JP2023508892A - vane motor - Google Patents

vane motor Download PDF

Info

Publication number
JP2023508892A
JP2023508892A JP2022537444A JP2022537444A JP2023508892A JP 2023508892 A JP2023508892 A JP 2023508892A JP 2022537444 A JP2022537444 A JP 2022537444A JP 2022537444 A JP2022537444 A JP 2022537444A JP 2023508892 A JP2023508892 A JP 2023508892A
Authority
JP
Japan
Prior art keywords
casing
rotor
inner cylinder
vane
vanes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022537444A
Other languages
Japanese (ja)
Inventor
ウォンソク チェ
Original Assignee
イーエックスディーエル カンパニーリミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーエックスディーエル カンパニーリミテッド filed Critical イーエックスディーエル カンパニーリミテッド
Publication of JP2023508892A publication Critical patent/JP2023508892A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/344Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F01C1/348Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the vanes positively engaging, with circumferential play, an outer rotatable member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/344Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/02Arrangements of bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/18Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/348Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the vanes positively engaging, with circumferential play, an outer rotatable member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C2/348Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the vanes positively engaging, with circumferential play, an outer rotatable member

Abstract

圧力流体が投入されて排出される入口及び出口を有するケーシングと、ケーシング内で圧力流体の圧力を受けてケーシングに据置された回転軸を中心に回転するようになされたロータを備え、ロータは、回転軸と一致する中心軸を有する全体的に円柱形態の本体と、本体の側面に形成された溝に設けられ、回転位相に応じて溝から突出する幅が変化するベーンを有し、ケーシング内にロータを収容し、ケーシングの入口を通じて投入された圧力流体がケーシングの出口を通じて排出されるまで圧力流体を内部に保有しつつ、ベーン端部がその内壁面に接触するようになされ、ケーシング内における回転中心位置は、回転軸と離間しているが、ロータが回転するときにともに回転できるようになされたシリンダ状内筒を備えることを特徴とするベーンモータが開示される。本発明によれば、既存のベーンモータではロータ回転時にベーン端部がケーシングの内側面と摩擦を引き起こし、ケーシングの内側面とベーンがすべて摩耗して交換、修理の頻度が高かったが、これを構造的に変えて耐久性及びメンテナンス費用を節約することができ、摩擦によって消耗したエネルギーが減って回転力発生に用いることができるので、ベーンモータのエネルギー切換効率を高めることができる。【選択図】図4A casing having an inlet and an outlet through which pressure fluid is introduced and discharged, and a rotor that receives the pressure of the pressure fluid in the casing and rotates around a rotating shaft that is placed in the casing. A generally cylindrical main body having a central axis coinciding with the rotation axis, vanes provided in grooves formed on the side surfaces of the main body and projecting from the grooves with varying widths depending on the rotational phase. The rotor is accommodated in the casing, and the vane ends are in contact with the inner wall surface while holding the pressure fluid inside until the pressure fluid introduced through the inlet of the casing is discharged through the outlet of the casing. A vane motor is disclosed, characterized in that it comprises a cylindrical inner cylinder, the center of rotation of which is spaced apart from the axis of rotation, but which is adapted to rotate together with the rotor when it rotates. According to the present invention, in existing vane motors, when the rotor rotates, the ends of the vanes cause friction with the inner surface of the casing, and the inner surface of the casing and the vanes all wear out, requiring frequent replacement and repair. Since the energy consumed by friction is reduced and can be used to generate rotational force, the energy switching efficiency of the vane motor can be improved. [Selection drawing] Fig. 4

Description

本発明は、ベーンモータに関し、より詳細には、空圧を通じて回転力を発生させることができるベーンモータにおいて出力効率を高めることができる構成に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vane motor, and more particularly, to a vane motor capable of generating rotational force through air pressure, which can improve output efficiency.

ベーンモータは、流体圧力を回転動力に変える機械装置の1つである。図1は、既存のベーンモータの一例を示す。 A vane motor is a mechanical device that converts fluid pressure into rotational power. FIG. 1 shows an example of an existing vane motor.

ここで、ケーシング211内に回転するロータが設けられ、ケーシング211の一部には、圧力を作用させる流体が流入される流体入口253と、流体が放出される流体出口255がある。流体入口253に圧力流体を流入させると、流体圧力は、ロータの外側に延び、その延びる長さが可変するベーン235に作用するようになる。したがって、ベーン235は、圧力方向に移動しつつロータ全体がケーシング211内で回転するようになる。ベーン235に圧力を伝達した流体は、ケースの流体出口255に到達すると、圧力の低い流体出口255を通じて放出される。 Here, a rotating rotor is provided in a casing 211, and a part of the casing 211 has a fluid inlet 253 into which a fluid for exerting pressure is introduced and a fluid outlet 255 through which the fluid is discharged. When pressurized fluid is caused to flow into the fluid inlet 253, the fluid pressure extends to the outside of the rotor and acts on the vanes 235 whose extending length is variable. Therefore, the entire rotor rotates within the casing 211 while the vanes 235 move in the pressure direction. When the fluid that has transmitted pressure to the vanes 235 reaches the fluid outlet 255 in the case, it is discharged through the lower pressure fluid outlet 255 .

すなわち、流体入口から入った圧力流体が圧力の低い流体出口と接触すると、流体出口から抜け出ながら、その過程でベーン235に圧力を与えてロータを回転するようにする。 That is, when the pressurized fluid coming in from the fluid inlet comes into contact with the fluid outlet having a low pressure, it leaves from the fluid outlet and applies pressure to the vanes 235 to rotate the rotor.

このとき、ベーン235は、ロータ本体231に結合され、ベーン235の本体231から突出する長さは可変されてもよい。このため、ベーン235は、ロータ本体231の溝231aに挿入され、溝231a内で溝の長手方向に移動してもよい。ケーシング211の内壁面とロータ本体231の回転軸233は、ケーシングの内壁面の位置によってその間隔が異なるので、間隔の広いところでは、ベーン235の大部分が本体231の溝231aから抜け出てベーン235の突出長さが増加し、間隔の狭いところでは、ベーンの大部分は本体の溝に挿入された状態となってベーンの突出長さが減少するようになる。 At this time, the vanes 235 are coupled to the rotor body 231, and the protruding length of the vanes 235 from the body 231 may be varied. Thus, the vanes 235 may be inserted into the grooves 231a of the rotor body 231 and move longitudinally within the grooves 231a. Since the distance between the inner wall surface of the casing 211 and the rotating shaft 233 of the rotor body 231 varies depending on the position of the inner wall surface of the casing, the majority of the vanes 235 are pulled out of the grooves 231a of the main body 231 and the vanes 235 The protruding length of the vane increases, and at narrower intervals, most of the vane is inserted into the groove of the main body and the protruding length of the vane decreases.

ベーン235が本体231の溝231aに円滑に出し入れされるために、溝の底部にはベーンとの間にバネのような弾性体を含んでもよい。または、ロータの回転遠心力によってベーンは溝から抜け出ることがあるので、別途バネは設けなくてもよい。 In order for the vane 235 to smoothly move in and out of the groove 231a of the main body 231, an elastic body such as a spring may be included at the bottom of the groove between the vane and the vane. Alternatively, since the vanes may come out of the grooves due to the rotational centrifugal force of the rotor, no separate springs may be provided.

ロータ本体231と内壁面との間の間隔が狭くなる区間では、ロータ本体231が回転するときに、ベーン235の端部は内壁面と接触しつつ溝231aに挿入されるようにする圧力を受けるようになる。 In the section where the distance between the rotor body 231 and the inner wall surface is narrowed, when the rotor body 231 rotates, the end of the vane 235 receives pressure to be inserted into the groove 231a while contacting the inner wall surface. become.

ところが、既存のベーンモータでは、ベーン235の端部とケーシング211の内壁面との間の隙間が大きすぎると流体がこの隙間から抜け出て圧力の損失をもたらし、隙間が小さすぎるとベーンとケーシングの内壁面との間の摩擦が激しく流体圧力によるエネルギーが摩擦で相当部分が損失し、ベーンと内壁面の摩耗によって交換及びメンテナンス費用が増加する問題がある。このような問題は、互いにトレードオフ(trade off)関係にあり、既存のベーンモータで完全に解決することができない問題なので、多様な材質を有して多様なサイズを有する個々のベーンモータの種類において、実験的に最も効率が優れ、耐久性のある適切な隙間の大きさを把握しなければならない。 However, in existing vane motors, if the gap between the end of the vane 235 and the inner wall surface of the casing 211 is too large, the fluid will escape through this gap and cause pressure loss. There is a problem that the friction between the vane and the wall surface is severe, a considerable part of the energy due to the fluid pressure is lost due to the friction, and the wear of the vane and the inner wall surface increases replacement and maintenance costs. These problems are in a trade-off relationship and cannot be completely solved by existing vane motors. The most efficient and durable appropriate gap size must be determined experimentally.

また、流体圧力によるロータの回転力を大きくするためには、ベーンに及ぶ流体の力の総量を増やさなければならず、この力は単位面積当たり作用する力である圧力に、この圧力が作用する面積を掛けた値なので、ロータが回転するときにベーンと流体が触れる面積を増やす必要がある。 In addition, in order to increase the rotational force of the rotor due to the fluid pressure, the total force of the fluid acting on the vanes must be increased. Since it is a value multiplied by the area, it is necessary to increase the area of contact between the vanes and the fluid when the rotor rotates.

しかし、ベーンが溝から遠くに出すぎると完全に逸脱したり、ベーンがケーシングの内壁面で摩擦する途中で振動やその他の不安定な状態になるおそれがあるので、ロータに安定的に結合を維持する限度内で流体との接続面積を増やす設計形態をなすことが重要となる。 However, if the vanes protrude too far from the grooves, they may completely deviate or vibrate or become unstable in the process of rubbing against the inner wall of the casing. It is important to have a design form that increases the area of contact with the fluid within the limits that are maintained.

大韓民国 登録特許10-1116511:ライナが構成されたエアベーンモータKorea Registered Patent 10-1116511: Air vane motor with liner 大韓民国 登録特許10-1874583:ベーンモータRepublic of Korea Registered Patent 10-1874583: Vane Motor

本発明は、前述の既存のベーンモータの限界点を克服し、既存に比べて効率性の高い構成を有するベーンモータを提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to overcome the limitations of existing vane motors described above and to provide a vane motor having a structure with higher efficiency than existing vane motors.

前記目的を達成するための本発明は、
圧力流体が投入されて排出される入口及び出口を有するケーシングと、
ケーシング内で圧力流体の圧力を受けてケーシングに据置された回転軸を中心に回転するようになされたロータを備え、
ロータは、回転軸と一致する中心軸を有する全体的に円柱形態の本体と、本体の側面に形成された溝に設けられ、回転位相に応じて溝から突出する幅が変化するベーンを有するベーンモータにおいて、
ケーシング内にロータを収容し、ケーシングの入口を通じて投入された圧力流体がケーシングの出口を通じて排出されるまで圧力流体を内部に保有しつつ、ベーン端部がその内壁面に接触するようになされ、ケーシング内における回転中心位置は、回転軸と離間しているが、ロータが回転するときにともに回転できるようになされたシリンダ状内筒を備えることを特徴とする。
The present invention for achieving the above object is
a casing having an inlet and an outlet through which pressurized fluid is introduced and discharged;
Equipped with a rotor configured to rotate around a rotating shaft installed in the casing under the pressure of the pressurized fluid in the casing,
The rotor is a vane motor having a generally cylindrical body having a central axis coinciding with the rotation axis, and vanes provided in grooves formed in the side surfaces of the body and protruding from the grooves with varying widths according to the rotational phase. in
The rotor is housed in the casing, and the vane ends are brought into contact with the inner wall surface of the casing while the pressure fluid introduced through the inlet of the casing is retained until the fluid is discharged through the outlet of the casing. The center of rotation within the rotor is characterized by having a cylindrical inner cylinder spaced apart from the axis of rotation, but capable of rotating together with the rotor when it rotates.

本発明において、ケーシング内におけるシリンダの回転中心とロータの回転軸は、一定の位置を維持し、シリンダがケーシング内で回転するときにシリンダの外側壁面とケーシングの内壁面との間の摩擦を減らすように転動手段をさらに備えてもよい。 In the present invention, the center of rotation of the cylinder and the axis of rotation of the rotor in the casing maintain a constant position to reduce the friction between the outer wall surface of the cylinder and the inner wall surface of the casing when the cylinder rotates in the casing. A rolling means may be further provided.

本発明において、ケーシングは、内筒よりも大径のシリンダ状外筒の両端を全体的に円板形態の閉鎖板で閉じるようになされてもよい。 In the present invention, the casing may be configured such that both ends of a cylindrical outer cylinder having a diameter larger than that of the inner cylinder are closed with a disk-shaped closing plate as a whole.

このとき、閉鎖板の少なくとも1つは、ロータの回転軸が回転動力を伝達するために引き出すことができるようになされ、回転軸と閉鎖板の摩擦を減らすためのベアリングが介在されてもよい。 At this time, at least one of the closing plates can be pulled out by the rotating shaft of the rotor to transmit rotational power, and a bearing may be interposed to reduce friction between the rotating shaft and the closing plate.

本発明において、閉鎖板と内筒の長手方向(回転軸方向)の両端、閉鎖板とロータ本体及びベーンの両端は、滑りは可能で圧力流体は漏れにくい微細隙間を有するように設けられてもよい。 In the present invention, the closing plate and both ends in the longitudinal direction (rotational axis direction) of the inner cylinder, and the closing plate and both ends of the rotor body and vanes may be provided so as to have fine gaps that allow sliding and prevent pressure fluid from leaking. good.

閉鎖板の少なくとも1つ又は両方すべてに圧力流体の入口及び出口が設けられてもよい。このような場合、入口及び出口は、回転軸方向から見るとき シリンダ状内筒の内側空間でありながら同時にロータ本体の外側である空間に少なくともその一部が通じるように設けられ、円柱方向に長く円弧状(arch shape)からなってもよい。 At least one or both of the closure plates may be provided with inlets and outlets for pressure fluid. In such a case, the inlet and the outlet are provided so that at least a part thereof communicates with the space which is the inner space of the cylindrical inner cylinder and the outer space of the rotor body when viewed from the direction of the rotation axis, and is elongated in the direction of the cylinder. It may consist of an arch shape.

本発明において、特に入口及び出口がシリンダ状内筒の内側でありながら同時にロータ本体の外側である空間に通じるように設けられるとき、好ましくは、回転軸方向から見るとき、ロータ本体とベーンを結合させる溝の入口において,圧力流体の入口に通じるように,回転方向基準で後側にはベーンをさらに露出するように拡張部を有してもよい。 In the present invention, especially when the inlet and outlet are provided to communicate with a space that is inside the cylindrical inner cylinder and outside the rotor body at the same time, it is preferable that the rotor body and the vanes are coupled when viewed from the direction of the rotation axis. At the entrance of the groove, there may be an extension to further expose the vane on the rear side in the direction of rotation so as to communicate with the entrance of the pressure fluid.

このとき、拡張部は、ロータの長手方向の両端部分にすべて形成されてもよく、長手方向から見るとき、特に円弧状の入口は、該拡張部が円弧状入口の開始部分から重なるように形成されてもよい。 At this time, the extensions may be formed at both longitudinal end portions of the rotor, and when viewed in the longitudinal direction, in particular the arcuate inlet is formed such that the extension overlaps from the start of the arcuate inlet. may be

本発明によれば、既存のベーンモータではロータ回転時にベーン端部がケーシングの内側面と摩擦を引き起こし、ケーシングの内側面とベーンがすべて摩耗して交換、修理の頻度が高かったが、これを構造的に変えて耐久性及びメンテナンス費用を節約することができ、摩擦によって消耗したエネルギーが減って回転力発生に用いることができるので、ベーンモータのエネルギー切換効率を高めることができる。 According to the present invention, in existing vane motors, when the rotor rotates, the ends of the vanes cause friction with the inner surface of the casing, and the inner surface of the casing and the vanes all wear out, requiring frequent replacement and repair. Since the energy consumed by friction is reduced and can be used to generate rotational force, the energy switching efficiency of the vane motor can be improved.

図1は、既存のベーンモータ構成を示す斜視図、
図2は、本発明のベーンモータの一実施例を示す外観斜視図、
図3は、本発明のベーンモータの一実施例を示す分解斜視図、
図4は、図3におけるロータ及び内筒を組み立てた状態を示すベーンモータの斜視図、
図5は、図4のロータ及び内筒を組み立てた部分を側面から見た側面図、
図6は、図5に閉鎖板をさらに結合して閉鎖板の流体入、出口とロータ及び内筒の相対的位置関係を示す透視的側面図、
図7は、図3のベーンモータの回転軸を含むロータ本体を示す斜視図である。
FIG. 1 is a perspective view showing an existing vane motor configuration;
FIG. 2 is an external perspective view showing an embodiment of the vane motor of the present invention;
FIG. 3 is an exploded perspective view showing an embodiment of the vane motor of the present invention;
4 is a perspective view of the vane motor showing a state in which the rotor and the inner cylinder in FIG. 3 are assembled;
FIG. 5 is a side view of the assembly of the rotor and the inner cylinder of FIG. 4, viewed from the side;
6 is a perspective side view showing the relative positional relationship between the fluid inlet and outlet of the closing plate and the rotor and the inner cylinder, further combining the closing plate with FIG. 5;
7 is a perspective view showing a rotor body including a rotating shaft of the vane motor of FIG. 3. FIG.

以下、図面を参照しながら、具体的な実施例を通じて本発明をより詳細に説明することにする。 Hereinafter, the present invention will be described in more detail through specific embodiments with reference to the drawings.

図2ないし図7に図示された本発明のベーンモータの一実施例を参照すると、
まず、全体ベーンモータ1は、最外殻をなすケーシングと、シリンダ状内筒20と、内筒20内に位置するロータを備えてなる。
Referring to one embodiment of the vane motor of the present invention illustrated in FIGS. 2-7,
First, the overall vane motor 1 comprises a casing forming the outermost shell, a cylindrical inner cylinder 20 and a rotor positioned within the inner cylinder 20 .

ケーシングは、略シリンダ形態のケーシング本体11と、本体11の長手方向の両端を閉鎖する閉鎖板13、15を備え、それぞれの閉鎖板には、ロータに連結される回転軸33が据置又は通過する回転軸取付穴131、151と、外部の高圧流体が投入される円弧状流体入口135、155と、高圧流体が内部を経て排出される円弧状流体出口133、153が配置される。回転軸取付穴131、151には、ベアリング17が設けられ、回転軸33は、閉鎖板13、15と直接触れずにベアリング17によって回転時に摩擦を減らすことができる。 The casing includes a substantially cylindrical casing body 11 and closing plates 13 and 15 that close both ends of the body 11 in the longitudinal direction. A rotating shaft 33 connected to a rotor is placed or passes through each of the closing plates. Rotating shaft mounting holes 131, 151, arc-shaped fluid inlets 135, 155 into which external high-pressure fluid is introduced, and arc-shaped fluid outlets 133, 153 through which the high-pressure fluid is discharged are arranged. Bearings 17 are provided in the rotary shaft mounting holes 131 and 151 , and the rotary shaft 33 does not come into direct contact with the closing plates 13 and 15 so that the bearings 17 can reduce friction during rotation.

ケーシング本体11の内部には、シリンダ状内筒20が設けられる。内筒20は、ケーシング本体11と実質的に同一の長さを有してケーシングの閉鎖板13、15の内側面と内筒の長手方向の両端が微細な隙間を介在しつつ接触してケーシング内で内筒20が回転すると、閉鎖板13、15の内側面に対して滑って摩擦を発生させることがある。内筒20は、設置時、ケーシング本体11の内壁凹部119に設けられた複数の転動手段19、ここでは転動台19bのローラ19a上に置かれる。転動台19bは、円柱形態又は軸形態でもよく、回転軸33と平行で且つ回転可能に設けられてケーシング本体11内で内筒20が回転すると、内筒20の外側面と接触したローラ19a及び転動台19bが回転して内筒20とのケーシング本体11の内側壁との間に内筒回転による滑り摩擦が発生しないようにする。 A cylindrical inner cylinder 20 is provided inside the casing main body 11 . The inner cylinder 20 has substantially the same length as the casing main body 11, and the inner surfaces of the closing plates 13 and 15 of the casing and both ends of the inner cylinder in the longitudinal direction are in contact with each other with fine gaps interposed therebetween to form the casing. As the inner cylinder 20 rotates therein, it may slip against the inner surfaces of the closure plates 13, 15 and cause friction. When installed, the inner cylinder 20 is placed on a plurality of rolling means 19 provided in the inner wall recess 119 of the casing body 11, here the rollers 19a of the rolling base 19b. The rolling base 19b may have a cylindrical shape or a shaft shape, and is parallel to the rotating shaft 33 and rotatably provided. Also, the rotation of the rolling base 19b prevents the occurrence of sliding friction between the inner cylinder 20 and the inner wall of the casing body 11 due to the rotation of the inner cylinder.

内筒20内には回転軸33を有する円柱状ロータ本体31と、ロータ本体31の溝31aに結合されたベーン35を備えたロータが設けられる。ロータ本体31をなす円柱の長さもケーシング本体11の長さと実質的に同一で、ロータ回転時の閉鎖板13、15の内面と円柱状ロータ本体31の両端表面との間にも微細隙間を介在させた状態で接触しつつ滑り摩擦を発生させる。 A cylindrical rotor body 31 having a rotating shaft 33 and a rotor having vanes 35 coupled to grooves 31 a of the rotor body 31 are provided in the inner cylinder 20 . The length of the cylinder forming the rotor main body 31 is substantially the same as the length of the casing main body 11, and a minute gap is interposed between the inner surfaces of the closing plates 13 and 15 and the both end surfaces of the cylindrical rotor main body 31 when the rotor rotates. Sliding friction is generated while contacting with the

ロータ本体31とベーン35の結合形態は、既存のベーンモータの結合形態と同一でもよく、溝31a内におけるベーン35の動作も周知のことなので、これに対するさらに詳細な説明は省略することにする。 The coupling form of the rotor body 31 and the vanes 35 may be the same as the coupling form of the existing vane motor, and the operation of the vanes 35 in the grooves 31a is well known, so further detailed description thereof will be omitted.

ただし、ここでは既存のロータと異なり、ロータがケーシング本体11の内側面に直接接触するように設けられず、内筒20の内側面に直接接触するように設けられる点で差異を有する。 However, here, unlike the existing rotor, the rotor is not provided so as to directly contact the inner surface of the casing body 11, but is provided so as to directly contact the inner surface of the inner cylinder 20.

ロータの回転軸は、内筒20の仮想の回転中心軸と平行でありながら一定の距離離間して設けられる。ケーシングの閉鎖板13、15には、このように設けられた回転軸33が貫通又は係止される穴151、131がある。穴の位置は、ケーシング本体11がなすシリンダの仮想の回転中心軸とも一定の距離離間されている。 The rotation axis of the rotor is parallel to the imaginary center axis of rotation of the inner cylinder 20 and is spaced apart by a constant distance. The closure plates 13, 15 of the casing have holes 151, 131 through which the rotating shafts 33 thus provided pass or are locked. The position of the hole is also separated by a constant distance from the imaginary center axis of rotation of the cylinder formed by the casing body 11 .

このような構成によって、ケーシング内におけるロータは、シリンダ状内筒20をケーシングの転動台19bがある一側に押し付けてケーシング本体をなすシリンダの仮想の回転中心軸とシリンダ状内筒20の仮想の回転中心軸も互いに一定の距離離間された状態になるようにする。ロータが内筒を押し付けつつ接触するところでロータ本体31と内筒20の内壁面との間の距離は最小となり、ベーン35は溝31a内に完全に入りロータ本体が内筒と触れるか、ベーンが本体から突出した幅が小さくなる。その反対側(回転軸を基準に反対側)では、ロータ本体31と内筒20の内壁面との間の距離が最大となり、ロータ本体31からベーン35が突出した幅が大きくなる。 With such a configuration, the rotor in the casing presses the cylindrical inner cylinder 20 against one side of the casing where the rolling base 19b is located, and rotates between the virtual rotation center axis of the cylinder forming the casing main body and the virtual inner cylindrical cylinder 20. The rotation center axes of are also spaced apart from each other by a constant distance. The distance between the rotor main body 31 and the inner wall surface of the inner cylinder 20 is minimized where the rotor presses against the inner cylinder and the inner wall surface of the inner cylinder 20 becomes the minimum, and the vanes 35 completely enter the grooves 31a. The width protruding from the main body is reduced. On the opposite side (opposite side with respect to the rotation axis), the distance between the rotor main body 31 and the inner wall surface of the inner cylinder 20 is maximum, and the width of the vane 35 protruding from the rotor main body 31 is large.

このような構成において、溝31aは、必要に応じて様々な形態で形成されてもよく、この溝に沿って外側及び内側に移動するベーン35は、円柱状ロータ本体31の側面から垂直又は一定の角度を有するように傾いた方向に突出してもよい。この実施例において、溝31aは、ロータ本体31の側面から長手方向に全体範囲にかけて形成され、回転軸33を中心とする放射方向と一定の角度を有してロータが回転する方向に若干傾いており、それによってベーン35も本体の側面から垂直方向基準に回転進行方向に若干傾くように突出している。 In such a configuration, the groove 31a may be formed in various forms as desired, and the vanes 35 moving outwardly and inwardly along this groove are perpendicular or constant from the side of the cylindrical rotor body 31. It may protrude in an inclined direction so as to have an angle of In this embodiment, the groove 31a is formed from the side surface of the rotor body 31 over the entire longitudinal direction, and is slightly inclined in the direction of rotation of the rotor at a certain angle with respect to the radial direction about the rotation axis 33. As a result, the vane 35 also protrudes from the side surface of the main body so as to be slightly inclined in the direction of rotation with respect to the vertical direction.

ここで、ベーン35は、溝31aに若干の隙間を有するように設けられ、ロータが回転すると遠心力によって常に外側に突出しようとする傾向を有するが、内筒20の内壁面によって制限され、内筒の内壁面は、ロータが回転することによってベーン35に溝31a方向の力を作用させる。したがって、ベーンは、バネのような弾性体が溝に設けられなくてもロータが回転しつつ溝に沿って外側又は内側に移動することができる。 Here, the vanes 35 are provided so as to have a slight gap in the groove 31a, and have a tendency to always protrude outward due to centrifugal force when the rotor rotates. The inner wall surface of the cylinder applies force to the vane 35 in the direction of the groove 31a as the rotor rotates. Therefore, the vane can move outwardly or inwardly along the groove while the rotor rotates, even if an elastic body such as a spring is not provided in the groove.

このような構成のベーンモータにおける構成要素の作用又は動作を考察すると、まず、ベーンモータの入口には外側から高圧の流体を供給する供給器(未図示)が結合される。ここではベーンモータの長手方向の両方にある閉鎖板13、15すべてに流体入口135、155と流体出口133、153が形成されるので、高圧流体供給器は、中途にて分岐されて両方の入口のすべてに高圧流体を供給する。同様に、高圧流体回収器は、中途にて分岐されて両方の出口のすべてからモータで用いられた圧力の下がった流体を回収するようになる。 Considering the action or operation of the constituent elements in the vane motor having such a configuration, first, a feeder (not shown) for supplying high-pressure fluid from the outside is coupled to the inlet of the vane motor. Here, fluid inlets 135, 155 and fluid outlets 133, 153 are formed in all closing plates 13, 15 on both longitudinal sides of the vane motor, so that the high-pressure fluid supply is branched midway to both inlets. Supply high pressure fluid to all. Similarly, the high pressure fluid collector is forked midway to collect the depressurized fluid used by the motor from all of the outlets.

円弧状流体入口135、155に高圧流体が供給されると、閉鎖板の円弧状流体入口を通過した高圧流体は、図6で示すように、その位置でロータ本体31と内筒20の内壁面との間の空間に注入される。流体の圧力は、空間の境界面の一部をなすベーン35に作用するようになる。ベーンの後面に作用する圧力がその前面に作用する圧力よりも高いとベーンは前方に移動するが、ベーンが設けられたロータ全体は、回転軸33によって回転可能に固定されているので、平行移動はせずに回転移動のみを行うようになる。流体入口135、155の位置の後にロータと内筒との間の空間が拡大し、ベーン35も溝31aから最大に突出してベーンに作用する圧力も漸次に増加する。最大間隔位置の後には円弧状出口が始まるので、この出口を通じて流体が抜け出て流体圧力は減るようになる。 When high-pressure fluid is supplied to the arc-shaped fluid inlets 135 and 155, the high-pressure fluid that has passed through the arc-shaped fluid inlets of the closing plate, as shown in FIG. injected into the space between The pressure of the fluid comes to act on the vanes 35 forming part of the boundary surface of the space. If the pressure acting on the rear face of the vane is higher than the pressure acting on the front face of the vane, the vane will move forward, but the entire rotor on which the vane is mounted is rotatably fixed by the axis of rotation 33, so translational displacement Now only rotates without moving. After the positions of the fluid inlets 135, 155, the space between the rotor and the inner cylinder expands, the vanes 35 also protrude from the grooves 31a to the maximum, and the pressure acting on the vanes gradually increases. An arcuate outlet begins after the maximum spacing position, through which fluid escapes and the fluid pressure is reduced.

このような作用において、本発明のロータは、従来のベーンモータのロータと特段の差異がなく圧力差を通じて回転するようになるが、ここではケーシングの代わりにシリンダ状内筒20が高圧流体が作用する空間を作る。そして、内筒は、固定されたものではないので、ロータが回転するときにベーン端部と接触したシリンダ状内筒にも摩擦によって回転力が伝達され、内筒もロータとほぼ同一の線速度で回転するようになる。 In this operation, the rotor of the present invention rotates through the pressure difference without any particular difference from the rotor of the conventional vane motor, but here, instead of the casing, the cylindrical inner cylinder 20 acts on the high-pressure fluid. make space. Since the inner cylinder is not fixed, when the rotor rotates, the rotational force is also transmitted to the cylindrical inner cylinder that is in contact with the end of the vane by friction, and the linear velocity of the inner cylinder is almost the same as that of the rotor. to rotate.

このような内筒20の回転は、ケーシング本体11内でなされ、内筒とケーシング本体との間には転動台のような転動手段19が設けられ、内筒とケーシングとの間の滑りによる摩擦を減らすことができる。 Such rotation of the inner cylinder 20 is performed within the casing body 11, and a rolling means 19 such as a rolling table is provided between the inner cylinder and the casing body to prevent sliding between the inner cylinder and the casing. can reduce the friction caused by

その結果として、ベーン35と内筒20の内壁面との間の滑りによる摩耗と摩擦熱によるエネルギー消耗は減り、エネルギー消耗が減りつつ圧力流体による回転力発生効率は増加するようになる。 As a result, energy consumption due to abrasion and frictional heat due to sliding between the vanes 35 and the inner wall surface of the inner cylinder 20 is reduced, and the efficiency of generating rotational force by the pressurized fluid is increased while the energy consumption is reduced.

もちろんこの過程でもケーシングの閉鎖板13、15は停止しており、この閉鎖板と接触するシリンダ状内筒20とロータは回転するようになるので、内筒とロータ本体31及びベーン35の長手方向の両端部は、閉鎖板13、15と接触しつつ滑って摩擦熱を発生させてエネルギーを消耗するが、従来に比べて全体的に摩擦によるエネルギー消耗は減るようになる。もちろん、効率をさらに向上させるため、従来のように閉鎖板とロータ本体及びベーンの寸法管理と表面管理を行わなければならず、ケーシングの閉鎖板13、15と回転軸33との間のベアリング17にて摩擦を減らすようにしなければならない。 Of course, even in this process, the closing plates 13 and 15 of the casing are stopped, and the cylindrical inner cylinder 20 and the rotor in contact with these closing plates rotate. Both ends slide in contact with the closing plates 13 and 15 to generate frictional heat and consume energy. Of course, in order to further improve the efficiency, the dimensional control and surface control of the closing plate, the rotor body and the vanes must be performed as before, and the bearing 17 between the closing plates 13, 15 of the casing and the rotating shaft 33 should be used to reduce friction.

以上、限定された実施例を通じて本発明を説明しているが、これは本発明の理解を促すために例示的に説明されたものに過ぎず、本願発明は、これらの特定の実施例に限定されない。 Although the present invention has been described through limited examples, this is merely an exemplary description to facilitate understanding of the present invention, and the present invention is limited to these specific examples. not.

したがって、当該発明が属する分野の通常の知識を有する者であれば、本発明を基に多様な変更や応用例を実施することができ、このような変形例や応用例は添付の特許請求の範囲に属することは当然である。 Accordingly, a person having ordinary knowledge in the field to which the invention pertains can implement various modifications and applications based on the invention, and such modifications and applications are subject to the scope of the appended claims. Naturally, it belongs to the range.

11 ケーシング本体
13、15 閉鎖板
17 ベアリング
19 転動手段
19a ローラ
19b 転動台
20 内筒
31、231 ロータ本体
31a、231a 溝
31b 拡張部
33、233 回転軸
35、235 ベーン
119 内壁凹部
135、155、253 流体入口
133、153、255 流体出口
211 ケーシング
Reference Signs List 11 casing body 13, 15 closing plate 17 bearing 19 rolling means 19a roller 19b rolling base 20 inner cylinder 31, 231 rotor body 31a, 231a groove 31b extension 33, 233 rotating shaft 35, 235 vane 119 inner wall recess 135, 155 , 253 fluid inlet 133, 153, 255 fluid outlet 211 casing

Claims (3)

圧力流体が投入されて排出される入口及び出口を有するケーシングと、
前記ケーシング内で圧力流体の圧力を受けてケーシングに据置された回転軸を中心に回転するようになされたロータを備え、
前記ロータは、前記回転軸と一致する中心軸を有する全体的に円柱形態のロータ本体と、前記ロータ本体の側面に形成された溝に設けられ、回転位相に応じて前記溝から突出する幅が変化するベーンを有するベーンモータにおいて、
前記ケーシング内に前記ロータを収容し、前記ケーシングの入口を通じて投入された圧力流体が前記ケーシングの出口を通じて排出されるまで圧力流体を内部に保有しつつ、前記ベーン端部が内壁面に接触するようになされ、前記ケーシング内における仮想の回転中心軸位置は、前記回転軸と平行でありながら離間しているが、前記ロータが回転するときにともに回転できるようになされたシリンダ状内筒を備えることを特徴とするベーンモータ。
a casing having an inlet and an outlet through which pressurized fluid is introduced and discharged;
A rotor configured to rotate around a rotating shaft placed in the casing under pressure of the pressurized fluid in the casing,
The rotor includes a generally cylindrical rotor body having a center axis coinciding with the rotation axis, and a groove formed in a side surface of the rotor body. In a vane motor with varying vanes,
The rotor is housed in the casing, and the vane ends are brought into contact with the inner wall surface while retaining the pressure fluid introduced through the inlet of the casing until the pressure fluid is discharged through the outlet of the casing. and the virtual center axis of rotation in the casing is parallel to and separated from the rotation axis, but provided with a cylindrical inner cylinder that can rotate together when the rotor rotates. A vane motor characterized by:
前記ケーシング内における前記内筒の仮想の回転中心軸と前記ロータの回転軸は、一定の位置を維持し、前記内筒が前記ケーシング内で回転するときに前記内筒の外側面と前記ケーシングの内壁面との間の摩擦を減らすように転動手段がさらに備えられることを特徴とする請求項1に記載のベーンモータ。 The virtual rotation center axis of the inner cylinder and the rotation axis of the rotor in the casing maintain a constant position, and when the inner cylinder rotates in the casing, the outer surface of the inner cylinder and the casing rotate. 2. The vane motor of claim 1, further comprising rolling means to reduce friction with the inner wall surface. 前記ケーシングは、前記内筒よりも大径のシリンダ状外筒の両端を全体的に円板形態の閉鎖板で閉じるようになされたものであり、
前記閉鎖板の少なくとも1つは、前記ロータの回転軸が回転動力を外部に伝達するために引き出すことができるように据置穴を備え、前記据置穴には前記回転軸と前記閉鎖板の摩擦を減らすためのベアリングが介在され、
前記閉鎖板と前記内筒の長手方向の両端、前記閉鎖板と前記ロータ本体及び前記ベーンの両端は、滑りは可能で圧力流体は漏れにくい微細隙間を有するように設けられ、
前記閉鎖板の少なくとも1つ又は両方すべてに圧力流体の入口及び出口が設けられ、前記入口と前記出口は、前記回転軸方向から見る側面図上で見るとき、前記内筒の内側で且つ前記ロータ本体の外側である空間に設けられ、前記内筒がなす円の円柱方向に長く円弧状からなることを特徴とする請求項1又は2に記載のベーンモータ。
The casing is configured such that both ends of a cylindrical outer cylinder having a diameter larger than that of the inner cylinder are closed by disk-shaped closing plates,
At least one of the closing plates has a mounting hole so that the rotating shaft of the rotor can be pulled out to transmit rotational power to the outside, and the mounting hole absorbs friction between the rotating shaft and the closing plate. A bearing is interposed to reduce
Both ends of the closing plate and the inner cylinder in the longitudinal direction, and both ends of the closing plate, the rotor body, and the vanes are provided so as to have fine gaps that are slidable and that pressure fluid is difficult to leak,
At least one or both of the closing plates are provided with an inlet and an outlet for pressure fluid, and the inlet and the outlet are inside the inner cylinder and the rotor when viewed in a side view seen from the direction of the rotation axis. 3. The vane motor according to claim 1, wherein the vane motor is provided in a space outside the main body and has an arcuate shape elongated in the cylindrical direction of the circle formed by the inner cylinder.
JP2022537444A 2019-12-19 2020-06-01 vane motor Pending JP2023508892A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2019-0171084 2019-12-19
KR1020190171084A KR102227744B1 (en) 2019-12-19 2019-12-19 vane motor
PCT/KR2020/007092 WO2021125462A1 (en) 2019-12-19 2020-06-01 Vane motor

Publications (1)

Publication Number Publication Date
JP2023508892A true JP2023508892A (en) 2023-03-06

Family

ID=69960186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022537444A Pending JP2023508892A (en) 2019-12-19 2020-06-01 vane motor

Country Status (7)

Country Link
US (1) US20220290566A1 (en)
EP (1) EP3839206A1 (en)
JP (1) JP2023508892A (en)
KR (1) KR102227744B1 (en)
CN (1) CN115053049A (en)
CA (1) CA3161397A1 (en)
WO (1) WO2021125462A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102491034B1 (en) * 2021-02-19 2023-01-26 이엑스디엘 주식회사 vane motor
KR102491036B1 (en) * 2021-03-15 2023-01-26 이엑스디엘 주식회사 vane motor system
KR102491035B1 (en) * 2021-03-15 2023-01-26 이엑스디엘 주식회사 vane motor
KR102555769B1 (en) 2021-08-12 2023-07-20 이엑스디엘 주식회사 power system using multi range of gas pressure
KR102555770B1 (en) 2021-08-12 2023-07-20 이엑스디엘 주식회사 power system using pressed gas and liquid
KR102617006B1 (en) * 2021-10-14 2023-12-27 이엑스디엘 주식회사 cocentric air motor
CN115199338A (en) * 2022-06-30 2022-10-18 宁波郡邦新材料有限公司 Novel energy transmission device for converting potential energy into mechanical energy

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1528075A (en) * 1921-08-11 1925-03-03 Joseph R Richer Rotary pump and the like
US2658456A (en) * 1948-07-29 1953-11-10 Gunnar A Wahlmark Fluid displacement device
US2891482A (en) * 1956-12-01 1959-06-23 Emanuel Di Giuseppe E Roberto Rotary machine adapted to operate as a pump or as a fluid motor
US3437079A (en) * 1963-12-17 1969-04-08 Daisaku Odawara Rotary machine of blade type
JPS59154882U (en) * 1983-03-31 1984-10-17 三菱電機株式会社 pump equipment
DE3542776A1 (en) * 1985-12-04 1987-07-23 Kurt G Dipl Ing Fickelscher ROLL-RING MACHINE FOR COMPRESSING AND CONVEYING FLUIDS
JPH0821373A (en) * 1994-07-07 1996-01-23 Isao Suzuki Pump with blade fixed structurally in pump chamber
CN1163651A (en) * 1994-08-23 1997-10-29 丹提卡特国际有限公司 Fluid reaction device
JPH08144701A (en) * 1994-11-18 1996-06-04 Uriyuu Seisaku Kk Air motor
US6135742A (en) * 1998-08-28 2000-10-24 Cho; Bong-Hyun Eccentric-type vane pump
KR20030072497A (en) * 2002-03-04 2003-09-15 한국기계연구원 Pneumatic vane motor
AU2006339652B2 (en) * 2006-03-06 2011-10-27 Nebojsa Boskovic Vane machine with stationary and rotating cylinder parts
JP2009041395A (en) * 2007-08-07 2009-02-26 Nippon Telegr & Teleph Corp <Ntt> Rotating device
KR101116511B1 (en) 2011-10-05 2012-02-28 이병록 Air vane motor having liners
KR101175713B1 (en) * 2012-05-23 2012-08-21 정의섭 Vane motor using high-pressure fluid and apparatus for generating electricity having the same
US9206688B2 (en) * 2013-07-10 2015-12-08 Spx Flow, Inc. High torque rotary motor with multi-lobed ring with inlet and outlet
KR101874583B1 (en) 2016-06-24 2018-07-04 김재호 Vane motor

Also Published As

Publication number Publication date
EP3839206A1 (en) 2021-06-23
WO2021125462A1 (en) 2021-06-24
CN115053049A (en) 2022-09-13
US20220290566A1 (en) 2022-09-15
CA3161397A1 (en) 2021-06-24
KR102227744B1 (en) 2021-03-15

Similar Documents

Publication Publication Date Title
JP2023508892A (en) vane motor
US5558511A (en) Sliding vane machine having vane guides and inlet opening regulation
JP6345081B2 (en) Scroll expander
US3832105A (en) Flexible blade rotary pump
JP4846586B2 (en) Vane rotary air pump
CN107084128B (en) A kind of combined rolling slide plate and sliding-vane pump that inside and outside track is controllable
US2969743A (en) Rotary slidable-vane machines
CN109026680B (en) Balanced type flexible combined blade and rotor pump
JP3763843B2 (en) Rotating single vane gas compressor
US6062833A (en) Spiral compressor, useful in particular to generate compressed air for rail vehicles
US3418939A (en) Rotary pumps
US20170268509A1 (en) Vane Pump Assembly
WO2019061899A1 (en) Pump body assembly and compressor having same
TW201837321A (en) Rotating machine and rotors for use therein
KR102491034B1 (en) vane motor
JP2582863Y2 (en) Vane pump
JPH02169882A (en) Sliding support seat type vane pump motor
EP3839207A1 (en) Vane motor
KR102491035B1 (en) vane motor
CN114876788B (en) Contactless sliding vane pump and sliding vane mechanism thereof
JPH0329995B2 (en)
JP2012127240A (en) Scroll compressor
JP5484717B2 (en) Rotary airfoil oil rotary vacuum pump
KR20220076008A (en) vane motor
JP2875022B2 (en) Multi-chamber rotary lobe fluid device with secure sliding seal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240305