JP2023500752A - 光学式粒子分析計のための較正検証 - Google Patents

光学式粒子分析計のための較正検証 Download PDF

Info

Publication number
JP2023500752A
JP2023500752A JP2021522949A JP2021522949A JP2023500752A JP 2023500752 A JP2023500752 A JP 2023500752A JP 2021522949 A JP2021522949 A JP 2021522949A JP 2021522949 A JP2021522949 A JP 2021522949A JP 2023500752 A JP2023500752 A JP 2023500752A
Authority
JP
Japan
Prior art keywords
particle analyzer
detector
electromagnetic radiation
optical particle
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021522949A
Other languages
English (en)
Other versions
JP7463632B2 (ja
Inventor
トーマス エー. ベイツ,
マット マイケリス,
ブレット ヘイリー,
Original Assignee
パーティクル・メージャーリング・システムズ・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パーティクル・メージャーリング・システムズ・インコーポレーテッド filed Critical パーティクル・メージャーリング・システムズ・インコーポレーテッド
Publication of JP2023500752A publication Critical patent/JP2023500752A/ja
Application granted granted Critical
Publication of JP7463632B2 publication Critical patent/JP7463632B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0606Investigating concentration of particle suspensions by collecting particles on a support
    • G01N15/0612Optical scan of the deposits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1012Calibrating particle analysers; References therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/075Investigating concentration of particle suspensions by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/0007Applications not otherwise provided for

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

粒子の存在又は不在とは無関係を含めて、粒子分析計の較正ステータスを検証するための粒子分析計及び関連方法が提供される。方法及び分析計は、別個の、干渉しない時間周波数領域、すなわち、中間周波数時間領域及び低周波数時間領域、並びに任意選択で高周波数時間領域の使用を含む。高周波数時間領域は、レーザ面駆動電流周波数変調を生成して、レーザ面の空間モードホッピングを防止する。中間周波数時間領域は、粒子検出のためのものである。低周波数時間領域は、分析計の調子又は較正ステータスのための、レーザパルス光自己診断を含む較正ステータスのためのものである。周波数時間領域範囲を慎重に選択することによって、干渉はなく、粒子に依存しない計器を自己診断する能力がある。【選択図】図1

Description

関連出願の相互参照
[0001]本出願は、各々が2019年11月8日に出願され、「Calibration Verification for Optical Particle Analyzers」という名称である、国際出願PCT/US2019/060607及び米国特許出願第16/678,968号の優先権の利益を主張するものであり、その各々は2018年11月12日に出願された米国特許出願第62/759,953号の利益を主張し、これらは、本明細書と矛盾しない程度までその全体が参照により本明細書に組み込まれる。
[0002]本発明は、光学式粒子分析計の分野である。本発明は、一般的には、較正検証システム並びに光学式粒子分析計の較正ステータス及び性能を検証するための方法に関する。
[0003]マイクロ汚染関連業界の大部分は、米国特許第3,851,169号、米国特許第4,348,111号、米国特許第4,957,363号、米国特許第5,085,500号、米国特許第5,121,988号、米国特許第5,467,188号、米国特許第5,642,193号、米国特許第5,864,399号、米国特許第5,920,388号、米国特許第5,946,092号、及び米国特許第7,053,783号を含むさまざまな米国特許に記載されているものなどの光学式粒子分析計の使用に依存する。米国特許第4,728,190号、米国特許第6,859,277号、及び米国特許第7,030,980号も、光学式粒子分析計を開示し、その全体が参照により本明細書に組み込まれる。エアロゾル光学式粒子分析計は、クリーンルーム及びクリーンゾーン内の空気中粒子汚染を測定するために使用される。液体粒子分析計は、多くの場合、水処理業界及び化学処理業界において微粒子汚染を光学的に測定するために使用される。
[0004]これらの適用例のための光学式粒子分析計は、一般的には、少なくとも年に一度、較正手順を経験する。JIS B9921:光散乱式自動粒子計数器(Light Scattering Automatic Particle Counter)、ASTM F328-98:Standard Practice for Calibrating an Airborne Particle Counter Using Monodiperse Spherical Particles、及びISO/FDIS21501-4:Determination of particle size distribution-Single particle light interaction methods-Part 4: Light scattering airborne particle counter for clean spacesなどの、光学式粒子分析計に関する較正要件を詳述する国際規格が、利用可能である。
[0005]光学式粒子分析計のための較正プロセスは複雑であり、通常は、光学式粒子分析計製造業者からの熟練した代表者が較正を実行する必要がある。較正プロセスは、認定された粒子サイズ規格の使用を中心とする。単に例として、米国では、これらの規格は、米国国立標準技術研究所(NIST)まで辿れる、水に懸濁されたポリスチレン球である。
[0006]エアロゾル光学式粒子分析計に較正規格粒子を提供するための典型的な粒子生成システムは、濾過された空気を、ポンプを使用してシステムに引き込む。較正規格粒子は水に懸濁されているので、エアロゾル光学式粒子分析計による検出のために、エアロゾル化されなければならない。水と粒子の混合物がネブライザに置かれ、粒子生成器ポンプによって生産された加圧された空気のストリームとともに、ネブライザによってエアロゾル化される。この様式において、既知のサイズの単分散粒子は、粒子分析計の各対応する粒子チャネルを較正するために使用される。たとえば、1.0μm粒子は、1.0μmチャネルを較正するために使用される。これは、被験ユニットの各粒子チャネルが粒子を正確にサイズ分類することを保証する。
[0007]上記で説明された試験に加えて、被験計器によって利用されるものに加えて全体的に異なるフローシステムを含む基準粒子分析計と試験計器を相互比較することも一般的には必要とされる。これは、たとえば、試験計器が、その述べられた第1のチャネル粒子サイズで50%の計数効率を達成し、その述べられた第1のチャネル粒子サイズ1.5~2.0倍で100%の計数効率を達成することを保証するために行われる。
[0008]NISTが定めた流量計を用いて被験ユニットの流量を測定及び確認すること、並びにゼロ計数(誤計数率)試験を実行することも一般的に必要とされる。いくつかの適用例では、計器は、一般的には、95%信頼区間上限で5分間に1未満の計数の達成可能な誤計数率を実証することが必要とされる。この試験は、非常に時間がかかり、1時間を超える長い総サンプリング時間を必要とすることがある。
[0009]完全な光学式粒子分析計較正は複雑であり、したがって、一般的に、粒子分析計製造業者からの熟練した代表者によって実行されなければならない。完全な較正は、典型的には、可搬型でない大量の試験機器を必要とする。一般的には、被験光学式粒子分析計は、較正機器の場所まで持って行かれなければならない。
[0010]コストの理由及び実装の簡単さのために、粒子分析計使用者は、典型的には粒子分析計製造業者によって推奨されるように、一般的には、1年の較正周期に較正を限定する。粒子分析計使用者は、粒子分析計が1年の較正周期を通じて適切な較正を維持することを仮定しなければならないが、これは、当てはまらないときがある。
[0011]エアロゾル粒子分析計使用者は、いくつかの業界に分けられる。たとえば、半導体業界及び医薬品業界は、粒子測定が大きな役割を果たす2つの業界である。半導体の使用者は、一般的には、ウェハ歩留まりレベルを改善又は維持するために、エアロゾル汚染を監視する。エアロゾル光学式粒子分析計は、これらのクリーンエリアのうちの1つにおいて較正からずれる場合、粒子分析計は、そのクリーンエリア内の粒子レベルを過大計数又は過小計数することがある。粒子分析計が過小計数している場合、クリーンエリアは、使用者が思うよりも汚れていることがある。最悪のシナリオでは、この検出されなかった粒子汚染により、使用者は、ウェハ歩留まりの低下を経験することがある。歩留まりの低下は望ましいことではないが、使用者は、少なくともウェハ歩留まりの品質制御監視からリアルタイムフィードバックが与えられ、その特定のクリーンエリア内であり得る問題を調べるための何らかの刺激を有する。最終的に、較正範囲外の粒子分析計が、ウェハ歩留まりの低下の原因として明らかにされる。
[0012]較正範囲外の粒子分析計は、医薬品における使用者にも大きな問題を提示する。医薬品における使用者は、調合薬が取り扱われる又は処理されるクリーンエリアを監視しなければならない。米国では、この監視は、米国食品医薬品局(FDA)によって義務づけられている。プロセスエリアは、いくつかの医薬品に対して確立された指定された清浄度レベルに維持されなければならない。粒子分析計が過小計数している場合、清浄なプロセスエリアは、使用者が思うよりも汚れていることがある。問題を示すプロセスのリアルタイムフィードバックがないので、使用者は、較正範囲外の粒子分析計を検出する手段を有さない。使用者は、粒子分析計の1年の較正周期の残りにわたって疑わしいクリーンエリア内の調合薬を引き続き処理し、その後、最後に、その次にスケジュールされた較正時に、粒子分析計が較正範囲外であることが知らされることがある。
[0013]液体粒子分析計は、多くの場合、純水及び化学物質のストリームの中の微粒子汚染を光学的に測定するために使用されるので、液体粒子分析計が過小計数しているとき、水又は化学物質のストリームは、使用者が思うよりも高い微粒子レベルを含むことがある。たとえば、液体源が予想よりも高い粒子レベルを含む場合、これは、この液体が1つの成分である最終生成物が予想よりも高い汚染レベルを有することをもたらすことがある。上記のように、これは、たとえば最終生成物が医薬組成物である場合に大きな問題を提起することがある。或いは、液体が、たとえば、半導体デバイスの処理中にすすぎ剤、洗浄剤、又は溶媒として利用される場合、半導体デバイスの粒子汚染が起こり、半導体デバイス歩留まりの減少をもたらすことがある。
[0014]粒子分析計が較正範囲外と定められると、その粒子分析計がその較正周期(典型的には1年)全体にわたって監視したクリーンエリアのステータスが問題になる。粒子分析計が、それが監視した実際のクリーンエリアを、許可されたFDA指定の汚染限界よりも上に置くように十分に過小計数したことが決定された場合、そのエリア内で1年間に生産されたすべての製品が疑わしくなる。使用者は、疑わしいエリア内で生産された1年全体の医薬品をリコールすることを強制されることがある。これは、失われた製品に医薬品使用者が数百万ドルを費やすことなどの財政を含む多くの理由で、基本的な妨げになる。
[0015]光学式粒子分析計は、検出電子機器のずれを含むいくつかの理由で誤較正されることがある。そのような誤較正された粒子分析計は、依然として粒子の総数を適切に計数することがあるが、粒子の実サイズを誤認することがある。光学式粒子分析計の較正ステータスを評価するための少なくともいくつかの既知のシステム及び方法は、実際の粒子を用いて、光学式粒子分析計を試験する。典型的には、完全な較正手順を実行するほど費用及び時間がかからないが、実際の粒子を使用して光学式粒子分析計の較正ステータスを評価することは、些細な手順ではない。したがって、実際の粒子の使用を必要としない光学式粒子分析計の較正ステータスを効率的に評価するためのシステム及び方法を用いることは有益であろう。
[0016]米国特許第5,684,585(Girvin)は、通常使用下での粒子の検出をシミュレートするような様式で粒子照明源を変調することによって光学式粒子計数器の較正ステータスを検証することを説明する。しかしながら、Girvinは、レーザビーム内の粒子の存在によって影響され、そのため、実際の粒子活動の不在下で最も良く実行する。したがって、これは、Girvinにおける診断ルーチンが、計器の流体入口上へとゼロ計数フィルタを置き、その後で較正診断ルーチンを開始することによって達成されることを必要とする。そのうえ、粒子を分析する際に使用されている計器は、数時間にわたって、数日にわたって、さらにはより長くにわたってチャンバ内の粒子の存在を招き得る残存粒子汚染を有するリスクがある。そのような残存粒子は、分析計診断と干渉し得る。したがって、当技術分野では、粒子が分析計内に存在するかどうかとは無関係に自己診断を確実に経験し、以って残存粒子の存在に対応し、並びに/又は同時自己診断及び粒子検出を提供することができる光学式粒子計数器及び分析計が必要とされている。本明細書において説明される方法及びシステムは、これを、互いと干渉していない自己診断、粒子計数、及びレーザパワー変調のための特別に構成された時間領域周波数の使用によって達成する。
[0017]本明細書において開示されるのは、光検出器及びその後の増幅回路の応答性、収集用光学部品によって収集されるレーザパルス光の量、散乱粒子光収集用光学部品の出力、並びにレーザパワーレベルのためなどの、構成要素の機能的調子を決定することを含む、自己診断特徴が光学式粒子分析計のための較正ステータスを検証することを可能にする方法及びシステムである。光学式粒子分析計較正ステータスを検証すること及び構成要素の機能的調子を決定することは、レーザパワーを循環(たとえば、変調)し、次いで高利得検出器回路(たとえば、本明細書では増幅回路と呼ばれる)上での粒子利得段パルス活動を検出するによって達成されてもよい。印加されるレーザパワー(たとえば、その単一の周期は、本明細書では「チェックパルス」と呼ばれることがある)、及び高利得検出器回路(たとえば、増幅回路)上での検出用粒子利得段AC結合パルス活動を変調することによって、開示されるシステム及び方法は、感度が高く、正確である。開示されるシステム及び方法は、光学式粒子分析計計器のための較正検証自己診断システムとして実施されてもよく、計器がその較正使用周期(たとえば、1年)の終了時に調整前(as-found)較正検証を正常に完了する確率を増加させるために使用されることがある。
[0018]レーザパワーレベルのパルス化された変化は、光検出器電流電圧変換器の出力において確立されたDC電圧レベルを変える。この突然のDC電圧シフトが光検出器信号のその後のAC結合増幅に供給されると、パルスが、AC結合回路によって生成される。結果として生じる検出器信号波形の立ち上がり縁は、レーザパワーレベルが増加される速さを表し、検出器信号波形ピークの立ち下がり縁は、AC結合回路が放電する速さを表す。検出器信号波形上のパルスピークの振幅は、パルス化されたレーザパワーの量、収集用光学部品によって収集されたレーザパルス光の量、及び光検出器及びその後の増幅回路の応答性を含む、粒子計数器の粒子検出システムのいくつかの機能的調子インジケータに直接的に相関づけられる。本明細書において説明される較正検証試験システム及び方法は、低速ADCの追加によって既存の光学式粒子分析計計器及びシステム(たとえば、LASAIR(登録商標)-Pro計器(Particle Measuring Systems,Inc.)のデジタル処理システム)に組み込まれてもよい。
[0019]開示されるシステム及び方法は、フィルタ処理された空気をサンプリングする場合と同様に、粒子がサンプル媒体内に存在しない場合、感度が高く、正確である。開示されるシステム及び方法はまた、フィルタ処理されない周囲空気を使用して実施されてもよい。この後者の場合では、ビーム中の粒子は、異常値データ点を引き起こすことがあり、これは、較正検証試験パルスの複数の実行に対して平均化される、又はそれらが所定の閾値信号を越える場合は定量分析から省略される、のどちらであってもよい。増幅回路はまた、粒子(通常計器流量でサンプリングするとき)及びパルスノイズイベントに大きく反応しないように調整された周波数であってもよい。
[0020]本明細書において提供される方法及び分析計は、2つの別個の、干渉しない時間周波数領域、すなわち、中間周波数時間領域及び低周波数時間領域の使用を含む。任意選択で、第3の別個の周波数すなわち高周波数時間領域が利用される。中間周波数時間領域は、粒子検出のためのものである。低周波数時間領域は、分析計の調子又は較正ステータスのための、レーザパルス光自己診断を含む較正ステータスのためのものである。周波数時間領域範囲を慎重に選択することによって、異なる周波数時間領域のいずれの間にも干渉はなく、以って、粒子及び/又は任意の粒子を分析する能力に影響することのない分析計自己診断は、存在しない場合、診断機能に影響しないという重要な機能的利益を提供する。任意選択的な第3の周波数、高周波数時間領域は、レーザ面駆動電流周波数変調を生成して、レーザ面の空間モードホッピングを防止する。そのうえ、空間モードホッピングを回避するために重要である高周波数時間領域は、粒子検出又は自己診断のいずれとも干渉しない。もちろん、本明細書において説明されるシステム及び方法は、空間モードホッピングは低い関心事である光学源に適合する。たとえば、第3の高周波数時間領域は、屈折率導波形レーザを有する分析計とともに使用されてもよい。対照的に、高周波数時間領域は、利得導波形レーザなどの他のレーザとともに必要とされないことがある。
[0021]較正検証診断ルーチンを開始しながら粒子活動の影響を減少又は解消するために、別個の及び別々の時間領域セグメントへのシステム時間スペクトルのセグメント化が、本明細書において説明される。システムは、散乱光集光システムの集光効率を決定する方法として、レーザパワー変調を利用する。システムは、これを、診断ルーチンが起動されている間レーザビームを通過する粒子の存在の影響を実質的に受けない様式で達成する。これは、本明細書において説明されるシステム及び方法が、影響が較正内ステータスの決定に不利に影響しない限り、自己診断時の粒子による何らかの影響を許容することを反映する。たとえば、粒子によって引き起こされる5%未満又は1%未満などの、結果として生じる1つ又は複数の診断パラメータの小さい変動は、許容範囲内である。必要に応じて、よりコスト効果の高い受動的な単一のPOLEフィルタではなく、第2のPOLEフィルタ又は第3のPOLEフィルタなどの、より厳しい能動的なフィルタリング技法が使用されてもよい。
[0022]システムは、別々の外部フォトダイオードパワー測定システムを利用して、適切なレーザパワーが検出されたことを検証する。このシステムも、診断ルーチンが起動されている間レーザビームを通過する粒子の存在の影響を受けないように設計される。
[0023]本明細書において説明される方法及びシステムは、粒子がシステムの能動的要素を通って通過しているときですら容易に実施される較正診断システム/方法を提供するによることを含む、光学式粒子計数の技術を進化させる。
[0024]一実施形態では、光学式粒子分析計の較正を検証するための方法が提供される。この方法は、光学式粒子分析計を用意するステップを含む。光学式粒子分析計は、電磁放射(「EMR」)のビームを生成するためのEMRの源を含む。光学式粒子分析計は、サンプル媒体を含むため、及びEMRのビームを受けるためのチャンバを含む。光学式粒子分析計は、EMRのビームを源からチャンバに向けるための、EMRの源と光学的に連絡する光学アセンブリを含む。光学式粒子分析計は、EMRのビームから散乱放射を検出するための検出器を含む。光学式粒子分析計は、EMRのビームからの散乱放射をチャンバから検出器に向けるための集光システムを含む。方法は、EMRの源に印加されたパワーを変調するステップを含む。方法は、変調するステップに応答して、検出器信号波形を誘導するステップを含む。方法は、検出器信号波形を分析して、EMRの源、光学アセンブリ、チャンバ、検出器、及び集光システムのうちの1つ又は複数と関連づけられた少なくとも1つの診断パラメータの値を決定するステップを含む。方法は、少なくとも1つの診断パラメータの1つ又は複数の決定された値に基づいて光学式粒子分析計の較正ステータスを決定するステップを含む。
[0025]一実施形態では、光学式粒子分析計の較正を検証するための方法が提供される。この方法は、光学式粒子分析計を用意するステップを含む。光学式粒子分析計は、レーザビームを生成するためのレーザの源を含む。光学式粒子分析計は、サンプル媒体を含むため、及びレーザビームを受けるためのフローチャンバを含む。光学式粒子分析計は、レーザビームをレーザからフローチャンバに向けるための、レーザと光学的に連絡する光学アセンブリを含む。光学式粒子分析計は、レーザビームから散乱放射を検出するための検出器を含む。光学式粒子分析計は、レーザビームからの散乱放射をフローチャンバから検出器に向けるための集光システムを含む。方法は、レーザに印加されるパワーを第1のパワーレベルから第2のパワーレベルに変調するステップを含む。方法は、変調するステップに応答して、検出器信号波形を誘導するステップを含む。方法は、検出器信号波形を分析して、レーザ、光学アセンブリ、フローチャンバ、検出器、及び集光システムのうちの1つ又は複数と関連づけられた少なくとも1つの診断パラメータの値を決定するステップを含む。少なくとも1つの診断パラメータは、第1のパワーレベルでの印加されたパワーを有するレーザから第1の放射パワーレベルでレーザビームから検出器によって検出された散乱放射と、第2のパワーレベルでの印加されたパワーを有するレーザから第2の放射パワーレベルでレーザビームから検出器によって検出された散乱放射との検出器信号振幅の差に対応する散乱放射検出器信号波形のピークの振幅を含む。方法は、少なくとも1つの診断パラメータの1つ又は複数の決定された値に基づいて光学式粒子分析計の較正ステータスを決定するステップを含む。
[0026]一実施形態では、光学式粒子分析計が提供される。この光学式粒子分析計は、EMRのビームを生成するためのEMRの源を含む。光学式粒子分析計は、サンプル媒体を含むため、及び電磁放射のビームを受けるためのチャンバを含む。光学式粒子分析計は、EMRのビームをEMRの源からチャンバに向けるためのEMRの源と光学的に連絡する光学アセンブリを含む。光学式粒子分析計は、EMRのビームから散乱放射を検出するための検出器を含む。光学式粒子分析計は、EMRのビームからの散乱放射をチャンバから検出器に向けるための集光システムを含む。光学式粒子分析計は、EMRの源及び検出器に動作可能に接続されたプロセッサを含む。このプロセッサは、EMRの源に印加されたパワーを第1のパワーレベルから第2のパワーレベルに変調するようにプログラムされる。プロセッサは、EMRの源に印加されたパワーの変調によって誘導された散乱放射検出器信号波形を分析するようにプログラムされる。プロセッサは、EMRの源、チャンバ、光学アセンブリ、検出器、及び集光システムのうちの1つ又は複数と関連づけられた少なくとも1つの診断パラメータの値を決定するようにプログラムされる。プロセッサは、少なくとも1つの診断パラメータの1つ又は複数の決定された値に基づいて光学式粒子分析計の較正ステータスを決定するようにプログラムされる。
[0027]一実施形態では、光学式粒子分析計が提供される。この光学式粒子分析計は、レーザビームを生成するためのレーザの源を含む。光学式粒子分析計は、サンプル媒体を含むため、及びレーザビームを受けるためのフローチャンバを含む。光学式粒子分析計は、レーザビームをレーザからフローチャンバに向けるための、レーザと光学的に連絡する光学アセンブリを含む。光学式粒子分析計は、レーザビームから散乱放射を検出するための検出器を含む。光学式粒子分析計は、レーザビームからの散乱放射をフローチャンバから検出器に向けるための集光システムを含む。光学式粒子分析計は、レーザ及び検出器に動作可能に接続されたプロセッサを含む。プロセッサは、レーザに印加されるパワーを第1のパワーレベルから第2のパワーレベルに変調するようにプログラムされる。プロセッサは、レーザに印加されるパワーの変調によって誘導された散乱放射検出器信号波形を分析するようにプログラムされる。プロセッサは、レーザ、フローチャンバ、光学アセンブリ、検出器、及び集光システムのうちの1つ又は複数と関連づけられた少なくとも1つの診断パラメータの値を決定するようにプログラムされる。少なくとも1つの診断パラメータは、第1のパワーレベルでの印加されたパワーを有するレーザから第1の放射パワーレベルでレーザビームから検出器によって検出された散乱放射と、第2のパワーレベルでの印加されたパワーを有するレーザから第2の放射パワーレベルでレーザビームから検出器によって検出された散乱放射との検出器信号振幅の差に対応する散乱放射検出器信号波形のピークの振幅を含む。プロセッサは、少なくとも1つの診断パラメータの1つ又は複数の決定された値に基づいて光学式粒子分析計の較正ステータスを決定するようにプログラムされる。
[0028]一実施形態では、非一過性コンピュータ可読記憶媒体が提供される。非一時的なコンピュータ可読記憶媒体は、EMRの源とチャンバと光学アセンブリと検出器と集光システムとを有する光学式粒子分析計の較正を検証するために、その中に記憶されるプロセッサ実行可能命令を含む。1つ又は複数のプロセッサによって実行されるとき、プロセッサ実行可能な命令は、1つ又は複数のプロセッサに、EMRの源に印加されたパワーを第1のパワーレベルから第2のパワーレベルに変調させる。1つ又は複数のプロセッサによって実行されるとき、プロセッサ実行可能な命令は、1つ又は複数のプロセッサに、EMRの源に印加されたパワーの変調によって誘導される散乱放射検出器信号波形を分析させる。1つ又は複数のプロセッサによって実行されるとき、プロセッサ実行可能な命令は、1つ又は複数のプロセッサに、EMRの源、チャンバ、光学アセンブリ、検出器、及び集光システムのうちの1つ又は複数と関連づけられた少なくとも1つの診断パラメータの値を決定させる。1つ又は複数のプロセッサによって実行されるとき、プロセッサ実行可能な命令は、1つ又は複数のプロセッサに、少なくとも1つの診断パラメータの1つ又は複数の決定された値に基づいて光学式粒子分析計の較正ステータスを決定させる。
[0029]一実施形態では、非一過性コンピュータ可読記憶媒体が提供される。非一時的なコンピュータ可読記憶媒体は、レーザとフローチャンバと光学アセンブリと検出器と集光システムとを有する光学式粒子分析計の較正を検証するために、その中に記憶されるプロセッサ実行可能命令を含む。1つ又は複数のプロセッサによって実行されるとき、プロセッサ実行可能な命令は、1つ又は複数のプロセッサに、レーザに印加されるパワーを第1のパワーレベルから第2のパワーレベルに変調させる。1つ又は複数のプロセッサによって実行されるとき、プロセッサ実行可能な命令は、1つ又は複数のプロセッサに、レーザに印加されるパワーの変調によって誘導される散乱放射検出器信号波形を分析させる。1つ又は複数のプロセッサによって実行されるとき、プロセッサ実行可能な命令は、1つ又は複数のプロセッサに、レーザ、フローチャンバ、光学アセンブリ、検出器、及び集光システムのうちの1つ又は複数と関連づけられた少なくとも1つの診断パラメータの値を決定させる。少なくとも1つの診断パラメータは、第1のパワーレベルでの印加されたパワーを有するレーザから第1の放射パワーレベルでレーザビームから検出器によって検出された散乱放射と、第2のパワーレベルでの印加されたパワーを有するレーザから第2の放射パワーレベルでレーザビームから検出器によって検出された散乱放射との検出器信号振幅の差に対応する散乱放射検出器信号波形のピークの振幅を含む。1つ又は複数のプロセッサによって実行されるとき、プロセッサ実行可能な命令は、1つ又は複数のプロセッサに、少なくとも1つの診断パラメータの1つ又は複数の決定された値に基づいて光学式粒子分析計の較正ステータスを決定させる。
[0030]いかなる特定の理論にも拘束されることを望むものではないが、本明細書において開示されるデバイス及び方法に関連する根本的な原理の見解又は理解が、本明細書において説明され得る。任意の機械的な説明又は仮説の最終的な正確さにかかわらず、本発明の一実施形態は、それにもかかわらず、動作可能であり、有用であることができることが認識されよう。
光学式粒子分析計の概略図である。 本開示の一実施形態による光学式粒子分析計の較正を検証するための方法のフローチャートである。 本開示の一実施形態による図2に図示される方法を実行するために使用されることがあるソフトウェアアーキテクチャのブロック図である。 本開示の一実施形態による図1に図示されるコンピューティングシステム及び図2に示される方法とともに使用されることがあるデータ構造のブロック図である。 本開示の一実施形態による図2に図示される方法において誘導される検出器信号波形のプロットである。 本開示の一実施形態による図2に図示される方法のための使用事例の状態図表現である。 本開示の実施例1のための検出器信号波形のプロットである。 本開示の実施例1のための検出器信号波形のプロットである。 本開示の実施例1のための検出器信号波形のプロットである。 本開示の実施例1のための検出器信号波形のプロットである。 本開示の実施例1のための検出器信号波形のプロットである。 本開示の実施例1のための検出器信号波形のプロットである。 本開示の実施例1のための検出器信号波形のプロットである。 本開示の実施例1のための検出器信号波形のプロットである。 本開示の一実施形態によるリセットをもつ周波数が調整された閉ループピークホールド回路の概略図である。 本開示の実施例4のための検出器信号波形のプロットである。 時間延長ビューにおける図12の検出器信号波形のプロットである。 本開示の実施例4のための検出器信号波形のプロットである。 本開示の実施例5のための検出器信号波形のプロットである。 本開示の実施例5のための検出器信号波形のプロットである。 本開示の実施例5のための検出器信号波形のプロットである。 本開示の実施例5のための検出器信号波形のプロットである。 本開示の実施例5のための検出器信号波形のプロットである。 本開示の実施例5のための検出器信号波形のプロットである。 デジタルオシロスコープからの例示的な粒子パルスのプロットである。 低周波数時間領域のための低速ピークホールド回路の概略図である。 フィルタ処理された計器サンプル空気を用いたピークホールド回路診断機能のプロットである。 ISO 14644-1クラス5のフィルタ処理されていない計器サンプル空気を用いたピークホールド回路診断機能のプロットである。
[0055]以下の説明では、本発明のデバイス、デバイス構成要素、及び方法の多数の具体的な詳細は、本発明の正確な性質の完全な説明を提供するために記載されている。しかしながら、本発明がこれらの具体的な詳細なしに実施可能であることは、当業者には明らかであろう。
[0056]一般に、本明細書において使用される用語及び句は、当業者に知られている標準的なテキスト、雑誌参考文献、及び文脈を参照して見出され得る、当技術で認識される意味を有する。以下の定義は、本発明の文脈における具体的な使用法を明確にするために提供される。
[0057]「サンプル媒体」という用語は、光学式粒子分析計によって測定されることになるサンプルを備える物質又は物質の集まりを指す。一例として、光学式粒子分析計は、環境から空気をサンプル採取することがある。空気は、粒子を含んでもよいし、含まなくてもよく、したがって、それは、光学式粒子分析計を使用して環境中の空気が粒子を有するかどうかを決定するという1つの目的である。この例では、サンプル媒体は環境の空気である。
[0058]「診断パラメータ」という用語は、検出器信号波形などの光学式粒子分析計の1つ又は複数の出力を通じて分析的に決定される測定可能な量又は品質を指す。診断パラメータの値は、光学式粒子分析計の正常な較正イベント間のときに決定される。
[0059]「と関連づけられた診断パラメータ」という用語は、光学式粒子分析計内の粒子構成要素(複数可)の動作条件及び機能を表す決定された診断パラメータの1つ又は複数の値を指す。たとえば、特定の診断パラメータの値は、光学式粒子分析計のフォトダイオードベースの検出器上での散乱光入射の放射パワーに従って変わることがある。この場合、期待値よりも小さい(たとえば、仕様外の結果)、そのような診断パラメータに関して決定された値は、たとえば、限定するものではないが、ビームが散乱され、その後で光学式粒子分析計の検出器によって検出される電磁放射の源(たとえば、レーザ)に関する動作問題を示すことがある。
[0060]「動作条件」という用語は、特定の構成要素又は光学式粒子分析計の構成要素のセットの機能の状態を指す。動作条件は、構成要素(複数可)が機能する又は機能しないのどちらかである、厳密に2値のステータスであってもよい。動作条件は、完全に機能するから完全に機能しないまでの範囲に及ぶ機能の連続体に関するステータスであってもよい。そのような機能の連続体は、仕様外ステータスに近い及び/又は所定のスケジュールに従った何らかの維持動作を必要とするなどの、中間状態(複数可)を含むことがある。本明細書において詳細に説明されるように、開示されたシステム及び/並びに方法を使用して決定される診断パラメータの値は、診断パラメータが関連づけられる光学式粒子分析計のそれぞれの構成要素(複数可)の動作条件と関連づけられることがある。
[0061]「較正ステータス」という用語は、光学式粒子分析計が「較正内」であるか又は「較正外」であるかを反映する光学式粒子分析計の特定の機能状態を指す。特定の光学式粒子分析計の較正ステータスは、その同じ特定の粒子分析計に関して最後の正常な較正が実行及び/又は認定された以降のステータスである。較正ステータスは、特定の光学式粒子分析計が較正内又は較正外のどちらかである2値ステータスであってもよい。較正ステータスは、較正内から較正外までの範囲に及ぶステータスの連続体に関するステータスであってもよい。そのような連続体は、較正外ステータスに近い、スケジュールされた較正のための時間に近い、及び/又は1つ若しくは複数の所定の制御警告限界(複数可)に接近している若しくはこれを超過しているなどの、中間ステータスを含むことがある。対象となる適用例に応じて、分析計は、較正された絶対値の10%以内、5%以内、1%以内、又は0.1%以内パラメータを提供するなどの、使用者により定められた許容差範囲内である場合、「較正された」と定められてよい。
[0062]「較正パラメータ」という用語は、光学式粒子分析計のための正常な較正イベントが実行される(たとえば、較正イベントの開始と較正イベントの終了の間に決定される)同じ時間の間に較正パラメータの値が決定されることを除いて、「診断パラメータ」と同じ意味をもつ。
[0063]「立ち上がり縁関数」という用語は、検出器信号波形の立ち上がり縁を定める又は少なくとも近似する式を指す。
[0064]「通電状態」という用語は、光学式粒子分析計の構成要素内に貯蔵された電気エネルギーの定性的尺度及び/又は定量的尺度を指す。
[0065]「に動作可能に接続される」という用語は、2つ以上の機能的に関連する構成要素が電流の流れ及び/又はデータ信号の流れの目的で互いに結合されていることを指す。2つ以上の構成要素のこの結合は、ワイヤード接続及び/又はワイヤレス接続であってもよい。ワイヤード接続及び/又はワイヤレス接続を介してそのように結合された2つ以上の構成要素は、互いに近接していてもよいし(たとえば、光学式粒子分析計と同じ部屋内又は同じハウジング内)、物理的空間内(たとえば、光学式粒子分析計の場所とは異なる建物内)で何らかの距離によって分離されてもよい。
[0066]「光学的に連絡」という用語は、光又は電磁放射が構成要素間を移動することを可能にする様式で配列された構成要素を指す。
[0067]「放射」という用語は、空間を通る又は物質媒体を通る放出又は透過を経験するエネルギーなどの、波及び/又は粒子の形をとるエネルギーを指す。いくつかの方法及び/並びに適用例に関しては、「放射」という用語が電磁放射を指すことが好ましい。「電磁放射」という用語と「光」という用語は、本明細書では同義に使用され、電界及び磁界の波及び/又は光子を指す。本明細書で使用されるとき、電磁放射は、限定するものではないが、電波、マイクロ波、赤外線、可視光、紫外線、X線、及びガンマ線を含む。本発明の方法に有用な電磁放射は、限定するものではないが、紫外光、可視光、赤外光、又は約100ナノメートル(nm)~約15ミクロン(μm)の波長を有するこれらの任意の組み合わせを含む。「散乱放射」という用語は、電磁放射のビームの少なくとも一部分(又は、そのエネルギー含量)の散乱から生じる放射などの、放射の散乱から生じる放射を指す。たとえば、レーザビームなどの電磁放射のビームとこのビームが透過されている媒体内に存在する粒子などの物質との間の相互作用は、電磁放射のビームの少なくとも一部分の散乱、又はそのエネルギー含量を含むことがある。たとえば、電磁放射のビームの光子の少なくとも一部分は、物質との相互作用又は媒体内の不均一性による散乱されることがある。「散乱」及び「散乱させる」という用語は、電磁放射などの放射が、放射が放たれている又は透過されている媒体内の1つ又は複数の不均一性との相互作用により直線軌道から逸脱することが強制されるプロセスを指す。たとえば、散乱は、電磁放射の波、又はそれらの量子、光子が、電磁放射の波又は光子が放たれている又は透過されている流体(たとえば、気体、空気、液体など)などの媒体内の1つ又は複数の粒子などの物質との相互作用又は不均一性によるある直線軌道から少なくとも第2の軌道への逸脱(複数可)を経験することを指すことがある。
[0068]「ほぼ」という用語と「約」という用語は、互換的に使用され、所与の基準値の20%以内、10%以内、5%以内、又は任意選択で所与の基準値に等しい、値を指す。たとえば、約100nmである波長は、100nmの20%以内、10%以内、5%以内、又は好ましくはいくつかの適用例では100nmに等しい、任意の波長である。
[0069]「粒子」は、多くの場合に汚染物質と考えられる小さい物体を指す。粒子は、たとえば、2つの表面が機械的に接触し、機械的な動きがあるとき、摩擦の作用によって産生される任意の物質とすることができる。粒子は、塵、汚れ、煙、灰、水、すす、金属、ミネラル、又はこれら若しくは他の物質若しくは汚染物質の任意の組み合わせなどの物質の凝集体から構成可能である。「粒子」は、生物学的粒子、たとえば、ウイルスや、胞子や、細菌、真菌、古細菌、原生生物、他の単細胞微生物、及び具体的には1~15μm程度のサイズを有するそれらの微生物を含む微生物も指すことがある。粒子は、光を吸収又は散乱させ、したがって光学式粒子計数器によって検出可能である任意の小さな物体を指すことがある。本明細書で使用されるとき、「粒子」は、搬送流体の個々の原子又は分子、たとえば水分子、プロセス化学分子、酸素分子、ヘリウム原子、窒素分子などを除くと意図される。本発明のいくつかの実施形態は、10nmよりも大きい、20nmよりも大きい、30nmよりも大きい、50nmよりも大きい、100nmよりも大きい、500nmよりも大きい、1μm以上、又は10μm以上であるサイズを有する物質の凝集体を含む粒子を検出、サイズ分類、及び/又は計数することが可能である。特定の粒子は、20nm~50nmから選択されるサイズ、50nm~50μmから選択されるサイズ、100nm~10μmから選択されるサイズ、又は500nm~5μmから選択されるサイズを有する粒子を含む。
[0070]図1は、例示的な光学式粒子分析計100を概略的に示す。光学式粒子分析計100は、電磁放射(「EMR」)のビーム104を生成するためのEMRの源102を含む。一実施形態では、EMRの源102は、レーザ、レーザダイオード、ストリップダイオードレーザ、発光ダイオード、及び白熱電球のうちの少なくとも1つを含む。EMRの源102がレーザを含む実施形態では、EMRのビーム104は、レーザビームを含む。一実施形態では、レーザは、レーザダイオード及びストリップダイオードレーザのうちの少なくとも1つを含む。
[0071]図1に図示される光学式粒子分析計100は、サンプル媒体108を含むため、及びEMRのビーム104を受けるためのチャンバ106を含む。EMRの源102がレーザを含む実施形態では、チャンバ106は、レーザビームを受ける。一実施形態では、サンプル媒体108は粒子を含む。一実施形態では、サンプル媒体108は、流体(たとえば、液体及び/又は気体)を含む。一実施形態では、チャンバ106は、キュベットを含む、又はキュベットである。一実施形態では、チャンバ106は、サンプル媒体108を含むため、及びEMRのビーム104を受けるためのフローチャンバを含む、又はフローチャンバである。フローチャンバは、サンプル入口とサンプル出口とを有することがあり、ポンプ、入口、出口、コンジット、弁、流量制御装置などの、フローチャンバへと及びこれからサンプルの流れを確実に導入するための手段をもつ。チャンバ106がフローチャンバを含み、サンプル媒体108が流体を含む実施形態では、光学式粒子分析計100は、流体をフローチャンバに流すためのフローシステム109を含むことがある。そのような実施形態では、光学式粒子分析計100は、フローチャンバの上流で(たとえば、流体が入口111を通ってフローチャンバの内部に入る前に)流体をフィルタ処理するためのフィルタ110を含むことがある。空気中粒子の場合、サンプル媒体108を構成する流体の空気ストリームは、チャンバ106内に閉じ込められる必要はなく、むしろ、周囲環境からチャンバを通って流れてもよい。
[0072]図1に図示される光学式粒子分析計100は、EMRのビーム104をEMRの源102からチャンバ106に向けるためのEMRの源102と光学的に連絡する光学アセンブリ112を含む。EMRの源102がレーザを含む実施形態では、光学アセンブリ112は、レーザビームをレーザからチャンバ106に向けるために、レーザと、レーザによって生成されるEMRの関連づけられたビーム(たとえば、レーザビーム)と光学的に連絡することがある。一実施形態では、光学アセンブリ112は、1つ又は複数のレンズ、マスク、及び/又はフィルタを含むことがある。図示される実施形態では、光学アセンブリ112は、チャンバ106の内部のEMRのビーム104を集束させるために、第1のレンズ113と、マスク114と、第2のレンズ116とを含む。EMRの源102がレーザを含む実施形態では、第2のレンズ116は、チャンバ106の内部のレーザビームを集束させることがある。
[0073]図1に図示される光学式粒子分析計100は、EMRのビーム104から散乱放射119を検出するための検出器118を含む。EMRの源102がレーザを含む実施形態では、検出器118は、レーザビームから散乱放射119を検出する。光学式粒子分析計100は、EMRのビーム104からの散乱放射119をチャンバ106から検出器118に向けるための集光システム120を含む。EMRの源102がレーザを含む実施形態では、集光システム120は、レーザビームからの散乱放射119をチャンバ106から検出器118に向ける。一実施形態では、光学式粒子分析計100は、セル又はチャンバ106を出る光を検出するための標準化のための追加の検出器(たとえば、標準化検出器121)を含むことがある。
[0074]図1に図示される光学式粒子分析計100は、1つ又は複数のプロセッサ124と、この1つ又は複数のプロセッサ124に動作可能に接続された1つ又は複数のメモリデバイス126とを有する、コンピューティングシステム122を含むことがある。メモリデバイス126は、プロセッサ(複数可)124によって実行可能なソフトウェアとして符号化されたプログラム命令を貯蔵することが可能である、少なくとも1つの非一過性プロセッサ可読媒体を含む。コンピューティングシステム122は、コンピューティングデバイス122並びに/又は光学式粒子分析計100の他の構成要素及びサブシステムを用いた光学式粒子分析計100の使用者130による(たとえば、ディスプレイ150、キーボード、及び/又は図1に図示されていない他のI/Oデバイスを介した)動作相互作用及び情報視覚化及び操作を容易にするためのユーザインタフェース128を含むことがある。
[0075]図1に図示される光学式粒子分析計100は、検出器信号134を増幅するための、プロセッサ(複数可)124に動作可能に結合され、検出器118に動作可能に結合された増幅回路132を含むことがある。光学式粒子分析計100は、プロセッサ(複数可)124に動作可能に結合され、EMRの源102に動作可能に結合された駆動回路136を含むことがある。EMRの源102がレーザを含む実施形態では、駆動回路136は、レーザのためのものである。
[0076]一実施形態では、プロセッサ(複数可)124は、動作中に光学式粒子分析計100のさまざまな構成要素を制御するための、メモリデバイス(複数可)126内に貯蔵されたソフトウェアを実行することがある。一実施形態では、プロセッサ(複数可)124は、駆動回路136を介して(たとえば、使用者130により指定される周波数、電圧、電流、波形、デューティサイクル、及び駆動回路136によって実施される他の制御パラメータを制御することによって)EMRの源102を制御することがある。一実施形態では、プロセッサ(複数可)124は、フローシステム109(たとえば、流量制御装置、ポンプ、弁、コンジットなど)に動作可能に結合されることがあり、プロセッサ(複数可)124は、たとえば、使用者130により指定される流量及びフローシステム109によって実施される他の制御パラメータを制御することによって、フローシステム109を制御することがある。一実施形態では、プロセッサ(複数可)124は、検出器信号134を受け取り、検出器信号134によって符号化された情報を復号した後で、復号された情報をメモリデバイス(複数可)126に貯蔵することがある。光学式粒子分析計100は、機能するために電力を必要とする光学式粒子分析計100のさまざまな構成要素及びシステムに電力を提供するための電源142を含むことがある。
[0077]図2は、本開示の一実施形態による光学式粒子分析計(たとえば、光学式粒子分析計100)の較正ステータスを検証するための方法200のフローチャートである。方法200は、用意するステップ202を含む。この用意するステップ202は、本明細書において説明される分析計のいずれかを含む光学式粒子分析計を用意することを含む。一実施形態では、用意するステップ202は、上記で図1を参照して説明された光学式粒子分析計100を用意することを含む。EMRの源102がレーザを含む実施形態では、用意するステップ202は、レーザビームを生成するためにレーザを有する光学式粒子分析計100を用意することを含む。チャンバ106がフローチャンバを含む実施形態では、用意するステップ202は、サンプル媒体108を含むため、及びEMRのビームを受けるためのフローチャンバを有する光学式粒子分析計100を用意することを含む。EMRの源102がレーザを含み、チャンバ106がフローチャンバを含む実施形態では、用意するステップ202は、サンプル媒体108を含むため、及びレーザビームを受けるためのフローチャンバを有する光学式粒子分析計100を用意することを含む。
[0078]図2に図示される方法200は、変調するステップ204を含む。変調するステップ204は、EMRの源102に印加されるパワーを変調することを含む。変調するステップ204は、EMRの源102に印加されるパワーを第1のパワーレベルから第2のパワーレベルに変調することを含むことがある。一実施形態では、変調するステップ204の間にEMRの源102に印加される第1のパワーレベルは0(ゼロ)ワット(W)であり、変調するステップ204の間にEMRの源102に印加される第2のパワーレベルは0Wよりも大きい。一実施形態では、変調するステップ204の間にEMRの源102に印加される第1のパワーレベルは、変調するステップ204の間にEMRの源102に印加される第2のパワーレベルよりも小さい。EMRの源102がレーザを含む実施形態では、変調するステップ204は、レーザに印加されるパワーを第1のパワーレベルから第2のパワーレベルに変調することを含む。
[0079]図3は、本開示の一実施形態による図2に図示される方法200を実行するために使用されることがあるソフトウェアアーキテクチャ300のブロック図である。図4は、本開示の一実施形態による図1に図示されるコンピューティングシステム122及び図2に図示される方法200とともに使用されることがあるデータ構造400のブロック図である。一実施形態では、方法200の変調するステップ204は、メモリデバイス(複数可)126にソフトウェア302として貯蔵されるプログラム命令を実行するプロセッサ(複数可)124によってコンピュータ実施方法の一部として実行されることがある。一実施形態では、プロセッサ(複数可)124は、ソフトウェア302の変調するモジュール304内の符号化されたプログラム命令を実行することによって、変調するステップ204を実行する。
[0080]一実施形態では、光学式粒子分析計100のプロセッサ(複数可)124は、EMRの源102に印加されるパワーを第1のパワーレベルから第2のパワーレベルに変調するようにプログラムされる。EMRの源102がレーザを含む実施形態では、プロセッサ(複数可)124は、レーザに印加されるパワーを第1のパワーレベルから第2のパワーレベルに変調するようにプログラムされる。一実施形態では、EMRの源102に印加されるパワーを変調するために、プロセッサ(複数可)124は、EMRの源102に印加されるパワーを第1のパワーレベルから第2のパワーレベルに切り換えるようにプログラムされる。EMRの源102がレーザを含む実施形態では、プロセッサ(複数可)124は、レーザに印加されるパワーを第1のパワーレベルから第2のパワーレベルに切り換えるようにプログラムされる。一実施形態では、第1のパワーレベル及び第2のパワーレベルの値は、変調するステップ204の実行の前又はこれと同時に、光学式粒子分析計100の使用者130によって定められる。一実施形態では、第1のパワーレベル及び第2のパワーレベルの値は、データ構造400のパワー設定ブロック402においてメモリデバイス(複数可)126に貯蔵される。一実施形態では、プロセッサ(複数可)124は、変調するステップ204の間に変調するモジュール304に貯蔵されたプログラム命令を実行する前又はこれと同時に、パワー設定ブロック402から第1のパワーレベル及び第2のパワーレベルのための値を符号化するデータを読み取る。
[0081]一実施形態では、図2に図示される自己診断(チェックパルス自己診断ルーチン)のための方法200の変調するステップ204は、切り換えるステップを含む。切り換えるステップは、EMRの源102に印加されるパワーを第1のパワーレベルから第2のパワーレベルに切り換えることを含むことがある。一実施形態では、切り換えるステップは、EMRの源102に印加されるパワーをスイッチング波形に従って切り換えることを含む。一実施形態では、スイッチング波形は、矩形波である、又は矩形波として近似可能である。一実施形態では、スイッチング波形は、周波数と、デューティサイクルと、第1のパワーレベルに対応する第1のスイッチング振幅と、第2のパワーレベルに対応する第2のスイッチング振幅とを有する。EMRの源102がレーザを含む実施形態では、切り換えるステップは、レーザに印加されるパワーを第1のパワーレベルから第2のパワーレベルに切り換えることを含む。一実施形態では、レーザに印加されるパワーを切り換えることは、レーザに印加されるパワーをスイッチング波形に従って切り換えることを含むことがある。一実施形態では、スイッチング波形の周波数は、500Hzよりも小さいか又はこれに等しい。
[0082]一実施形態では、切り換えるステップは、メモリデバイス(複数可)126にソフトウェア302として貯蔵されるプログラム命令を実行するプロセッサ(複数可)124によってコンピュータ実施方法の一部として実行されることがある。一実施形態では、プロセッサ(複数可)124は、ソフトウェア302の切り換えるモジュール305内の符号化されたプログラム命令を実行することによって、切り換えるステップを実行する。
[0083]一実施形態では、EMRの源102又はレーザに印加されるパワーを切り換えるために、プロセッサ(複数可)124は、電流の流れをスイッチング波形に従って電源(たとえば、図1に図示される電源142)から駆動回路136に切り換えるようにプログラムされる。一実施形態では、スイッチング波形のための周波数、デューティサイクル、第1のスイッチング振幅、及び第2のスイッチング振幅のための値は、変調するステップ204の実行の前又はこれと同時に、光学式粒子分析計100の使用者130によって定められる。一実施形態では、スイッチング波形のための周波数、デューティサイクル、第1のスイッチング振幅、及び第2のスイッチング振幅のための値は、データ構造400のスイッチング波形設定ブロック404に貯蔵される。一実施形態では、プロセッサ(複数可)124は、切り換えるステップのための切り換えるモジュール305に貯蔵されるプログラム命令を実行する前又はこれと同時に、スイッチング波形設定ブロック404から、スイッチング波形のための周波数、デューティサイクル、第1のスイッチング振幅、及び第2のスイッチング振幅のための値を符号化するデータを読み取る。
[0084]一実施形態では、方法200の変調するステップ204は、維持するステップを含む。維持するステップは、1ms(ns)~20ミリ秒(ms)の範囲に対して選択された時間にわたって第2のパワーレベルでEMRの源102に印加されるパワーを維持することを含むことがある。一実施形態では、維持するステップは、10ms~1秒(s)の範囲に対して選択された時間にわたって第2のパワーレベルでEMRの源102に印加されるパワーを維持することを含む。EMRの源102がレーザを含む実施形態では、維持するステップは、1ms~1sの範囲に対して選択された時間にわたって第2のパワーレベルでレーザに印加されたパワー維持することを含む。一実施形態では、維持するステップは、10ms~1sの範囲に対して選択された時間にわたって第2のパワーレベルでレーザに印加されるパワーを維持することを含む。
[0085]一実施形態では、維持するステップは、メモリデバイス(複数可)126にソフトウェア302として貯蔵されるプログラム命令を実行するプロセッサ(複数可)124によってコンピュータ実施方法の一部として実行されることがある。一実施形態では、プロセッサ(複数可)124は、ソフトウェア302の維持するモジュール306内の符号化されたプログラム命令を実行することによって、維持するステップを実行する。
[0086]一実施形態では、1ms~1sの範囲に対して選択される時間にわたって又は10ms~1秒(s)の範囲に対して選択される時間にわたって第2のパワーレベルでEMRの源102に印加されるパワーを維持するために、プロセッサ(複数可)124は、電源142から駆動回路136への電流の流れを維持するようにプログラムされる。一実施形態では、第2のパワーレベルでEMRの源102に印加されるパワーを維持する時間の値は、変調するステップ204の実行の前又はこれと同時に光学式粒子分析計100の使用者130によって定められる。一実施形態では、第2のパワーレベルでEMRの源102に印加されるパワーを維持する時間の値は、データ構造400の時間設定ブロック406に貯蔵される。一実施形態では、プロセッサ(複数可)124は、維持するステップの間に維持するモジュール306に貯蔵されるプログラム命令を実行する前又はこれと同時に、時間設定ブロック406から第2のパワーレベルでEMRの源102に印加されるパワーを維持する時間の値を符号化するデータを読み取る。
[0087]チャンバ106がフローチャンバを含む実施形態では、方法200は、流れるステップを含むことがある。一実施形態では、流れるステップは、流体を含むサンプル媒体108をフローチャンバに流すことを含む。一実施形態では、流れるステップは、流体を含み粒子を含むサンプル媒体108をフローチャンバに流すことを含む。一実施形態では、流れるステップは、フィルタ処理するステップを含む。一実施形態では、フィルタ処理するステップは、流体を含むサンプル媒体108をフィルタ処理することを含む。一実施形態では、フィルタ処理するステップは、フローチャンバの上流で流体を含むサンプル媒体108をフィルタ処理することを含む。一実施形態では、流れるステップは、変調するステップ204の間に流体を含むサンプル媒体108をフローチャンバに流すことを含む。一実施形態では、方法200は、サンプル媒体をフィルタ処理することの不在下で実行される。一実施形態では、方法200は、サンプル媒体を流すことの不在下で実行される。一実施形態では、方法200は、サンプル媒体を流すことの不在下及びサンプル媒体をフィルタ処理することの不在下で実行される。
[0088]一実施形態では、流れるステップは、メモリデバイス(複数可)126にソフトウェア302として貯蔵されるプログラム命令を実行するプロセッサ(複数可)124によって、コンピュータ実施方法の一部として実行されることがある。一実施形態では、プロセッサ(複数可)124は、ソフトウェア302の流れるモジュール307内の符号化されたプログラム命令を実行することによって、流れるステップを実行する。
[0089]一実施形態では、流体を含むサンプル媒体108をフローチャンバに流すために、プロセッサ(複数可)124は、フローシステム109の流量を制御するようにプログラムされる。一実施形態では、流量の値は、変調するステップ204の実行の前又はこれと同時に、光学式粒子分析計100の使用者130によって定められる。一実施形態では、フローシステム109のための流量の値は、データ構造400の流量設定ブロック408に貯蔵される。一実施形態では、プロセッサ(複数可)124は、流れるステップの間に流れるモジュール307に貯蔵されたプログラム命令を実行する前又はこれと同時に、流量設定ブロック408から流量の値を符号化するデータを読み取る。
[0090]図2に図示される方法200は、誘導するステップ206を含む。誘導するステップ206は、検出器信号波形を誘導することを含む。一実施形態では、誘導するステップ206は、変調するステップ204に応答して検出器信号波形を誘導することを含むことがある。一実施形態では、誘導するステップ206は、検出器118によって、EMRのビーム104から散乱放射119を第1に受けるステップを含むことがある。一実施形態では、第1に受けるステップは、検出器118によって、EMRの源102に印加される第1のパワーレベルに対応する第1の放射パワーレベルでEMRのビーム104から散乱放射119を受けることを含むことがある。EMRの源102がレーザを含む実施形態では、第1に受けるステップは、検出器118によって、レーザに印加される第1のパワーレベルに対応する第1の放射パワーレベルでレーザビームから散乱放射119を受けることを含むことがある。
[0091]一実施形態では、誘導するステップ206は、検出器118によって、EMRのビーム104から散乱放射119を第2に受けるステップを含むことがある。一実施形態では、第2に受けるステップは、方法200において第1に受けるステップの後で実行されることがある。一実施形態では、第2に受けるステップは、検出器118によって、EMRの源102に印加される第2のパワーレベルに対応する第2の放射パワーレベルでEMRのビーム104から散乱放射119を受けることを含むことがある。EMRの源102がレーザを含む実施形態では、第2に受けるステップは、検出器118によって、レーザに印加される第2のパワーレベルに対応する第2の放射パワーレベルでレーザビームから散乱放射119を受けることを含むことがある。
[0092]一実施形態では、第1に受けるステップ及び/又は第2に受けるステップは、メモリデバイス(複数可)126にソフトウェア302として貯蔵されるプログラム命令を実行するプロセッサ(複数可)124によって、コンピュータ実施方法の一部として実行されることがある。一実施形態では、プロセッサ(複数可)124は、ソフトウェア302の第1に受けるモジュール308内の符号化されたプログラム命令を実行することによって、第1に受けるステップを実行する。
[0093]一実施形態では、検出器118が第1の放射パワーレベルでEMRの源102又はレーザから散乱放射119を第1に受けることと同時に又はその後で、結果として生じる検出器信号134は、検出器信号134が増幅回路132を通過する前又はその後のどちらかに、アナログ-デジタル変換を経験する。一実施形態では、プロセッサ(複数可)124は、デジタル形式に変換された検出器信号134を受けるようにプログラムされる。一実施形態では、プロセッサ(複数可)124は、検出器信号134を復号するようにプログラムされる。一実施形態では、プロセッサ(複数可)124は、検出器信号134によって符号化された情報をデータとしてデータ構造400の検出器信号ブロック410内に貯蔵するようにプログラムされる。一実施形態では、プロセッサ(複数可)124は、たとえば、人間に可読な形式で検出器信号波形502をグラフィカルにレンダリングするために、検出器信号ブロック410内のデータをディスプレイ150に送るようにプログラムされる。一実施形態では、プロセッサ(複数可)124は、検出器信号波形502をデータとしてデータ構造400の信号波形ブロック412に貯蔵するようにプログラムされる。
[0094]一実施形態では、プロセッサ(複数可)124は、ソフトウェア302の第2に受けるモジュール310内の符号化されたプログラム命令を実行することによって、第2に受けるステップを実行する。一実施形態では、検出器118が第2の放射パワーレベルでEMRの源102又はレーザから散乱放射119を第2に受けることと同時に又はその後で、結果として生じる検出器信号134は、検出器信号134が増幅回路132を通過する前又はその後のどちらかに、アナログ-デジタル変換を経験する。一実施形態では、検出器118は、第1の放射パワーレベル及び第2の放射パワーレベルにおけるEMRの源102又はレーザビームから散乱放射119をサンプル採取することによって、第1に受けるステップ及び第2に受けるステップをそれぞれ実行するように構成される。一実施形態では、プロセッサ(複数可)124は、サンプリング周波数で検出器118のサンプリングを制御するようにプログラムされる。分析計自己診断周波数が、対象となる適用例に応じて変えられるように、サンプリング周波数は、 工場であらかじめ設定されてもよいし、光学式粒子分析計の使用者130設定されてもよい。一実施形態では、検出器118のためのサンプリング周波数の値は、データ構造400の検出器設定ブロック414において貯蔵される。一実施形態では、プロセッサ(複数可)124は、変調するステップ204の間に変調するモジュール304に記憶されたプログラム命令を実行する前又はこれと同時に、検出器設定ブロック414からサンプリング周波数の値を符号化するデータを読み取る。
[0095]一実施形態では、第2に受けるステップは、変更するステップを含むことがある。一実施形態では、変更するステップは、増幅回路132の通電状態を第1の状態(たとえば、増幅回路132が貯蔵された電気エネルギーの第1のレベルを含む第1の通電状態)から第2の状態(たとえば、増幅回路132が貯蔵された電気エネルギーの第2のレベルを含む第2の通電状態)に変更することを含むことがある。一実施形態では、第1の状態のための貯蔵されたエネルギーの第1のレベルは、第2の状態のための貯蔵されたエネルギーの第2のレベルよりも小さい。一実施形態では、第1の状態のための貯蔵されたエネルギーの第1のレベルは、第2の状態のための貯蔵されたエネルギーの第2のレベルよりも大きい。一実施形態では、第1の状態は、EMRの源102からの散乱放射119のための第1の放射パワーレベルに対応する。EMRの源102がレーザを含む実施形態では、第1の状態は、レーザからの散乱放射119のための第1の放射パワーレベルに対応する。一実施形態では、第2の状態は、EMRの源102からの散乱放射119のための第2の放射パワーレベルに対応する。EMRの源102がレーザを含む実施形態では、第2の状態は、レーザからの散乱放射119のための第2の放射パワーレベルに対応する。
[0096]図5は、本開示の一実施形態による図2に図示される方法200において誘導される検出器信号波形502の代表的なプロット500である。一実施形態では、検出器信号波形502は、立ち上がり縁504を有する。一実施形態では、検出器信号波形502は、第1の信号振幅506と、第2の信号振幅508とを有する。一実施形態では、検出器信号波形502の立ち上がり縁504は、立ち上がり縁関数によって定められる。
[0097]一実施形態では、検出器信号波形502の立ち上がり縁504は、第1の状態から第2の状態への増幅回路132の通電状態の変更に対応する。図5に図示される例となる検出器信号波形502のプロット500の場合、立ち上がり縁504は、変更するステップの結果として、第1の状態と比較してより高いレベルの貯蔵された電気エネルギーを有する第2の状態に対応する。
[0098]一実施形態では、検出器信号波形502は、ピーク510を含む。図5に図示される、例となる検出器信号波形502のプロット500の場合、ピーク510は、第2の振幅508に等しい振幅を有する。一実施形態では、図5に図示される検出器信号波形502のピーク510の振幅は、2つの検出器信号134の振幅の差に対応する。図5に図示される、例となる検出器信号波形502のプロット500の場合、ピーク510の振幅は、第2の信号振幅508と第1の信号振幅506との差に等しい。一実施形態では、検出器信号波形502のピーク510の振幅は、(a)第1のパワーレベルにおいて印加されたパワーレベルを有するEMRの源102からの第1の放射パワーレベルにおいてEMRのビームから検出器118によって検出される散乱放射119と、(b)第2のパワーレベルにおいて印加されたパワーレベルを有するEMRの源102からの第2の放射パワーレベルにおいてEMRのビームから検出器118によって検出される散乱放射119との間の、検出器信号134の振幅の差に対応する。EMRの源102がレーザを含む実施形態では、検出器信号波形502のピーク510の振幅は、(a)第1のパワーレベルにおいて印加されたパワーレベルを有するレーザからの第1の放射パワーレベルにおいてレーザビームから検出器118によって検出される散乱放射119と、(b)第2のパワーレベルにおいて印加されたパワーレベルを有するレーザからの第2の放射パワーレベルにおいてレーザビームから検出器118によって検出される散乱放射119との間の、振幅検出器信号134の差に対応する。
[0099]図2に図示される方法200は、分析するステップ208を含む。分析するステップ208は、検出器信号波形(たとえば、検出器信号波形502)を分析することを含む。一実施形態では、分析するステップ208は、検出器信号波形を分析して、光学式粒子分析計(たとえば、光学式粒子分析計100)に関する少なくとも1つの診断パラメータの値を決定することを含むことがある。一実施形態では、診断パラメータは、EMRの源102、光学アセンブリ112、チャンバ106、検出器118、及び集光システム120のうちの1つ又は複数と関連づけられることがある。一実施形態では、診断パラメータは、増幅回路132と関連づけられることがある。一実施形態では、診断パラメータは、駆動回路136と関連づけられることがある。EMRの源102がレーザを含む実施形態では、診断パラメータは、レーザ、光学アセンブリ112、チャンバ106、検出器118、及び集光システム120のうちの1つ又は複数と関連づけられることがある。チャンバ106がフローチャンバを含む実施形態では、診断パラメータは、EMRの源102、光学アセンブリ112、フローチャンバ、検出器118、及び集光システム120のうちの1つ又は複数と関連づけられることがある。チャンバ106がフローチャンバを含み、EMRの源102がレーザを含む実施形態では、診断パラメータは、レーザ、光学アセンブリ112、フローチャンバ、検出器118、及び集光システム120のうちの1つ又は複数と関連づけられることがある。
[0100]一実施形態では、分析するステップ208は、検出器信号波形502の第1の信号振幅506の値を決定することを含む。一実施形態では、分析するステップ208は、検出器信号波形502の第2の信号振幅508の値を決定することを含む。一実施形態では、分析するステップ208は、検出器信号波形502の第1の信号振幅506の値と第2の信号振幅508の値との差の値を決定することを含む。
[0101]一実施形態では、分析するステップ208は、検出器信号波形502のピーク510の振幅511の値を決定することを含む。図5に図示される、例となる検出器信号波形502のプロット500の場合、ピーク510の振幅は、第2の信号振幅508と第1の信号振幅506との差の値を決定することによって、決定される。一実施形態では、分析するステップ208において決定される検出器信号波形502のピーク510の振幅の値は、(a)第1のパワーレベルにおいて印加されたパワーレベルを有するEMRの源102からの第1の放射パワーレベルにおいてEMRのビームから検出器118によって検出される散乱放射119と、(b)第2のパワーレベルにおいて印加されたパワーレベルを有するEMRの源102からの第2の放射パワーレベルにおいてEMRのビームから検出器118によって検出される散乱放射119との、検出器信号134の振幅の差に対応する。EMRの源102がレーザを含む実施形態では、分析するステップ208において決定される検出器信号波形502のピーク510の振幅の値は、(a)第1のパワーレベルにおいて印加されたパワーレベルを有するレーザからの第1の放射パワーレベルにおいてレーザビームから検出器118によって検出される散乱放射119と、(b)第2のパワーレベルにおいて印加されたパワーレベルを有するレーザからの第2の放射パワーレベルにおいてレーザビームから検出器118によって検出される散乱放射119との、検出器信号134の振幅の差に対応する。
[0102]一実施形態では、分析するステップ208において決定される検出器信号波形502のピーク510の振幅の値は、光学式粒子分析計100のEMRの源102、チャンバ106、光学アセンブリ112、集光システム120、検出器118、及び増幅回路132の動作条件と関連づけられる(たとえば、そして、これを示す)。EMRの源102がレーザを含む実施形態では、分析するステップ208において決定される検出器信号波形502のピーク510の振幅の値は、レーザの動作条件並びにチャンバ106、光学アセンブリ112、集光システム120、検出器118、及び増幅回路132の動作条件と関連づけられる。EMRの源102がレーザを含み、チャンバ106がフローチャンバを含む実施形態では、分析するステップ208において決定される検出器信号波形502のピーク510の振幅の値は、フローチャンバの動作条件、レーザの動作条件、並びに光学アセンブリ112、集光システム120、検出器118、及び増幅回路132の動作条件と関連づけられる。一実施形態では、以前に決定され、最後の較正の時間において又はその頃に貯蔵されるピーク510振幅値に等しい、分析するステップ208において決定されるピーク510の振幅の値は、
調子の良い(healthy)EMRの源102
調子の良いチャンバ106
調子の良い光学アセンブリ112
調子の良い集光システム120
調子の良い検出器118
調子の良い増幅回路132
を示す。一実施形態では、以前に決定され、最後の較正の時間において又はその頃に貯蔵されるピーク510振幅値よりも小さい、分析するステップ208において決定されるピーク510の振幅の値は、
場合によっては不安定な又は故障したEMRの源102
場合によっては汚染された、位置合わせが不良な、又は故障した光学アセンブリ112
場合によっては汚染された又は故障した集光システム120
場合によっては汚染された又は故障した検出器118
場合によっては故障した増幅回路132
のうちの少なくとも1つを示す。一実施形態では、以前に決定され、最後の較正の時間において又はその頃に貯蔵されるピーク510振幅値よりも大きい、分析するステップ208において決定されるピーク510の振幅の値は、
場合によっては位置合わせが不良な光学アセンブリ112
場合によっては故障した増幅回路132
のうちの少なくとも1つを示す。
[0103]一実施形態では、少なくとも1つの診断パラメータは、立ち上がり縁504に関する経過時間(たとえば、図5に図示される経過時間512)を含む。一実施形態では、分析するステップ208は、立ち上がり縁504に関する経過時間512を決定することを含む。一実施形態では、立ち上がり縁504に関する経過時間512は、駆動回路136の動作条件と関連づけられる。一実施形態では、少なくとも1つの診断パラメータは、検出器信号波形502の立ち上がり縁504を定める立ち上がり縁関数を含む。一実施形態では、分析するステップ208は、立ち上がり縁504の立ち上がり縁関数を決定することを含む。
[0104]一実施形態では、立ち上がり縁関数は、光学式粒子分析計100のEMRの源102、光学アセンブリ112、チャンバ106、検出器118、及び集光システム120の動作条件と関連づけられる。EMRの源102がレーザを含む実施形態では、分析するステップ208において決定される立ち上がり縁関数は、レーザの動作条件並びにチャンバ106、光学アセンブリ112、集光システム120、検出器118、及び増幅回路132の動作条件と関連づけられる。EMRの源102がレーザを含み、チャンバ106がフローチャンバを含む実施形態では、分析するステップ208において決定される立ち上がり縁関数は、フローチャンバの動作条件、レーザの動作条件、並びに光学アセンブリ112、集光システム120、検出器118、及び増幅回路132の動作条件と関連づけられる。
[0105]一実施形態では、分析するステップ208は、メモリデバイス(複数可)126にソフトウェア302として貯蔵されるプログラム命令を実行するプロセッサ(複数可)124によってコンピュータ実施方法の一部として実行されることがある。一実施形態では、プロセッサ(複数可)124は、ソフトウェア302の分析するモジュール314内の符号化されたプログラム命令を実行することによって、分析するステップ208を実行する。
[0106]一実施形態では、分析するステップ208の場合、プロセッサ(複数可)124は、EMRの源102又はレーザに印加されるパワーの変調によって誘導される散乱放射検出器信号波形502を分析するようにプログラムされる。一実施形態では、EMRの源102又はレーザに印加されるパワーの変調によって誘導される散乱放射検出器信号波形502を分析するために、プロセッサ(複数可)124は、(a)第1の信号振幅506の値、(b)第2の信号振幅508の値、及び(c)検出器信号波形502の第1の振幅506の値と第2の振幅508の値との差の値を決定するようにプログラムされる。一実施形態では、EMRの源102又はレーザに印加されるパワーの変調によって誘導される散乱放射検出器信号波形502を分析するために、プロセッサ(複数可)124は、データ構造400の信号波形ブロック412に貯蔵された検出器信号波形502のデータを読み取るようにプログラムされる。一実施形態では、プロセッサ(複数可)124は、検出器信号波形502の第1の振幅506の値及び第2の振幅508の値の決定された値並びに第1の振幅506の値と第2の振幅508の値との差の決定された値をデータ構造400の波形分析ブロック416に貯蔵するようにプログラムされる。
[0107]一実施形態では、EMRの源102又はレーザに印加されるパワーの変調によって誘導される散乱放射検出器信号波形502を分析するために、プロセッサ(複数可)124は、検出器信号波形502の立ち上がり縁504に関する経過時間512を決定するようにプログラムされる。一実施形態では、EMRの源102又はレーザに印加されるパワーの変調によって誘導される散乱放射検出器信号波形502を分析するために、プロセッサ(複数可)124は、検出器信号波形502の立ち上がり縁504の立ち上がり縁関数を決定するようにプログラムされる。一実施形態では、立ち上がり縁504の立ち上がり縁関数を決定するために、プロセッサ(複数可)124は、たとえば限定するものではないが、指数関数曲線当てはめアルゴリズムを含む、1つ又は複数の曲線当てはめアルゴリズムを利用する。一実施形態では、プロセッサ(複数可)124は、経過時間512の決定された値及び検出器信号波形502の立ち上がり縁504のための決定された立ち上がり縁関数をデータ構造400の波形分析ブロック416に貯蔵するようにプログラムされる。
[0108]一実施形態では、プロセッサ(複数可)124は、立ち上がり縁関数の立ち上がり縁関数パラメータを決定するようにプログラムされる。たとえば、立ち上がり縁関数のための一次曲線当てはめアルゴリズム(たとえば、y=m*x+b)の場合、プロセッサ(複数可)124は、関数パラメータm及びbの値を決定することがある。たとえば、立ち上がり縁関数に関する指数関数的増加曲線当てはめアルゴリズム(たとえば、y=P*erx)の場合、プロセッサ(複数可)124は、関数パラメータP及びrの値を決定することがある。一実施形態では、プロセッサ(複数可)124は、立ち上がり縁関数パラメータの決定された値をデータ構造400の波形分析ブロック416に貯蔵するようにプログラムされる。
[0109]一実施形態では、プロセッサ(複数可)124は、光学式粒子分析計の構成要素(複数可)(たとえば、上記で光学式粒子分析計100に関して図示及び説明されるそれらの構成要素(複数可))のうちの1つ又は複数の動作条件を決定するようにプログラムされる。一実施形態では、プロセッサ(複数可)124は、診断パラメータの決定された値に基づいて、光学式粒子分析計100の構成要素(複数可)の動作条件を決定する。一実施形態では、プロセッサ(複数可)124によって、光学式粒子分析計100の構成要素(複数可)の動作条件を決定することは、診断パラメータ(複数可)の決定された値(複数可)を、それぞれの光学式粒子分析計100構成要素(複数可)に関する1つ又は複数の仕様値(複数可)と比較することを含むことがある。一実施形態では、それぞれの光学式粒子分析計100構成要素(複数可)のための仕様値(複数可)に関する使用者130によりあらかじめ決定された値は、データ構造400の仕様ブロック417に貯蔵される。一実施形態では、光学式粒子分析計100の構成要素(複数可)の動作条件の結果は、プロセッサ(複数可)124によって、データ構造400の動作ステータスブロック418に貯蔵される。
[0110]図2に図示される方法200は、決定するステップ210を含む。決定するステップ210は、光学式粒子分析計(たとえば、光学式粒子分析計100)の較正ステータスを決定することを含む。一実施形態では、光学式粒子分析計100の較正ステータスは、分析するステップ208において決定された少なくとも1つの診断パラメータの1つ又は複数の決定された値に基づいて決定される。一実施形態では、決定するステップ210は、比較するステップを含む。一実施形態では、比較するステップは、少なくとも1つの診断パラメータの1つ又は複数の決定された値を、光学式粒子分析計100の以前の較正において決定されたそれぞれの較正パラメータのうちの少なくとも1つの対応する値と比較するステップを含む。一実施形態では、比較するステップは、少なくとも1つの診断パラメータの1つ又は複数の決定された値と以前の較正で決定された各それぞれの較正パラメータの対応する値との差の値を決定することを含む。一実施形態では、決定するステップ210は、少なくとも1つの診断パラメータの1つ又は複数の決定された値と以前の較正において決定された各それぞれの較正パラメータの対応する値との差の(たとえば、比較するステップにおいて決定された)値に基づいて、光学式粒子分析計100の較正ステータスを決定することを含む。
[0111]一実施形態では、決定するステップ210は、メモリデバイス(複数可)126にソフトウェア302として貯蔵されるプログラム命令を実行するプロセッサ(複数可)124によってコンピュータ実施方法の一部として実行されることがある。一実施形態では、プロセッサ(複数可)124は、ソフトウェア302の決定するモジュール316内の符号化されたプログラム命令を実行することによって、決定するステップ210を実行する。一実施形態では、プロセッサ(複数可)124は、分析するステップ208における検出器信号波形502の分析に基づいて少なくとも1つの診断パラメータの値を決定するようにプログラムされる。一実施形態では、少なくとも1つの診断パラメータの値を決定する場合、プロセッサ(複数可)124は、データ構造400の波形分析ブロック416から、第1の振幅506の値及び第2の振幅508の値、第1の振幅506の値と第2の振幅508の値との差の値、経過時間512の値、立ち上がり縁関数、並びに立ち上がり縁関数パラメータのうちの1つ又は複数を読み取るようにプログラムされる。一実施形態では、決定するステップ210を実行した後、プロセッサ(複数可)124は、少なくとも1つの診断パラメータの決定された値(複数可)をデータ構造400の診断パラメータブロック419に貯蔵するようにプログラムされる。
[0112]図6は、本開示の一実施形態による図2に図示される方法200のための使用事例の状態図600表現である。一実施形態では、比較するステップの場合、プロセッサ(複数可)124は、少なくとも1つの診断パラメータの1つ又は複数の決定された値を、光学式粒子分析計100の以前の較正において決定されたそれぞれの較正パラメータ(複数可)のうちの少なくとも1つの対応する値と比較するようにプログラムされる。図6を参照すると、開始状態から(たとえば、方法200の分析するステップ208の実行に続いて)、状態図600の第1の反復において、プロセッサ(複数可)124は、データ構造400の診断パラメータブロック419から診断パラメータの決定された値に関するデータを読み取る。診断パラメータの決定された値に関するデータを読み取る前、この後、又はこれと同時に、プロセッサ(複数可)124は、光学式粒子分析計100のための以前の較正イベントにおいて決定されたそれぞれの較正パラメータの対応する値に関するデータを読み取る。一実施形態では、プロセッサ(複数可)124は、それぞれの較正パラメータの対応する値に関するデータをデータ構造400の以前の較正ブロック422から読み取る。一実施形態では、以前の較正イベントにおいて決定されたそれぞれの較正パラメータの対応する値は、状態図600の第1の反復において読み取られた同じタイプの診断パラメータに関する値である。たとえば、限定するものではないが、状態図600の第1の反復では、プロセッサ(複数可)124は、データ構造400の診断パラメータブロック419から経過時間512の値を読み取る。この例では、以前の較正イベントにおいて決定されたそれぞれの較正パラメータの対応する値は、以前の較正において決定され、データ構造400の以前の較正ブロック422から状態図600の第1の反復においてプロセッサ(複数可)124によって読み取られる経過時間512の値である。したがって、(たとえば、図6に図示されるブロック601においてプロセッサ(複数可)124によって決定された)差の決定された値は、現在決定される値と以前の較正イベントにおいて決定された値(たとえば、同じタイプの診断パラメータ)との差である。
[0113]一実施形態では、決定するステップ210は、少なくとも1つの診断パラメータの1つ又は複数の決定された値と以前の較正において決定された各それぞれの較正パラメータの対応する値との差の(たとえば、比較するステップ及びブロック601において決定された)値に基づいて、光学式粒子分析計100の較正ステータスを決定することを含む。一実施形態では、プロセッサ(複数可)124は、第1の問い合わせ602を実行することがある。第1の問い合わせ602では、プロセッサ(複数可)124は、ブロック601において決定された差値を、データ構造400の仕様ブロック417に貯蔵される仕様値と比較する。一実施形態では、仕様ブロック417に貯蔵された仕様値は、決定するステップ210の実行の前又はこれと同時に、使用者により定められる又は製造業者により定められる。一実施形態では、ブロック601において決定された差値が、仕様ブロック417に貯蔵された仕様値よりも大きい場合、光学式粒子分析計100の決定される較正ステータスは、較正範囲外である。一実施形態では、プロセッサ(複数可)124は、決定された較正ステータスをデータ構造400の較正ステータスブロック428に貯蔵することがある。一実施形態では、プロセッサ(複数可)124は、光学式粒子分析計100が較正範囲外であることを使用者130に警告することがある。光学式粒子分析計100の較正ステータスが較正範囲外であると決定すると、プロセッサ(複数可)124は、状態図600の終了状態に進む。
[0114]一実施形態では、ブロック601において決定された差値が仕様値よりも大きくない場合、プロセッサ(複数可)124は、第2の問い合わせ604を実行することがある。第2の問い合わせ604では、プロセッサ(複数可)124は、ブロック601において決定された差値を、データ構造400の制御警告ブロック426に貯蔵された警告値と比較する。一実施形態では、制御警告ブロック426に貯蔵された警告値は、決定するステップ210の実行の前又はこれと同時に、光学式粒子分析計100の使用者130によって定められる。一実施形態では、ブロック601において決定された差値が、制御警告ブロック426に貯蔵された警告値よりも大きい場合、光学式粒子分析計100の決定された較正ステータスは較正範囲内であるが、較正範囲外に近づきつつあるステータスに関する通知ステータスをもつ。一実施形態では、プロセッサ(複数可)124は、決定された較正ステータスをデータ構造400の較正ステータスブロック428に貯蔵することがある。一実施形態では、プロセッサ(複数可)124は、光学式粒子分析計100が、警告値を超える決定された診断パラメータ差値を有することを、使用者130に通知することがある。
[0115]一実施形態では、光学式粒子分析計100の較正ステータスが較正範囲内であると決定すると(決定された診断パラメータ差値が警告値を超えない場合を含む)、プロセッサ(複数可)124は、第3の問い合わせ606を実行することがある。第3の問い合わせ606では、プロセッサ(複数可)124は、他のタイプの診断パラメータの値(たとえば、状態図600の第1の反復では診断パラメータが経過時間512であったピーク510振幅のための)が、データ構造400の診断パラメータブロック419から読み取られるために利用可能であるかどうかを決定する。一実施形態では、プロセッサ(複数可)124が、データ構造400の診断パラメータブロック419から読み取られるために利用可能な他のタイプの診断パラメータの値があると決定した場合、プロセッサ(複数可)124は、状態図600の第2の反復を実行し始める。そうでない場合、プロセッサ(複数可)124は、状態図600の終了状態に進む。
[0116]本発明は、以下の非限定的な実施例によってさらに理解可能である。
[0117]
実施例1:チェックパルス有効性検査
[0118]EMRの源102(30mWレーザパワー)としてレーザを装備したIsoAir(登録商標)-310P計器が、ベッセルフィルタ後レーザオンパルスのうち何パーセンテージが光収集鏡に由来するか及び何パーセンテージが鏡以外の源に由来するかを決定するように、実施例1において以下の実験を実行するために、試験計器として使用された。
[0119]図7A~図7Cは、本開示の実施例1のための検出器信号波形のプロットである。図7A~図7Cに図示されるプロットは、鏡(2.0Vp)を用いた3つのレーザオンパルスのための検出器信号波形を描いたものである。図7A~図7Cのプロットによって図示されるように、3つの測定されたレーザパワー投入(power-up)パルスは、2.0Vdcの安定した再現可能なピーク値と、約1.25msの立ち上がり時間などの、低周波数時間領域に対応するレーザパワー投入イベント上昇時間を示す。
[0120]図8A~図8Cは、本開示の実施例1のための検出器信号波形のプロットである。図8A~図8Cに図示されるプロットは、黒く塗られた鏡(0.20Vp)を用いた3つのレーザオンパルスのための検出器信号波形を描いたものである。図8A~図8Cのプロットによって図示されるように、3つの測定されたレーザパワー投入パルスは、0.2Vdcの安定した再現可能なピーク値と、約1.25msのレーザパワー投入イベント上昇時間を示す。図8A~図8Cのプロットで提示される実験データは、レーザパワー投入パルス信号の90%が、検出器118に達する前に集光システム120を通って移動するレーザにより生産された散乱光エネルギーによって生成されることを示す。これは、レーザパワー投入パルス信号が、集光システム120を通る光信号損失を検出するために効果的に用いられることが可能であることを示す。集光システム120を通る光信号損失は、典型的には、集光システム120の露出された光学式表面上に堆積する汚染によって引き起こされる。したがって、レーザパワー投入パルス信号は、集光システム120の汚染を検出し、したがって、使用者130が問題を識別及び/又は是正することを可能にするために効果的に使用可能である。
[0121]図9は、本開示の実施例1のための検出器信号波形のプロットである。図9に図示されるプロットは、標準的な鏡(0.60Vp)を用いたレーザオンパルスのための検出器信号波形すなわち総遮断のビームストップ側(前方散乱)50%を描いたものである。図9のプロットで提示される実験データは、集光システム120の開いた開口(集光能力)の50%が除去され、集光システム120レーザパワー投入パルス信号全体の70%が失われたことを示す。これは、フローチャンバ106からの散乱光エネルギーは本質的に前方散乱であることを示す。
[0122]図10は、本開示の実施例1のための検出器信号波形のプロットである。図10に図示されるプロットは、標準的な鏡(1.400Vp)を用いたレーザオンパルスのための検出器信号波形すなわち総遮断のレーザ側(後方散乱)50%を描いたものである。図10のプロットで提示される実験データは、集光システム120の開いた開口(集光能力)の50%が除去され、集光システム120レーザパワー投入パルス信号全体の30%が失われたことを示す。これは、フローチャンバ106からの散乱光エネルギーは本質的に前方散乱であることを示す。
[0123]チェックパルス有効性検査の概要:図7A~図7C、図8A~図8C、図9、及び図10のプロットによって図示されるように、鏡を用いたレーザオンパルスは、以下の場合すなわち(a)鏡を用いたレーザオンパルス:2.0Vp、(b)黒く塗られた鏡を用いたレーザオンパルス:200mVp、(c)前方散乱されたレーザオンパルス:1.40Vp、及び(d)後方散乱されたレーザオンパルス:0.60Vp、に再現可能である。実施例2の結果も、レーザオンパルス波形の90%が鏡ペアの光学式表面から生成されることを実証する。実施例1の結果は、信号が70%前方散乱され、30%後方散乱されることをさらに実証する。これらの結果は、信号が前方散乱を向けるために強く重みづけされることを図示する。
[0124]
実施例2:調整前較正結果を通過させることを維持するための許可されたLASAIR-IV信号損失の調査
[0125]実施例2は、各計器モデルタイプ(Particle Measuring Systems,Inc.)に対して計算された製造セル較正プログラムデータベースの典型的な第1のチャネルサイズ分解能結果の調査であった。最小のISO-21501-4許可されたサイズ誤差が、サイズ分類及び計数効率調整前試験限界から決定された。次いで、ガウス分布サイズ分類分布サイズ誤差が、LASAIR-III理論サイズ分類計算を適用することによって振幅誤差に変換された。計器がISO-21501-4の調整前較正要件に理論的に合格するであろうが観測され得る粒子信号損失の最大量を表すために、最終結果が計算された。
[0126]実施例2調査結果の概要表:
Figure 2023500752000002
[0127]LASAIR-IV許可された信号損失の概要:チェックパルス試験は、調整前較正検証結果に追加することを保証するために、光源レベルの11.4%減少を検出する能力を必要とする。可能な60Hz周囲光雑音の影響は、複数のパルスを平均化することによって最小にされ得る。これは、この試験の精度を改善することがある。
[0128]実施例2の結果は、レーザオンパルスが2ms以上後で検出されることがあることを実証する。全体的な減衰(たとえば、図5では、ピーク510が到達される時間よりも大きい時間にわたる検出器信号波形502の立ち下がり縁514によって表される)は、レーザオフに続く250ms以上後で検出されることがある。レーザオン/レーザオフパルス周期全体は、256ms以上後で検出されることがあり、そのため、最大4つのサンプルが、1秒の時間期間で平均化されることがある。実施例2の結果は、レーザパワー投入パルス振幅における必要とされる11.4%振幅シフトを検出するチェックパルスの能力も実証するが、これは、基準較正粒子の波高振幅を測定する必要なく、調整前較正結果に合格することを保証するために必要である。
[0129]
実施例3:検出器ボード低速、チェックパルス、ピークホールドADC回路の説明
[0130]図11は、本開示の一実施形態によるリセット1900を用いて波数が調整された閉ループピークホールド回路の概略図(LT-Spice)である。
[0131]回路1900の段1:帯域幅限界をもつ電圧利得増幅器(Q=4.0)。チェックパルス信号の利得スケーリング及び低域フィルタ処理を可能にする。高利得ベッセルフィルタ出力から発される信号。主な構成要素:(1段)AD8034 FETオペアンプ、±12Vdc PS。
[0132]回路1900の段2及び3:リセット特徴をもつ、古典的な閉ループピークホールド回路。主な構成要素:(2段)AD8034 FETオペアンプ、(1)PMEG3002AEBショットキー障壁ダイオード、電荷保持キャパシタ、充電キャパシタからのバッファ型第1のアンプ出力への絶縁抵抗、ADG1402及びADG1401 CMOS SPSTピークホールドリセットスイッチ、メインPCBからリセットスイッチを駆動するSN65LVDS2DBVR差動ライン受信機、充電キャパシタからのバッファ型スイッチへの絶縁抵抗、±12Vdc PS。
[0133]回路1900の段4:帯域幅限界をもつ電圧利得増幅器(Q=0.25)。ADC128S022 ADC3.3Vdc最大入力範囲へのピークホールド+12Vdc最大出力をスケーリングするための入力上の電圧分割器。出力における低域フィルタ処理。主な構成要素:(1段)AD8034 FETオペアンプ、±12Vdc PS。
[0134]充電キャパシタ回路ショットキー障壁ダイオード電圧降下により、ピークホールド回路信号損失は、回路1900では100mV未満である。この信号損失をファームウェア計算において考慮に入れることは、信号損失パーセンテージを正確に計算するために考慮に入れられることがある。
[0135]検出器ボード低速、チェックパルス、ピークホールドADC回路(たとえば、回路1900)のさまざまな構成要素コスト(たとえば、構成要素ADG1401、ADG1402、AD8034、PMEG3005AEA、ADC128S022、SN65LVDS2DBVR)は低く、合計で約$15.00未満になる。
[0136]
実施例4:低速、チェックパルス、ピークホールドADC回路に関するタイミングの考慮事項
[0137]図12は、本開示の実施例4のための検出器信号波形のプロットである。図12に示されるプロットは、1.35msのピーク立ち上がり時間(回路許容差:2msを考慮に入れて)をもつレーザオンパルスのための検出器信号波形を描いたものである。図13は、時間延長ビューにおける図12の検出器信号波形のプロットである。図12及び図13のプロットに図示される実験データは、関連づけられたチェックパルスAC結合回路は、回路が0Vdcのプパルス前値に戻る前に、約250msの総イベント時間を必要とすることを実証する。したがって、レーザパワー投入散乱光パルスを測定するために使用されるピークホールド回路は、4Hz(250ms)と同じくらいの周期周波数で動作することができる。
[0138]図14は、本開示の実施例4のための検出器信号波形のプロットである。図14に示されるプロットは、250msのAC結合パルス整定時間をもつレーザオフパルスのための検出器信号波形を描いたものである。図14のプロットに図示される実験データは、関連づけられたチェックパルスAC結合回路は、回路が0Vdcのプパルス前値に戻る前に、約250msの総イベント時間を必要とすることを実証する。したがって、レーザパワー投入散乱光パルスを測定するために使用されるピークホールド回路は、4Hz(250ms)と同じくらいの周期周波数で動作することができる。
[0139]実施例4の結果は、約4Hzの周期周波数で確実に動作されるレーザパワー投入チェックパルスの能力を実証する。これは、システムが、計器パワー投入時に、又は顧客の要求に応じて、いくつかのレーザパワー投入チェックパルス測定を実行することを可能にし、以って、計器が、迅速で簡便な自動粒子計数調子診断特徴を供することを可能にする。
[0140]ピークホールドADCタイミングの考慮事項概要:
Figure 2023500752000003
[0141]ステップ(すなわち、上記の表では「イベント」と呼ばれる)1~7は、平均して60Hz周囲光雑音となるように、必要に応じて繰り返されてもよい。ホールド値は、10ms以上にわたって保持されることがあり、電圧低下は1%未満である。精度は、この試験を実行するときに粒子がレーザビーム内に存在しないことを保証することによって、改善され得る。これは、フィルタ処理された空気をサンプリングしながら達成され得る。多くの場合、フィルタ処理されていない周囲空気をサンプル媒体108として用いて、サンプルブロック(たとえば、チャンバ106)に流さずに、開示される方法を実行することが可能であることがある。フィルタ処理されていない周囲空気の使用により、ビーム内の粒子(複数可)によって引き起こされる異常値データ点(複数可)を検出することは、複数のレーザオンパルスを平均化するときに実行されることがある。ピークホールド回路は、通常の計器フローをサンプリングしながら粒子活動への回路の応答を減らすように周波数調整されてよい。
[0142]実施例4の結果は、チェックパルス周期イベント時間が256msよりも大きいか又はこれに等しいことがあることを実証する。したがって、最大4つのサンプルは、1秒時間期間以内に平均化される。
[0143]
実施例5:検出器ボード低速、チェックパルス、ピークホールドADC回路に対する周囲空気粒子影響
[0144]図15A~図15Fは、本開示の実施例5のための検出器信号波形のプロットを描いたものである。図15A~図15Fでは、オシロスコープチャネル#1(黄色)は、実際の粒子イベントを検出及び測定するために使用される未加工の粒子利得信号である。オシロスコープチャネル#2(緑色)は、低速のピークホールド回路によって使用される、低域フィルタ処理され、電圧利得のある(4の利得)信号である。オシロスコープチャネル#3(紫色)は、低速、チェックパルス、ピークホールド回路出力である。ピークホールド回路DC電圧レベルは、レーザパワー投入機能が開始して10ms後に測定される。
[0145]図15Aは、レーザビームの経路に存在する粒子がなく、チェックパルスに応答する、レーザパワー投入機能をもつ、機能している低速、チェックパルス、ピークホールド回路のプロットである。測定されたチェックパルスピークDC値は3.375Vdcである。チェックパルス、レーザパワー投入機能は37.5mVdc未満の95%信頼区間上限(UCL)をもつ、3.375Vdcの非常に再現可能なピークDCレベルを生産し、これは、95%UCLをもつ1%の再現性よりも良く示す。
[0146]ピークホールド回路は、チェックパルスレーザパワー立ち上げ機能中に偶然起こる粒子イベントに応答するのに十分な速さをもたないように設計される。これは、チェックパルス機能が、チェックパルス機能中に存在する中程度の微粒子レベルの存在の影響をかなり受けないことを可能にする。
[0147]図15A~図15Fでは、オシロスコープチャネル#1(黄色)は、実際の粒子イベントを検出及び測定するために使用される未加工の粒子利得信号である。オシロスコープチャネル#2(緑色)は、低速のピークホールド回路によって使用される、低域フィルタ処理され、電圧利得のある(4の利得)信号である。オシロスコープチャネル#3(紫色)は、低速、チェックパルス、ピークホールド回路出力である。ピークホールド回路DC電圧レベルは、レーザパワー投入機能が開始して10ms後に測定される。
[0148]図15Bは、レーザビームの経路に存在する粒子があり、チェックパルスに応答する、レーザパワー投入機能をもつ、機能している低速、チェックパルス、ピークホールド回路のプロットである。空気粒子汚染レベルは、ほぼISO-14644-1クラス6である。測定されたチェックパルスピークDC値は3.3875Vdcである。
[0149]図15Cは、レーザビームの経路に存在する粒子があり、チェックパルスに応答する、レーザパワー投入機能をもつ、機能している低速、チェックパルス、ピークホールド回路のプロットである。空気粒子汚染レベルは、ほぼISO-14644-1クラス6である。測定されたチェックパルスピークDC値は3.375Vdcである。
[0150]図15Dは、レーザビームの経路に存在する粒子があり、チェックパルスに応答する、レーザパワー投入機能をもつ、機能している低速、チェックパルス、ピークホールド回路のプロットである。空気粒子汚染レベルは、ほぼISO-14644-1クラス6である。測定されたチェックパルスピークDC値は3.4125Vdcである。
[0151]図15Eは、レーザビームの経路に存在する粒子があり、チェックパルスに応答する、レーザパワー投入機能をもつ、機能している低速、チェックパルス、ピークホールド回路のプロットである。空気粒子汚染レベルは、ほぼISO-14644-1クラス6である。測定されたチェックパルスピークDC値は3.375Vdcである。
[0152]図15Fは、レーザビームの経路に存在する粒子があり、チェックパルスに応答する、レーザパワー投入機能をもつ、機能している低速、チェックパルス、ピークホールド回路のプロットである。空気粒子汚染レベルは、ほぼISO-14644-1クラス6である。測定されたチェックパルスピークDC値は3.3875Vdcである。
[0153]レーザビームの経路に存在する粒子があり、チェックパルスに応答する、レーザパワー投入機能をもつ、5つのチェックパルス、ピークホールド回路は、3.3875Vdc、3.375Vdc、3.4125Vdc、3.375Vdc、及び3.3875Vdcである。これらの5つの測定の3シグマ区間は、平均値3.3875Vdcであり、±0.04593Vdc(1.36%)の3シグマ区間をもつ。このデータは、1.8%の、粒子非存在チェックパルス機能で測定するために、粒子汚染が存在するチェックパルス機能を測定する確率が95%あることを示す。したがって、チェックパルス機能は、計器が動作している空気中での中程度の微粒子汚染の存在の影響を比較的受けない。
[0154]図15A~図15Fに図示される実施例5の結果は、以下の3つの選択肢が行われてもよいことを実証する。
[0155]選択肢#1:チェックパルス試験が実行されるとき、フィルタ処理された空気のみがサンプルブロック内にあることを保証する。次いで、計器送風機は、フィルタ処理された空気を試験中にサンプルブロックに通す。これは、ゼロカウントフィルタを計器上に置くことを顧客に要求する、顧客により起動される診断調子チェックとして達成されてもよい。この場合、最も正確なチェックパルス結果が取得されるであろう。ピークホールド回路の周波数応答を、より早い粒子及びパルス雑音イベント時間に大部分は応答しないように調整することは、浮遊粒子及びパルス雑音の影響を最小にし得る。フィルタ処理された空気があることを保証することは、信号/雑音試験を実行する精度も改善し得る。
[0156]選択肢#2:フィルタ処理された計器入口は必要とされない。チェックパルス試験が、計器送風機がオフであることを保証する場合、初期試験は、粒子が試験中にビーム内に存在する確率の減少を示す。実験では、チェックパルス試験実行の約10%未満は、レーザビーム中に存在する粒子を有する。しかしながら、レーザビームを通る何らかの粒子移動が、送風機がオフだったときにも観察された。これらの遅く動く粒子イベントは、持続時間がレーザオンパルスよりも長い傾向があり、したがって、チェックパルス平均化において除外され得る粒子イベントとして認識可能であった可能性がある。これらの条件下でのあまり正確でないチェックパルス試験は、選択肢#1よりも広い(wide-open)合格基準をもつブートアップ診断試験として実施されることがある。
[0157]選択肢#3:フィルタ処理された計器入口は必要とされない。周囲空気粒子及びパルス雑音イベントの影響は、ピークホールド回路の周波数応答を、より早い粒子及びパルス雑音イベント時間に大部分は応答しないように意図的に調整することによって最小にされ得る。レーザパワー投入低速チェックパルスパルス(たとえば、2msの立ち上がり時間、125Hz)と、より高周波数の粒子パルス(たとえば、2μsの立ち上がり時間、125khz)との間の時間領域距離は、1000倍である。これは、チェックパルス回路が、回路がチェックパルス測定機能中に存在するサンプル採取された空気中の中程度レベルの粒子汚染の存在の影響をかなり受けないことを可能にする低域時間機能とともに設計されることを可能にする。
[0158]レーザオンパルスを検出するための必要とされる応答時間は、約2ms信号立ち上がり縁(たとえば、立ち上がり縁504の2ms経過時間512)であるが、粒子及びパルス雑音イベントは、約2μsの立ち上がり縁立ち上がり時間を有することがある。この場合、すべての粒子に対する速い通過時間を保証するために、計器送風機は、チェックパルス試験中にオンであることがある。これらの条件下でのあまり正確でないチェックパルス試験は、選択肢#1よりも広い(wide-open)合格基準をもつブートアップ診断試験として実施されることがある。
[0159]
実施例6:計器周波数スペクトル
[0160]本明細書において説明される計器は、3つの別個の周波数時間領域とともに動作し、各周波数時間領域は、他の周波数時間領域はとは無関係であるように選択及び設計される。各周波数時間領域の独立性は、各特定の周波数時間領域から実現される各機能間の望ましくない干渉を引き起こすことなく、各々が同時に動作することを可能にする。3つの周波数時間領域は、周波数範囲に応じて、(i)高周波数時間領域、(ii)中間周波数時間領域、及び(iii)低周波数時間領域として、本明細書において説明される。
[0161]高周波数時間領域:本特許出願において説明される計器の周波数スペクトルの最も高い周波数領域は、249MHzを中心とする。249MHzは、高速レーザ発振時間領域の中心周波数である。計器は、粒子照明源として、屈折率導波形、単一モード、単一周波数、レーザ面を用いる。レーザキャビティは、249MHzレーザ面駆動電流周波数変調を適用することによって意図的に不安定化される。このレーザ面不安定化は、レーザ面の空間モードホッピングを防止する。レーザ面空間モードホッピングは、モードホッピングは誤った粒子カウントを引き起こすことがあるので、光学式粒子計数計器では望ましくない。本明細書において説明される計器は、もちろん、空間モードホッピングが回避され、他の時間領域、具体的には中間周波数時間領域と低周波数時間領域との望ましくない干渉がない限り、周波数中心値の範囲に適合する。最も高い周波数領域のための代表的な中心周波数値は、約249MHzを含めて、100MHzよりも上と、任意選択で1000MHzよりも下を含む。
[0162]中間周波数時間領域:本特許出願において説明される計器の周波数スペクトルの中間周波数領域は、粒子検出周波数のためのものである。粒子イベント通過時間は、粒子が粒子光照明源を通過するときの粒子の速度によって決定され、粒子の物理的寸法は、粒子及び対応する出力ビームと相互作用する照明源光から生成される照明ビームから決定される。粒子検出信号調節回路は、中間周波数時間領域のための信号が、低域フィルタよりも上で高域フィルタよりも下の周波数を有するように、低域フィルタ及び高域フィルタとともに動作するように構成される。したがって、粒子検出信号調節回路は、粒子非存在/粒子存在条件に依存する、約100kHzの低域-3dBポイントカットオフ周波数及び約1,061Hz/7,000Hzの高域-3dBポイントカットオフ周波数を用いた動作を保証する。回路はノッチフィルタ処理され、適切な周波数範囲が処理されることを保証するために高域周波数フィルタリングと低域周波数フィルタリングの両方が用いられる。代表的な中間周波数時間領域は、約1kHz/7kHz~200kHzを含む。
[0163]粒子散乱は、照明ビームを通過するときにともり、散乱光は、散乱光集光システムによって捉えられ、散乱光がフォトダイオード上に集束され、フォトダイオードが光エネルギーを電流パルスに変換し、電流-電圧変換増幅器が電流パルスを電圧パルスに変換し、電圧パルスは、一般に、電圧パルスの振幅を検出するために測定可能である許容可能な電圧パルスを生じさせるために信号調節される。例となるデジタルオシロスコープ粒子電圧パルスが図16に図示されている。
[0164]粒子パルス全幅イベント時間は、図16のオシロスコープ画像x軸線では約8つの2.0μs時間区分であり、これは、16.0μsの全幅イベント時間に等しい。電圧パルスの幅を測定するより典型的な方法は、半値全幅(FWHM)値を決定することであり、図16のパルスの場合は3.2μs(約100kHz)である。
[0165]約100kHzの低域-3dBポイントカットオフ周波数と約1,061Hz/7,500Hz(粒子なし/粒子)の高域-3dBカットオフ周波数とをもつ、計器の粒子検出回路は、計器の周波数スペクトルの中間周波数領域内に配置された粒子イベントに正確に応答するように調整された帯域幅範囲を有する。この1,016Hz/7,500Hz(たとえば、1kHz/7kHz(粒子なし/粒子)~100kHz周波数範囲は、中程度の速さの粒子検出回路時間領域である。
[0166]粒子検出回路は、249MHz高速レーザ発振周波数を検出するのに十分な高周波数帯域幅をもたないことに留意されたい。照明光源は、フルパワーオンとゼロパワーオフを繰り返しているが、粒子検出回路は、高周波数レーザ発振を検出することが不可能であるように構成される。粒子検出回路時間領域が高速レーザ発振時間領域によって影響されないことを保証するのは、帯域フィルタのこの意図的な構成である。言い換えれば、高周波数時間領域は、中間周波数時間領域と干渉しない。
[0167]同様に、粒子検出回路は、以下で低周波数時間領域に関して説明される較正ステータスレーザパルス光自己診断ルーチンを検出するのに十分な低周波数帯域幅をもたない。粒子検出回路時間領域(たとえば、中間周波数時間領域)が、可能な限り、低速診断ルーチン時間領域によって影響されないことを保証するのは、帯域フィルタのこの意図的な構成である。言い換えれば、低周波数時間領域は、中間周波数時間領域と干渉しない。
[0168]低周波数時間領域:計器の周波数スペクトルの低周波数領域は、較正ステータスレーザパルス光自己診断特徴周波数のためのものである。この自己診断特徴は、粒子計数計器の調子又は較正ステータスを確立するために低周波数で計器レーザ照明光源をパルス化する。専用の低速ピークホールド回路は、低周波数レーザ光パルス自己診断電圧パルスを測定するために使用される。低速ピークホールド回路の概略図が、図17において提供されている。
[0169]低速ピークホールド回路の第1の段(U38ピン1、3、4、及び関連づけられた構成要素)は、中間周波数時間領域信号及び高周波数時間領域信号への回路応答を最小にするように両方とも設計された、2つの低域コーナー周波数値を有する。
[0170]回路の充電キャパシタピーク及びホールド部分を形成する、低速ピークホールド回路(U31ピン1、2、3及びピン5、6、7及び関連づけられた構成要素)の第2の段は、159Hzの低域コーナー周波数値を有する。回路のこの段も、中間周波数時間領域信号及び高周波数時間領域信号への回路応答を最小にするように設計される。
[0171]第3の段(U37ピン1、3、4、及び関連づけられた構成要素)は、ピークホールド回路の出力段を形成する。
[0172]計器の較正ステータスを決定するために使用される低速ピークホールド回路は、本明細書において説明される中間周波数時間領域信号及び高周波数時間領域信号に応答しないように意図的に設計される。実際の問題として、較正ステータス診断機能が、診断機能が実行されているとき偶然存在する粒子活動によって影響されないことは、有益である。これは、そうでなければ較正ステータス決定に干渉するであろう存在粒子を最小にする措置を取らざるを得ない状態を回避する。代わりに、本明細書において提供される方法及び分析計は、粒子が存在するかどうかとは無関係な様式で自己診断することが可能である(図18(少数の粒子)と図19(多数の粒子)を比較する)。試験計器がフィルタ処理された空気をサンプリングしながら計器が較正ステータス診断機能を実行するときの、重要なピークホールド回路ポイントのデジタルオシロスコープ画像が、図18に図示されている。
[0173]図18を参照すると、オシロスコープチャネル#1(黄色)は、ピークホールド回路の入力に接続される。オシロスコープチャネル#2(緑色)は、ピークホールド回路の第1の段出力の低域フィルタ処理された出力に接続される。オシロスコープチャネル#3(紫色)は、回路の低域フィルタ処理された充電キャパシタピークホールド部分に接続される。オシロスコープチャネル#4(桃色)は、充電キャパシタ駆動増幅器出力(U31ピン1)に接続される。
[0174]レーザ較正ステータスレーザパルス光自己診断ルーチンは、2.4ms(1.2時間区分×区分当たり2ms)の非常に遅い時間測定で0から最大パワーレベルにレーザパワーを逓増する。これは、ピークホールド回路の入力に接続されたオシロスコープチャネル#1(黄色)によって図示される。
[0175]ピークホールド回路の第1の段出力の低域フィルタ処理された出力に接続されたオシロスコープチャネル#2(緑色)は、入力信号の上昇を比例して追跡するのに十分な帯域幅を有する。
[0176]回路の低域フィルタ処理された充電キャパシタピークホールド部分に接続されたオシロスコープチャネル#3(緑色)は、入力信号の上昇を比例して追跡して、ほぼそのレベルで保持するのに十分な帯域幅を有する。この実施例では、レーザパルス光自己診断ルーチンは、1.225Vdcピーク波高を達成するようにレーザパワーを逓増する。
[0177]図19では、試験計器が、粒子を含む空気をサンプル採取する間に、同じ診断機能が開始される。この状況は、計器が使用中である又はたとえば残存粒子により汚染されていながら、診断ルーチンを実行しようと試みることをシミュレートする。この実施例では、試験計器は、国際規格(ISO14644 Cleanrooms and associated controlled environments-Part 1: Classification of air cleanliness Class-5 environment)から空気をサンプル採取する。
[0178]ピークホールド回路の入力に接続されたオシロスコープチャネル#1(黄色)は、ここで、レーザパワー立ち上げ機能中の大量の粒子活動を示す。粒子活動は、ここで緩やかに上昇して、次いで低減するレーザパワー逓増から放つ多数の上向きスパイクによって示される。これらの粒子スパイクは各々、16μsの全幅に近いパルス幅を有し、したがって、画像時間スケールは2msであるので、このプロットでは細いピークとして現れる。各粒子パルスは、x軸線時間スケールの増分の1/125にすぎない。
[0179]ピークホールド回路の第1の段出力の低域フィルタ処理された出力に接続されたオシロスコープチャネル#2(緑色)は、回路が個々の粒子パルスに応答するのに十分な帯域幅をもたないことにより、粒子パルス活動の大部分を移動しない。
[0180]回路の低域フィルタ処理された充電キャパシタピークホールド部分に接続されたオシロスコープチャネル#3(緑色)は、入力信号の上昇を比例して追跡して、ほぼそのレベルで保持するのに十分な帯域幅を有する。しかしながら、回路は、高速な粒子パルス活動の大多数に応答するのに十分な帯域幅をもたない。この実施例では、レーザパルス光自己診断ルーチンは、1.235Vdcピーク波高を達成するようにレーザパワーを逓増する。粒子パルス活動は、診断機能試験結果を0.82%だけ増加させた(粒子活動ありの場合の1.235Vdc対粒子活動なしの場合の1.225Vdc)。診断ルーチンは、粒子活動の存在によってほぼ影響されない。したがって、分析計自己診断のための低周波数時間領域の選択は、自己診断に使用される検出器信号波形が粒子の存在又は不在とは実質的に無関係であることを保証する。この態様では、「実質的に無関係である」は、5%未満である、又はより好ましくは1%未満である、粒子がある場合とない場合の診断パラメータの差を指すことがある。
[0181]低周波数時間領域は、約159Hzなどの、500Hz未満であるか又はこれに等しい周波数を有することがある。これは、中間周波数時間領域の範囲のより低いパートの1khz/7kHz(粒子なし/粒子)から十分に分離されている。
[0182]診断ルーチンは、粒子活動の存在によってほぼ完全に影響されないので、検証ルーチンは、計器がクリーンな顧客環境から周囲空気をサンプリングしているときに実行可能である。計器は、顧客使用環境からの除去を必要としない。同様に、計器は、顧客使用環境からの計器空気サンプル入口の接続解除も必要としない。これは、試験計器の較正ステータスが、計器の継続した進行中の使用に対する悪影響なしに現場で検証可能であるので、いかなる顧客使用事例にとっても非常に有益である。
[0183]繰り返しになるが、診断ルーチンピークホールド回路は249MHzレーザ発振に応答するのに十分な帯域幅をもたないので、診断ルーチンは、高周波数時間領域レーザ発振によっても影響されない。この様式では、異なる目的を果たす3つの周波数時間領域の各々は、互いとは無関係である。これは非常に有益であり、同時に複数の別個の独立した機能を確実に実行する能力を含むいくつかの機能的利益を提供する。上記で説明されたように、これは、計器が診断及び/又はレーザ面不安定化を経験する間の、進行中の粒子測定を含む。
[0184]この実施例は、周波数範囲に代表的な定量値を提供する。しかしながら、本明細書において説明される本発明は、低周波数時間領域範囲と中間周波数時間領域範囲と高周波数時間領域範囲が互いと重複せず、互いと干渉しない限り、周波数値の範囲に適合する。実際の具体的な値は、適切なフィルタの選択及び電子信号取り扱いによって制御される。
[0185]本出願を通してすべての参考文献、たとえば、発行又は認可された特許文献又は等価物、特許出願公開公報、及び非特許文献書類又は他の原資料は、各参考文献が、本出願における開示と少なくとも部分的に矛盾しない程度に、個々に参照により組み込まれるように、それらの全体が本明細書に参照により組み込まれる(たとえば、部分的に矛盾する参考文献は、参考文献の部分的に矛盾する部分を除いて参照により組み込まれる)。
[0186]本明細書において用いられた用語及び言い回しは、限定の用語ではなく説明の用語として使用されており、そのような用語及び言い回しの使用において、図示及び説明される特徴又はその部分のいかなる等価物も除外する意図はないが、特許請求される本発明の範囲内でさまざまな修正形態が可能であることが認識される。したがって、本発明は、好ましい実施形態、例示的な実施形態、及び任意選択的な特徴によって具体的に開示されてきたが、本明細書において開示される概念の修正形態及び変形形態は当業者によって用いられてもよいこと、並びにそのような修正形態及び変形形態は、添付の特許請求の範囲によって定められる本発明の範囲内にあると考えられることが理解されるべきである。本明細書において提供される特定の実施形態は本発明の有用な実施形態の例であり、本発明は、本説明に記載されたデバイス、デバイス構成要素、方法ステップの多数の変形形態を使用して行われてもよいことは、当業者には明らかであろう。当業者には明らかであるように、方法及び本方法に有用なデバイスは、多数の任意選択的な組成及び処理要素及びステップを含むことができる。
[0187]本明細書において、及び添付の特許請求の範囲において使用されるとき、単数形「a」、「an」、及び「the」は、文脈が別段に明確に規定しない限り、複数の参照を含む。したがって、たとえば、「セル」への参照は、複数のそのようなセル及び当業者に知られているその等価物を含む。同様に、「1つの(a)」(又は「1つの(an)」)、「1つ又は複数の」、及び「少なくとも1つの」という用語は、本明細書において互換的に使用可能である。「備える」、「含む」、及び「有する」という用語が互換的に使用可能であることも留意されるべきである。「請求項XX~YYのいずれか一項の」(ここで、XX及びYYは請求項番号を指す)という言い回しは、複数の従属請求項を代替形態で提供することを意図したものであり、いくつかの実施形態では、「請求項XX~YYのいずれか一項に記載の」という言い回しと互換性がある。
[0188]本明細書において説明又は例示されるあらゆるデバイス、システム、構成要素の組み合わせ、又は方法は、別段に述べられない限り、本発明を行うために使用可能である。
[0189]範囲、たとえば、温度範囲、時間範囲、又は組成若しくは濃度範囲が本明細書において与えられるときはいつでも、すべての中間範囲及び部分範囲、並びに与えられた範囲に含まれるすべての個々の値は、本開示に含まれることを意図している。本明細書における説明に含まれる任意の部分範囲又は範囲若しくは部分範囲内の個々の値は、本明細書における特許請求の範囲から除外可能であることが理解されよう。
[0190]本明細書において言及されるすべての特許及び公報は、本発明が属する分野における当業者の技術のレベルを示す。本明細書において引用された参考文献は、それらの刊行日又は出願日時点での先行技術を示すためにその全体が参照により本明細書に組み込まれ、この情報は、必要な場合、従来技術である特定の実施形態を除外するために本明細書において用いられ得ることが意図されている。たとえば、物質の組成が特許請求されるとき、実施可能な程度の開示が本明細書において引用される参考文献において提供されている化合物を含めて、出願人の発明の前に当技術分野で知られており利用可能である化合物は、本明細書において特許請求される物質の組成に含まれることは意図されていないことが理解されるべきである。
[0191]本明細書において使用されるとき、「備える」は、「含む」、「含有する」、又は「特徴とする」と同義であり、包括的である又は制約がなく、列挙されていない追加の要素又は方法ステップを除外しない。本明細書で使用されるとき、「からなる」は、請求項要素において指定されない任意の要素、ステップ、又は成分を除外する。本明細書で使用されるとき、「から実質的になる」は、請求項の基本的な特性及び新規な特性に実質的に影響しない材料又はステップを除外しない。本明細書における各実例では、「備える」、「から実質的になる」、及び「からなる」という用語のいずれも、他の2つの用語のどちらかと置き換えられてもよい。本明細書において適切に例示的に説明される本発明は、本明細書では具体的に開示されない任意の1つ又は複数の要素又は、1つ又は複数の制限の不在下で、行われてもよい。
[0192]当業者は、具体的に例示したもの以外のデバイス、システム、及び方法は、過度の実験に依拠することなく本発明の実施において用いられることが可能であることを諒解するであろう。任意のそのようなデバイス及び方法の、当技術分野で知られているすべての機能的等価物は、本発明に含まれることが意図されている。用いられている用語及び言い回しは、制限の用語ではなく説明の用語として使用され、そのような用語及び言い回しの使用時に、図示及び説明される特徴又はその部分の任意の等価物を除外するという意図はないが、特許請求される本発明の範囲内でさまざまな修正形態が可能であることが認識されよう。したがって、本発明は、好ましい実施形態及び任意選択的な特徴によって具体的に開示されてきたが、本明細書において開示される概念の修正形態及び変形形態は当業者によって用いられ得ること、及びそのような修正形態及び変形形態は、添付の特許請求の範囲によって定められる本発明の範囲内であると考えられることが理解されるべきである。

Claims (53)

  1. 粒子とは無関係に光学式粒子分析計の較正ステータスを決定するための方法であって、
    電磁放射のビームを生成するための前記電磁放射の源と、
    サンプル媒体を含むため、及び前記電磁放射のビームを受けるためのチャンバと、
    前記電磁放射のビームを前記チャンバから向ける/前記チャンバに向けるために前記電磁放射の源と光学的に連絡する光学アセンブリと、
    前記電磁放射のビームからの散乱放射を検出するための検出器と、
    前記電磁放射のビームからの前記散乱放射を前記チャンバから及び前記検出器に向けるための集光システムと、
    を含む光学式粒子分析計を用意するステップと、
    前記電磁放射の源に印加されたパワーを変調するステップと、
    前記変調するステップに応答して、低周波数時間領域を有する検出器信号波形を誘導するステップと、
    前記検出器信号波形を分析して、前記電磁放射の源、前記光学アセンブリ、前記チャンバ、前記検出器、及び前記集光システムのうちの1つ又は複数と関連づけられた少なくとも1つの診断パラメータの値を決定するステップと、
    前記少なくとも1つの診断パラメータの前記1つ又は複数の決定された値に基づいて前記光学式粒子分析計の前記較正ステータスを決定するステップと、
    を含み、
    前記光学式粒子分析計内に存在する1つ又は複数の粒子に関して、及び前記電磁放射の源に印加された前記パワーを変調する前記ステップに応答して、前記低周波数時間領域よりも高い中間周波数時間領域を有する粒子検出信号が生成され、以って、前記検出器信号の前記低周波数時間領域と前記粒子検出信号の前記中間周波数時間領域との間の望ましくない干渉を回避し、
    以って、粒子とは無関係に光学式粒子分析計の前記較正ステータスを決定する、方法。
  2. 前記電磁放射の源がレーザである、請求項1に記載の方法。
  3. 高周波数時間領域レーザ面駆動電流周波数を印加し、高周波数時間領域で前記レーザに印加された電流を変調して、空間モードホッピングを防止するステップ
    をさらに含み、
    前記高周波数時間領域が、前記中間周波数時間領域よりも高い周波数であり、前記中間周波数時間領域又は前記低周波数時間領域のいずれとも干渉しない、
    請求項2に記載の方法。
  4. 前記高周波数時間領域が、100MHzよりも大きい又はこれに等しく、約249MHzを含み、
    前記中間周波数時間領域が、1kHz/7kHz~200MHzである範囲から選択され、及び/又は
    前記低周波数時間領域範囲が、500Hzよりも小さい又はこれに等しい、
    請求項1~3のいずれか一項に記載の方法。
  5. 前記光学式粒子分析計内の前記1つ又は複数の粒子が、前記分析計の残留汚染から、及び/又は前記較正ステータスを決定する前記ステップと同時に前記光学式粒子分析計によって分析されているサンプル内の粒子からである、請求項1~4のいずれか一項に記載の方法。
  6. 前記較正ステータスが、前記電磁放射のビームと相互作用する粒子の存在下で決定される、請求項1に記載の方法。
  7. 低帯域フィルタ及び高帯域フィルタを用いて粒子検出システムをフィルタ処理して、前記中間周波数時間領域を取得するステップをさらに含む、請求項1~6のいずれか一項に記載の方法。
  8. 前記チャンバがフローチャンバを備える、請求項1~7のいずれか一項に記載の方法。
  9. 前記サンプル媒体が流体であり、方法が、変調する前記ステップ中に前記流体を前記フローチャンバに流すステップをさらに含む、請求項1~8のいずれか一項に記載の方法。
  10. 流す前記ステップが、前記フローチャンバの上流で前記流体をフィルタ処理するステップを含む、請求項9に記載の方法。
  11. 前記サンプル媒体が粒子を含む、請求項1~10のいずれか一項に記載の方法。
  12. 変調する前記ステップが、前記電磁放射の源に印加された前記パワーを第1のパワーレベルから第2のパワーレベルに切り換えるステップをさらに含む、請求項1~11のいずれか一項に記載の方法。
  13. 切り換える前記ステップが、周波数と、デューティサイクルと、前記第1のパワーレベルに対応する第1のスイッチング振幅と、前記第2のパワーレベルに対応する第2のスイッチング振幅とを有するスイッチング波形に従って前記電磁放射の源に印加された前記パワーを切り換えるステップをさらに含む、請求項12に記載の方法。
  14. 1ms~1sの範囲に対して選択された時間にわたって第2のパワーレベルで前記電磁放射の源に印加された前記パワーを維持するステップをさらに含む、請求項1~13のいずれか一項に記載の方法。
  15. 誘導する前記ステップが、
    前記検出器によって、前記電磁放射の源に印加された第1のパワーレベルに対応する第1の放射パワーレベルで前記電磁放射のビーム又は前記レーザビームから前記散乱放射を第1に受けるステップと、
    前記検出器によって、前記電磁放射の源に印加された第2のパワーレベルに対応する第2の放射パワーレベルで前記電磁放射のビーム又は前記レーザビームから前記散乱放射を第2に受けるステップと、
    を含み、
    前記検出器信号波形が、
    立ち上がり縁と、
    第1の信号振幅と、
    第2の信号振幅と、
    を有する、請求項1~14のいずれか一項に記載の方法。
  16. 前記検出器信号波形の前記立ち上がり縁が、立ち上がり縁関数によって定められる、請求項15に記載の方法。
  17. 前記光学式粒子分析計が、誘導する前記ステップに応答して検出器信号を増幅するための、前記検出器に動作可能に接続された増幅回路をさらに含み、第2の受ける前記ステップが、前記第1の放射パワーレベル及び前記第2の放射パワーレベルにそれぞれ対応する第1の状態から第2の状態に前記増幅回路の通電状態を変更するステップを含む、請求項15又は16に記載の方法。
  18. 前記検出器信号波形の前記立ち上がり縁が、前記第1の状態から前記第2の状態への前記増幅回路の前記通電状態の前記変更に対応する、請求項17に記載の方法。
  19. 前記少なくとも1つの診断パラメータが前記増幅回路とさらに関連づけられる、請求項17又は18に記載の方法。
  20. 前記少なくとも1つの診断パラメータが、前記第1の信号振幅の値と前記第2の信号振幅値の値との差の値として定められた検出器信号波形ピーク振幅を含み、分析する前記ステップが、
    前記第1の信号振幅の前記値と、
    前記第2の信号振幅の前記値と、
    前記第1の振幅値と前記第2の振幅値との前記差の前記値、
    を決定するステップをさらに含む、請求項15~19のいずれか一項に記載の方法。
  21. 前記光学式粒子分析計が、誘導する前記ステップに応答して検出器信号を増幅するための、前記検出器に動作可能に接続された増幅回路をさらに含み、前記検出器信号波形ピーク振幅が、前記電磁放射の源、前記チャンバ、前記光学アセンブリ、前記集光システム、前記検出器、及び前記増幅回路の動作条件と関連づけられる、請求項20に記載の方法。
  22. 前記少なくとも1つの診断パラメータが前記立ち上がり縁のための経過時間を含み、分析する前記ステップが、前記立ち上がり縁のための前記経過時間を決定するステップを含む、請求項15~21のいずれか一項に記載の方法。
  23. 前記光学式粒子分析計が前記電磁放射の源のための駆動回路をさらに含み、前記立ち上がり縁のための前記経過時間が前記駆動回路の動作条件と関連づけられる、請求項22に記載の方法。
  24. 前記少なくとも1つの診断パラメータが前記立ち上がり縁関数を含み、分析する前記ステップが、前記立ち上がり縁の前記立ち上がり縁関数を決定するステップを含む、請求項16に記載の方法。
  25. 前記立ち上がり縁関数が、前記光学式粒子分析計の前記電磁放射の源、前記光学アセンブリ、前記チャンバ、前記検出器、及び前記集光システムの動作条件と関連づけられる、請求項24に記載の方法。
  26. 決定する前記ステップが、前記少なくとも1つの診断パラメータの前記1つ又は複数の決定された値を、前記光学式粒子分析計の以前の較正で決定されたそれぞれの較正パラメータのうちの少なくとも1つの対応する値と比較するステップをさらに含む、請求項1~25のいずれか一項に記載の方法。
  27. 比較する前記ステップが、前記少なくとも1つの診断パラメータの前記1つ又は複数の決定された値と前記以前の較正で決定された各それぞれの較正パラメータの前記対応する値との差を決定するステップを含む、請求項26に記載の方法。
  28. 前記較正ステータスを決定する前記ステップが、前記決定された差に基づいて前記光学式粒子分析計の前記較正ステータスを決定するステップを含む、請求項27に記載の方法。
  29. 電磁放射のビームを生成するための前記電磁放射の源と、
    サンプル媒体を含むため、及び前記電磁放射のビームを受けるためのチャンバと、
    前記電磁放射のビームを前記電磁放射の源から前記チャンバに向けるために前記電磁放射の源と光学的に連絡する光学アセンブリと、
    前記電磁放射のビームからの散乱放射を検出するための検出器と、
    前記電磁放射のビームからの散乱放射を前記チャンバから前記検出器に向けるための集光システムと、
    前記電磁放射の源及び前記検出器に動作可能に接続されたプロセッサであって、
    前記電磁放射の源に印加されたパワーを第1のパワーレベルから第2のパワーレベルに変調し、
    低周波数時間領域で前記電磁放射の源に印加された前記パワーの前記変調によって誘導された散乱放射検出器信号波形を分析し、
    前記電磁放射の源、前記チャンバ、前記光学アセンブリ、前記検出器、及び前記集光システムのうちの1つ又は複数と関連づけられた前記散乱放射検出器信号波形から少なくとも1つの診断パラメータの値を決定し、前記少なくとも1つの診断パラメータの前記1つ又は複数の決定された値に基づいて前記光学式粒子分析計の較正ステータスを決定する
    ようにプログラムされるプロセッサと、
    を備え、
    前記光学式粒子分析計内に存在する1つ又は複数の粒子に関して、及び前記変調に応答して、前記低周波数時間領域よりも高い中間周波数時間領域を有する前記パワー粒子検出信号が生成され、以って、前記決定された診断パラメータのステータスが前記チャンバ内での粒子の存在又は不在とは無関係であるように前記低周波数時間領域と前記中間周波数時間領域との望ましくない干渉を回避する、
    光学式粒子分析計。
  30. 前記中間周波数時間領域を取得するために各々が前記検出器に電子的に接続された低帯域フィルタと高帯域フィルタとをさらに備える、請求項29に記載の光学式粒子分析計。
  31. 前記チャンバがフローチャンバを備える、請求項29又は30に記載の光学式粒子分析計。
  32. 前記サンプル媒体が流体であり、前記光学式粒子分析計が、前記流体を前記フローチャンバに通すためのフローシステムをさらに備える、請求項29~31のいずれか一項に記載の光学式粒子分析計。
  33. 前記フローチャンバの上流で前記流体をフィルタ処理するためのフィルタをさらに備える、請求項32に記載の光学式粒子分析計。
  34. 前記サンプル媒体が粒子を含む、請求項29~33のいずれか一項に記載の光学式粒子分析計。
  35. 前記電磁放射の源に印加された前記パワーを変調するために、前記プロセッサが、前記電磁放射の源に印加された前記パワーを第1のパワーレベルから第2のパワーレベルに切り換えるようにさらにプログラムされる、請求項29~34のいずれか一項に記載の光学式粒子分析計。
  36. 前記電磁放射の源に印加された前記パワーを切り換えるために、前記プロセッサが、周波数と、デューティサイクルと、前記第1のパワーレベルに対応する第1のスイッチング振幅と、前記第2のパワーレベルに対応する第2のスイッチング振幅とを有するスイッチング波形に従って前記電磁放射の源に印加された前記パワーを切り換えるようにさらにプログラムされる、請求項35に記載の光学式粒子分析計。
  37. 前記プロセッサが、1ms~1sの範囲に対して選択された時間にわたって第2のパワーレベルで前記電磁放射の源に印加された前記パワーを維持するようにさらにプログラムされる、請求項29~36のいずれか一項に記載の光学式粒子分析計。
  38. 前記電磁放射の源に印加された前記パワーの前記変調によって誘導された前記散乱放射検出器信号波形に応答して、前記プロセッサが、
    前記検出器から第1の検出器信号を第1に受け、前記第1の検出器信号が、前記電磁放射の源に印加された前記第1のパワーレベルに対応する第1の放射パワーレベルにおける前記電磁放射のビームからの散乱放射を表し、
    前記検出器から第2の検出器信号を第2に受け、前記第2の検出器信号が、前記電磁放射の源に印加された前記第2のパワーレベルに対応する第2の放射パワーレベルにおける前記電磁放射のビームからの散乱放射を表す、
    ようにさらにプログラムされ、
    前記散乱放射検出器信号波形が、
    立ち上がり縁と、
    第1の信号振幅と、
    第2の信号振幅と、
    を有する、請求項29~37のいずれか一項に記載の光学式粒子分析計。
  39. 前記散乱放射検出器信号波形の前記立ち上がり縁が立ち上がり縁関数によって定められる、請求項38に記載の光学式粒子分析計。
  40. 前記プロセッサによる受領の前に前記第1の検出器信号及び前記第2の検出器信号を増幅するための、前記検出器に動作可能に接続された増幅回路をさらに備え、前記電磁放射の源に印加された前記パワーの前記変調に応答して、前記増幅回路の通電状態が、それぞれ前記第1の放射パワーレベル及び前記第2の放射パワーレベルに対応する第1の状態から第2の状態に変更する、請求項38又は39に記載の光学式粒子分析計。
  41. 前記散乱放射検出器信号波形の前記立ち上がり縁が、前記第1の状態から前記第2の状態への前記増幅回路の前記通電状態の前記変更に対応する、請求項40に記載の光学式粒子分析計。
  42. 前記少なくとも1つの診断パラメータが前記増幅回路とさらに関連づけられる、請求項40又は41に記載の光学式粒子分析計。
  43. 前記少なくとも1つの診断パラメータが、前記第1の信号振幅の値と前記第2の信号振幅値の値との差の値として定められた散乱放射検出器信号波形ピーク振幅を含み、前記電磁放射の源に印加された前記パワーの前記変調によって誘導される前記散乱放射検出器信号波形を分析するために、前記プロセッサが、
    前記第1の信号振幅の前記値と、
    前記第2の信号振幅の前記値と、
    前記第1の振幅値と前記第2の振幅値との前記差の前記値、
    を決定するようにさらにプログラムされる、請求項38~42のいずれか一項に記載の光学式粒子分析計。
  44. 前記プロセッサによる受領の前に前記第1の検出器信号及び前記第2の検出器信号を増幅するための、前記検出器に動作可能に接続された増幅回路をさらに備え、前記散乱放射検出器信号波形ピーク振幅が、前記電磁放射の源、前記チャンバ、前記光学アセンブリ、前記集光システム、前記検出器、及び前記増幅回路の動作条件と関連づけられる、請求項43に記載の光学式粒子分析計。
  45. 前記少なくとも1つの診断パラメータが前記立ち上がり縁のための経過時間を含み、前記電磁放射の源に印加された前記パワーの前記変調によって誘導される前記散乱放射検出器信号波形を分析するために、前記プロセッサが、前記立ち上がり縁のための前記経過時間を決定するようにさらにプログラムされる、請求項38~44のいずれか一項に記載の光学式粒子分析計。
  46. 前記電磁放射の源のための駆動回路をさらに備え、前記立ち上がり縁のための前記経過時間が前記駆動回路の動作条件と関連づけられる、請求項45に記載の光学式粒子分析計。
  47. 前記少なくとも1つの診断パラメータが前記立ち上がり縁関数を含み、前記電磁放射の源に印加された前記パワーの前記変調によって誘導される前記散乱放射検出器信号波形を分析するために、前記プロセッサが、前記立ち上がり縁の前記立ち上がり縁関数を決定するようにさらにプログラムされる、請求項39に記載の光学式粒子分析計。
  48. 前記立ち上がり縁関数が、前記光学式粒子分析計の前記電磁放射の源、前記光学アセンブリ、前記チャンバ、前記検出器、及び前記集光システムの動作条件と関連づけられる、請求項47に記載の光学式粒子分析計。
  49. 少なくとも1つの診断パラメータの前記値を決定するために、前記プロセッサが、前記少なくとも1つの診断パラメータの前記1つ又は複数の決定された値を、前記光学式粒子分析計の以前の較正で決定されたそれぞれの較正パラメータのうちの少なくとも1つの対応する値と比較するようにさらにプログラムされる、請求項29~48のいずれか一項に記載の光学式粒子分析計。
  50. 前記少なくとも1つの診断パラメータの前記1つ又は複数の決定された値を前記光学式粒子分析計の前記以前の較正で決定された前記それぞれの較正パラメータのうちの少なくとも1つの前記対応する値と比較するために、前記プロセッサが、前記少なくとも1つの診断パラメータの前記1つ又は複数の決定された値と前記以前の較正で決定された各それぞれの較正パラメータの前記対応する値との差を決定するようにさらにプログラムされる、請求項49に記載の光学式粒子分析計。
  51. 前記プロセッサが、前記決定された差に基づいて前記光学式粒子分析計の前記較正ステータスを決定するようにさらにプログラムされる、請求項50に記載の光学式粒子分析計。
  52. 前記電磁放射の源が、レーザ、ダイオードレーザ、ストリップダイオードレーザ、発光ダイオード、及び白熱電球のうちの少なくとも1つを含む、請求項29に記載の光学式粒子分析計。
  53. 前記電磁放射の源がレーザであり、少なくとも1つの診断パラメータが、
    第1のパワーレベルでの前記印加されたパワーを有する前記レーザから前記第1の放射パワーレベルで前記レーザビームから前記検出器によって検出された前記散乱放射と
    第2のパワーレベルでの前記印加されたパワーを有する前記レーザから前記第2の放射パワーレベルで前記レーザビームから前記検出器によって検出された前記散乱放射との
    検出器信号振幅の差に対応する前記散乱放射検出器信号波形のピークの振幅を含む、請求項29に記載の光学式粒子分析計。
JP2021522949A 2018-11-12 2020-04-27 光学式粒子分析計のための較正検証 Active JP7463632B2 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201862759953P 2018-11-12 2018-11-12
PCT/US2019/060607 WO2020102038A1 (en) 2018-11-12 2019-11-08 Calibration verification for optical particle analyzers
US16/678,968 US11181455B2 (en) 2018-11-12 2019-11-08 Calibration verification for optical particle analyzers
US16/678,968 2019-11-08
USPCT/US2019/060607 2019-11-08
PCT/US2020/030122 WO2021091592A1 (en) 2018-11-12 2020-04-27 Calibration verification for optical particle analyzers

Publications (2)

Publication Number Publication Date
JP2023500752A true JP2023500752A (ja) 2023-01-11
JP7463632B2 JP7463632B2 (ja) 2024-04-09

Family

ID=70551160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021522949A Active JP7463632B2 (ja) 2018-11-12 2020-04-27 光学式粒子分析計のための較正検証

Country Status (4)

Country Link
US (1) US11181455B2 (ja)
JP (1) JP7463632B2 (ja)
CN (1) CN113099724A (ja)
WO (2) WO2020102038A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRM20130128U1 (it) 2013-07-23 2015-01-24 Particle Measuring Systems S R L Dispositivo per il campionamento microbico dell'aria
US11781965B2 (en) 2017-10-26 2023-10-10 Particle Measuring Systems, Inc. System and method for particles measurement
US11588293B2 (en) * 2017-11-21 2023-02-21 Taiwan Semiconductor Manufacturing Co., Ltd. Methods and systems for aligning master oscillator power amplifier systems
WO2020051131A1 (en) 2018-09-04 2020-03-12 Particle Measuring Systems, Inc. Detecting nanoparticles on production equipment and surfaces
US11385161B2 (en) 2018-11-12 2022-07-12 Particle Measuring Systems, Inc. Calibration verification for optical particle analyzers
US11255760B2 (en) 2018-11-16 2022-02-22 Particle Measuring Systems, Inc. Particle sampling systems and methods for robotic controlled manufacturing barrier systems
WO2020102299A1 (en) 2018-11-16 2020-05-22 Particle Measuring Systems, Inc. Slurry monitor coupling bulk size distribution and single particle detection
US11237095B2 (en) 2019-04-25 2022-02-01 Particle Measuring Systems, Inc. Particle detection systems and methods for on-axis particle detection and/or differential detection
WO2021030175A1 (en) 2019-08-09 2021-02-18 Particle Measuring Systems, Inc User access-restrictive systems and methods for operating particle sampling devices
WO2021041420A1 (en) 2019-08-26 2021-03-04 Particle Measuring Systems, Inc Triggered sampling systems and methods
US10997845B2 (en) 2019-10-07 2021-05-04 Particle Measuring Systems, Inc. Particle detectors with remote alarm monitoring and control
JP2022550418A (ja) 2019-10-07 2022-12-01 パーティクル・メージャーリング・システムズ・インコーポレーテッド 抗菌粒子検出器
IT201900020248A1 (it) 2019-11-04 2021-05-04 Particle Measuring Systems S R L Dispositivo di monitoraggio mobile per aree a contaminazione controllata
WO2021102256A1 (en) 2019-11-22 2021-05-27 Particle Measuring Systems, Inc. Advanced systems and methods for interferometric particle detection and detection of particles having small size dimensions
WO2021150472A1 (en) 2020-01-21 2021-07-29 Particle Measuring Systems, Inc. Robotic control for aseptic processing
CN114682018B (zh) * 2022-04-13 2023-01-31 中国石油大学(北京) 一种聚结器智能监测控制系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129759A (ja) * 1985-08-05 1987-06-12 バイオトラツク,インコ−ポレイテイド 毛管流れ装置
JPH11512533A (ja) * 1995-09-22 1999-10-26 メット・ワン・インコーポレイテッド フィールド較正器を用いた光学粒子カウンタ
JP2004506876A (ja) * 2000-06-02 2004-03-04 アイデックス ラボラトリーズ インコーポレイテッド フローサイトメトリーに基づく血液学装置
JP2007231487A (ja) * 2006-03-03 2007-09-13 Kurita Water Ind Ltd 製紙用薬剤の効果監視方法及び装置並びに注入量制御方法及び装置
JP2011503622A (ja) * 2007-11-16 2011-01-27 パーティクル・メージャーリング・システムズ・インコーポレーテッド 光学粒子計数器を較正検証するためのシステム及び方法
JP2012163464A (ja) * 2011-02-08 2012-08-30 Mitsui Eng & Shipbuild Co Ltd 蛍光検出装置、蛍光検出装置の診断方法、および蛍光検出方法
JP2016522409A (ja) * 2013-06-03 2016-07-28 エックストラリス・テクノロジーズ・リミテッド 粒子検知システムおよび関連方法

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3851169A (en) 1973-11-23 1974-11-26 Gen Motors Corp Apparatus for measuring aerosol particles
US4249244A (en) * 1978-05-03 1981-02-03 Ppm, Inc. Electro-optical system and method and apparatus for providing automatically-compensating, traceable calibration and zeroing for light scattering devices
US4348111A (en) 1978-12-07 1982-09-07 The English Electric Company Limited Optical particle analyzers
US4360270A (en) * 1981-02-17 1982-11-23 Jeck Richard K Calibration and testing device for optical, single particle, size spectrometers
US4594715A (en) 1983-11-17 1986-06-10 Particle Measuring Systems, Inc. Laser with stabilized external passive cavity
US4728190A (en) 1985-10-15 1988-03-01 Particle Measuring Systems, Inc. Device and method for optically detecting particles in a fluid
US4798465B2 (en) 1986-04-14 1994-08-30 Particle Measuring Syst Particle size detection device having high sensitivity in high molecular scattering environment
JP2642632B2 (ja) 1987-07-03 1997-08-20 株式会社日立製作所 微粒子計測装置および微粒子計測方法
US5121988A (en) 1989-10-04 1992-06-16 Tsi Incorporated Single particle detector method and apparatus utilizing light extinction within a sheet of light
US5085500A (en) 1989-11-28 1992-02-04 Tsi Incorporated Non-imaging laser particle counter
US5283199A (en) 1990-06-01 1994-02-01 Environmental Technologies Group, Inc. Chlorine dioxide monitor based on ion mobility spectrometry with selective dopant chemistry
US5282151A (en) 1991-02-28 1994-01-25 Particle Measuring Systems, Inc. Submicron diameter particle detection utilizing high density array
JP2529661B2 (ja) 1993-08-20 1996-08-28 アネルバ株式会社 粒子検出装置
US5726753A (en) 1996-02-26 1998-03-10 Research Electro-Optics, Inc. Intracavity particle detection using optically pumped laser media
US5751422A (en) 1996-02-26 1998-05-12 Particle Measuring Systems, Inc. In-situ particle detection utilizing optical coupling
US5642193A (en) 1996-03-08 1997-06-24 Met One, Inc. Particle counter employing a solid-state laser with an intracavity view volume
US5671046A (en) 1996-07-01 1997-09-23 Particle Measuring Systems, Inc. Device and method for optically detecting particles in a free liquid stream
US5920388A (en) 1996-10-15 1999-07-06 Research Electro-Optics, Inc. Small particle characteristic determination
US5805281A (en) 1997-04-21 1998-09-08 Particle Measuring Systems Noise reduction utilizing signal multiplication
US5861950A (en) 1997-07-10 1999-01-19 Particle Measuring Systems, Inc. Particle detection system utilizing an inviscid flow-producing nozzle
US5903338A (en) 1998-02-11 1999-05-11 Particle Measuring Systems, Inc. Condensation nucleus counter using mixing and cooling
US5946092A (en) 1998-02-27 1999-08-31 Pacific Scientific Instruments Company Dual laser heterodyne optical particle detection technique
US6246474B1 (en) 1998-04-29 2001-06-12 Particle Measuring Systems, Inc. Method and apparatus for measurement of particle size distribution in substantially opaque slurries
US6167107A (en) 1999-07-16 2000-12-26 Particle Measuring Systems, Inc. Air pump for particle sensing using regenerative fan, and associated methods
US6615679B1 (en) 2000-08-15 2003-09-09 Particle Measuring Systems, Inc. Ensemble manifold, system and method for monitoring particles in clean environments
US6709311B2 (en) 2001-08-13 2004-03-23 Particle Measuring Systems, Inc. Spectroscopic measurement of the chemical constituents of a CMP slurry
US6945090B2 (en) 2002-06-24 2005-09-20 Particle Measuring Systems, Inc. Method and apparatus for monitoring molecular contamination of critical surfaces using coated SAWS
US7208123B2 (en) 2002-06-24 2007-04-24 Particle Measuring Systems, Inc. Molecular contamination monitoring system and method
US6859277B2 (en) 2002-08-27 2005-02-22 Particle Measuring Systems, Inc. Particle counter with strip laser diode
US7576857B2 (en) 2002-08-27 2009-08-18 Particle Measuring Systems, Inc. Particle counter with laser diode
US6903818B2 (en) 2002-10-28 2005-06-07 Particle Measuring Systems, Inc. Low noise intracavity laser particle counter
US7053783B2 (en) 2002-12-18 2006-05-30 Biovigilant Systems, Inc. Pathogen detector system and method
US7235214B2 (en) 2003-04-23 2007-06-26 Particle Measuring Systems, Inc. System and method for measuring molecular analytes in a measurement fluid
IL156856A (en) 2003-07-09 2011-11-30 Joseph Shamir Method for particle size and concentration measurement
US20050028593A1 (en) 2003-08-04 2005-02-10 Particle Measuring Systems, Inc. Method and apparatus for high sensitivity monitoring of molecular contamination
US7088446B2 (en) 2003-12-31 2006-08-08 Particle Measuring Systems, Inc. Optical measurement of the chemical constituents of an opaque slurry
US7030980B1 (en) 2004-12-29 2006-04-18 Particle Measuring Systems, Inc. Diode pumped intracavity laser particle counter with improved reliability and reduced noise
US7088447B1 (en) 2005-03-01 2006-08-08 Particle Measuring Systems, Inc. Particle counter with self-concealing aperture assembly
US7456960B2 (en) 2005-06-06 2008-11-25 Particle Measuring Systems, Inc. Particle counter with improved image sensor array
GB0513358D0 (en) 2005-06-29 2005-08-03 Gorbounon Boris Portable nanoparticle size classifier
US7667839B2 (en) 2006-03-30 2010-02-23 Particle Measuring Systems, Inc. Aerosol particle sensor with axial fan
US7796255B2 (en) 2007-03-23 2010-09-14 Particle Measuring Systems, Inc. Optical particle sensor with exhaust-cooled optical source
JP5617633B2 (ja) 2007-07-30 2014-11-05 パーティクル・メージャーリング・システムズ・インコーポレーテッド イオン移動度分光測定法の使用による分析物の検出
JP5478501B2 (ja) 2007-12-04 2014-04-23 パーティクル・メージャーリング・システムズ・インコーポレーテッド 粒子検出用の2次元光学画像化方法及びシステム
GB0808385D0 (en) 2008-05-08 2008-06-18 Naneum Ltd A condensation apparatus
EP2470876B1 (en) 2009-08-24 2017-04-05 Particle Measuring Systems, Inc. Flow monitored particle sensor
JP5765022B2 (ja) * 2011-03-31 2015-08-19 ソニー株式会社 微小粒子分析装置及び微小粒子分析方法
JP6309896B2 (ja) 2011-12-01 2018-04-11 ピー.エム.エル. − パーティクルズ モニタリング テクノロジーズ リミテッド 粒径及び濃度測定のための検出スキーム
EP2790006A1 (de) * 2013-04-11 2014-10-15 SAXON Junkalor GmbH Verfahren und Kalibriereinheit zur Kalibrierung von streulichtbasierten Partikelmessgeräten
GB201310355D0 (en) 2013-06-11 2013-07-24 Particle Measuring System Inc Apparatus for charging or adjusting the charge of aerosol apparatus
GB2515285A (en) 2013-06-17 2014-12-24 Particle Measuring System Inc A method for obtaining aerosol particle size distributions
GB201311097D0 (en) 2013-06-21 2013-08-07 Particle Measuring Syst A method and apparatus for dilution of aerosols
ITRM20130128U1 (it) 2013-07-23 2015-01-24 Particle Measuring Systems S R L Dispositivo per il campionamento microbico dell'aria
WO2015138681A1 (en) 2014-03-14 2015-09-17 Particle Measuring Systems, Inc. Firmware design for biological air sampling method
US11416123B2 (en) 2014-03-14 2022-08-16 Particle Measuring Systems, Inc. Firmware design for facility navigation, and area and location data management of particle sampling and analysis instruments
US9810558B2 (en) 2014-03-14 2017-11-07 Particle Measuring Systems, Inc. Pressure-based airflow sensing in particle impactor systems
WO2015138695A2 (en) 2014-03-14 2015-09-17 Particle Measuring Systems, Inc. Filter and blower geometry for particle sampler
WO2015138677A1 (en) 2014-03-14 2015-09-17 Particle Measuring Systems, Inc. Particle impactor with selective height adjustment
US9682345B2 (en) 2014-07-08 2017-06-20 Particle Measuring Systems, Inc. Method of treating a cleanroom enclosure
CN107615043B (zh) * 2015-04-02 2020-08-18 粒子监测系统有限公司 粒子计数仪器中的激光器噪声检测和缓解
KR102373164B1 (ko) 2016-05-20 2022-03-10 파티클 머슈어링 시스템즈, 인크. 유동 및 버블 검출 시스템을 가지는 자동 전력 제어 액체 입자 계수기
JP6880439B2 (ja) 2016-06-03 2021-06-02 パーティクル・メージャーリング・システムズ・インコーポレーテッド 凝縮粒子計数器内の凝縮物を分離するためのシステム及び方法
US11781965B2 (en) 2017-10-26 2023-10-10 Particle Measuring Systems, Inc. System and method for particles measurement
US10948392B2 (en) * 2017-11-14 2021-03-16 Aerodyne Microsystems Inc., a Delaware Corporation Airborne particle detection system with thermophoretic scanning
KR20210050517A (ko) 2018-08-31 2021-05-07 파티클 머슈어링 시스템즈, 인크. 입자계수기를 최적화하는 유체 굴절률
WO2020051131A1 (en) 2018-09-04 2020-03-12 Particle Measuring Systems, Inc. Detecting nanoparticles on production equipment and surfaces
WO2020102299A1 (en) 2018-11-16 2020-05-22 Particle Measuring Systems, Inc. Slurry monitor coupling bulk size distribution and single particle detection
US11255760B2 (en) 2018-11-16 2022-02-22 Particle Measuring Systems, Inc. Particle sampling systems and methods for robotic controlled manufacturing barrier systems

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129759A (ja) * 1985-08-05 1987-06-12 バイオトラツク,インコ−ポレイテイド 毛管流れ装置
JPH11512533A (ja) * 1995-09-22 1999-10-26 メット・ワン・インコーポレイテッド フィールド較正器を用いた光学粒子カウンタ
JP2004506876A (ja) * 2000-06-02 2004-03-04 アイデックス ラボラトリーズ インコーポレイテッド フローサイトメトリーに基づく血液学装置
JP2007231487A (ja) * 2006-03-03 2007-09-13 Kurita Water Ind Ltd 製紙用薬剤の効果監視方法及び装置並びに注入量制御方法及び装置
JP2011503622A (ja) * 2007-11-16 2011-01-27 パーティクル・メージャーリング・システムズ・インコーポレーテッド 光学粒子計数器を較正検証するためのシステム及び方法
JP2012163464A (ja) * 2011-02-08 2012-08-30 Mitsui Eng & Shipbuild Co Ltd 蛍光検出装置、蛍光検出装置の診断方法、および蛍光検出方法
JP2016522409A (ja) * 2013-06-03 2016-07-28 エックストラリス・テクノロジーズ・リミテッド 粒子検知システムおよび関連方法

Also Published As

Publication number Publication date
WO2021091592A1 (en) 2021-05-14
US11181455B2 (en) 2021-11-23
US20200150017A1 (en) 2020-05-14
JP7463632B2 (ja) 2024-04-09
WO2020102038A1 (en) 2020-05-22
CN113099724A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
JP2023500752A (ja) 光学式粒子分析計のための較正検証
US11385161B2 (en) Calibration verification for optical particle analyzers
JP5473931B2 (ja) 光学粒子計数器を較正検証するためのシステム及び方法
CN107615043B (zh) 粒子计数仪器中的激光器噪声检测和缓解
US20030098422A1 (en) System and method for detecting and classifying biological particles
US20230087059A1 (en) Optical isolator stabilized laser optical particle detector systems and methods
JP2020537148A (ja) 粒子計数器の構成要素の較正
US20120136584A1 (en) Detection apparatus and detection method for detecting microorganisms
EP3850333B1 (en) Multimodal dust sensor
US5684585A (en) Optical particle counter employing a field-calibrator
US11841311B2 (en) Multimodal dust sensor
US7250871B2 (en) Particulate detector
Pedersini Improving a commodity dust sensor to enable particle size analysis
EP3861317B1 (en) Calibration verification for optical particle analyzers
US20230117469A1 (en) Particulate detection, counting, and identification
TWI479142B (zh) 生物晶片檢測裝置及其光源的檢測方法
WO2018115052A1 (en) Particle sensor and sensing method
US10942106B2 (en) Particle characterization apparatus and method
EP3392644A1 (en) Particle characterization apparatus and method
WO2015186410A1 (ja) 測定方法および測定システム
KR102522175B1 (ko) 광 스펙트럼을 활용한 유해성분 측정 장치 및 방법
bin Mohd Nor Research on the Unified Threshold Criteria of Installed Filter Leak Test in Cleanrooms
JP3049926B2 (ja) 粒度分布測定装置
Angelo International comparison of validation methods for dust concentration measurement

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240229

R150 Certificate of patent or registration of utility model

Ref document number: 7463632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150