JP2023508031A - 方向性電磁鋼板およびその磁区微細化方法 - Google Patents
方向性電磁鋼板およびその磁区微細化方法 Download PDFInfo
- Publication number
- JP2023508031A JP2023508031A JP2022538351A JP2022538351A JP2023508031A JP 2023508031 A JP2023508031 A JP 2023508031A JP 2022538351 A JP2022538351 A JP 2022538351A JP 2022538351 A JP2022538351 A JP 2022538351A JP 2023508031 A JP2023508031 A JP 2023508031A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- thermal shock
- grain
- electrical steel
- oriented electrical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 title claims abstract description 57
- 230000005381 magnetic domain Effects 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims abstract description 41
- 230000035939 shock Effects 0.000 claims abstract description 117
- 238000005096 rolling process Methods 0.000 claims abstract description 47
- 238000007670 refining Methods 0.000 claims abstract description 34
- 229910000976 Electrical steel Inorganic materials 0.000 claims abstract description 8
- 229910000831 Steel Inorganic materials 0.000 claims description 60
- 239000010959 steel Substances 0.000 claims description 60
- 239000011247 coating layer Substances 0.000 claims description 18
- 239000010410 layer Substances 0.000 claims description 16
- 229910045601 alloy Inorganic materials 0.000 claims description 12
- 239000000956 alloy Substances 0.000 claims description 12
- 238000009413 insulation Methods 0.000 claims description 5
- 230000001678 irradiating effect Effects 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 85
- 229910052742 iron Inorganic materials 0.000 abstract description 42
- 230000000694 effects Effects 0.000 description 17
- 230000006872 improvement Effects 0.000 description 15
- 239000011248 coating agent Substances 0.000 description 10
- 238000000576 coating method Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 7
- 230000009467 reduction Effects 0.000 description 5
- 230000004907 flux Effects 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 229910001463 metal phosphate Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D10/00—Modifying the physical properties by methods other than heat treatment or deformation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D10/00—Modifying the physical properties by methods other than heat treatment or deformation
- C21D10/005—Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1277—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1277—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
- C21D8/1283—Application of a separating or insulating coating
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1294—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/16—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0206—Manufacturing of magnetic cores by mechanical means
- H01F41/0233—Manufacturing of magnetic circuits made from sheets
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2201/00—Treatment for obtaining particular effects
- C21D2201/05—Grain orientation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Dispersion Chemistry (AREA)
- Optics & Photonics (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
【解決手段】
本発明の方向性電磁鋼板は、電磁鋼板の一面または両面に、圧延方向と交差する方向に形成された線状のグルーブ、および電磁鋼板の一面または両面に、圧延方向と交差する方向に形成された線状の熱衝撃部を含み、。
グルーブの長さ方向および熱衝撃部の長さ方向間の角度は1~5゜であり、
前記グルーブおよび前記熱衝撃部は圧延方向に沿って複数形成され、
前記グルーブ間の間隔D1に対する前記熱衝撃部間の間隔D2の比率(D2/D1)は1.7~2.3であり、前記グルーブ間の間隔D1に対する前記熱衝撃部間の間隔D2の比率(D2/D1)は1.7~1.9または2.1~2.3であり、前記グルーブ間の間隔D1が2.0~3.0mmであり、前記熱衝撃部間の間隔D2は4.0~6.0mmであることを特徴とする。
【選択図】図1
Description
方向性電磁鋼板は、熱延、冷延および焼鈍工程を通じて二次再結晶された結晶粒が圧延方向に{110}<001>方向に配向された集合組織(一名“Goss Texture”ともいう)を有する機能性鋼板をいう。
方向性電磁鋼板の鉄損を低める方法として、磁区微細化方法が知られている。即ち、磁区をスクラッチやエネルギー的衝撃を与えて方向性電磁鋼板が有している大きな磁区の大きさを微細化させることである。この場合、磁区が磁化されその方向が変わる時エネルギー的消耗量を磁区の大きさが大きかった時より減らすことができるようになる。磁区微細化方法としては、熱処理後にも改善効果が維持される永久磁区微細化と、そうでない一時磁区微細化がある。
ロールによる永久磁区微細化方法は、ロールに突起形状を加工してロールや板を加圧することによって板表面に一定の幅と深さを有する溝を形成した後に焼鈍することによって溝下部の再結晶を部分的に発生させる鉄損改善効果を示す磁区微細化技術である。ロール法は、機械加工に対する安定性、厚さによる安定的な鉄損確保を得にくい信頼性およびプロセスが複雑であり、溝形成直後(応力緩和焼鈍前)鉄損と磁束密度特性が劣化する短所を有している。
一時磁区微細化の場合、コーティングされた状態でレーザを加えた後、コーティングをもう一度行わないことに現在技術は集中しているため、レーザを一定以上の強度で照射しようとしない。一定以上に加える場合、コーティングの損傷によって張力効果をうまく発揮しにくいためである。
永久磁区微細化の場合、溝を彫って静磁エネルギーを受けることができる自由電荷面積を広げることであるため、できる限り深い溝深さが必要である。もちろん、深い溝深さによって磁束密度の低下などの副作用も発生する。そのため、磁束密度劣化を減らすために適正の溝深さとして管理するようになる。
グルーブの長さ方向および熱衝撃部の長さ方向間の角度は1~5゜である。
グルーブおよび熱衝撃部は圧延方向に沿って複数形成され、グルーブ間の間隔D1に対する熱衝撃部間の間隔D2の比率(D2/D1)は1.7~2.3であってもよい。
グルーブ間の間隔D1に対する熱衝撃部間の間隔D2の比率(D2/D1)は1.7~1.9または2.1~2.3であってもよい。
グルーブ間の間隔D1が2.0~3.0mmであり、熱衝撃部間の間隔D2は4.0~6.0mmであってもよい。
グルーブおよび熱衝撃部は鋼板の一面に形成できる。
グルーブは鋼板の一面に形成され、熱衝撃部は鋼板の他面に形成できる。
グルーブの深さは鋼板厚さの3~5%であってもよい。
熱衝撃部は、前記熱衝撃部が形成されていない鋼板表面と10~120のビッカース硬さ(Hv)差を有することができる。
グルーブの下部に形成された凝固合金層を含み、前記凝固合金層は厚さが0.1μm~3μmであってもよい。
グルーブの上部に形成された絶縁被膜層を含むことができる。
グルーブおよび熱衝撃部の長さ方向と圧延方向は75~88°の角度を成すことができる。
グルーブまたは熱衝撃部は、前記鋼板の圧延垂直方向に沿って2個~10個断続的に形成できる。
グルーブの長さ方向および熱衝撃部の長さ方向間の角度は1~5゜である。
グルーブを形成する段階および熱衝撃部を形成する段階を複数回行って、前記グルーブおよび前記熱衝撃部を圧延方向に沿って複数形成し、グルーブ間の間隔D1に対する前記熱衝撃部間の間隔D2の比率(D2/D1)は1.7~2.3になるように形成することができる。
グルーブを形成する段階で、前記レーザのエネルギー密度は0.5~2J/mm2であり、前記熱衝撃部を形成する段階で、前記レーザのエネルギー密度は0.02~0.2J/mm2であってもよい。
グルーブを形成する段階で、前記レーザの鋼板圧延垂直方向のビーム長さが50~750μmであり、前記レーザの鋼板圧延方向のビーム幅が10~30μmであってもよい。
熱衝撃部を形成する段階で、レーザの鋼板圧延垂直方向のビーム長さが1,000~15,000μmであり、レーザの鋼板圧延方向のビーム幅が80~300μmであってもよい。
鋼板の表面に絶縁被膜層を形成する段階をさらに含むことができる。
グルーブを形成する段階以後、鋼板の表面に絶縁被膜層を形成する段階を行うことができる。
鋼板の表面に絶縁被膜層を形成する段階以後、熱衝撃部を形成する段階を行うことができる。
ここで使用される専門用語は単に特定実施形態を言及するためのものであり、本発明を限定することを意図しない。ここで使用される単数形態は文句がこれと明確に反対の意味を示さない限り複数形態も含む。明細書で使用される“含む”の意味は特定特性、領域、整数、段階、動作、要素および/または成分を具体化し、他の特性、領域、整数、段階、動作、要素および/または成分の存在や付加を除外させるのではない。
ある部分が他の部分“の上に”または“上に”あると言及する場合、これは直ぐ他の部分の上にまたは上にあり得るか、その間に他の部分が伴われることがある。対照的に、ある部分が他の部分“の真上に”あると言及する場合、その間に他の部分が介されない。
異なる定義をしていないが、ここに使用される技術用語および科学用語を含む全ての用語は本発明の属する技術分野における通常の知識を有する者が一般に理解する意味と同一の意味を有する。通常使用される辞典に定義された用語は関連技術文献と現在開示された内容に符合する意味を有すると追加解釈され、定義されない限り理想的であるか非常に公式的な意味に解釈されない。
図1および図2では本発明の一実施形態によって磁区微細化された方向性電磁鋼板10の模式図を示す。
図1および図2に示すように、本発明の方向性電磁鋼板10は、電磁鋼板の一面11または両面11、12に、圧延方向(RD方向)と交差する方向に形成された線状のグルーブ20、および電磁鋼板の一面11または両面11、12に、圧延方向と交差する方向に形成された線状の熱衝撃部30を含む。
グルーブ20の長さ方向および熱衝撃部30の長さ方向間の角度は1~5゜であってもよい。
特に、グルーブ20を形成して、熱衝撃部30の多量形成による熱衝撃を減少させることができ、熱衝撃部30を形成して、絶縁被膜層50の損傷を防止して耐食特性を極大化することができる。
特に、グルーブ20を単独で形成する時、適正グレインサイズと内部磁区形成形状のためグルーブ20周辺に鉄損に非効率的な領域が存在するようになるが、本発明の一実施形態では熱衝撃部30をまた形成することによって、このような鉄損減少を補完する。
グルーブ20および熱衝撃部30は交差するか、交差しなくてもよい。グルーブ20および熱衝撃部30が交差する場合、交差地点での角度が1~5゜である。交差しない場合、グルーブ20を圧延方向RDに平行移動させた仮想の線21と熱衝撃部30が交差する地点での角度が1~5゜であってもよい。
グルーブ20の長さ方向および熱衝撃部30の長さ方向間の角度(θ)が過度に小さい場合、即ち、平行に近い場合、鋼板の集合組織の角度分布が±5゜内で分布しているため、全体範囲を全てカバーすることができなくて、鉄損が劣位になることがある。グルーブ20の長さ方向および熱衝撃部30の長さ方向間の角度(θ)が過度に大きい場合、鋼板の集合組織の角度分布を超過してむしろレーザ線周辺に鉄損に良くない磁区ができて、鉄損が劣位になることがある。さらに具体的に、グルーブ20の長さ方向および熱衝撃部30の長さ方向間の角度は1~3゜であってもよい。
図3では、グルーブ20間の間隔をD1と表し、熱衝撃部30間の間隔をD2と表した。
図3のように、複数のグルーブ20および複数の熱衝撃部30が形成された場合、任意のグルーブ20およびその任意のグルーブ20と最も近いグルーブ20をグルーブ間の間隔D1と定義する。また、任意の熱衝撃部30と最も近い熱衝撃部30を熱衝撃部間の間隔D2と定義する。
また、本発明でグルーブ20および熱衝撃部30に圧延方向(RD方向)に厚さが存在するので、グルーブ20中心線と熱衝撃部30の中心線を基準にして間隔を定義する。また、複数のグルーブ20および複数の熱衝撃部30が形成された場合、それぞれの間隔D1、D2の平均値、即ち、間隔D1、D2の総合計を全体個数で割った値が前述の範囲を満足することができる。
グルーブ20間の間隔D1に対する熱衝撃部30間の間隔D2の比率(D2/D1)は1.7~2.3であってもよい。
間隔D1、D2が過度に大きい場合、意図した鉄損の追加減少効果よりは磁区移動を円滑にすることができるスパイク磁区が形成されず鉄損減少を阻害する要素になることがある。間隔D1、D2が過度に小さい場合、スパイク磁区形成による磁区移動容易性にもかかわらず、レーザ照射による熱影響部が過度に大きくて鉄損改善効果を確保することができない問題が発生することがある。
グルーブ間の間隔D1および熱衝撃部間の間隔D2は、全体電磁鋼板内でその間隔が一定であってもよい。具体的に、全体電磁鋼板内の全てのグルーブ間の間隔D1および熱衝撃部間の間隔D2が平均グルーブ間の間隔D1および平均熱衝撃部間の間隔D2の10%以内に該当し得る。さらに具体的に、1%以内に該当し得る。
図3におよび図4に示すように、グルーブ20は鋼板の表面一部がレーザ照射によって除去された部分を意味する。図3および図4ではグルーブ20の形状が楔形として表現されているが、これは一例に過ぎず、四角形、梯形型、U字形、半円形、W系など多様な形態に形成できる。
図5では本発明のグルーブ20の模式図を示す。グルーブ20の深さ(HG)は鋼板厚さの3~5%であってもよい。グルーブの深さ(HG)が過度に浅ければ、適切な鉄損改善効果を得にくい。グルーブの深さ(HG)が過度に深ければ、強いレーザ照射によって鋼板10の組織特性を大きく変化させるか、多量のヒルアップおよびスパッタを形成して磁性を劣化させることがある。したがって、前述の範囲にグルーブ20の深さを制御することができる。
図5に示すように、グルーブ20の上部には絶縁被膜層50が形成できる。
図1および図2ではグルーブ20および熱衝撃部30の長さ方向と圧延方向(RD方向)が直角を形成するものと示されているが、これに制限されるわけではない。例えば、グルーブ20および熱衝撃部30の長さ方向と圧延方向は75~88°の角度を成すことができる。前述の角度を形成する時、方向性電磁鋼板の鉄損を改善することに寄与できる。
熱衝撃部30は、グルーブ20とは異なり、外観上には他の鋼板表面と区別できない。熱衝撃部30は塩酸濃度5%以上で10分以上浸漬時、溝形態にエッチングされる部分であって、他の鋼板表面部分と区別が可能である。または、熱衝撃部30はグルーブ20や熱衝撃部30が形成されていない鋼板表面と10~120のビッカース硬さ(Hv)差を有する点で区別が可能である。この時、硬度測定方法はナノインデンターによる微小硬さで熱衝撃部と熱衝撃を受けない部位の硬さを測定することができる。即ち、ナノビッカース硬さ(Hv)を意味する。
まず、方向性電磁鋼板10を準備する。本発明の一実施形態では磁区微細化方法および形成されるグルーブ20および熱衝撃部30の形状にその特徴があるのであって、磁区微細化の対象になる方向性電磁鋼板は制限なく使用することができる。特に、方向性電磁鋼板の合金組成とは関係なく本発明の効果が発現される。したがって、方向性電磁鋼板の合金組成に関する具体的な説明は省略する。
本発明の一実施形態で、方向性電磁鋼板はスラブから熱間圧延および冷間圧延を通じて所定の厚さに圧延された方向性電磁鋼板を使用することができる。
その次に、方向性電磁鋼板の一面11に、圧延方向(RD方向)と交差する方向にレーザを照射して、グルーブ20を形成する。
この時、レーザのエネルギー密度Edは0.5~2J/mm2であってもよい。エネルギー密度が過度に小さい場合、適切な深さのグルーブ20が形成されず、鉄損改善効果を得にくい。逆に、エネルギー密度が過度に大きい場合にも、過度に厚い深さのグルーブ20が形成されて、鉄損改善効果を得にくい。
レーザの鋼板圧延方向(RD方向)のビーム幅Wは10~30μmであってもよい。ビーム幅Wが過度に短いか長ければ、グルーブ20の幅が短いか長くなり、適切な磁区微細化効果を得ることができなくなることがある。
図6ではビーム形状を楕円形に示したが、円形、あるいは長方形など形状の制限を受けない。
レーザとしては1kW~100kW出力を有するレーザを使用することができ、ガウシアン モード(Gaussian Mode)、シングル モード(Single Mode)、ファンダメンタル ガウシアン モード(Fundamental Gaussian Mode)のレーザを使用することができる。TEMoo形態ビームであり、M2値は1.0~1.2範囲値を有することができる。
その次に、方向性電磁鋼板10の一面または両面に、圧延方向(RD方向)と交差する方向にレーザを照射して、熱衝撃部30を形成する。
熱衝撃部30を形成する段階で、レーザのエネルギー密度Edは0.02~0.2J/mm2であってもよい。エネルギー密度が過度に小さい場合、適切な熱衝撃部30が形成されず、鉄損改善効果を得にくい。逆に、エネルギー密度が過度に大きい場合、鋼板表面が損傷して、鉄損改善効果を得にくい。
熱衝撃部30を形成する段階で、レーザの鋼板圧延垂直方向(TD方向)のビーム長さLが1,000~15,000μmであり、レーザの鋼板圧延方向(RD方向)のビーム幅Wが80~300μmであってもよい。
グルーブ20および熱衝撃部30の形状については前述のものと同一なので、重複する説明は省略する。
絶縁被膜層を形成する方法は特別に制限なく使用することができ、一例として、リン酸塩を含む絶縁コーティング液を塗布する方式で絶縁被膜層を形成することができる。このような絶縁コーティング液はコロイダルシリカと金属リン酸塩を含むコーティング液を使用することが好ましい。この時、金属リン酸塩はAlリン酸塩、Mgリン酸塩、またはこれらの組み合わせであってもよく、絶縁コーティング液の重量に対するAl、Mg、またはこれらの組み合わせの含量は15重量%以上であってもよい。
冷間圧延した厚さ0.30mmの方向性電磁鋼板を準備した。この電磁鋼板に1.0kWのガウシアン モード(Gaussian mode)の連続波レーザを照射して、RD方向と86°角度のグルーブを形成した。レーザビームの幅Wは20μmであり、レーザビームの長さLは600μmである。レーザのエネルギー密度は1.5J/mm2、グルーブの深さは12μmであった。
グルーブ間の間隔D1を下記表1のように調節して鋼板の一面にグルーブを形成し、絶縁被膜を形成した。
その後、電磁鋼板に1.0kWのガウシアン モード(Gaussian mode)の連続波レーザを照射して、熱衝撃部を形成した。レーザビームの幅Wは200μmであり、レーザビームの長さLは10,000μmである。レーザのエネルギー密度は0.16J/mm2であった。
熱衝撃部間の間隔D2を下記表1のように調節して熱衝撃部を形成し、この時、グルーブと成す角度(θ)を表1に整理した。また、熱衝撃部の照射面を一面/他面と表1に整理した。
下記表1に鉄損改善率および磁束密度劣化率を表わした。鉄損改善率はレーザを照射する前の電磁鋼板の鉄損W1とレーザを照射して熱衝撃部を形成した後の鉄損W2を測定して(W1-W2)/W1で計算した。鉄損は、磁束密度の値が1.7テスラ(Tesla)である時、周波数が50Hzである場合の鉄損値(W17/50)として測定した。
また、実施例のうちのD2/D1が1.8、2.2である場合が2.0である実施例に比べて鉄損改善率が優れるのを確認することができる。
また、実施例のうち、熱衝撃部を他面に形成した場合、熱衝撃部を一面に形成した場合に比べて鉄損改善率が優れるのを確認することができる。
本発明は実施形態に限定されるのではなく、互いに異なる多様な形態に製造でき、本発明の属する技術分野における通常の知識を有する者は本発明の技術的な思想や必須の特徴を変更しなくて他の具体的な形態に実施できるということを理解することができるはずである。したがって、以上で述べられた実施形態は全ての面で例示的なものであり限定的ではないと理解しなければならない。
11:鋼板の一面
12:鋼板の他面
20:グルーブ
21:仮想グルーブ
30:熱衝撃部
40:凝固合金層
50:絶縁被膜層
Claims (20)
- 電磁鋼板の一面または両面に、圧延方向と交差する方向に形成された線状のグルーブ、および
前記電磁鋼板の一面または両面に、圧延方向と交差する方向に形成された線状の熱衝撃部を含み、
前記グルーブの長さ方向および前記熱衝撃部の長さ方向間の角度は1~5゜であることを特徴とする方向性電磁鋼板。 - 前記グルーブおよび前記熱衝撃部は圧延方向に沿って複数形成され、
前記グルーブ間の間隔D1に対する前記熱衝撃部間の間隔D2の比率(D2/D1)は1.7~2.3であることを特徴とする請求項1に記載の方向性電磁鋼板。 - 前記グルーブ間の間隔D1に対する前記熱衝撃部間の間隔D2の比率(D2/D1)は1.7~1.9または2.1~2.3であることを特徴とする請求項2に記載の方向性電磁鋼板。
- 前記グルーブ間の間隔D1が2.0~3.0mmであり、前記熱衝撃部間の間隔D2は4.0~6.0mmであることを特徴とする請求項1に記載の方向性電磁鋼板。
- 前記グルーブおよび前記熱衝撃部は鋼板の一面に形成されることを特徴とする請求項1に記載の方向性電磁鋼板。
- 前記グルーブは鋼板の一面に形成され、前記熱衝撃部は鋼板の他面に形成されることを特徴とする請求項1に記載の方向性電磁鋼板。
- 前記グルーブの深さは鋼板厚さの3~5%であることを特徴とする請求項1に記載の方向性電磁鋼板。
- 前記熱衝撃部は、前記熱衝撃部が形成されていない鋼板表面と10~120のビッカース硬さ(Hv)差を有することを特徴とする請求項1に記載の方向性電磁鋼板。
- 前記グルーブの下部に形成された凝固合金層を含み、前記凝固合金層は厚さが0.1μm~3μmであることを特徴とする請求項1に記載の方向性電磁鋼板。
- 前記グルーブの上部に形成された絶縁被膜層を含むことを特徴とする請求項1に記載の方向性電磁鋼板。
- 前記グルーブおよび熱衝撃部の長さ方向と前記圧延方向は75~88°の角度を成すことを特徴とする請求項1に記載の方向性電磁鋼板。
- 前記グルーブまたは前記熱衝撃部は、前記鋼板の圧延垂直方向に沿って2個~10個断続的に形成されたことを特徴とする請求項1に記載の方向性電磁鋼板。
- 方向性電磁鋼板を準備する段階、
前記方向性電磁鋼板の一面または両面に、圧延方向と交差する方向にレーザを照射して、線状のグルーブを形成する段階、および
前記方向性電磁鋼板の一面または両面に、圧延方向と交差する方向にレーザを照射して、線状の熱衝撃部を形成する段階を含み、
前記グルーブの長さ方向および前記熱衝撃部の長さ方向間の角度は1~5゜であることを特徴とする方向性電磁鋼板の磁区微細化方法。 - 前記グルーブを形成する段階および前記熱衝撃部を形成する段階を複数回行って、前記グルーブおよび前記熱衝撃部を圧延方向に沿って複数形成し、
前記グルーブ間の間隔D1に対する前記熱衝撃部間の間隔D2の比率(D2/D1)は1.7~2.3になるように形成することを特徴とする請求項13に記載の方向性電磁鋼板の磁区微細化方法。 - 前記グルーブを形成する段階で、前記レーザのエネルギー密度は0.5~2J/mm2であり、前記熱衝撃部を形成する段階で、前記レーザのエネルギー密度は0.02~0.2J/mm2であることを特徴とする請求項13に記載の方向性電磁鋼板の磁区微細化方法。
- 前記グルーブを形成する段階で、前記レーザの鋼板圧延垂直方向のビーム長さが50~750μmであり、前記レーザの鋼板圧延方向のビーム幅が10~30μmであることを特徴とする請求項13に記載の方向性電磁鋼板の磁区微細化方法。
- 前記熱衝撃部を形成する段階で、前記レーザの鋼板圧延垂直方向のビーム長さが1,000~15,000μmであり、前記レーザの鋼板圧延方向のビーム幅が80~300μmであることを特徴とする請求項13に記載の方向性電磁鋼板の磁区微細化方法。
- 前記鋼板の表面に絶縁被膜層を形成する段階をさらに含むことを特徴とする請求項13に記載の方向性電磁鋼板の磁区微細化方法。
- 前記グルーブを形成する段階以後、前記鋼板の表面に絶縁被膜層を形成する段階を行うことを特徴とする請求項18に記載の方向性電磁鋼板の磁区微細化方法。
- 前記鋼板の表面に絶縁被膜層を形成する段階以後、前記熱衝撃部を形成する段階を行うことを特徴とする、請求項19に記載の方向性電磁鋼板の磁区微細化方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190171286A KR102276850B1 (ko) | 2019-12-19 | 2019-12-19 | 방향성 전기강판 및 그 자구미세화 방법 |
KR10-2019-0171286 | 2019-12-19 | ||
PCT/KR2020/017973 WO2021125680A1 (ko) | 2019-12-19 | 2020-12-09 | 방향성 전기강판 및 그 자구미세화 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023508031A true JP2023508031A (ja) | 2023-02-28 |
JP7440638B2 JP7440638B2 (ja) | 2024-02-28 |
Family
ID=76477768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022538351A Active JP7440638B2 (ja) | 2019-12-19 | 2020-12-09 | 方向性電磁鋼板およびその磁区微細化方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230060058A1 (ja) |
EP (1) | EP4079878A4 (ja) |
JP (1) | JP7440638B2 (ja) |
KR (1) | KR102276850B1 (ja) |
CN (1) | CN114829638A (ja) |
WO (1) | WO2021125680A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023121253A1 (ko) * | 2021-12-21 | 2023-06-29 | 주식회사 포스코 | 방향성 전기강판 및 그 자구미세화 방법 |
KR20240098852A (ko) * | 2022-12-21 | 2024-06-28 | 주식회사 포스코 | 방향성 전기강판 및 그 자구미세화 방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07320922A (ja) * | 1994-03-31 | 1995-12-08 | Kawasaki Steel Corp | 鉄損の低い一方向性電磁鋼板 |
JP2005248291A (ja) * | 2004-03-08 | 2005-09-15 | Nippon Steel Corp | 低鉄損一方向性電磁鋼板 |
JP2012012639A (ja) * | 2010-06-29 | 2012-01-19 | Jfe Steel Corp | 方向性電磁鋼板 |
KR20180073306A (ko) * | 2016-12-22 | 2018-07-02 | 주식회사 포스코 | 방향성 전기강판 및 그 자구미세화 방법 |
KR20190078161A (ko) * | 2017-12-26 | 2019-07-04 | 주식회사 포스코 | 방향성 전기강판 및 그 자구미세화 방법 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100259990B1 (ko) * | 1993-12-28 | 2000-06-15 | 에모또 간지 | 철손이 적은 일방향성 전자강판 및 제조방법 |
KR101421388B1 (ko) * | 2010-08-06 | 2014-07-18 | 제이에프이 스틸 가부시키가이샤 | 방향성 전기 강판 및 그 제조 방법 |
KR101440597B1 (ko) * | 2012-05-16 | 2014-09-17 | 주식회사 포스코 | 방향성 전기강판 및 그 제조방법 |
JP5668795B2 (ja) * | 2013-06-19 | 2015-02-12 | Jfeスチール株式会社 | 方向性電磁鋼板およびそれを用いた変圧器鉄心 |
JP2015161024A (ja) * | 2014-02-28 | 2015-09-07 | Jfeスチール株式会社 | 低騒音変圧器用の方向性電磁鋼板およびその製造方法 |
KR101693516B1 (ko) * | 2014-12-24 | 2017-01-06 | 주식회사 포스코 | 방향성 전기강판 및 그 제조방법 |
JP6904281B2 (ja) * | 2018-03-07 | 2021-07-14 | Jfeスチール株式会社 | 方向性電磁鋼板 |
-
2019
- 2019-12-19 KR KR1020190171286A patent/KR102276850B1/ko active IP Right Grant
-
2020
- 2020-12-09 CN CN202080087093.XA patent/CN114829638A/zh active Pending
- 2020-12-09 EP EP20904175.5A patent/EP4079878A4/en active Pending
- 2020-12-09 US US17/785,703 patent/US20230060058A1/en active Pending
- 2020-12-09 WO PCT/KR2020/017973 patent/WO2021125680A1/ko unknown
- 2020-12-09 JP JP2022538351A patent/JP7440638B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07320922A (ja) * | 1994-03-31 | 1995-12-08 | Kawasaki Steel Corp | 鉄損の低い一方向性電磁鋼板 |
JP2005248291A (ja) * | 2004-03-08 | 2005-09-15 | Nippon Steel Corp | 低鉄損一方向性電磁鋼板 |
JP2012012639A (ja) * | 2010-06-29 | 2012-01-19 | Jfe Steel Corp | 方向性電磁鋼板 |
KR20180073306A (ko) * | 2016-12-22 | 2018-07-02 | 주식회사 포스코 | 방향성 전기강판 및 그 자구미세화 방법 |
KR20190078161A (ko) * | 2017-12-26 | 2019-07-04 | 주식회사 포스코 | 방향성 전기강판 및 그 자구미세화 방법 |
Also Published As
Publication number | Publication date |
---|---|
JP7440638B2 (ja) | 2024-02-28 |
EP4079878A1 (en) | 2022-10-26 |
CN114829638A (zh) | 2022-07-29 |
EP4079878A4 (en) | 2023-05-24 |
US20230060058A1 (en) | 2023-02-23 |
KR102276850B1 (ko) | 2021-07-12 |
KR20210079129A (ko) | 2021-06-29 |
WO2021125680A1 (ko) | 2021-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7245285B2 (ja) | 方向性電磁鋼板およびその磁区微細化方法 | |
JP7252902B2 (ja) | 低鉄損の方向性ケイ素鋼およびその製造方法 | |
JP6979458B2 (ja) | 方向性電磁鋼板およびその磁区微細化方法 | |
US20230405708A1 (en) | Grain-oriented electrical steel sheet and magnetic domain refining method therefor | |
JP7440638B2 (ja) | 方向性電磁鋼板およびその磁区微細化方法 | |
JPS6254873B2 (ja) | ||
JP7561194B2 (ja) | 方向性電磁鋼板およびその磁区微細化方法 | |
JP7391087B2 (ja) | 方向性電磁鋼板およびその磁区微細化方法 | |
JP7365416B2 (ja) | 方向性電磁鋼板およびその製造方法 | |
US20240024985A1 (en) | Grain-oriented electrical steel sheet, and magnetic domain refining method therefor | |
JP2022503782A (ja) | 方向性電磁鋼板およびその磁区微細化方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220620 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220620 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230719 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230801 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231101 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240123 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240215 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7440638 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |