偏光を受け入れ、楕円偏光を円偏光として反射させるように構成される。
本発明による光学デバイスの実施形態において、第2の光学素子は、実質的にゼロの光透過率で楕円偏光を透過させるように構成され得る。
本発明による光学デバイスの実施形態において、1つまたは複数の所定の偏光楕円パラメータは、楕円率または配向角のうちの少なくとも1つを含み得る。それに加えて、楕円偏光の楕円率は、複屈折材料のキラリティが左旋であるとき約-1<ε≦-0.85、または複屈折材料のキラリティが右旋であるとき約0.85≦ε<1の範囲にあり得る。
本発明による光学デバイスの実施形態において、1つまたは複数の所定の偏光楕円パラメータは、楕円率または配向角のうちの少なくとも1つを含み得る。それに加えて、楕円偏光の配向角は、約75度≦Ψ≦90度の範囲にあり得る。
本発明による光学デバイスの実施形態において、楕円偏光に対する第2の光学素子の最小光透過率は、入射円偏光に対する第2の光学素子の最小光透過率と比較して、少なくとも0.1%、少なくとも0.2%、少なくとも0.3%、少なくとも0.4%、または少なくとも0.5%低減され得、楕円偏光および入射円偏光の各々は、複屈折材料のキラリティと同じである掌性(handedness)を有し得る。
本発明による光学デバイスの実施形態において、入射光は、直線偏光であってもよく、第2の光学素子は、四分の一波長板であってもよく、四分の一波長板の偏光軸は、直線偏光を1つまたは複数の所定の偏光楕円パラメータを有する楕円偏光へと変換するために、直線偏光の偏光方向に対して配向され得る。
本開示の開示された実施形態と一貫して、光学レンズアセンブリが提供される。本光学レンズアセンブリは、第1の光学素子を含む。第1の光学素子は、入射光を1つまたは複数の所定の偏光楕円パラメータを有する楕円偏光へと変換するように構成された光学波長板を含む。第1の光学素子は、楕円偏光の第1の部分を透過させ、楕円偏光の第2の部分を反射させるように構成されたミラーも含む。本光学レンズアセンブリは、第2の光学素子も含む。第2の光学素子は、ミラーから楕円偏光の第1の部分を受け入れ、楕円偏光の第1の部分を、第1の掌性を有する円偏光としてミラーに向けて反射させるように構成された反射偏光子を含む。反射偏光子は、キラリティを有する複屈折材料を含む。
本発明による光学レンズアセンブリの実施形態において、ミラーは、第1の掌性を有する円偏光を第2の掌性を有する円偏光として反射偏光子に向けて反射させるようにさらに構成され得、反射偏光子は、第2の掌性を有する円偏光を透過させるようにさらに構成され得、第1の掌性は、第2の掌性と反対であってもよい。
本発明による光学レンズアセンブリの実施形態において、反射偏光子は、実質的にゼロの光透過率で楕円偏光を透過させるように構成され得る。
本発明による光学レンズアセンブリの実施形態において、1つまたは複数の所定の偏光楕円パラメータは、楕円率または配向角のうちの少なくとも1つを含み得る。それに加えて、楕円偏光の楕円率は、複屈折材料のキラリティが左旋であるとき約-1<ε≦-0.85、または複屈折材料のキラリティが右旋であるとき約0.85≦ε<1の範囲にあり得る。
本発明による光学レンズアセンブリの実施形態において、1つまたは複数の所定の偏光楕円パラメータは、楕円率または配向角のうちの少なくとも1つを含み得る。それに加えて、楕円偏光の配向角は、約75度≦Ψ≦90度の範囲にあり得る。
本発明による光学レンズアセンブリの実施形態において、複屈折材料は、一定らせんピッチを有し得る。
本発明による光学レンズアセンブリの実施形態において、複屈折材料は、複屈折材料の軸方向に沿って勾配らせんピッチを有し得る。
本発明による光学レンズアセンブリの実施形態において、反射偏光子は、少なくとも2つの異なるらせんピッチを有する複屈折材料の複数の層のスタックを含み得る。
本発明による光学レンズアセンブリの実施形態において、反射偏光子は、複屈折材料の層間に配設される複数のポジティブCプレートを含み得る。
本発明による光学レンズアセンブリの実施形態において、光学波長板は、四分の一波長板であってもよく、四分の一波長板の偏光軸は、入射光を1つまたは複数の所定の偏光楕円パラメータを有する楕円偏光へと変換するために、入射光の偏光方向に対して配向され得る。
本開示の開示された実施形態と一貫して、照明システムが提供される。本照明システムは、第1の掌性を有する第1の偏光を発するように構成された光源アセンブリを含む。本照明システムは、光源アセンブリから受け入れられる第1の偏光を誘導し、第1の偏光を出力するように構成された導光板を含む。導光板は、2つのくさびであって、2つのくさびの間の傾斜面において互いに結合される、2つのくさび、および傾斜面に配設される反射偏光子を含む。本照明システムは、導光板の第1の側面に配置され、第1の掌性を有する第1の偏光を、第1の掌性と反対の第2の掌性を有する第2の偏光として反射させるように構成された反射シートを含む。反射偏光子は、キラリティを有する複屈折材料を含み、選択的に、第1の掌性を有する第1の偏光を透過させ、第2の掌性を有する第2の偏光を反射させるように構成される。
本発明による照明システムの実施形態において、光源アセンブリは、導光板の第2の側面において導光板に結合され得、導光板の第1の側面および第2の側面は、互いに対向して配置される。
本開示の他の態様は、本開示の説明、特許請求項、および図面に照らして当業者により理解され得る。先述の一般的な説明および以下の詳細な説明は、例示的および説明的であるにすぎず、本特許請求を制限するものではない。
以下の図面は、様々な開示された実施形態に従う例証的な目的のために提供され、本開示の範囲を制限することは意図されない。
本開示の実施形態による、コレステリック液晶(「CLC」)内のダイレクタ構成の概略図である。 本開示の実施形態による、CLCの偏光選択的反射性を例証する図である。 本開示の実施形態による、コレステリック液晶(「CLC」)反射偏光子の断面を例証する図である。 本開示の実施形態による、偏光の偏光楕円略図を例証する図である。 本開示の実施形態による、異なる偏光楕円パラメータを有する入射光についての光漏れ対CLC層の厚さを示すシミュレーション結果を例証する図である。 本開示の実施形態による、CLC層の光漏れ対CLC層上に入射する光の楕円率を示す実験結果を例証する図である。 本開示の別の実施形態による、CLC反射偏光子の断面を例証する図である。 本開示の別の実施形態による、CLC反射偏光子の断面を例証する図である。 ポジティブCプレートを含まない従来のCLC反射偏光子の軸外入射角光漏れを示すシミュレーション結果を例証する図である。 本開示の実施形態による、2つのポジティブCプレートを有するCLC反射偏光子の軸外入射角光漏れを示すシミュレーション結果を例証する図である。 本開示の別の実施形態による、CLC反射偏光子の断面を例証する図である。 本開示の実施形態による、パンケーキレンズアセンブリの概略図である。 本開示の実施形態による、図5Aに示されるパンケーキレンズアセンブリの光路の断面図を概略的に例証する図である。 本開示の別の実施形態による、パンケーキレンズアセンブリの概略図である。 本開示の実施形態による、図6Aに示されるパンケーキレンズアセンブリの光路の断面図を概略的に例証する図である。 本開示の実施形態による、CLC反射偏光子を含む照明システムの概略図である。 本開示の実施形態による、ニアアイディスプレイ(「NED」)の図である。 本開示の実施形態による、図8Aに示されるNEDの前方本体部の断面図である。
本開示と一貫した実施形態は、添付の図面を参照して説明されるものとし、これらの添付の図面は、例証の目的のための例にすぎず、本開示の範囲を制限することは意図されない。可能な限り、同じ参照番号が、同じまたは同様の部分に言及するために図面全体を通して使用され、それらの詳細な説明は省略され得る。
さらには、本開示において、開示された実施形態および開示された実施形態の特徴は、組み合わされ得る。説明された実施形態は、本開示の実施形態の一部であってすべてではない。開示された実施形態に基づいて、当業者は、本開示と一貫した他の実施形態を得ることができる。例えば、修正、適合、置換、追加、または他の変形が、開示された実施形態に基づいてなされ得る。開示された実施形態のそのような変形は、依然として本開示の範囲内である。したがって、本開示は、開示された実施形態に限定されない。代わりに、本開示の範囲は、添付の特許請求の範囲によって規定される。
本明細書で使用される場合、用語「結合する」、「結合される」、「結合」または同様のものは、光学的結合、機械的結合、電気的結合、電磁的結合、またはそれらの組み合わせを包含し得る。2つの光学素子同士の「光学的結合」とは、2つの光学素子が光学的に直列に配置される構成を指し、一方の光学素子から出力される光は、直接的または間接的に、他方の光学素子によって受け入れられ得る。光学的に直列とは、1つの光学素子から出力される光が、他の光学素子のうちの1つまたは複数によって、透過、反射、回折、変換、修正、または別途処理もしくは操作され得るような、光路内の複数の光学素子の光学的位置付けを指す。いくつかの実施形態において、複数の光学素子が配置される順序は、複数の光学素子の出力全体に影響を及ぼす場合とそうでない場合とがある。結合は、直接結合または間接結合(例えば、中間素子を介した結合)であってもよい。
「AまたはBのうちの少なくとも1つ」という表現は、Aのみ、Bのみ、またはAおよびBなど、AおよびBのすべての組み合わせを包含し得る。同様に、「A、B、またはCのうちの少なくとも1つ」という表現は、Aのみ、Bのみ、Cのみ、AおよびB、AおよびC、BおよびC、またはAおよびBおよびCなど、A、B、およびCのすべての組み合わせを包含し得る。「Aおよび/またはB」という表現は、「AまたはBのうちの少なくとも1つ」という表現と同様の様式で解釈され得る。例えば、「Aおよび/またはB」という表現は、Aのみ、Bのみ、またはAおよびBなど、AおよびBのすべての組み合わせを包含し得る。同様に、「A、B、および/またはC」は、「A、B、またはCのうちの少なくとも1つ」という表現と同様の意味を有する。例えば、「A、B、および/またはC」は、Aのみ、Bのみ、Cのみ、AおよびB、AおよびC、BおよびC、またはAおよびBおよびCなど、A、B、およびCのすべての組み合わせを包含し得る。
第1の要素が、第2の要素に、第2の要素の上に、第2の要素において、または第2の要素に少なくとも部分的に、「取り付けられる」、「提供される」、「形成される」、「固着される」、「装着される」、「固定される」、「接続される」、「接着される」、「記録される」、または「配設される」と説明されるとき、第1の要素は、堆積、被覆、エッチング、接着、糊付け、ネジ締め、プレス嵌合、スナップ嵌合、クランピングなど、任意の好適な機械的または非機械的様式を使用して、第2の要素に、第2の要素の上に、第2の要素において、または第2の要素に少なくとも部分的に、「取り付けられる」、「提供される」、「形成される」、「固着される」、「装着される」、「固定される」、「接続される」、「接着される」、「記録される」、または「配設される」。追加的に、第1の要素は、第2の要素と直接接触状態にあり得るか、または、第1の要素と第2の要素との間に中間要素が存在してもよい。第1の要素は、第2の要素の任意の好適な側面、例えば、左、右、前、後、上、下に配設され得る。
第1の要素が、第2の要素の「上」に配設または配置されているものとして示される、または説明されるとき、「上」という用語は、第1の要素と第2の要素との相対的な配向の例を示すために使用されるにすぎない。本説明は、図に示される基準座標系に基づき得るか、または図に示される現在の視点もしくは構成例に基づき得る。例えば、図に示される視点が説明されるとき、第1の要素は、第2の要素の「上」に配設されるものとして説明され得る。「上」という用語は、第1の要素が、垂直の重力方向において第2の要素の上にあることを必ずしも示唆しない場合があるということを理解されたい。例えば、第1の要素および第2の要素のアセンブリが180度回転されるとき、第1の要素は、第2の要素の「下」にあってもよい(または、第2の要素が第1の要素の「上」にあってもよい)。したがって、第1の要素が第2の要素の「上」であることを図が示すとき、その構成は、単に例証的な例にすぎない。第1の要素は、第2の要素に対して任意の好適な配向で(例えば、第2の要素を覆って、またはこれより上に、第2の要素の下に、またはこれより下に、第2の要素の左に、第2の要素の右に、第2の要素の後ろに、第2の要素の前に、など)配設または配置され得る。
本明細書で使用される「プロセッサ」という用語は、中央処理装置(「CPU」)、グラフィック処理装置(「GPU」)、特定用途向け集積回路(「ASIC」)、プログラマブル論理デバイス(「PLD」)、またはそれらの組み合わせなど、任意の好適なプロセッサを包含し得る。上に列挙されない他のプロセッサも使用され得る。プロセッサは、ソフトウェア、ハードウェア、ファームウェア、またはそれらの組み合わせとして実装され得る。
「制御器」という用語は、デバイス、回路、光学素子などを制御するための制御信号を生成するように構成された任意の好適な電気回路、ソフトウェア、またはプロセッサを包含し得る。「制御器」は、ソフトウェア、ハードウェア、ファームウェア、またはそれらの組み合わせとして実装され得る。例えば、制御器は、プロセッサを含み得るか、またはプロセッサの一部として含まれ得る。
「非一時的なコンピュータ可読媒体」という用語は、データ、信号、または情報を記憶、転送、通信、配信、または送信するための任意の好適な媒体を包含し得る。例えば、非一時的なコンピュータ可読媒体は、メモリ、ハードディスク、磁気ディスク、光学ディスク、テープなどを含み得る。メモリは、リードオンリメモリ(「ROM」)、ランダムアクセスメモリ(「ROM」)、フラッシュメモリなどを含み得る。
本開示は、1つまたは複数の所定の偏光楕円パラメータを有する楕円偏光を出力するように構成された第1の光学素子を含み得る光学デバイスを提供する。本光学デバイスは、キラリティを有する複屈折材料を含み、第1の光学素子から楕円偏光を受け入れ、楕円偏光を円偏光として反射させるように構成された第2の光学素子も含み得る。1つまたは複数の所定の偏光楕円パラメータは、楕円率または配向角のうちの少なくとも1つを含み得る。いくつかの実施形態において、第1の光学素子は、透過型光学素子、反射型光学素子、吸収型光学素子、またはそれらの組み合わせであってもよい。例えば、第1の光学素子は、直線偏光または円偏光を、1つまたは複数の所定の偏光楕円パラメータを有する楕円偏光へと変換するように構成され得る光学波長板であってもよい。いくつかの実施形態において、第1の光学素子は、光源アセンブリであってもよい。いくつかの実施形態において、光源アセンブリは、1つまたは複数の所定の偏光楕円パラメータを有する楕円偏光を生成および出力し得る。いくつかの実施形態において、光学波長板は、光源アセンブリの一部であってもよい。いくつかの実施形態において、光学波長板は、光源アセンブリとは別個に提供され得る。第2の光学素子は、1つまたは複数の所定の偏光楕円パラメータを有する楕円偏光を実質的にゼロの光透過率で透過させるように構成され得、1つまたは複数の所定の偏光楕円パラメータを有する楕円偏光について光学デバイスの実質的にゼロの光漏れを結果としてもたらす。いくつかの実施形態において、第2の光学素子は、キラリティを有する複屈折材料に基づいた反射偏光子であってもよい。反射偏光子の光漏れは、第1の光学素子を使用して反射偏光子の入射光の特性(例えば、1つまたは複数の所定の偏光楕円パラメータ)を構成することを通じて抑制され得る。
いくつかの実施形態において、複屈折材料のキラリティは、複屈折材料自体の特性であってもよく、例えば、複屈折材料は、キラル結晶分子を含み得るか、または複屈折材料の分子は、キラル官能基を含み得る。いくつかの実施形態において、複屈折材料のキラリティは、複屈折材料にドーピングされるキラルドーパントによってもたらされ得る。いくつかの実施形態において、キラリティを有する複屈折材料は、捻じれ曲がったネマチックLC(または、捻じれ曲がったネマチック相にあるLC)を含み得、この場合、LCダイレクタは、反対の掌性(handedness)を有する二重縮重ドメインにより円すいつる巻線を形成する周期的な捻じれおよび曲げ変形を呈し得る。捻じれ曲がったネマチックLC内のLCダイレクタは、らせん軸に対して傾斜され得、および故に、捻じれ曲がったネマチック相は、LCダイレクタがらせん軸に対して直交である従来のネマチック相の一般化したケースと見なされ得る。コレステリック液晶(「CLC」)は、キラリティを有する複屈折材料のタイプである。以下の説明において、例証の目的のため、CLCは、キラリティを有する複屈折材料の例として使用される。CLC反射偏光子(すなわち、CLCに基づいた反射偏光子)は、キラリティを有する複屈折材料に基づいた反射偏光子の例として使用される。いくつかの実施形態において、光漏れが抑制されている光学素子(例えば、反射偏光子)もまた、以下に説明されるCLC反射偏光子のための同じ設計原則に従って、キラリティを有する別の好適な複屈折材料に基づいて構成され得る。
コレステリック液晶(「CLC」)は、らせん構造を有する、および故に、キラリティ、すなわち、掌性を呈する液晶である。CLCは、キラルネマチック液晶としても知られる。CLCの反射帯域内の入射波長の場合、CLCのらせん構造の掌性と同じ掌性を有する円偏光は、主として、または実質的に、反射され得、CLCのらせん構造の掌性と異なる(例えば、それと反対の)掌性を有する円偏光は、主として、または実質的に、透過され得る。CLCの掌性の選択性に起因して、CLC層(または、CLCフィルム、CLC板など)は、CLC反射偏光子として機能し得る。いくつかの実施形態において、CLCの反射光および透過光の両方について、それらの偏光状態は不変であり得る。いくつかの実施形態において、CLCの波長板効果に起因して、反射光および/または透過光の偏光状態は、変化される場合があり、これによりCLC層の光漏れを結果としてもたらし、したがって、CLC反射偏光子の消光比を低下させる。さらに、CLC層の光漏れは、入射角が増大すると増大し得る。
本開示は、CLC層の光漏れを低減するように構成された光学デバイスを提供する。いくつかの実施形態において、CLC層の光漏れは、偏光入射光の楕円率および/またはCLC層と偏光入射光との間のクロック角度(例えば、配向角)を制御することによって低減され得る。いくつかの実施形態において、偏光入射光の特性(例えば、偏光楕円パラメータ)は、CLC層の出力が、主として、または実質的に、光透過率が低減された状態の(例えば、CLC層の光透過率が実質的にゼロである)反射した円偏光であるように、CLC層の特性を一致させるために(例えば、楕円率一致を通じて)調節または修正され得る。CLC層上に入射する光の光学特性を修正するため、光学デバイスは、光路内にCLC層の上流に配設され、光がCLC層上に入射する前に、光を1つまたは複数の所定の偏光楕円パラメータを有する楕円偏光へと変換するように構成された光学素子を含み得る。いくつかの実施形態において、光学素子は、透過型光学素子、反射型光学素子、吸収型光学素子、またはそれらの組み合わせであってもよい。いくつかの実施形態において、光学デバイスは、光路内にCLC層の上流に配設され、1つまたは複数の所定の偏光楕円パラメータを有する楕円偏光をCLC層の入射光としてCLC層へ向けて出力するように構成された光学素子を含み得る。
いくつかの実施形態において、光路内にCLC層の上流に配設される光学素子は、光学波長板であってもよい。光学波長板は、四分の一波長板(「QWP」)であってもよい。四分の一波長板は、QWP上への入射光(例えば、直線偏光入射光)の偏光方向に対して配向され得るか、または、入射光を1つもしくは複数の所定の偏光楕円パラメータを有する楕円偏光へと変換するために、入射光の特性に基づいて別途構成され得る。楕円偏光の1つまたは複数の所定の偏光楕円パラメータは、CLC層上に入射する楕円偏光の透過部分が著しく低減されるか、実質的にゼロであるように、例えば、最適化を通じて、決定または選択され得る。いくつかの実施形態において、楕円偏光に対するCLC層の光透過率(または光漏れ)は、0.05%未満であるように低減され得る。光学デバイスの向上された光学性能は、光漏れにおける低減に起因して達成され得る。
図1Aは、コレステリック液晶(「CLC」)のダイレクタ構成100の概略図を例証し、図1Bは、図1Aに示されるCLCの偏光選択的反射性を例証する。CLCは、らせん構造を有する、および故に、キラリティ、すなわち、掌性を呈する液晶である。CLCは、キラルネマチック液晶としても知られる。図1Aに示される概略図では、ネマチックLC分子は、実線によって表される。CLCは、1つまたは複数の層111、112、113、114、115内に、層内での位置秩序はなしに組織され得る。例証の目的のため、図1Aに示される概略図では、層は、構造をより良好に例証するために、互いから離間される。5つの層が示されるが、層の数は、本開示によって制限されず、これは、1、2、3、4、6、7など、任意の好適な数であってもよい。ネマチックLCダイレクタ(例えば、CLC分子の長軸)は、キラルドーパントの存在に起因して、層の軸方向(例えば、図1Aに示されるz方向)に沿って回転し得る。同じ層内では、ネマチックLCダイレクタは、同じ方向に配向され得る。いくつかの実施形態において、ネマチックLCダイレクタの変異は、周期的であってもよい。ネマチックLCダイレクタの変異の周期、すなわち、ネマチックLCダイレクタが360°回転する軸長は、らせんピッチPとして知られる。いくつかの実施形態において、ネマチックLCダイレクタの変異は、0°および±180°におけるネマチックLCダイレクタが等価であり得るため、2分の1ピッチ(P/2)ごとに反復し得る。らせんピッチPは、CLCの反射帯域、すなわち、Bragg反射によりCLCによって反射され得る入射波長の帯域を決定し得る。いくつかの実施形態において、らせんピッチPは、可視光の波長と同位のものであってもよい。CLCの反射帯域は、波長λ0=n*Pを中心とし得、nは、n=(n+n)/2として計算され得るCLCの平均屈折率であり得る。これらの等式では、nおよびnは、それぞれ、ネマチックLCの異常反射率および常反射率を表し、Pは、CLCのらせんピッチを表す。CLCの反射帯域幅Δλは、Δλ=Δn*Pとして計算され得、これは、CLCの複屈折Δnに比例し得、Δn=n-nである。
CLCの反射帯域内の入射波長の場合、CLCのらせん構造の掌性と同じ掌性を有する円偏光は、主として、または実質的に、反射され得、CLCのらせん構造の掌性と異なる(例えば、それと反対の)掌性を有する円偏光は、主として、または実質的に、透過され得る。例えば、図1Bに示されるように、左旋CLC(「LHCLC」)150は、左旋円偏光した(「LHCP」)入射光については高反射特徴(例えば、高反射率)、および右旋円偏光した(「RHCP」)入射光については高透過特徴(例えば、高透過率)を呈し得る。すなわち、LHCLC150の反射帯域内の入射波長を有する光の場合、光がLHCP光である(または、LHCP光部分を含む)とき、LHCLC150は、主として、または実質的に、LHCP光(または、LHCP光部分)を反射させ得る。光がRHCP光である(または、RHCP光部分を含む)とき、LHCLC150は、主として、または実質的に、RHCP光(またはRHCP光部分)を透過させ得る。CLCの掌性選択性に起因して、CLCの薄フィルムが、反射偏光子を実現するために使用され得る。いくつかの実施形態において、CLC150の反射光および透過光の両方について、それらの偏光状態は不変であり得る。いくつかの実施形態において、CLC150の波長板効果に起因して、反射光または透過光のうちの少なくとも一方の偏光状態は、変化され得、これが光漏れを結果としてもたらし得る。入射波長がLHCLC150の反射帯域外であるとき、円偏光は、掌性にかかわらず、LHCLC150によって透過され得る。無偏光光または直線偏光は、RHCP光(またはRHCP成分もしくは部分)およびLHCP光(またはLHCP成分もしくは部分)へと分解され得、各成分は、成分の掌性およびCLCのらせん構造の掌性に応じて、選択的に反射または透過され得る。
図2Aは、本開示の実施形態による、CLC反射偏光子200のy-z断面を例証する。図2Aに示されるように、CLC反射偏光子200は、一定らせんピッチ(例えば、同じ固定らせんピッチの繰り返し)を含むらせん構造を有するCLC層215を含み得る。らせんの軸は、CLC層215の表面に直交し得る(例えば、垂直である)。いくつかの実施形態において、CLC反射偏光子200は、支持および保護目的のために1つまたは複数の基板205をさらに含み得る。2つの基板205が、例証の目的のため、図2Aに示される。基板の数は2つに限定されず、任意の好適な数であってもよい。基板205は、可視帯(約380nm~約700nm)においては光学的に透明であってもよい。いくつかの実施形態において、基板205はまた、赤外(「IR」)帯域の一部またはすべて(例えば、約700nm~約1mm、またはそれらの任意の部分)においては光学的に透明であってもよい。例えば、基板205は、ガラス、プラスチック、サファイアなどを含み得る。基板205は、硬質、半硬質、可撓性、または半可撓性であってもよい。いくつかの実施形態において、基板205は、別の光学デバイスまたは別の電気光学デバイスの一部であってもよい。例えば、基板205は、ディスプレイ画面などの機能デバイスの一部であってもよい。いくつかの実施形態において、基板205は、光学レンズアセンブリのレンズ基板など、光学レンズアセンブリの一部であってもよい。いくつかの実施形態において、基板205のうちの少なくとも1つには、CLCの初期配列を提供するように構成され得る配列層210が設けられ得る。図2Aに示される実施形態においては、2つの配列層210が例証の目的のために提供され、各配列層210は、各基板205と結合(例えば、積層)されている。配列層210の数は2つに限定されず、任意の好適な数であってもよい。配列層の数は、基板の数と同じである場合とそうでない場合とがある。いくつかの実施形態において、配列層210は、CLCの逆平行ホモジニアス配列を提供し得る。
いくつかの実施形態において、CLCのらせんピッチは、可視光の波長と同位のものであってもよい。したがって、CLC層215は、可視スペクトル内に反射帯域を有し得る。入射波長がCLC層215の反射帯域内にあるとき、CLC層215のらせん構造の掌性と同じ掌性を有する円偏光は、主として、または実質的に、反射され得、CLC層215のらせん構造の掌性と異なる(例えば、それと反対の)掌性を有する円偏光は、主として、または実質的に、透過され得る。CLC層215の波長板効果に起因して、反射光または透過光のうちの少なくとも一方の偏光状態は、楕円偏光へと変化され得る。この現象は、偏光解消と称され得る。偏光解消は、CLC層215の光漏れを結果としてもたらし得、このことが、CLC反射偏光子200の消光比を低下させ得る。
開示された実施形態において、CLC層215は、光学波長板220に結合され得る。光学波長板220は、入射光221を1つまたは複数の所定の偏光楕円パラメータを有する楕円偏光204へと変換し、楕円偏光204をCLC層215の方へ向けるように構成され得る。いくつかの実施形態において、光学波長板220は、四分の一波長板(「QWP」)であってもよい。いくつかの実施形態において、入射光221は、QWP上に実質的に法線入射する直線偏光であってもよく、QWPの偏光軸は、1つまたは複数の所定の偏光楕円パラメータを有する楕円偏光204をCLC層215へ向けて出力するために、直線偏光221の偏光方向に対して配向または構成され得る。いくつかの実施形態において、CLC層215は、無偏光光222を発するように構成された光源230に結合され得る。いくつかの実施形態において、直線偏光子225が、光学波長板220と光源230との間に配設され得る。直線偏光子225は、光源230によって発せられる無偏光光222を光学波長板220上に入射する直線偏光221へと変換するように構成され得る。いくつかの実施形態において、光源230は、直線偏光を直接的に発し得る(例えば、光222は、直線偏光であってもよい)。そのような実施形態において、直線偏光子225は、省略され得る。いくつかの実施形態において、光源230は、円偏光を発し得る(例えば、光222は、円偏光であってもよい)。そのような実施形態において、光学波長板220は、第1の光学波長板であってもよい。第2の光学波長板(図示せず)が、円偏光を第1の光学波長板220上に入射する直線偏光へと変換するために、第1の光学波長板220と光源230との間に配設され得る。
いくつかの実施形態において、光学波長板220上に入射する光は、円偏光であってもよい。光学波長板220は、QWPであってもよく、または任意の他の好適な波長板であってもよい。光学波長板220は、光学波長板220から出力される光が1つまたは複数の所定の偏光楕円パラメータを有する楕円偏光であるように、構成され得る(例えば、光学軸、厚さ、材料などの光学波長板220の特性が、構成され得る)。1つまたは複数の所定の偏光楕円パラメータを有する、光学波長板220から出力される楕円偏光は、CLC層215上へ向けられ得、光透過率が実質的に抑制された状態で(例えば、光透過率は、実質的に低減され得るか、または実質的にゼロであり得る)、CLC層215によって円偏光として実質的に反射され得る。光学波長板220の構成は、比較的静的に、または比較的動的に実施され得る。例えば、CLC層215の特性が固定され、光学波長板220上に入射する光が固定されるとき、光学波長板220の特性は、1つまたは複数の所定の偏光楕円パラメータを有する楕円偏光が光学波長板220によって出力され、CLC層215の方へ向けられるように、好適に決定または構成され得る。1つまたは複数の所定の偏光楕円パラメータを有する楕円偏光がCLC層215上に入射するとき、楕円偏光は、CLC層215を通る光透過率(または光漏れ)が低減された状態で、実質的に、円偏光へと変換され、また円偏光として反射され得る。動作中、光学波長板220の特性は、実質的に同じままであってもよい。いくつかの実施形態において、光学波長板220上に入射する光が時間とともに変化し得るとき、および/またはCLC層215の特性が時間とともに変化し得るとき、光学波長板220の特性は、光学波長板220が1つまたは複数の所定の偏光楕円パラメータを有する楕円偏光をCLC層215へ向けて出力するように、(例えば、光学波長板220に印加される電場を調節することによって)動的に調節され得る。
いくつかの実施形態において、楕円偏光の偏光楕円パラメータは、配向角Ψまたは楕円率εのうちの少なくとも1つを含み得る。CLC層215の波長板効果に起因して、所定の配向角Ψおよび楕円率ε(それらの値または範囲は、最適化を通じて決定または計算され得る)のうちの1つまたは複数を有する楕円偏光は、実質的に、または主として、CLC層215によって円偏光として反射され得、以て、CLC層215を透過される光の量を減少させる。その結果、透過光によって引き起こされる光漏れは、著しく低減または抑制され得る。いくつかの実施形態において、光学波長板220は、CLC反射偏光子200の一部であってもよい。いくつかの実施形態において、光学波長板220は、CLC反射偏光子200以外の別の素子またデバイスの一部であってもよい。
図2Bは、偏光の偏光楕円図240を例証する。平面波の電場は、2つの直交成分、例えば、水平成分および垂直成分のベクトル和として説明され得る。2つの成分は、それらのそれぞれの振幅および2つの成分の間の相対位相によって特徴付けられ得る。波動伝搬の方向に沿って見たとき、完全に偏向した波の電場ベクトルの先端は、規則的なパターンを描く。一般形態において、パターンは、図2Bに示されるような偏光楕円と称され得る、楕円によって表され得る。楕円は、長さaの半長軸x’および長さbの半短軸y’を有し、aおよびbは、それぞれ、2つの直交成分の振幅に対応する。半長軸x’の角度は、正の横軸x(CLC層215に結合されるとき、正の横軸xは、CLC層215の配列方向である)から反時計回りに測定される際、平面波の配向角Ψであり、0°≦Ψ≦180°である。楕円がどの程度長円形であるかは、偏心または楕円率εと呼ばれる形状パラメータによって表され得、これは、半短軸y’の長さと半長軸x’の長さとの比であるε=b/aとして規定され、-1≦ε≦1である。LHCP光は、ε=-1を有し得、RHCP光は、ε=1を有し得る。左旋楕円偏光された(「LHEP」)光は、-1<ε<0および0°≦Ψ≦180°を有し得、右旋楕円偏光された(「RHEP」)光は、0<ε<1および0°≦Ψ≦180°を有し得る。直線偏光は、ε=0および0°≦Ψ≦180°を有し得る。
いくつかの実施形態において、CLC層215は、約0.15~約0.4の範囲内の複屈折を有するLCを含み得る。CLC層215のらせん構造と同じ掌性を有する楕円偏光入射光について、CLC層215の光漏れを低減するため(例えば、光透過率を低減するため)、楕円偏光入射光の配向角Ψは、約75°≦Ψ≦90°、約75°≦Ψ≦85°、約75°≦Ψ≦80°、約80°≦Ψ≦90°、約80°≦Ψ≦85°、約85°≦Ψ≦90°、約76°≦Ψ≦89°、約77°≦Ψ≦88°、約78°≦Ψ≦87°、または約79°≦Ψ≦86°の範囲内の値であるように構成され得る。いくつかの実施形態において、配向角Ψは、n°≦Ψ≦n°の範囲内にあってもよく、nは、75以上の任意の好適な値であってもよく、nは、90以下かつnより大きい任意の好適な値であってもよい。いくつかの実施形態において、楕円偏光入射光の楕円率εは、複屈折材料のキラリティが左旋であるとき、例えば、CLC層215がLHCLC(LHCLC層と称される)を含むとき、約-1<ε≦-0.85の範囲内の値であるように構成され得る。例えば、CLC層215がLHCLC層であるとき、楕円偏光入射光の楕円率εは、約-0.95≦ε≦-0.85、約-0.9≦ε≦-0.85、約-0.95≦ε≦-0.9、約-1<ε≦-0.9、または約-1<ε≦-0.95の範囲内の値であるように構成され得る。楕円偏光入射光の楕円率εは、複屈折材料のキラリティが右旋であるとき、例えば、CLC層215がRHCLC(RHCLC層と称される)を含むとき、約0.85≦ε<1の範囲内の値であるように構成され得る。例えば、CLC層215がRHCLC層であるとき、楕円偏光入射光の楕円率εは、約0.85≦ε≦0.95、約0.85≦ε≦0.9、約0.9≦ε≦0.95、約0.9≦ε<1、または約0.95≦ε<1の範囲内の値であるように構成され得る。楕円偏光入射光の配向角Ψおよび楕円率εの値は、CLC層215に含まれるLCの複屈折が変動すると、変動し得る。
図2Cは、異なる偏光楕円パラメータを有する実質的に法線入射した光について、光漏れ対CLC層215の厚さを示すシミュレーション結果を例証する。例証の目的のため、LHCLC(LHCLC層215と称される)を含むCLC層215が、シミュレーションにおいて使用される。図2Cに示されるように、横軸は、CLC層215の厚さ(ピッチの単位)であり、縦軸は、光漏れであり、これは、CLC層215のらせん構造の掌性と同じ掌性(例えば、左掌性)を有する偏光入射光についてのCLC層215の光透過率である。CLC層215の光漏れは、それぞれ異なる偏光楕円パラメータを有する5つの法線入射光について評価される。図2Aおよび図2Cを参照すると、曲線260は、LHCP入射光202(ε=-1)についてのCLC層215の厚さ依存の光漏れを示し、曲線270は、第1のLHEP入射光204(ε=-0.95およびΨ=80°)についての厚さ依存の光漏れを示し、曲線275は、第2のLHEP入射光206(ε=-0.97およびΨ=170°)についての厚さ依存の光漏れを示し、曲線280は、第3のLHEP入射光208(ε=-0.95およびΨ=170°)についての厚さ依存の光漏れを示し、曲線285は、第4のLHEP入射光212(ε=-0.90およびΨ=170°)についての厚さ依存の光漏れを示す。図2Aでは、第1のLHEP入射光204は、本開示の実施形態による、光学波長板220によって出力される光を指す。LHCP入射光202、ならびにLHEP入射光206、208、および212は、LHEP入射光204との比較のための仮想の入射光であり、故に、図2Aでは点線矢印で示される。
図2Aに示されるように、CLC層215は、CLC層215の波長板効果に起因して、LHCP入射光202(ε=-1)をLHEP光202’として反射させ得る。図2Cを参照すると、曲線260に示されるように、CLC層215の光漏れは、CLC層215の厚さが約9ピッチであるとき、約0.55%である。CLC層215の厚さが、約14ピッチまで徐々に増大すると、CLC層215の光漏れは、約0.1%の最小値まで徐々に減少する。CLC層215の厚さが、約20ピッチまでさらに増大すると、CLC層215の光漏れは、実質的に同じままであり、約0.1%である。
図2Aに示されるように、CLC層215は、第1のLHEP入射光204(ε=-0.95およびΨ=80°)をLHCP光204’として反射させ得る。図2Cに示される曲線260および270を比較すると、CLC層215は、同じ厚さでは、LHCP入射光202(ε=-1)の場合よりも第1のLHEP入射光204(ε=-0.95およびΨ=80°)の場合により低い光漏れを呈する。曲線270に示されるように、CLC層215の光漏れは、CLC層215の厚さが約9ピッチであるとき、約0.45%である。CLC層215の厚さが、約14ピッチまで徐々に増大すると、CLC層215の光漏れは、実質的に0である最小値まで徐々に減少する。CLC層215の厚さが、約20ピッチまでさらに増大すると、CLC層215の光漏れは、実質的に同じままであり、約0である。いくつかの用途において、CLC層215の厚さは、10ピッチ~11ピッチの範囲内にあってもよい。この厚さ範囲において、曲線260に示されるように、LHCP光202(ε=-1)の場合、漏れは、約0.3%(10ピッチ)~約0.18%(11ピッチ)の範囲に及ぶ。同じ厚さ範囲において、曲線270に示されるように、第1のLHCP光204(ε=-0.95およびΨ=80°)の場合、漏れは、約0.2%(10ピッチ)~約0.08%(11ピッチ)の範囲に及ぶ。故に、第1のLHEP入射光204(ε=-0.95およびΨ=80°)の場合の漏れは、10ピッチ~11ピッチの厚さ範囲において約0.1%低減される。より厚いCLC215層(例えば、11ピッチより大きい厚さ)が使用され得る他の用途において、第1のLHEP入射光204の場合の漏れは、一貫して約0.1%低減される。1つまたは複数のCLC反射偏光子を含む仮想現実(「VR」)デバイスなど、CLC層215のいくつかの用途においては、0.1%光漏れさえも、VRデバイスの光学性能を著しく低下させ得る。
図2Aに示されるように、CLC層215は、第2のLHEP入射光206(ε=-0.97およびΨ=170°)をLHEP光206’として反射させ得る。図2Cを参照して、曲線275(ε=-0.97およびΨ=170°)、ならびに曲線260(ε=-1)および270(ε=-0.95およびΨ=80°)を比較すると、同じ厚さでは、CLC層215は、3つの入射光の中で第2のLHEP入射光206(ε=-0.97およびΨ=170°)の場合に最も高い光漏れを呈する。曲線275に示されるように、CLC層215の光漏れは、CLC層215の厚さが約9ピッチであるとき、約0.65%である。CLC層215の厚さが、約14ピッチまで徐々に増大すると、CLC層215の光漏れは、約0.2%の最小値まで徐々に減少する。CLC層215の厚さが、約20ピッチまでさらに増大すると、CLC層215の光漏れは、実質的に同じままであり、約0.2%である。
図2Aに示されるように、CLC層215は、第3のLHEP入射光208(ε=-0.95およびΨ=170°)をLHEP光208’として反射させ得る。図2Cを参照して、曲線280(ε=-0.95およびΨ=170°)を、曲線260(ε=-1)、270(ε=-0.95およびΨ=80°)、および275(ε=-0.97およびΨ=80°)と比較すると、同じ厚さでは、CLC層215は、4つの入射光の中で第3のLHEP入射光208(ε=-0.95およびΨ=170°)の場合に最も高い光漏れを呈する。曲線280に示されるように、CLC層215の光漏れは、CLC層215の厚さが約9ピッチであるとき、約0.75%である。CLC層215の厚さが、約14ピッチまで徐々に増大すると、CLC層215の光漏れは、約0.3%の最小値まで徐々に減少する。CLC層215の厚さが、約20ピッチまでさらに増大すると、CLC層215の光漏れは、実質的に同じままであり、約0.3%である。
図2Aに示されるように、CLC層215は、第4のLHEP入射光212(ε=-0.90およびΨ=170°)をLHEP光212’として反射させ得る。図2Cを参照して、曲線285(ε=-0.95およびΨ=170°)を、曲線260(ε=-1)、270(ε=-0.95およびΨ=80°)、および275(ε=-0.97およびΨ=80°)、および280(ε=-0.95およびΨ=170°)と比較すると、同じ厚さでは、CLC層215は、5つの入射光の中で第4のLHEP入射光212(ε=-0.90およびΨ=170°)の場合に最も高い光漏れを呈する。曲線285に示されるように、CLC層215の光漏れは、CLC層215の厚さが約9ピッチであるとき、約0.8%よりも大きい。CLC層215の光漏れは、CLC層215の厚さが約11ピッチまで増大すると、約0.75%まで減少される。CLC層215の厚さが、約14ピッチまで徐々に増大すると、CLC層215の光漏れは、約0.7%の最小値まで徐々に減少する。CLC層215の厚さが、約20ピッチまでさらに増大すると、CLC層215の光漏れは、実質的に同じままであり、約0.7%である。
図2Aおよび図2Cを参照すると、CLC層215のらせん構造の掌性と同じ掌性を有する偏光の場合、偏光の配向角Ψおよび楕円率εの1つまたは複数は、CLC層215の光漏れに影響を及ぼし得、以て、CLC反射偏光子200の消光比に影響を及ぼす。CLC層215は、円偏光入射光と比較して、所定の配向角Ψおよび楕円率εのうちの1つまたは複数を有する楕円偏光入射光について、低減された光漏れを有し得る。楕円偏光入射光の配向角Ψは、CLC層215の光漏れに影響を及ぼし得る。楕円率ε(例えば、-0.95)が同じであるとき、楕円偏光入射光の異なる配向角Ψが、著しく異なる光漏れを結果としてもたらし得る。図2Cに示されるような曲線270および280を比較すると、配向角Ψにおける90度の差は、最小光漏れにおける0.3%の差をもたらし得る。楕円偏光入射光の楕円率εは、CLC層215の光漏れに影響を及ぼし得る。配向角Ψ(例えば、Ψ=170°)が同じであるとき、楕円偏光入射光の異なる楕円率εが、著しく異なる光漏れを結果としてもたらし得る。図2Cに示されるような曲線275、280、および285を比較すると、同じ厚さでは、CLC層215は、3つの入射光の中で、第4のLHEP入射光212(ε=-0.90)の場合に最も高い光漏れ、および第2のLHEP入射光206(ε=-0.97)の場合に最も低い光漏れを呈する。楕円率εにおける約0.7の差(例えば、ε=-0.97およびε=-0.90)は、最小光漏れにおける0.55%の差をもたらし得る。
図2Aおよび図2Cを参照すると、CLC層215上に入射する楕円偏光の配向角Ψおよび楕円率εのうちの1つまたは複数を明確に構成することによって、開示された光学デバイスは、CLC層215の光漏れを低減し得る。図2Cに示されるように、偏光入射光の場合、CLC層215の最小光漏れは、CLC層215の厚さとともに変動し得る。例えば、CLC層215上に入射する楕円偏光の配向角Ψおよび楕円率εのうちの1つまたは複数を明確に構成することによって、開示された光学デバイスは、CLC層215の最小光漏れを、厚さが約12ピッチを上回るとき0.05%以下になるように低減し得る。CLC層215の厚さが、約10ピッチ~11ピッチの範囲にあるとき、CLC層215上に入射する楕円偏光の配向角Ψおよび楕円率εのうちの1つまたは複数を明確に構成することによって、開示された光学デバイスは、CLC層215の最小光漏れを、0.1%以下になるように低減し得る。
図2Dは、本開示の実施形態による、CLC層(例えば、CLC層215)の光漏れ対CLC層上に入射する光の楕円率εを示す実験結果を例証する。図2Dに示されるように、横軸は、CLC層上に入射する光の楕円率εであり、縦軸は、CLC層の光漏れ、すなわち、CLC層の光透過率である。いくつかの実施形態において、CLC層は、LHCLCを含み得る。曲線290は、異なる楕円率での光漏れを示す。曲線290に示されるように、入射光がLHCP光(ε=-1)であるとき、CLC層の光漏れは、約3.4%であると測定される。約80°の配向角Ψを有する楕円偏光入射光の場合、楕円偏光入射光の楕円率εが-1から-0.9へ徐々に増加すると、CLC層の光漏れは、最小値へと徐々に減少し、これは約3%であると測定される。楕円偏光入射光の楕円率εが-0.6までさらに増大すると、CLC層の光漏れは、約6%へと徐々に増大する。曲線290は、入射光の楕円率εが-1から-0.9へ増大するとき、CLC層の光漏れが約0.4%低減されることを示す。すなわち、LHCLC(LHCLC層と称される)を含むCLC層の光漏れは、入射光が左旋円偏光(ε=-1)ではなく左旋楕円偏光(ε=-0.9)として構成されるときに最小値に達する。
図2Cおよび図2Dを参照すると、いくつかの実施形態において、所定の配向角Ψおよび楕円率εのうちの1つまたは複数を有するLHEP入射光に対するLHCLC層(例えば、CLC層215)の最小光透過率は、LHCP光に対するLHCLC層の最小光透過率と比較して、少なくとも0.4%低減され得る。いくつかの実施形態において、所定の配向角Ψおよび楕円率εのうちの1つまたは複数を有するLHEP入射光に対するLHCLC層の最小光透過率は、LHCP光に対するLHCLC層の最小光透過率と比較して、少なくとも0.1%低減され得る。いくつかの実施形態において、所定の配向角Ψおよび楕円率εのうちの1つまたは複数を有するLHEP入射光に対するLHCLC層の最小光透過率は、LHCP入射光に対するLHCLC層の最小光透過率と比較して、少なくとも0.3%低減され得る。いくつかの実施形態において、所定の配向角Ψおよび楕円率εのうちの1つまたは複数を有するLHEP入射光に対するLHCLC層の最小光透過率は、LHCP入射光に対するLHCLC層の最小光透過率と比較して、少なくとも0.2%低減され得る。左旋楕円偏光入射光および左旋円偏光が、本開示の実施形態を説明することにおいて例として使用されるが、実施形態は、右旋楕円偏光入射光および右旋円偏光についても同様に実施され得る。
図3Aは、本開示の別の実施形態による、CLC反射偏光子300の断面を例証する。図3Aに示されるCLC反射偏光子300は、図2Aに示されるCLC反射偏光子200に含まれるものと同様の素子を含み得る。同様の素子の詳細な説明は、図2Aに関連して提供される上の説明を参照してもよい。図3Aに示されるように、CLC反射偏光子300は、互いに積層される複屈折材料の複数の層(例えば、複数の単一ピッチCLC層)を含み得、各CLC層が、一定らせんピッチを伴うらせん構造を有し得る。らせんピッチは、層ごとに変わり得る(例えば、複数の単一ピッチCLC層の少なくとも2つのらせんピッチは、異なり得る)。CLC層は、狭い反射帯域幅を有し得、異なる色(例えば、異なる波長)で光を発する対応する狭帯域(例えば、30nm帯域幅)光源に光学的に結合され得る。いくつかの実施形態において、CLC層の反射帯域は、互いと重複しなくてもよい。いくつかの実施形態において、CLC層の反射帯域は、CLC反射偏光子300の反射帯域全体が連続的かつ広範囲であり得るように、互いと重複(例えば、わずかに重複)し得る。
いくつかの実施形態において、各CLC層は、2つの基板305の間に配設され得る。1つまたは複数の配列層310が、CLC層と基板との間に、各CLC層の1つまたは複数の側面において配設され得る。いくつかの実施形態において、各CLC層は、少なくとも1つの基板305と結合され得る。いくつかの実施形態において、2つの隣接するCLC層は、図3Aに示されるように、2つの隣接するCLC層の間に配設される同じ基板305と結合され得る。例証の目的のため、図3Aは、CLC反射偏光子300が3つのCLC層325、330、および335を含むことを示す。3つのCLC層325、330、および335のうちの少なくとも1つ(例えば、1つ、2つ、または3つ)は、一定らせんピッチを有するらせん構造を含み得る(例えば、らせん構造内のらせんピッチは同じであってもよい)。例えば、いくつかの実施形態において、3つのCLC層325、330、および335の各々は、一定らせんピッチを有するらせん構造を含み得る(例えば、らせん構造内のらせんピッチは同じであってもよい)。
いくつかの実施形態において、CLC層325、330、および335のうちの少なくとも1つのらせん構造のらせんピッチは、異なり得、例えば、CLC反射偏光子300の一方の側から他方の側へと徐々に増加または減少する。いくつかの実施形態において、CLC層325、330、および335は、狭い反射帯域幅を有し得る。いくつかの実施形態において、CLC層325、330、および335のうちの1つまたは複数は、異なる色(例えば、異なる波長)で光を発するように構成された1つまたは複数の対応する狭帯域(例えば、30-nm帯域幅)光源に結合され得る。例えば、いくつかの実施形態において、CLC層325、330、および335は、それぞれ青色、緑色、および赤色光の波長範囲内の反射帯域を有し得る。いくつかの実施形態において、CLC層325、330、および335は、それぞれ約450nm、530nm、および630nmの中心波長を有する狭帯域の青色、緑色、および赤色光源に結合され得る。図3Aに示されるような3つのCLC層325、330、および335の積層構成は、単に例証の目的である。他の好適な構成が使用され得る。加えて、CLC層の数は、3つに限定されない。任意の好適な数のCLC層が使用され得る。
CLC層は、光の入射角が増大するにつれてより短い波長を反射させ得る。この現象は、青色シフトと称され得る。加えて、CLC層に含まれるCLCの波長板効果に起因して、CLC層の掌性と同じ掌性を有する円偏光がCLC層上に入射するとき、透過光の偏光状態は、楕円偏光へと変化され得る。この現象は、偏光解消と称され得る。透過光の偏光解消は、CLC層の光漏れを結果としてもたらし得、このことが、CLC反射偏光子の消光比を低下させ得る。光漏れは、入射角が増大するにつれて増大し得る。加えて、複数の単一ピッチCLC層が積層されて広範の反射帯域を実現するとき、CLC層によって引き起こされる透過光の偏光解消は、透過光が後続のCLC層上に入射するとき、より低い反射性を結果としてもたらし得る。CLC層の青色シフトおよび偏光解消効果を考慮して、斜めの入射角における光学的補償を達成するため、および広範の反射帯域を達成するため、開示された実施形態と一貫するCLC反射偏光子は、所定の順序で配置される複数の単一ピッチCLC層および1つまたは複数の補償フィルムを含み得る。
図3Bは、本開示の別の実施形態による、CLC反射偏光子350の断面を例証する。CLC反射偏光子350は、図3Aに示されるCLC反射偏光子300に含まれるものと同様の素子を含み得る。同様の素子の説明は、図3Aに関連して提供される上の説明を参照してもよい。図3Bに示されるように、CLC反射偏光子350は、所定の順序で配置される複数の単一ピッチCLC層および1つまたは複数の補償フィルムを含み得る。全可視波長範囲をカバーする反射帯域を達成するため、CLC反射偏光子350は、各々が特定の波長のために構成された複数の単一ピッチCLC層を含み得る。例えば、図3Bに示される実施形態において、CLC反射偏光子350は、4つの単一ピッチCLC層:青色光の波長範囲内の反射帯域を有する第1のCLC層352(「B-CLC層352と称される)、赤色光の波長範囲内の反射帯域を有する第2のCLC層354(「R-CLC」層354と称される)、オレンジ色光の波長範囲内の反射帯域を有する第3のCLC層356(「O-CLC」層356と称される)、および緑色光の波長範囲内の反射帯域を有する第4のCLC層358(「G-CLC」層358と称される)を含み得る。斜めの入射角における光学的補償を達成するため、CLC反射偏光子350は、2つ以上の補償フィルムをさらに含み得る。補償フィルムは、ポジティブCプレートなど、任意の好適な光学フィルムであってもよい。例証の目的のため、図3Bに示される実施形態において、CLC反射偏光子350は、2つの補償フィルム:O-CLC層356とG-CLC層358との間に配設される第1のポジティブCプレート360、およびO-CLC層356とR-CLC層354との間に配設される第2のポジティブCプレート360を含む。軸外光351(例えば、CLC反射偏光子350上に法線入射しない光)は、G-CLC層358側からCLC反射偏光子350上に入射し得る。いくつかの実施形態において、CLC層352、354、356、および358はまた、ネガティブCプレートとしての役割を果たす、またはそのように機能し得る。補償フィルムのポジティブCプレート特性(例えば、ポジティブCプレート360)は、CLC層352、354、356、および358のネガティブCプレート特性を補償し得る。いくつかの実施形態において、ポジティブCプレート360は、実質的にゼロの面内位相差および正の厚さ方向位相差を有する位相差フィルムであってもよい。ポジティブCプレート360は、ポジティブCプレートの平面に垂直に配列される光学軸を含み得る。CLC層から出力される楕円偏光は、ポジティブCプレートを通過した後に円偏光へと変換され得る。2つのポジティブCプレート360の厚さ方向位相差をそれぞれ構成することにより、透過光の偏光解消は補償され得、軸外入射光の場合のCLC反射偏光子350の光漏れは、低減され得る。
図3Bに示されるCLC層およびポジティブCプレートの積層構成および数は、単に例証の目的のためである。CLC層の他の好適な配置または好適な数(例えば、3つまたは4つ以上)も使用され得る。例えば、いくつかの実施形態において、CLC反射偏光子350は、B-CLC層352、R-CLC層354、およびG-CLC層358を含み得、O-CLC層356を含まなくてもよい。いくつかの実施形態において、黄色CLC層、紫色CLC層など、他の色のための1つまたは複数の追加的なCLC層が追加され得る。加えて、ポジティブCプレートの数もまた、1つ、3つ、4つなど、任意の好適な数であってもよい。例えば、いくつかの実施形態において、CLC反射偏光子350は、O-CLC層356とG-CLC層358との間に配設されるポジティブCプレート360、およびO-CLC層356とR-CLC層354との間に配設されるポジティブCプレート360に加えて、B-CLC層352とR-CLC層354との間に配設されるポジティブCプレート360をさらに含み得る。いくつかの実施形態において、CLC反射偏光子350は、R-CLC層354とO-CLC層356との間に配設されるポジティブCプレートなしに、B-CLC層352とR-CLC層354との間に配設されるポジティブCプレート360、およびO-CLC層356とG-CLC層358との間に配設されるポジティブCプレート360を含み得る。いくつかの実施形態において、CLC反射偏光子350は、O-CLC層356とG-CLC層358との間に配設されるポジティブCプレートなしに、B-CLC層352とR-CLC層354との間に配設されるポジティブCプレート360、およびO-CLC層356とR-CLC層354との間に配設されるポジティブCプレート360を含み得る。いくつかの実施形態において、異なるCLC層の順序は、図3Bに示される順序とは異なり得る。積層されたCLC層の任意の他の好適な順序が使用され得る。
図3Cは、ポジティブCプレートを含まない従来のCLC反射偏光子の軸外入射角光漏れを示すシミュレーション結果を例証する。図3Dは、2つのポジティブCプレートを含む図3Bに示されるCLC反射偏光子350の軸外入射角光漏れを示すシミュレーション結果を例証する。図3Cおよび図3Dに示される各プロットにおいて、横軸は、入射波長(単位:nm)であり、縦軸は、StrokesパラメータS0によって表されるような透過光の正規化光強度、すなわち、CLC反射偏光子の光漏れである。曲線370は、2つのポジティブCプレートが含まれる図3Bに示されるCLC反射偏光子350の光漏れを示す。曲線380は、CLC層の間にポジティブCプレートが配設されていない状態の、B-CLC層、R-CLC層、O-CLC層、およびG-CLC層(図3Bに示されるものと同様)を有するCLC反射偏光子の光漏れを示す。2つのCLC反射偏光子の光漏れは、40°入射角(軸外入射角の例)について評価される。曲線380に示されるように、ポジティブCプレートなしのCLC反射偏光子の光漏れは、青色波長範囲、例えば、440nm~500nmにおいては実質的にゼロにすぎない。他の波長範囲、例えば、500nm~640nmにおいては、光漏れは、一貫して大きい。比較すると、曲線370に示されるように、青色波長範囲(例えば、440nm~500nm)に加えて、2つのポジティブCプレートを伴うCLC反射偏光子350の光漏れは、緑色波長範囲(例えば、530nm~560nm)、および赤色波長範囲(例えば、600nm~640nm)など、他の波長範囲においても実質的にゼロである。
図4は、本開示の別の実施形態による、CLC反射偏光子400の断面を例証する。CLC反射偏光子400は、図2Aに示されるCLC反射偏光子200に含まれるものと同様である素子を含み得る。同様の素子の説明は、図2Aに関連して提供される上の説明を参照してもよい。図4に示されるように、CLC反射偏光子400は、変化する(例えば、一定でない)らせんピッチ(例えば、勾配らせんピッチ)のらせん構造を有するCLC層415を含み得る。いくつかの実施形態において、らせんピッチは、所定の方向において(例えば、CLC層415の厚さ方向において)徐々に増大または減少し得る。例証の目的のため、図4に示される実施形態において、変化するらせんピッチは、CLC層415の厚さ方向に沿って、例えば、図4に示されるような+z軸方向に沿って、徐々に増大して示される。変化するらせんピッチ構成は、CLC層415のための広範な反射帯域を結果としてもたらし得る。いくつかの実施形態において、CLC反射偏光子400は、可視波長範囲をカバーする300nm帯域幅光源など、広帯域多色光源(図示せず)に結合され得る。議論の目的のため、CLC反射偏光子400は、可視波長範囲をカバーする300nm帯域幅反射帯域を有するLHCLC屈折偏光子として説明される。いくつかの実施形態において、CLC反射偏光子400は、RHCLC反射偏光子として構成され得る。広帯域LHCP光402は、CLC反射偏光子400のより短いピッチ側(例えば、図4に示される下側)上に実質的に法線入射し得る。議論の目的のため、広帯域LHCP光402は、それぞれ約450nm、約530nm、および約630nmの中心波長を有するLHCP青色光、緑色光、および赤色光を含み得る。実質的にCLC層415の軸方向に沿って伝搬するとき、LHCP青色光、緑色光、および赤色光の成分は、主として、または実質的に、それぞれLHCP青色光、LHCP緑色光、およびLHCP赤色光としてCLC層415によって反射され得、これらは後で組み合わされて広帯域LHCP光402’として視覚的に観察される。
様々な実施形態において説明されるようなCLC屈折偏光子およびCLC屈折偏光子の特徴は、組み合わされ得る。例えば、図4に示される変化する(例えば、勾配)ピッチCLC層415は、軸外入射角および軸上入射角において光漏れを低減するために、1つまたは複数のポジティブCプレートおよび光学波長板に結合され得る。いくつかの実施形態において、図3Aおよび図3Bに示される単一ピッチCLC層のスタックは、軸上入射角において光漏れを低減するために、光学波長板に結合され得る。
本開示の実施形態によるCLC反射偏光子は、数々の分野において様々な用途を有し得、これらはすべて本開示の範囲内である。拡張現実(「AR」)、仮想現実(「VR」)、複合現実(「MR」)分野またはそれらの何らかの組み合わせにおけるいくつかの例示的な用途が以下に説明される。ニアアイディスプレイ(「NED」)は、航空学、工学、科学、医学、コンピュータゲーミング、映像、スポーツ、トレーニング、およびシミュレーションなど、多種多様な用途において広く使用されてきた。NEDの1つの用途は、VR、AR、MR、またはそれらの何らかの組み合わせを実現することである。NEDの望ましい特徴は、小型、軽量、高分解能、高視野(「FOV」)、および小形状因子を含む。NEDは、画像光を生成するように構成された表示要素、および画像光をユーザの目の方へ向けるように構成されたレンズ系を含み得る。レンズ系は、画像光をユーザの目に集束させるための、レンズ、波長板、反射器などの複数の光学素子を含み得る。小型サイズおよび軽量を達成するため、ならびに満足のいく光学特徴を維持するため、NEDは、光路を折り畳み、以て、NED内の後側焦点距離を低減するために、レンズ系内のパンケーキレンズアセンブリを採用し得る。
図5Aは、本開示の実施形態によるパンケーキレンズアセンブリ500の概略図を例証する。パンケーキレンズアセンブリ500は、光路を折り畳み、以て、NED内の後側焦点距離を低減するために、NED内に実装され得る。図5Aに示されるように、パンケーキレンズアセンブリ500は、電子ディスプレイ550(他の好適な光源であってもよい)から発せられる光521を、射出瞳560に位置するアイボックスに集束させ得る。以後、画像を形成するための電子ディスプレイ550によって発せられる光521は、「画像光」とも称される。射出瞳560は、ユーザがNEDを装着するときに目570がアイボックス領域に位置付けられる場所であってもよい。いくつかの実施形態において、電子ディスプレイ550は、狭帯域モノクロ光源(例えば、30nm帯域幅光源)を含むモノクロディスプレイであってもよい。いくつかの実施形態において、電子ディスプレイ550は、多色ディスプレイ(例えば、広帯域多色光源(例えば、可視波長範囲をカバーする300nm帯域幅光源)を含む赤-緑-青(「RGB」)ディスプレイ)であってもよい。いくつかの実施形態において、電子ディスプレイ550は、対応する狭帯域モノクロ光源をそれぞれ含み得る複数のモノクロディスプレイを積層することによって作成される多色ディスプレイ(例えば、RGBディスプレイ)であってもよい。
いくつかの実施形態において、パンケーキレンズアセンブリ500は、例えば、モノリシック光学素子を作成するために互いに結合される第1の光学素子505および第2の光学素子510を含み得る。いくつかの実施形態において、第1の光学素子505および第2の光学素子510の1つまたは複数の表面は、像面湾曲を補償するように成形され得る。いくつかの実施形態において、第1の光学素子505および/または第2の光学素子510の1つまたは複数の表面は、球状に凹面(例えば、球の一部分)、球状に凸面、回転対称の非球面、自由形状、または像面湾曲を軽減することができる何らかの他の形状であるように成形され得る。いくつかの実施形態において、第1の光学素子505および/または第2の光学素子510の1つまたは複数の表面の形状は、他の形態の光学収差を追加的に補償するように設計され得る。いくつかの実施形態において、パンケーキレンズアセンブリ500内の光学素子のうちの1つまたは複数は、ゴースト像を低減し、コントラストを高めるために、反射防止コーティングなどの1つまたは複数のコーティングを有し得る。いくつかの実施形態において、第1の光学素子505および第2の光学素子510は、接着剤515によって互いに結合され得る。第1の光学素子505および第2の光学素子510の各々は、1つまたは複数の光学レンズを含み得る。
第1の光学素子505は、電子ディスプレイ550から画像光を受け入れるように構成された第1の表面505_1、および変更した画像光を出力するように構成された反対の第2の表面505_2を含み得る。第1の光学素子505は、光学的に直列に配置される直線偏光子(または直線偏光子表面)502、波長板(または波長板表面)504、およびミラー(またはミラー化表面)506を含み得、これらの各々は、第1の光学素子505に接着または形成される個々の層またはコーティングであってもよい。直線偏光子502、波長板504、およびミラー506は、第1の光学素子505の第1の表面505_1または第2の表面505_2に接着または形成され得る。議論の目的のため、図5Aは、直線偏光子502および波長板504が、第1の表面505_1に接着または形成され、ミラー506が、第2の表面505_2に接着または形成されることを示す。いくつかの実施形態において、ミラー506は、受け入れた光の一部分を反射させるように構成された部分反射器であってもよい。いくつかの実施形態において、ミラー506は、受け入れた光の約50%を透過させ、約50%を反射させるように構成され得、「50/50ミラー」と称され得る。いくつかの実施形態において、反射光の掌性は、逆転され得、透過光の掌性は、不変であり得る。
第2の光学素子510は、第1の光学素子505に面する第1の表面510_1、および反対の第2の表面510_2を有し得る。第2の光学素子510は、第2の光学素子510に接着または形成される個々の層またはコーティングであり得る反射偏光子508(または反射偏光子表面508)を含み得る。反射偏光子508は、第2の光学素子510の第1の表面510_1または第2の表面510_2に接着または形成され得、ミラー506から出力される光を受け入れ得る。議論の目的のため、図5Aは、反射偏光子508が、第2の光学素子510の第1の表面510_1に接着または形成されることを示す。反射偏光子508は、第1の偏光の受け入れた光を主として反射させ、第2の偏光の受け入れた光を主として透過させるように構成された反射偏光フィルムを含み得る。反射偏光子508は、本開示の実施形態によるCLC反射偏光子であってもよい。例えば、反射偏光子508は、CLC反射偏光子200、300、350、または400のいずれかであってもよい。
図5Aを参照すると、いくつかの実施形態において、電子ディスプレイ550から発せられる画像光521は、偏光されない場合がある。直線偏光子502は、無偏光画像光521を直線偏光へと変換するように構成され得る。波長板504の偏光軸(例えば、高速軸)は、直線偏光を、CLC反射偏光子508へ向かう1つまたは複数の所定の偏光楕円パラメータを有する楕円偏光へと変換するように、直線偏光子502の透過軸に対して配向され得、その結果として、楕円偏光は、低減した光漏れで(例えば、CLC反射偏光子508によって透過される楕円偏光の一部分は、低減され得る)、CLC反射偏光子508によって実質的に反射され得る。いくつかの実施形態において、1つまたは複数の所定の偏光楕円パラメータは、図2B~図2Dに関連して上に説明される配向角Ψまたは楕円率εのうちの少なくとも1つを含み得る。
例えば、1つまたは複数の所定の偏光楕円パラメータは、図2B~図2Dに関連して上に説明される配向角Ψまたは楕円率εの両方を含み得る。いくつかの実施形態において、CLC反射偏光子508は、約0.15~約0.4の範囲内の複屈折を有するLCを含み得る。CLC反射偏光子508のらせん構造と同じ掌性を有する楕円偏光入射光についてCLC反射偏光子508の光漏れを低減するため(例えば、光透過率を低減するため)、楕円偏光入射光の配向角Ψは、約75°≦Ψ≦90°、約75°≦Ψ≦85°、約75°≦Ψ≦80°、約80°≦Ψ≦90°、約80°≦Ψ≦85°、約85°≦Ψ≦90°、約76°≦Ψ≦89°、約77°≦Ψ≦88°、約78°≦Ψ≦87°、または約79°≦Ψ≦86°の範囲内の値であるように構成され得る。いくつかの実施形態において、配向角Ψは、n°≦Ψ≦n°の範囲内にあってもよく、nは、75以上の任意の好適な値であってもよく、nは、90以下かつnより大きい任意の好適な値であってもよい。楕円偏光入射光の楕円率εは、CLC反射偏光子508がLHCLC(LHCLC反射偏光子と称される)を含むとき、約-1<ε≦-0.85の範囲内の値であるように構成され得る。例えば、CLC反射偏光子508がLHCLC反射偏光子であるとき、楕円偏光入射光の楕円率εは、約-0.95≦ε≦-0.85、約-0.9≦ε≦-0.85、約-0.95≦ε≦-0.9、約-1<ε≦-0.9、または約-1<ε≦-0.95の範囲内の値であるように構成され得る。楕円偏光入射光の楕円率εは、CLC反射偏光子508がRHCLC(RHCLC反射偏光子と称される)を含むとき、約0.85≦ε<1の範囲内の値であるように構成され得る。例えば、CLC反射偏光子508がRHCLC反射偏光子であるとき、楕円偏光入射光の楕円率εは、約0.85≦ε≦0.95、約0.85≦ε≦0.9、約0.9≦ε≦0.95、0.9≦ε<1、または約0.95≦ε<1の範囲内の値であるように構成され得る。そのような構成では、CLC反射偏光子508の光漏れによって引き起こされるゴースト像は、抑制され得、パンケーキレンズアセンブリ500の光学性能は、改善され得る。
図5Bは、本開示の実施形態による、図5Aに示されるパンケーキレンズアセンブリ500の光路の概略断面図を例証する。図5Bにおいて、文字「s」は、対応する光がs偏光されることを示し、RHCPおよびLHCPは、それぞれ右旋円偏光および左旋円偏光を示し、RHEPおよびLHEPは、それぞれ右旋楕円偏光および左旋楕円偏光を示す。議論の目的のため、図5Bに示されるように、直線偏光子502は、s偏光を透過させ、p偏光をブロックするように構成され得、反射偏光子508は、左旋CLC(「LHCLC」)反射偏光子であってもよい。例証の目的のため、電子ディスプレイ550、直線偏光子502、波長板504、ミラー506、および反射偏光子508は、図5Bにおいては平面として例証される。いくつかの実施形態において、電子ディスプレイ550、直線偏光子502、波長板504、ミラー506、および反射偏光子508のうちの1つまたは複数は、湾曲面を含み得る。
図5Bに示されるように、電子ディスプレイ550は、可視スペクトル範囲の一部分または可視スペクトル範囲全体など、所定のスペクトルをカバーする無偏光画像光521を生成し得る。無偏光画像光521は、直線偏光子502によってs偏光画像光523として透過され得、これが1つまたは複数の所定の偏光楕円パラメータを有する(例えば、配向角Ψおよび楕円率εの一方または両方が所定の範囲または所定の値内にある)LHEP光525として、波長板504によって透過され得る。LHEP光525の第1の部分は、RHCP光527として波長板504へ向けてミラー506によって反射され得、LHEP光525の第2の部分は、LHEP光528としてCLC反射偏光子508へ向けてミラー506を透過され得る。
CLC反射偏光子508上に入射するLHEP光528は、CLC反射偏光子508のらせん構造の掌性と同じ掌性(例えば、左掌性)を有し得る。その結果、LHEP光528は、LHCP光529としてミラー506へ向けてCLC反射偏光子508によって反射され得る。LHCP光529は、RHCP光531としてミラー506によって反射され得、RHCP光531は、RHCP光533としてCLC反射偏光子508を透過され得る。RHCP光533は、目570に集束され得る。
いくつかの実施形態において、直線偏光子502は、第1の直線偏光子であってもよく、波長板504は、第1の波長板であってもよく、パンケーキレンズアセンブリ500は、パンケーキレンズアセンブリ500の性能を高めるために、CLC反射偏光子508と目570との間に配置される第2の直線偏光子および第2の波長板をさらに含み得る。図6Aは、本開示の別の実施形態によるパンケーキレンズアセンブリ600の概略図を例証する。パンケーキレンズアセンブリ600は、図5Aに示されるパンケーキレンズアセンブリ500に含まれるものと同様の素子を含み得る。同様の素子の説明は、図5Aに関連して提供される上の説明を参照してもよい。図6Aに示されるように、第2の光学素子510は、光学的に直列に配置される第2の波長板(または第2の波長板表面)535および第2の直線偏光子(または第2の直線偏光子表面)530を含み得、これらの各々は、第2の光学素子510の第1の表面510_1または第2の表面510_2に接着または形成される個々のフィルムまたはコーティングであってもよい。議論の目的のため、図6Aは、第2の波長板535および第2の直線偏光子530が、第2の光学素子510の第2の表面510_2に接着または形成されることを示す。
第2の波長板535は、反射偏光子508から円偏光を受け入れ得る。第2の直線偏光子530は、第2の波長板535と目570との間に配設され得る。この構成は、図6Bにおいてより良好に例証される。いくつかの実施形態において、第2の波長板535の偏光軸は、可視スペクトルおよび/または赤外スペクトルについて、直線偏光を円偏光へと変換するか、またはその逆であるように、第2の直線偏光子530の透過軸に対して配向され得る。いくつかの実施形態において、収色性設計の場合、第2の波長板535は、幅広いスペクトル範囲にわたって4分の1波長複屈折をもたらすために多層複屈折材料(例えば、高分子または液晶)を含み得る。例えば、第2の波長板535の偏光軸(例えば、高速軸)と第2の直線偏光子530の透過軸との間の角度は、35~50度の範囲内にあるように構成され得る。第2の波長板535および第2の直線偏光子530の組み合わせは、電子ディスプレイ550から直接的に受け入れられる無偏光画像光によって引き起こされるゴースト像の強度を低減し得る。加えて、第2の波長板535および第2の直線偏光子530の組み合わせはまた、ユーザがユーザの目の画像を観察することがないように、ナーシサス防止フィルムとして機能し得る。
図6Bは、本開示の実施形態による、図6Aに示されるパンケーキレンズアセンブリ600の光路の概略断面図を例証する。図6Bに示される特定の素子は、図5Bに示されるものと同様または同じである。そのような素子の説明は、図5Bに関連して提供される上の説明を参照してもよい。図6Bにおいて、文字「p」は、対応する光がp偏光されることを示す。図6Bに示されるように、電子ディスプレイ550から反射偏光子508へ伝搬する無偏光画像光521の光路は、図5Bに示されるものと同様であり得る。図6Bに示されるように、RHCP光533は、第2の波長板535によってp偏光538へと変換され得る。第2の波長板535と目570との間に配置される第2の直線偏光子530は、p偏光を透過させ、s偏光をブロックするように構成され得る。したがって、p偏光538は、目570に集束され得るp偏光537として、第2の直線偏光子530によって透過され得る。加えて、電子ディスプレイ550から直接的に第2の波長板535上に入射する無偏光画像光521’は、第2の直線偏光子530へ向けて無偏光光523’として透過され得る。無偏光光523’は、p偏光525’として第2の直線偏光子530によって透過され得、以て、電子ディスプレイ550から直接的に受け入れられる画像光521’によって引き起こされるゴースト像の強度を低減する。
第2の波長板535および第2の直線偏光子530の組み合わせもまた、ナーシサス防止フィルムとして機能し得る。例えば、図6Bに示されるように、p偏光537およびp偏光525’は、それぞれ、-z方向に進むs偏光539およびs偏光527’として、目570によって反射され得る。第2の直線偏光子530が、p偏光を透過させ、s偏光をブロックするように構成され得るため、s偏光539およびs偏光527’の両方が、第2の直線偏光子530によってブロックされ得る。したがって、ナーシサスは抑制され得、ユーザの目570は、目の画像を観察しない。
図5Aおよび図6Aを参照すると、電子ディスプレイ550は、任意の好適なディスプレイであってもよい。いくつかの実施形態において、電子ディスプレイ550は、有機発光ダイオード(「OLED」)ディスプレイパネル、微小発光ダイオード(「微小LED」)ディスプレイパネル、量子ドット(「QD」)ディスプレイパネル、またはそれらの何らかの組み合わせなど、自発光パネルを含み得る。いくつかの実施形態において、電子ディスプレイ550は、液晶ディスプレイ(「LCD」)パネル、Lコス(「LCoS」)ディスプレイパネル、またはデジタル光処理(「DLP」)ディスプレイパネル、またはそれらの何らかの組み合わせなど、非発光ディスプレイ、すなわち、外部照明システムによって照明されるディスプレイパネルであるディスプレイパネルを含み得る。外部照明システムは、光源を含み得る。光源の例は、LED、OLED、またはそれらの何らかの組み合わせを含み得る。光源は、狭帯域または広帯域であってもよい。いくつかの実施形態において、光源は、無偏光画像光を発し得る。
本開示は、CLC反射偏光子を含む照明システムをさらに提供する。図7は、本開示の実施形態による、CLC反射偏光子を含む照明システム700の概略図を例証する。照明システム700は、ディスプレイパネルを照明するように構成され得る。図7に示されるように、照明システム700は、2つ以上のくさび(例えば、第1のくさび705aおよび第2のくさび705b)によって形成される平面状導光板710を含み得る。例証の目的のため、図7は、照明システム700内に2つのくさび705aおよび705bを示す。3つ、4つ、5つ、6つなど、任意の他の好適な数のくさびが、照明システム700の他の実施形態において、含まれ得る。例えば、くさび705aおよび705bのうちの少なくとも一方は、2つ以上のより小さいくさびによって形成され得る。いくつかの実施形態において、照明システム700は、導光板710の第1の側面710_1に配置または配設される反射シート720を含み得る。いくつかの実施形態において、図7に示されるように、反射シート720は、第1の側面710_1の外側に配設され得る。いくつかの実施形態において、図7に示されるように、照明システム700は、導光板710の第2の側面710_2に配置または配設される光源アセンブリ715を含み得る。第1の側面710_1および第2の側面710_2は、導光板710の反対端に位置し得る。いくつかの実施形態において、照明システム700は、2つのくさび705aおよび705bのうちの少なくとも一方の傾斜面710_3に配置される反射偏光子725を含み得る。いくつかの実施形態において、傾斜面710_3は、第1のくさび705aの傾斜面または第2のくさび705bの傾斜面を指し得る。第1のくさび705aの傾斜面および第2のくさび705bの傾斜面は、互いと合致し得る。
光源アセンブリ715は、光を発するように構成された光源、および光を調整するように構成された光学アセンブリを含み得る。光源は、1つもしくは複数の発光ダイオード(「LED」)、電子発光パネル(「ELP」)、1つもしくは複数の冷陰極蛍光ランプ(「CCFL」)、1つもしくは複数の熱陰極蛍光ランプ(「HCFL」)、または1つもしくは複数の外部電極形蛍光ランプ(「EEFL」)などを含み得る。LED光源は、複数の白色LEDまたは複数のRGB(「赤、緑、青」)LEDなどを含み得る。光学アセンブリは、光源から受け入れられる光を調整するように構成された1つまたは複数の光学素子を含み得る。光源によって発せられる光を調整することは、例えば、制御器からの命令に従って、透過させること、減衰させること、拡大すること、コリメートすること、配向を調節すること、および/または偏光することを含み得る。光源アセンブリ715から出力される光は、導光板710の第2の側面710_2において導光板710内へ結合され得る。側面710_2は、導光板710の光入射面と称され得る。
くさび705aおよび705bのうちの少なくとも一方は、光学的に透明なアクリル樹脂または同様のものなど、光学的に透明な材料を含み得る。光入射面(例えば、第2の側面710_2)から入る光は、全内部反射(「TIR」)により導光板710の内側を伝搬し得る。反射偏光子725は、2つのくさび705aおよび705bのうちの少なくとも一方の傾斜面710_3に配設され得、これら2つのくさび705aおよび705bは、それぞれの傾斜面において互いに結合されて(例えば、互いと接触して)平面状導光板710を形成し得る。いくつかの実施形態において、反射偏光子725は、第1のくさび705aの傾斜面に、好適な様式で形成される、被覆される、または別途提供され得る。いくつかの実施形態において、反射偏光子725は、第2のくさび705bの傾斜面に、好適な様式で形成される、被覆される、または別途提供され得る。図7に示されるように、反射偏光子725は、第1のくさび705aの傾斜面と第2のくさび705bの傾斜面との間に配設され得る。反射偏光子725は、選択的に、第1の偏光の光を透過させ、第1の偏光とは異なる第2の偏光の光を反射させるように構成され得る。反射シート720は、光源アセンブリ715および反射シート720が互いに対向して配設され得るように、導光板710の第1の側面710_1に配設され得る。反射シート720は、実質的に高い反射率(例えば、90%超)を有し得、受け入れた光を反射させるとき、第2の偏光の光を第1の偏光の光へと変換し得るか、その逆も然りである。
動作中、光源アセンブリ715から発せられる第1の偏光702は、第1の偏光状態を有し得る。第1の偏光702は、反射シート720に到着するまでTIRにより導光板710の内側を伝搬し得、第1の偏光702は、第2の偏光状態を有する第2の偏光704として反射シート720によって反射され得る。第2の偏光704は、反射偏光子725に到着するまでTIRにより導光板710の内側を伝搬し得る。反射偏光子725が、選択的に、第1の偏光の光を透過させ、第2の偏光の光を反射させるように構成され得るため、第2の偏光状態を有する第2の偏光704は、第2の偏光状態を有する第3の偏光706として、反射偏光子725によって反射され得る。第3の偏光706は、照明システム700に結合されるディスプレイパネル内の、液晶などの表示機能材料を照明するために導光板710の光出力面710_4から出力され得る。
図7は、導光板710から離れた所に離間される光源アセンブリ715を示す。この照明は、例証の目的のためであり、本開示の範囲を制限することは意図されない。いくつかの実施形態において、光源アセンブリ715は、導光板710の第2の側面710_2において導光板710に直接結合され得る。いくつかの実施形態において、照明システム700は、導光板710の光出力面710_4に配置される拡散シートおよび/またはプリズムシートなど、他の素子を含み得る。
いくつかの実施形態において、反射偏光子725は、図2AのCLC反射偏光子200、図3AのCLC反射偏光子300、または図4のCLC反射偏光子400など、本開示の実施形態によるCLC反射偏光子であってもよい。例えば、CLC反射偏光子725は、主として、または実質的に、RHCP光を反射させ、および主として、または実質的に、LHCP光を透過させるように構成され得るRHCLC反射偏光子であってもよい。光源アセンブリ715から発せられる第1の偏光702は、LHCP光であってもよく、このLHCP光は、CLC反射偏光子725によって透過され得、反射シート720に到着するまでTIRにより導光板710の内側を伝搬し得る。反射シート720は、第1のLHCP光702を、第2の偏光、すなわち、RHCP光704として反射させ得、このRHCP光704は、反射偏光子725に到達するまでTIRにより導光板710の内側を伝搬し得る。RHCP光704は、照明システム700に結合されるディスプレイパネル内の、液晶などの表示機能材料を照明するために導光板710の光出力面710_4において出力され得る、第3の偏光、すなわち、RHCP光706として、反射偏光子725によって反射され得る。
図7を参照すると、CLC反射偏光子725の構造は、光源アセンブリ715の特徴に従って決定され得る。CLC反射偏光子725の反射帯域は、光源アセンブリ715の波長に対応し得る。例えば、光源アセンブリ715が狭帯域モノクロ光源(例えば、30nm帯域幅光源)を含むとき、CLC反射偏光子725は、一定らせんピッチを有する狭帯域CLC反射偏光子として構成され得る。光源アセンブリ715が広帯域光源(例えば、可視スペクトルをカバーする300nm帯域幅光源)を含むとき、CLC反射偏光子725は、勾配らせんピッチを有する広帯域CLC反射偏光子として構成され得る。光源アセンブリ715が、異なる色の複数の狭帯域モノクロ光源(例えば、狭帯域の青色光源、緑色光源、および赤色光源)を含むとき、CLC反射偏光子725は、互いに積層される複数のCLC層を含むように構成され得、この場合CLC層は、少なくとも2つの異なるらせんピッチを有し得る。いくつかの実施形態において、各CLC層は、異なるらせんピッチを有し得る。
図8Aは、本開示の実施形態によるニアアイディスプレイ(「NED」)800の図を例証する。図8Aに示されるように、NED800は、前方本体部805およびバンド810を含み得る。前方本体部805は、電子ディスプレイの1つまたは複数の電子ディスプレイ素子および1つまたは複数の光学素子(図8Aでは詳細に図示せず)、内部測定装置(「IMU」)830、1つまたは複数の位置センサ825、ならびに1つまたは複数のロケータ820を含み得る。図8Aに示される実施形態において、1つまたは複数の位置センサ825は、IMU830内に位置し得る。ロケータ820は、基準点815に対して前方本体部805上の様々な位置に位置し得る。図8Aに示される実施形態において、基準点815は、IMU830の中央、または任意の他の好適な場所に位置し得る。ロケータ820、またはロケータ820のうちのいくつかは、前方本体部805の前側820A、上側820B、下側820C、右側820D、および左側820Eに位置し得る。
図8Bは、図8Aに示されるNED800の前方本体部の断面図である。図8Bに示されるように、前方本体部805は、変更した画像光を射出瞳845へ提供するように構成された電子ディスプレイ835およびパンケーキレンズアセンブリ840を含み得る。いくつかの実施形態において、パンケーキレンズアセンブリ840は、図5Aのパンケーキレンズアセンブリ500または図6Aのパンケーキレンズアセンブリ600など、本開示の実施形態によるパンケーキレンズアセンブリであってもよい。いくつかの実施形態において、電子ディスプレイ835は、ディスプレイパネル、および図7の照明システム700など、本開示の実施形態による照明システムを含む電子ディスプレイであってもよい。射出瞳845は、ユーザの目850が位置付けられ得る前方本体部805の場所にあり得る。例証の目的のため、図8Bは、一方の目850と関連付けられる前方本体部805の断面を示すが、電子ディスプレイ835とは別個に、別の電子ディスプレイが、パンケーキレンズアセンブリ835とは別個に、別のパンケーキレンズアセンブリによって変更される画像光を、ユーザの別の目に提供し得る。
本開示は、方法も提供する。本方法は、1つまたは複数の所定のパラメータを有する入射光を、キラリティを有する複屈折材料を含む光学素子(例えば、反射偏光子)に、入射光が低減された(例えば、実質的にゼロ)光透過率で光学素子によって実質的に反射され得るように提供することに関する。いくつかの実施形態において、1つまたは複数の所定のパラメータは、楕円率または配向角のうちの少なくとも1つなど、1つまたは複数の所定の偏光楕円パラメータを含み得る。いくつかの実施形態において、1つまたは複数の所定のパラメータを有する入射光を、キラリティを有する複屈折材料を含む光学素子に提供することは、1つまたは複数の所定のパラメータを有する入射光を生成すること、および1つまたは複数の所定のパラメータを有する入射光を光学素子へ出力することを含み得る。いくつかの実施形態において、1つまたは複数の所定のパラメータを有する入射光を、キラリティを有する複屈折材料を含む光学素子に提供することは、直線偏光を1つまたは複数の所定のパラメータ(例えば、所定の偏光楕円パラメータ)を有する楕円偏光へと変換すること、および1つまたは複数の所定のパラメータを有する楕円偏光を光学素子へ出力することを含み得る。いくつかの実施形態において、1つまたは複数の所定のパラメータを有する入射光を、キラリティを有する複屈折材料を含む光学素子に提供することは、円偏光を1つまたは複数の所定のパラメータ(例えば、所定の偏光楕円パラメータ)を有する楕円偏光へと変換すること、および1つまたは複数の所定のパラメータを有する楕円偏光を光学素子へ出力することを含み得る。いくつかの実施形態において、1つまたは複数の所定のパラメータを有する入射光を、キラリティを有する複屈折材料を含む光学素子に提供することは、無偏光光を1つまたは複数の所定のパラメータ(例えば、所定の偏光楕円パラメータ)を有する楕円偏光へと変換すること、および1つまたは複数の所定のパラメータを有する楕円偏光を光学素子へ出力することを含み得る。
任意の好適なデバイス(例えば、波長板、光源アセンブリ)が、1つまたは複数の所定のパラメータを有する入射光を、キラリティを有する複屈折材料を含む光学素子に提供するために使用され得る。本方法はまた、光学素子によって、1つまたは複数の所定のパラメータを有する入射光を受け入れ、入射光を円偏光として反射させることを含み得る。いくつかの実施形態において、入射光は、1つまたは複数の所定の偏光楕円パラメータを有する楕円偏光であってもよい。いくつかの実施形態において、楕円偏光は、低減された(例えば、実質的にゼロ)光透過率で円偏光として実質的に反射され得る。
いくつかの実施形態において、キラリティを有する複屈折材料を含む光学素子は、コレステリック液晶(「CLC」)反射偏光子であってもよい。いくつかの実施形態において、1つまたは複数の所定の偏光楕円パラメータを有する入射光を提供することは、CLC反射偏光子の上流に配設される光学波長板によって、入射光がCLC反射偏光子上に入射する前に入射光が1つまたは複数の所定の偏光楕円パラメータを有するように、入射光の特性を変更することを含み得る。例えば、光学波長板は、直線偏光を1つまたは複数の所定の偏光楕円パラメータを有する楕円偏光へと変換し、楕円偏光をCLC反射偏光子へ出力し得る。いくつかの実施形態において、1つまたは複数の所定の偏光楕円パラメータを有する入射光を提供することは、光源アセンブリによって、1つまたは複数の所定の偏光楕円パラメータを有する入射光を生成すること、および光源アセンブリによって、1つまたは複数の所定の偏光楕円パラメータを有する入射光をCLC反射偏光子へ出力することを含み得る。いくつかの実施形態において、光源アセンブリは、1つまたは複数の所定の偏光楕円パラメータを有する楕円偏光をCLC反射偏光子のための入射光として、直接的に生成および出力し得る。いくつかの実施形態において、光源アセンブリは、光学波長板を含み得る。いくつかの実施形態において、光学波長板は、光源アセンブリとは別個に提供される。光学波長板が光源アセンブリとは別個に提供されるとき、いくつかの実施形態において、光源アセンブリは、直線偏光を出力し得、光学波長板は、直線偏光を1つまたは複数の所定の偏光楕円パラメータを有する楕円偏光へと変換し、楕円偏光をCLC反射偏光子へ出力し得る。CLC反射偏光子は、1つまたは複数の所定のパラメータを有する入射光を受け入れ、低減された(例えば、実質的にゼロ)光透過率で入射光を円偏光として反射させ得る。
本開示の実施形態の前述の説明は、例証の目的のために提示されている。徹底的であること、または本開示を開示される正確な形態に限定することは意図されない。当業者は、修正形態および変異形態が上記開示を考慮して可能であることを理解するものとする。
本発明のいくつかの部分は、情報に対する動作のアルゴリズムおよびシンボル表現に関して、本開示の実施形態を説明し得る。これらのアルゴリズム的な説明および表現は、データ処理分野の当業者によって、作業の要旨を他の当業者に効果的に伝えるために共通して使用される。これらの動作は、機能的に、計算的に、または論理的に説明されるが、コンピュータプログラムもしくは等価の電気回路、マイクロコード、または同様のものによって実施されると理解される。さらには、動作のこれらの配置を、一般性を失うことなく、モジュールと称することが時として簡便であることも証明されている。説明された動作およびそれらの関連モジュールは、ソフトウェア、ファームウェア、ハードウェア、またはそれらの任意の組み合わせで具現化され得る。
本明細書に説明されるステップ、動作、またはプロセスのいずれかは、1つまたは複数のハードウェアまたはソフトウェアモジュールにより、単独で、または他のデバイスと組み合わせて、実施または実装され得る。1つの実施形態において、ソフトウェアモジュールは、説明されるステップ、動作、またはプロセスのいずれかまたはすべてを実施するためにコンピュータプロセッサによって実行され得るコンピュータプログラムコードを含むコンピュータ可読媒体を備えるコンピュータプログラム製品により実施される。
本開示の実施形態は、本明細書内の動作を実施するための装置にも関する。この装置は、必要とされる目的のために特別に構築され得、および/または、それは、コンピュータに記憶されるコンピュータプログラムによって選択的に有効化または再構成された汎用コンピューティングデバイスを備え得る。そのようなコンピュータプログラムは、コンピュータシステムバスに結合され得る、非一時的な有形コンピュータ可読記憶媒体、または電子命令を記憶するのに好適な任意のタイプの媒体に記憶され得る。さらには、本明細書内で言及される任意のコンピューティングシステムは、単一のプロセッサを含み得るか、または増大した計算能力のために複数プロセッサ設計を採用するアーキテクチャであってもよい。
本開示の実施形態は、本明細書に開示される計算プロセスによってもたらされる製品にも関する。そのような製品は、計算プロセスから生じる情報を含み得、この情報は、非一時的な有形コンピュータ可読記憶媒体に記憶され、本明細書に説明されるコンピュータプログラム製品または他のデータ組み合わせの任意の実施形態を含み得る。
最後に、本明細書内で使用される言語は、原則的に可読性および指示目的のために選択されており、それは、本発明の主題を叙述または制限するために選択されているわけではない。したがって、本開示の範囲は、この詳細な説明によって制限されないが、むしろ任意の請求項により制限されることが意図され、これら任意の請求項に基づいて出願を行う。したがって、実施形態の開示は、以下の特許請求の範囲に明記される本開示の範囲の例証であって、制限ではないことが意図される。

Claims (15)

  1. 1つまたは複数の所定の偏光楕円パラメータを有する楕円偏光を出力するように構成された第1の光学素子と、
    キラリティを有する複屈折材料を含み、前記第1の光学素子から前記楕円偏光を受け入れ、前記楕円偏光を円偏光として反射させるように構成された第2の光学素子と
    を備える、光学デバイス。
  2. 前記第2の光学素子は、実質的にゼロの光透過率で前記楕円偏光を透過させるように構成される、請求項1に記載の光学デバイス。
  3. 前記1つまたは複数の所定の偏光楕円パラメータは、楕円率または配向角のうちの少なくとも1つを含む、請求項1に記載の光学デバイス。
  4. 前記楕円偏光の前記楕円率は、前記複屈折材料のキラリティが左旋であるとき約-1<ε≦-0.85、もしくは前記複屈折材料のキラリティが右旋であるとき約0.85≦ε<1の範囲にあるか、または前記楕円偏光の前記配向角は、約75度≦Ψ≦90度の範囲にある、請求項3に記載の光学デバイス。
  5. 前記楕円偏光に対する前記第2の光学素子の最小光透過率は、入射円偏光に対する前記第2の光学素子の最小光透過率と比較して、少なくとも0.1%、少なくとも0.2%、少なくとも0.3%、少なくとも0.4%、または少なくとも0.5%低減され、前記楕円偏光および前記入射円偏光の各々は、前記複屈折材料の前記キラリティと同じである掌性を有する、請求項1に記載の光学デバイス。
  6. 前記入射光は、直線偏光であり、前記第2の光学素子は、四分の一波長板であり、前記四分の一波長板の偏光軸は、前記直線偏光を前記1つまたは複数の所定の偏光楕円パラメータを有する前記楕円偏光へと変換するために、前記直線偏光の偏光方向に対して配向される、請求項1に記載の光学デバイス。
  7. 入射光を1つまたは複数の所定の偏光楕円パラメータを有する楕円偏光へと変換するように構成された光学波長板、および前記楕円偏光の第1の部分を透過させ、前記楕円偏光の第2の部分を反射させるように構成されたミラーを含む第1の光学素子と、
    前記ミラーから前記楕円偏光の前記第1の部分を受け入れ、前記楕円偏光の前記第1の部分を、第1の掌性を有する円偏光として前記ミラーに向けて反射させるように構成された反射偏光子を含む第2の光学素子であって、前記反射偏光子が、キラリティを有する複屈折材料を含む、第2の光学素子と
    を備える、光学レンズアセンブリ。
  8. 前記ミラーは、前記第1の掌性を有する前記円偏光を、第2の掌性を有する円偏光として前記反射偏光子に向けて反射させるようにさらに構成され、
    前記反射偏光子は、前記第2の掌性を有する前記円偏光を透過させるようにさらに構成され、
    前記第1の掌性は、前記第2の掌性と反対である、請求項7に記載の光学レンズアセンブリ。
  9. 前記反射偏光子は、実質的にゼロの光透過率で前記楕円偏光を透過させるように構成される、請求項7に記載の光学レンズアセンブリ。
  10. 前記1つまたは複数の所定の偏光楕円パラメータは、楕円率または配向角のうちの少なくとも1つを含む、請求項7に記載の光学レンズアセンブリ。
  11. 前記楕円偏光の前記楕円率は、前記複屈折材料のキラリティが左旋であるとき約-1<ε≦-0.85、もしくは前記複屈折材料のキラリティが右旋であるとき約0.85≦ε<1の範囲にあるか、または前記楕円偏光の前記配向角は、約75度≦Ψ≦90度の範囲にある、請求項10に記載の光学レンズアセンブリ。
  12. 前記複屈折材料は、一定らせんピッチを有するか、または前記複屈折材料は、前記複屈折材料の軸方向に沿って勾配らせんピッチを有する、請求項7に記載の光学レンズアセンブリ。
  13. 前記反射偏光子は、少なくとも2つの異なるらせんピッチを有する複屈折材料の複数の層のスタックを含み、および任意選択的に、前記反射偏光子は、前記複屈折材料の層間に配設される複数のポジティブCプレートをさらに含む、請求項7に記載の光学レンズアセンブリ。
  14. 前記光学波長板は、四分の一波長板であり、
    前記四分の一波長板の偏光軸は、前記入射光を前記1つまたは複数の所定の偏光楕円パラメータを有する前記楕円偏光へと変換するために、前記入射光の偏光方向に対して配向される、請求項7に記載の光学レンズアセンブリ。
  15. 第1の掌性を有する第1の偏光を発するように構成された光源アセンブリと、
    前記光源アセンブリから受け入れた前記第1の偏光を誘導し、前記第1の偏光を出力するように構成された導光板であって、前記導光板が、2つのくさびであって、前記2つのくさびの間の傾斜面において互いに結合される、2つのくさび、および前記傾斜面に配設される反射偏光子を含む、導光板と、
    前記導光板の第1の側面に配置され、前記第1の掌性を有する前記第1の偏光を、前記第1の掌性と反対の第2の掌性を有する第2の偏光として反射させるように構成された反射シートと
    を備える、照明システムであって、
    前記反射偏光子は、キラリティを有する複屈折材料を含み、選択的に、前記第1の掌性を有する前記第1の偏光を透過させ、前記第2の掌性を有する前記第2の偏光を反射させるように構成され、および任意選択的に、
    前記光源アセンブリは、前記導光板の第2の側面において前記導光板に結合され、
    前記導光板の前記第1の側面および前記第2の側面は、互いに対向して配置される、照明システム。
JP2022548449A 2020-03-16 2021-03-07 液晶反射偏光子およびこれを有するパンケーキレンズアセンブリ Pending JP2023517482A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/820,695 2020-03-16
US16/820,695 US11269131B2 (en) 2020-03-16 2020-03-16 Liquid crystal reflective polarizer and pancake lens assembly having the same
PCT/US2021/021279 WO2021188311A1 (en) 2020-03-16 2021-03-07 Liquid crystal reflective polarizer and pancake lens assembly having the same

Publications (1)

Publication Number Publication Date
JP2023517482A true JP2023517482A (ja) 2023-04-26

Family

ID=75267638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022548449A Pending JP2023517482A (ja) 2020-03-16 2021-03-07 液晶反射偏光子およびこれを有するパンケーキレンズアセンブリ

Country Status (5)

Country Link
US (2) US11269131B2 (ja)
EP (2) EP4121805A1 (ja)
JP (1) JP2023517482A (ja)
KR (1) KR20220147088A (ja)
WO (1) WO2021188311A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11726326B1 (en) * 2020-06-11 2023-08-15 Meta Platforms Technologies, Llc Wedge light guide
TWI807358B (zh) * 2021-06-30 2023-07-01 國立陽明交通大學 具有液晶元件的餅乾透鏡組件
CN115509022B (zh) * 2022-08-17 2024-10-18 业成光电(深圳)有限公司 折叠式透镜系统及其制造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6630974B2 (en) 1991-11-27 2003-10-07 Reveo, Inc. Super-wide-angle cholesteric liquid crystal based reflective broadband polarizing films
US5627666A (en) * 1994-07-27 1997-05-06 Board Of Regents Of The University Of Colorado Liquid crystal phase modulator using cholesteric circular polarizers
JP3295583B2 (ja) * 1994-12-19 2002-06-24 シャープ株式会社 光学装置および該光学装置を用いた頭部搭載型ディスプレイ
US5731886A (en) 1995-09-28 1998-03-24 Rockwell International Corporation Birefringent compensator for reflective polarizers
US5715023A (en) * 1996-04-30 1998-02-03 Kaiser Electro-Optics, Inc. Plane parallel optical collimating device employing a cholesteric liquid crystal
CN101910919A (zh) * 2007-12-28 2010-12-08 3M创新有限公司 具有镜面局部反射器和圆形模式反射型偏振器的背光照明系统
JP2014174468A (ja) 2013-03-12 2014-09-22 Fujifilm Corp 円偏光層、円偏光層の積層体、メガネおよび3d画像鑑賞システム
CN106164745B (zh) * 2014-04-09 2020-04-24 3M创新有限公司 头戴式显示器和低醒目性瞳孔照明器
CN110121668B (zh) * 2017-02-09 2022-03-04 富士胶片株式会社 半反射镜、半反射镜的制造方法及带图像显示功能的反射镜

Also Published As

Publication number Publication date
EP4121805A1 (en) 2023-01-25
US20210286124A1 (en) 2021-09-16
EP4184226A3 (en) 2023-08-02
KR20220147088A (ko) 2022-11-02
WO2021188311A1 (en) 2021-09-23
EP4184226A2 (en) 2023-05-24
CN115244434A (zh) 2022-10-25
US11269131B2 (en) 2022-03-08
US20220155513A1 (en) 2022-05-19

Similar Documents

Publication Publication Date Title
CN114341681A (zh) 用于防窥显示器的光学堆叠
WO2020146091A1 (en) Optical stack for privacy display
JP2023517482A (ja) 液晶反射偏光子およびこれを有するパンケーキレンズアセンブリ
US11573357B2 (en) Lens assembly having circular reflective polarizer
CN112639592A (zh) 用于防窥显示器的光学堆叠
US11215743B2 (en) Achromatic optical device based on birefringent materials having positive and negative birefringence dispersions
US11624864B2 (en) Optical device including optically anisotropic molecules having intermediate pretilt angles
US20220367839A1 (en) Color conversion display with polarized emission enhancement
US11536885B2 (en) Display device
US20220269092A1 (en) Display device including polarization selective microlens array
CN115244434B (zh) 液晶反射偏振器和具有该偏振器的薄饼透镜组件
US20220269120A1 (en) Devices including birefringent medium having chirality
US12066648B2 (en) Apochromatic liquid crystal polarization hologram device
WO2024014202A1 (ja) 光学系及び表示装置
US11796881B2 (en) Blue phase liquid crystal polarization hologram comprising liquid crystal molecules having a spatially varying in-plane orientation pattern and device including the same
US20240118547A1 (en) Optical Display System and Electronics Device
US20230185007A1 (en) Lens portion and display device
WO2022178345A1 (en) Devices including birefringent medium having chirality
WO2022178406A1 (en) Display device including polarization selective microlens array
CN117413220A (zh) 蓝相液晶偏振全息图及包括其的设备

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240903