JP2023183847A - 空間浮遊映像情報表示システム - Google Patents

空間浮遊映像情報表示システム Download PDF

Info

Publication number
JP2023183847A
JP2023183847A JP2022097620A JP2022097620A JP2023183847A JP 2023183847 A JP2023183847 A JP 2023183847A JP 2022097620 A JP2022097620 A JP 2022097620A JP 2022097620 A JP2022097620 A JP 2022097620A JP 2023183847 A JP2023183847 A JP 2023183847A
Authority
JP
Japan
Prior art keywords
image
floating
user
display system
information display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022097620A
Other languages
English (en)
Inventor
宏明 ▲高▼橋
Hiroaki Takahashi
浩二 平田
Koji Hirata
浩司 藤田
Koji Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Ltd filed Critical Maxell Ltd
Priority to JP2022097620A priority Critical patent/JP2023183847A/ja
Priority to PCT/JP2023/013028 priority patent/WO2023243181A1/ja
Publication of JP2023183847A publication Critical patent/JP2023183847A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F19/00Advertising or display means not otherwise provided for
    • G09F19/12Advertising or display means not otherwise provided for using special optical effects
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F21/00Mobile visual advertising
    • G09F21/04Mobile visual advertising by land vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/307Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using fly-eye lenses, e.g. arrangements of circular lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/346Image reproducers using prisms or semi-transparent mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/349Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking
    • H04N13/351Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking for displaying simultaneously
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

【課題】キオスク端末などの利用者に対して好適に映像を表示し、必要な情報を提供すること。本発明によれば、持続可能な開発目標の「3すべての人に健康と福祉を」、「9産業と技術革新の基盤をつくろう」、「11住み続けられるまちづくりを」に貢献する。【解決手段】空間浮遊映像情報表示システムは、少なくとも1個のオブジェクトの映像を表示する映像表示装置と、映像表示装置の映像光出射側に配置されたレンチキュラーレンズと、映像表示装置からの映像光を再帰反射させることで空中に空間浮遊映像を形成するための再帰性反射部材とを備えており、映像表示装置は、オブジェクトとして、複数の視点により撮影またはレンダリングして得られた多視点画像を表示する。【選択図】図13

Description

本発明は、空間浮遊映像情報表示システムに関する。
空間浮遊映像情報表示システムとして、直接外部に向かって映像を空間像として表示する映像表示装置および表示方法については、既に知られている。また、表示された空間像の操作面における操作に対する誤検知を低減する検知システムについても、例えば、特開2019-128722号公報(特許文献1)に記載されている。
特開2019-128722号公報
特許文献1では、空気中に形成される像に対する操作の誤検知を低減することを目的として、ユーザが予め定めた方向から像に接近する場合、ユーザの動きを操作として受け付けることで、目的を達成する旨が記載されている。
また、特許文献1の段落0011には、「空中画像は、静止画でも動画でもよい」こと、さらに、空中画像は、「曲面、球体、立方体などの立体的な形状でもよい」ことが記載されている。しかしながら、特許文献1には、空中画像を立体的な形状とするための具体的な技術や方法に関する記載はない。
空間浮遊映像(空中画像、空中像ということもある。これらの名称については後述する)を立体的な形状とすることで、平面画像から生成された空間浮遊映像に比べて、利用者が観察した時に、より臨場感があり、実際に空間上に浮遊しているように感じる空間浮遊映像を生成することができる。
そのため、立体的な形状を有する空間浮遊映像を、例えば、サイネージ(電子的な看板)として用いた場合には、サイネージにより表示された商品やサービスに対する人々の関心をより高める効果が期待できる。また、空間浮遊映像として、コンシェルジュ(利用者の操作ガイドや、利用者に対する各種サービスを提供する人)を立体的な形状とすれば、平面的な空間浮遊映像による表示に比べて、利用者が実際の人物と対話をしているような感覚を誘発されるため、利用者はコンシェルジュに対してより親近感をいだきやすく、コンシェルジュによるガイドに従って、よりスムーズな操作を行うことができるという効果が期待できる。
しかしながら、前述の通り、特許文献1のような先行技術例では、立体的な形状として空間浮遊映像を表示するための技術は開示されておらず、特に、コンシェルジュのような人物像を立体的な空間浮遊映像として表示するための技術が望まれていた。
そこで、本発明の目的は、立体的な物体を表示することができる空間浮遊映像表示システムを提供することにある。
上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本発明は、上記課題を解決する手段を複数含んでいるが、一例を挙げるならば以下の通りである。空中に空間浮遊映像を形成する空間浮遊映像情報表示システムは、少なくとも1個のオブジェクトの映像を表示する映像表示装置と、映像表示装置の映像光出射側に配置されたレンチキュラーレンズと、映像表示装置からの映像光を再帰反射させることで空中に空間浮遊映像を形成するための再帰性反射部材とを備えており、映像表示装置は、オブジェクトとして、複数の視点により撮影またはレンダリングして得られた多視点画像を表示する。
本開示のうち代表的な実施の形態によれば、空間浮遊映像情報表示システムに関して、空間浮遊映像として多視点映像が表示され、特に、コンシェルジュなどの人物像が立体的に表示されるので、利用者にとって実際の人物と会話をしているような、臨場感のある、好適な空間浮遊映像を提供することができる、という効果がある。上記した以外の課題、構成および効果などについては、発明を実施するための形態において示される。
一実施例に係る空間浮遊映像情報表示システムの使用形態の一例を示す図である。 一実施例に係る空間浮遊映像情報表示システムの内部構成の一例を示す図である。 一実施例に係る空間浮遊映像情報表示システムの主要部構成と再帰反射部構成の一例を示す図である。 一実施例に係る空間浮遊映像情報表示システムの主要部構成と再帰反射部構成の他の例を示す図である。 一実施例に係る再帰反射で発生する異常光線を遮る部材の配置例を示す斜視図である。 一実施例に係る再帰反射で発生する異常光線を遮る部材の配置例を示す断面図である。 一実施例に係る空間浮遊映像情報表示システムで用いる第1のセンシング技術の説明図である。 一実施例に係る空間浮遊映像情報表示システムで用いる第2のセンシング技術の説明図である。 一実施例に係る空間浮遊映像情報表示システムで用いるセンシングシステムの動作および装置についての説明図である。 太陽光の分光放射照度の特性を示す図である。 屈折率1.5の媒質に入射する偏光光の光線入射角度に対する反射特性を示す図である。 一実施例に係る、空間浮遊映像に文字などを入力・描画する技術についての説明図を示す。 本発明の一実施例に係る空間浮遊映像情報表示システムの主要部構成を示す図である。 本発明の一実施例に係る他の空間浮遊映像情報表示システムの主要部構成を示す図である。 多視点画像を表示する原理を示す図である。 多視点映像を生成するためのカメラ配置の一例を示す図である。 多視点映像表示装置により表示される映像の一例を示す図である。 空間浮遊像としての多視点映像の見え方の一例を示す図である。 空間浮遊像としての多視点映像の見え方の他の一例を示す図である。 キオスク端末の一例を示す図である。 一実施例(実施の形態1)に係るキオスク端末の外観例を示す図である。 実施の形態1に係るキオスク端末の断面構造例を示す図である。 一実施例(実施の形態2)に係るキオスク端末の外観例を示す図である。 実施の形態2に係るキオスク端末の断面構造例を示す図である。 一実施例(実施の形態3)に係るキオスク端末と利用者を示す図である。 一実施例(実施の形態3)に係るキオスク端末の表示例を示す図である。 実施の形態3に係るキオスク端末の第1動作フローを示す図である。 実施の形態3に係るキオスク端末の第2動作フローを示す図である。 一実施例(実施の形態4)に係るキオスク端末と携帯端末の連携動作を示す図である。 一実施例(実施の形態5)に係るキオスク端末でのサインの操作・表示例を示す図である。 実施の形態3などの変形例に係るキオスク端末での表示例を示す図である。 光源装置の具体的な構成例を示す断面図である。 光源装置の具体的な構成例を示す構造図である。 別方式の光源装置の具体的な構成例を示す図である。 一実施例(他の実施の形態)に係る自動販売機の外観例を示す図である。
以下、本発明の実施の形態(実施例とも記載)を、図面を参照しながら詳細に説明する。図面において、同一部には原則として同一符号を付し、繰り返しの説明を省略する。図面において、構成要素の表現は、発明の理解を容易にするために、実際の位置、大きさ、形状、および範囲などを表していない場合がある。
説明上、プログラムによる処理について説明する場合に、プログラムや機能や処理部などを主体として説明する場合があるが、それらについてのハードウェアとしての主体は、プロセッサ、あるいはそのプロセッサなどで構成されるコントローラ、装置、計算機、システムなどである。計算機は、プロセッサによって、適宜にメモリや通信インタフェースなどの資源を用いながら、メモリ上に読み出されたプログラムに従った処理を実行する。これにより、所定の機能や処理部などが実現される。プロセッサは、例えばCPU(Central Processing Unit)やGPUなどの半導体デバイスなどで構成される。プロセッサは、所定の演算が可能な装置や回路で構成される。処理は、ソフトウェアプログラム処理に限らず、専用回路でも実装可能である。専用回路は、FPGA(field-programmable gate array)、ASIC(application specific integrated circuit)、CPLD(Complex Programmable Logic Device)などが適用可能である。
プログラムは、対象計算機に予めデータとしてインストールされていてもよいし、プログラムソースから対象計算機にデータとして配布されてもよい。プログラムソースは、通信網上のプログラム配布サーバでもよいし、非一過性のコンピュータ読み取り可能な記憶媒体(例えばメモリカード)でもよい。プログラムは、複数のモジュールから構成されてもよい。コンピュータシステムは、複数台の装置によって構成されてもよい。コンピュータシステムは、クライアントサーバシステム、クラウドコンピューティングシステムなどで構成されてもよい。各種のデータや情報は、例えばテーブルやリストなどの構造で構成されるが、これに限定されない。識別情報、識別子、ID(identification)、名、番号などの表現は互いに置換可能である。
一実施の形態の空間浮遊映像情報表示システム(以下、単にシステムと記載する場合もある)は、まず、空間浮遊映像の視認性を著しく低下させるゴースト像を無くし、空間浮遊映像の明るさを向上させることで、視認性を改善する構成を備える。一実施の形態のシステムは、キオスク端末などに適用され、空間浮遊映像による画面で操作メニューなどのユーザインタフェースを提供する。その上で、一実施の形態のシステムは、ユーザがシステム(キオスク端末)の筐体に近づいてきた時に、空間浮遊映像の画面上に、はじめに、所定の人物像としてのコンシェルジュ(コンシェルジュ映像などと記載する場合もある)を表示する。システムは、空間浮遊映像のコンシェルジュによって、ユーザに対し、あいさつ、ガイド、説明などを行う。
一実施の形態の空間浮遊映像情報表示システムは、ユーザが空間浮遊映像に近づいた場合や空間浮遊映像に対し操作した場合に、コンシェルジュ映像を、自動的に、所定の操作メニューなど、例えば複数の数字ボタンや選択肢ボタンなどを有しそのボタンを押下できる方式の操作メニュー画面に遷移・変化させる。システムは、適宜に、空間浮遊映像のコンシェルジュによって、ユーザに対し、操作メニューのガイドや説明を行う。特に、システムは、初めてのユーザや高齢のユーザであると判定した場合に、コンシェルジュによって、ユーザに対し、操作メニューを詳しくガイドする。また、システムは、ユーザが空間浮遊映像の操作方法などがよくわからない状態であると判定した場合には、コンシェルジュによって、ユーザに対し、操作メニューを詳しくガイドする。
また、一実施の形態の空間浮遊映像情報表示システムは、例えばカメラを用いた顔認証などによりユーザを識別・特定する機能を備える。システムは、その機能によって特定したユーザについて、年齢やシステム使用履歴などのユーザ属性情報を参照する。システムは、ユーザの属性に応じて、空間浮遊映像のコンシェルジュによるガイドなどの方式や内容を変えるように制御する。
また、一実施の形態の空間浮遊映像情報表示システムは、空間浮遊映像の面に対し、ユーザが手指によって任意の文字や図形を入力することができる機能も提供する。システムは、空間浮遊映像の面に対する手指の接触の状態を検出し、空間浮遊映像の面で入力された線を描画する。システムは、この入力された線を例えばユーザのサインとして取得する。
なお、以下の実施の形態の説明において、空間に浮遊する映像、空中に表示される映像を、「空間浮遊映像」という用語で表現する場合がある。この用語の代わりに、「空中像」、「空間像」、「空中浮遊映像」、「表示映像の空間浮遊光学像」、「表示映像の空中浮遊光学像」などと表現しても構わない。実施の形態の説明で主に用いる「空間浮遊映像」の用語は、これらの用語の代表例として用いている。
<空間浮遊映像情報表示システム>
本開示は、例えば、大面積な映像発光源からの映像光による映像を、ショーウィンドのガラスなどの、空間を仕切る透明部材を介して透過して、店舗空間の内部または外部に空間浮遊映像として表示可能な情報表示システムに関する。また、本開示は、かかる情報表示システムを複数用いて構成される大規模なデジタルサイネージシステムに関する。
以下の実施の形態によれば、例えば、ショーウィンドのガラス面や光透過性の板材上に高解像度な映像情報を空間浮遊した状態で表示可能となる。この時、出射する映像光の発散角を小さく、すなわち鋭角とし、さらに特定の偏波に揃えることで、再帰反射部材(再帰性反射部材)または再帰反射板に対して正規の反射光だけを効率良く反射させることができる。このため、実施の形態によれば、光の利用効率が高く、従来の再帰反射方式での課題となっていた主空間浮遊像の他に発生するゴースト像を抑えることができ、鮮明な空間浮遊映像を得ることができる。
また、本開示の光源を含む装置により、消費電力を大幅に低減可能な、新規で利用性に優れた空間浮遊映像情報表示システムを提供できる。また、本開示の技術によれば、例えば、車両のフロントガラスやリアガラスやサイドガラスを含むシールドガラスを介して、車両外部において視認可能である、いわゆる、一方向性の空間浮遊映像の表示が可能な車両用空間浮遊映像情報表示システムを提供できる。
一方、従来の空間浮遊映像情報表示システムは、高解像度なカラー表示映像源として有機ELパネルや液晶表示パネル(液晶パネルなどと記載する場合がある)を、再帰反射部材と組み合わせる。従来技術による空間浮遊映像表示装置では、映像光が広角で拡散する。そのため、図3の(B)に示す多面体で構成された第一の実施例での再帰反射部材2を用いる場合、再帰反射部材2で正規に反射する反射光(それによる正規な空間浮遊映像)の他に、図3の(C)に示す再帰反射部材2(再帰反射部2a)に斜めから入射する映像光によって、ゴースト像が発生する。これにより、空間浮遊映像の画質が低下する。また、従来技術による空間浮遊映像表示装置では、正規な空間浮遊映像の他に、反射面の数に応じたゴースト像が複数発生する。このため、観視者以外の人にも、ゴースト像である同一空間浮遊映像を観視され、セキュリティ上の観点からも大きな課題があった。
<空間浮遊映像情報表示システムの第1の構成例>
図1の(A)は、実施例の空間浮遊映像情報表示システムの使用形態の一例を示し、空間浮遊映像情報表示システムの全体構成の説明図を示す。図1の(A)で、例えば、店舗などにおいては、ガラスなどの透光性の部材(透明部材とも記載)であるショーウィンド(ウィンドガラスともいう)105により、空間が仕切られている。本空間浮遊情報表示システムによれば、かかる透明部材を透過して、空間浮遊映像を、店舗空間の外部に対して一方向に表示が可能である。
具体的には、本システムによれば、映像表示装置10から挟角な指向特性でかつ特定偏波の光が、映像光束として出射される。出射された映像光束は、再帰反射部材2に一旦入射し、再帰反射されて、ウィンドガラス105を透過して、店舗空間の外側に、実像である空間浮遊映像(空中像)3を形成する。図1の(A)では、透明部材(ここではウィンドガラス)105の内側の店舗内を奥行方向とし、ウィンドガラス105の外側(例えば歩道)が手前になるように示している。他方、ウィンドガラス105に特定偏波を反射する部材を設け、かかる部材によって映像光束を反射させて、店舗内の所望の位置に空中像を形成することもできる。
図1の(B)は、映像表示装置10の内部構成を示す。映像表示装置10は、空中像の原画像を表示する映像表示部1102と、入力された映像をパネルの解像度に合わせて変換する映像制御部1160と、映像音声信号を受信・入力する映像・音声信号受信部1130とを含む。
このうち、映像・音声信号受信部1130は、例えば、HDMI(High-Definition Multimedia Interface)(登録商標)などの入力インタフェースを通じての有線での入力信号への対応と、Wi-Fi(Wireless Fidelity)(登録商標)などの無線入力信号への対応を行う役割を担う。また、映像・音声信号受信部1130は、映像受信・表示装置として単独で機能することもできる。さらに、映像・音声信号受信部1130は、タブレット端末、スマートフォンなどからの映像・音声情報を表示・出力することもできる。さらにまた、映像・音声信号受信部1130は、必要に応じてスティックPCなどのプロセッサ(演算処理装置)を接続することもでき、この場合、映像信号・音声信号受信部全体として、計算処理や映像解析処理などの能力を持たせることもできる。
[空間浮遊映像情報表示システムの機能ブロック]
図2は、空間浮遊映像情報表示システム1の機能ブロック図を示す。映像表示部1102は、映像信号に基づいて、映像表示部1102を透過する光を変調することで、映像を生成する。映像表示部1102は、表示パネル、または液晶パネル、または液晶表示パネルと称する場合がある。映像表示部1102は、例えば、透過型表示パネルを用いてもよく、場合によっては、映像信号に基づいてパネルに反射する光を変調する反射型表示パネルや、DMDパネル(DMD:Digital Micromirror Device、登録商標)などを用いて構成されてもよい。
空間浮遊映像情報表示システム1は、図2に示すように、レンチキュラーレンズ1103を有している。レンチキュラーとは、シート状のレンチキュラーレンズを用いて、見る角度によって絵柄が変化したり、立体感が得られたりする印刷物のことである。レンチキュラーレンズは、その表面が半円筒状の「かまぼこ」のような形状を有するレンズの集合体であり、1つの半円筒状レンズの下部には、多視点画像(または映像)の視点の数に相当する、異なる映像を表示する映像表示部1102が配置されている。本願発明では、レンチキュラーレンズ1103が、映像表示部1102の映像光出射側に配置されている。具体的には、レンチキュラーレンズ1103は、映像表示部1102の映像光出射側と所定距離を介して配置されている。また、映像表示部1102が出射された映像光をレンチキュラーレンズを通して、多視点画像(または多視点映像)を表示し、利用者が多視点画像(または多視点映像)を観察することができる。
図2の構成によれば、利用者が、レンチキュラーレンズ1103を形成する半円筒状レンズが並んでいる方向(例えば、左右の方向)に移動することにより、利用者はそれぞれの位置から異なる画像(または映像)を見ることができる。従って、上記、異なる画像(または映像)を、1つの被写体に対して、撮影方向が異なる撮影画像(または映像)とする。このことで、利用者は、レンチキュラーレンズを介して、運動視差を伴う多視点立体像として、映像表示部1102を構成する液晶パネル上に表示された画像(または映像)を視認することができる。
再帰性反射部1101は、映像表示部1102により変調された光を再帰反射する。再帰性反射部1101からの反射光のうち、空間浮遊映像情報表示システム1の外部に出力された光が空間浮遊映像3を形成する。光源1105は、映像表示部1102用の光を発生する。光源1105は、例えばLED光源、レーザ光源などの固体光源が用いられる。電源1106は、外部から入力されるAC電流をDC電流に変換し、光源1105に電力を供給する。さらに、電源1106は、その他各部にそれぞれ必要なDC電流を供給する。
導光体1104は、光源1105で発生した光を導いて映像表示部1102に照射する。導光体1104と光源1105との組み合わせを映像表示部1102のバックライトと称することもできる。導光体1104や光源1105の組み合わせは、様々な方式が考えられる。具体的な構成例は後述する。なお、図2に示すように、映像表示部1102と導光体1104と光源1105の3つの部品から構成される部分を、特に、映像表示装置10と呼ぶ。
空中操作検出センサ1351は、ユーザの手指による空間浮遊映像3の操作(空中操作とも記載)を検出するために、空間浮遊映像3の表示範囲と少なくとも一部に重畳する範囲、またはすべての表示範囲に重畳する範囲をセンシングするセンサである。空中操作検出センサ1351は、具体的なセンサ構成としては、赤外線などの非可視光、非可視光レーザ、超音波などを用いた距離センサや、これを複数組み合わせて2次元平面の座標を検出できる構成としたものでもよい。また、空中操作検出センサ1351は、後述するToF(Time of Flight)方式のLiDAR(Light Detection and Ranging)として構成してもよい。
空中操作検出部1350は、空中操作検出センサ1351が取得したセンシング信号を取得し、これに基づいて、ユーザの手指による空間浮遊映像3への接触の有無や、空間浮遊映像3における当該接触の位置の算出を行う。空中操作検出部1350は、FPGAなどの回路で構成されてもよい。
空中操作検出センサ1351および空中操作検出部1350(これらをセンシングシステムと記載する場合がある)は、空間浮遊映像情報表示システム1に内蔵する構成としてもよいが、空間浮遊映像情報表示システム1とは別体の外部に設けてもよい。別体に設ける場合は、有線または無線の通信接続路や映像信号伝送路を介して空間浮遊映像情報表示システム1に情報または信号を伝達できるように構成すればよい。空中操作検出センサ1351および空中操作検出部1350の両者を別体で設けてもよい。この場合は、空中操作検出機能の無い空間浮遊映像情報表示システム1を本体として、空中操作検出機能のみをオプションで追加できるシステムを構築可能である。また、空中操作検出センサ1351のみを別体とし、空中操作検出部1350を空間浮遊映像情報表示システム1に内蔵してもよい。空間浮遊映像情報表示システム1の設置位置に対して空中操作検出センサ1351をより自由に配置したい場合などは、空中操作検出センサ1351のみを別体とする構成に利点がある。
撮像部1180は、イメージセンサを有する、いわゆるカメラであり、空間浮遊映像3の付近の空間、および/または、ユーザの顔、腕、指などを撮像する。撮像部1180は、用途に応じて、複数のカメラや、深度センサ付きカメラが用いられてもよい。撮像部1180は、空間浮遊映像情報表示システム1とは別体に設けてもよい。撮像部1180は、複数のカメラや深度センサ付きカメラを用いる場合には、ユーザによる空間浮遊映像3へのタッチ操作、言い換えると空間浮遊映像3の面に接触する操作、の検出について、空中操作検出部1350を補助してもよい。
例えば、空中操作検出センサ1351が、空間浮遊映像3が属する平面を対象として、当該平面内への物体侵入センサとして構成された場合、当該平面内へ侵入していない物体(例えばユーザの指)がどのくらい当該平面に近いのか、空中操作検出センサ1351のみでは検出できない場合がある。このような場合には、撮像部1180における複数のカメラの撮像結果による深度算出情報や深度センサによる深度情報を用いることにより、当該空間浮遊映像3の平面内へ侵入していない物体(例えばユーザの指)と当該平面との距離を算出可能となる。この算出情報を、空間浮遊映像3における各種表示制御に用いることができる。
あるいは、本システムは、空中操作検出センサ1351を用いずに、撮像部1180の撮像結果に基づいて、空中操作検出部1350がユーザによる空間浮遊映像3のタッチ操作を検出するように構成されてもよい。
撮像部1180が空間浮遊映像3を操作するユーザの顔などを撮像し、撮像画像に基づいて、制御部1110がユーザの識別・特定処理、あるいはユーザの認証処理を行うように構成されてもよい。あるいは、空間浮遊映像3を操作するユーザの周辺や背後に他の人が立っていて、空間浮遊映像3に対するユーザの操作を覗き見ていないかなどを判別するために、空間浮遊映像3を操作するユーザの周辺を含めて撮像するように、撮像部1180が構成されてもよい。
操作入力部1107は、操作ボタンやリモコン受光部であり、空間浮遊映像3に対する空中操作とは異なる、ユーザによる操作に関する信号を入力する。操作入力部1107は、空間浮遊映像3をタッチ操作する上述のユーザとは別に、空間浮遊映像情報表示システム1の管理者が、本システムを操作するために用いてもよい。
映像信号入力部1131は、外部の映像出力装置を接続して映像データを入力する機能を有する。音声信号入力部1133は、外部の音声出力装置を接続して音声データを入力する機能を有する。一方、音声信号出力部1140は、音声信号入力部1133に入力された音声データに基づいた音声信号を出力する機能を有する。また、音声信号出力部1140は、予めストレージ部1170に記録されている、数字や文字列などの音声データ、その他の操作音やエラー警告音のデータに基づいた音声信号を出力してもよい。なお、映像信号入力部1131、音声信号入力部1133を合わせて、映像・音声信号入力部1130と呼ぶ。映像信号入力部1131と音声信号入力部1133はそれぞれの構成でもよいが、合わせて1つでも構わない。
音声信号出力部1140は、スピーカまたは超指向性スピーカ30に接続される。音声信号出力部1140は、通常の可聴帯域の音声を出力するスピーカに接続してもよいが、後述のキオスク端末などの実施例のように、特に、秘匿性が高くセキュリティに配慮する必要がある場合には、ユーザ以外の他の人には聞き取ることができないように、超指向性スピーカに接続してもよい。超指向性スピーカとは、特定の限られた空間領域に存在する人の耳のみには可聴帯域の音声を聴取でき、その特定の空間領域の外に存在する人の耳にはその可聴帯域の音声を聴取できないという特性を有するスピーカである。
超指向性スピーカ30は、例えば、40kHz程度の超音波信号を発生できる超音波出力素子を平面上に複数個並べることで構成される。この時、使用する超音波出力素子の数が多いほど、超指向性スピーカによって得られる音声の音量は大きくなる。超指向性スピーカの原理を簡単に説明する。よく知られるように、超音波は可聴帯域の音声(例えば人の話し声)と比較して直進性が高い。従って、40kHzの超音波信号をキャリア(搬送波)として、キャリアを可聴帯域の音声信号で変調(例えばAM変調)することで、特定の限られた空間領域だけで音声が聞こえるようにすることが可能となる。
例えば、撮像部1180として複数のカメラを用いることで、ユーザの顔や耳の位置を特定し、その特定の結果に応じて、超指向性スピーカ30からの出力によって、ユーザの耳の近傍領域においてのみ音声が聞こえるようにすることができる。具体的には、超指向性スピーカ30を構成する超音波出力素子に入力する超音波信号の位相(言い換えると遅延時間)を制御することで、特定の限られた空間領域だけで音声が聞こえるようにすることができる。また、複数の超音波出力素子を、平面上ではなく、例えば、凹面状の面に配置する構成によっても、特定の限られた空間領域だけで音声が聞こえるようにすることができる。
不揮発性メモリ1108は、空間浮遊映像情報表示システム1で用いる各種データを格納する。不揮発性メモリ1108に格納されるデータには、空間浮遊映像3として表示される各種操作用のデータ、アイコンやボタンなどのユーザインタフェース映像情報、ユーザが操作するためのオブジェクトのデータやレイアウト情報なども含まれてもよい。メモリ1109は、空間浮遊映像3として表示する映像データや装置の制御用データを記憶する。
制御部1110は、空間浮遊映像情報表示システム1のコントローラ(言い換えると制御装置)に相当し、接続される各部の動作を制御する。制御部1110は、プロセッサなどのデバイスを備えている。制御部1110は、不揮発性メモリ1108やストレージ部1170からメモリ1109または内蔵メモリに読み出したプログラムに従った処理を実行する。これにより、各種の機能が実現される。制御部1110は、メモリ1109に格納されるプログラムと協働して、接続される各部から取得した情報に基づいた演算処理を行ってもよい。制御部1110は、空間浮遊映像情報表示システム1を構成する筐体内に、マイコンなどを用いて実装されてもよいし、筐体外に接続・実装されてもよい。
通信部1132は、有線または無線の通信インタフェースを介して、外部機器や外部のサーバなどと通信を行う。通信部1132は、当該通信により、映像、画像、音声、各種データを送受信する。
ストレージ部1170は、映像、画像、音声、各種データなどを記録する。例えば、製品出荷時に、予め、映像、画像、音声、各種データなどをストレージ部1170に記録しておいてもよい。通信部1132を介して外部機器や外部のサーバなどから取得した映像、画像、音声、各種データなどをストレージ部1170に記録してもよい。ストレージ部1170に記録された映像、画像、各種データなどは、映像表示部1102、映像表示装置10、および再帰性反射部1101を介して、空間浮遊映像3として出力可能である。
空間浮遊映像3にユーザインタフェース(後述の操作メニューやコンシェルジュ映像を含む)として表示する、アイコン、ボタン、ユーザが操作するためのオブジェクトなどのデータや、コンシェルジュ映像を構成するデータも、ストレージ部1170に記録する映像や画像のデータに含まれていてもよい。また、空間浮遊映像3にユーザインタフェースとして表示するアイコン、ボタン、オブジェクトなどの操作メニューやコンシェルジュのレイアウト情報や、操作メニューやコンシェルジュに関する各種メタデータなどの情報も、ストレージ部1170に記録する各種データに含まれていてもよい。また、空間浮遊映像3のコンシェルジュが音声出力するための音声データも、ストレージ部1170に記録されていてもよい。ストレージ部1170に記録されている音声データは、音声信号出力部1140を介して、スピーカまたは超指向性スピーカ30から音声信号として出力すればよい。
制御部1110、または、映像制御部1160や音声信号出力部1140は、ストレージ部1170や不揮発性メモリ1108などに記憶されている、操作メニューやコンシェルジュを構成するための各種データに基づいて、操作メニューやコンシェルジュを表示・出力するための映像データや音声データを適宜に作成してもよい。
映像制御部1160は、映像表示部1102に入力する映像信号についての各種制御を行う。映像制御部1160は、例えば、メモリ1109に格納する映像と、映像信号入力部1131で入力した映像などのうち、どの映像を映像表示部1102に入力する映像とするかなどの映像切り替え制御を行ってもよい。あるいは、映像制御部1160は、メモリ1109に格納する映像と、映像信号入力部1131で入力した映像とを重畳し、映像表示部1102に入力する合成映像を生成する制御を行ってもよい。また、映像制御部1160は、映像信号入力部1131で入力した映像データやメモリ1109に格納する映像などに対して画像処理の制御を行ってもよい。画像処理としては、例えば、画像の拡大、縮小、変形などを行うスケーリング処理や、輝度を変更するブライト調整処理や、画像のコントラストカーブを変更するコントラスト調整処理や、画像を光の成分に分解して成分ごとの重み付けを変更するレティネックス処理などがある。
また、映像制御部1160は、映像表示部1102に入力する映像に対して、ユーザの空中操作を補助するための特殊効果映像処理などを行ってもよい。特殊効果映像処理は、空中操作検出部1350によるユーザ操作の検出結果や、撮像部1180によるユーザの撮像結果に基づいて制御されればよい。
上述のように、空間浮遊映像情報表示システム1には、様々な機能を搭載可能である。しかしながら、空間浮遊映像情報表示システム1は、必ずしも上述した構成のすべてを有する必要は無い。空間浮遊映像情報表示システム1は、少なくとも空間浮遊映像3を生成する機能があれば、どのような構成でもよい。
[空間浮遊映像の形成に関する第1方式]
図3は、実施例の空間浮遊映像情報表示システムにおける主要部構成を示し、また、空間浮遊映像3の形成、および再帰反射部材2の構成に関する一例(第1方式とする)を示す。
図3の(A)に示すように、この空間浮遊映像情報表示システムは、ガラスなどの透光性を有する透過性プレートである透明部材100に対し、斜め方向に、特定偏波の映像光を挟角に発散させる映像表示装置10を備える。映像表示装置10は、液晶表示パネル11と、挟角な拡散特性を有する特定偏波の光を生成する光源装置13とを備えている。
映像表示装置10から出射された特定偏波の映像光は、透明部材100に設けられた、特定偏波の映像光を選択的に反射する膜を有する偏光分離部材101で反射され、反射された光が、再帰反射部材2に入射する。図3中では、シート状に形成された偏光分離部材101が、透明部材100に粘着されている。
透明部材100に対し、他方の斜め方向に、再帰反射部材2が設けられている。再帰反射部材2の映像光入射面には、λ/4板21(言い換えると四分の一波長板)が設けられている。映像光は、再帰反射部材2への入射の際と出射の際との計2回、λ/4板21を通過させられることで、特定偏波(一方の偏波)から他方の偏波へ偏光変換される。
ここで、特定偏波の映像光を選択的に反射する偏光分離部材101は、偏光変換後の他方の偏波の偏光については透過する性質を有する。よって、偏光変換後の他方の偏波の映像光は、偏光分離部材101を透過する。偏光分離部材101を透過した映像光は、図示のように、透明部材100の外側に、実像である空間浮遊映像3を形成する。
なお、空中浮遊映像3を形成する光は、再帰反射部材2から空中浮遊映像3の光学像へ収束する光線の集合であり、これらの光線は、空中浮遊映像3の光学像を通過後も直進する。よって、空中浮遊映像3は、一般的なプロジェクタなどでスクリーン上に形成される拡散映像光とは異なり、高い指向性を有する映像である。
よって、図3の構成では、矢印Aの方向からユーザが視認する場合には空中浮遊映像3は明るい映像として視認されるが、例えば矢印Bの方向から他の人物が視認する場合には、空中浮遊映像3は映像として一切視認できない。このような空中浮遊映像3の特性は、高いセキュリティが求められる映像や、ユーザに正対する人物には秘匿したい秘匿性の高い映像を表示するシステムなどに採用する場合に、非常に好適である。
なお、再帰反射部材2の性能によっては、反射後の映像光の偏光軸が不揃いになることがある。この場合、偏光軸が不揃いになった一部の映像光は、上述した偏光分離部材101で反射されて映像表示装置10の方に戻る。この一部の映像光は、映像表示装置10を構成する液晶表示パネル11の映像表示面で再反射し、ゴースト像を発生させる。これにより、空間浮遊像3の画質の低下を引き起こす要因になり得る。
そこで、本実施例では、映像表示装置10の映像表示面に吸収型偏光板12が設けられている。吸収型偏光板12は、映像表示装置10から出射する映像光を当該吸収型偏光板12にて透過させ、偏光分離部材101から戻ってくる反射光を当該吸収型偏光板12で吸収させることで、再反射を抑制できる。従って、吸収型偏光板12を用いる本実施の形態によれば、空間浮遊映像3のゴースト像による画質低下を防止または抑制できる。
上述した偏光分離部材101は、例えば反射型偏光板や特定偏波を反射させる金属多層膜などで形成すればよい。
図3の(B)は、第1方式で用いる再帰反射部材2の構成例を示す。図3の(B)には、代表的な再帰反射部材2として、今回の検討に用いた日本カーバイド工業株式会社製の再帰反射部材の表面形状を示す。この再帰反射部材2は、表面において、規則的に配列された6角柱の再帰反射部(再帰反射素子)2aを有する。6角柱の内部に入射した光線は、6角柱の壁面と底面で反射され、再帰反射光として、入射光に対応した方向に出射し、映像表示装置10に表示した映像に基づいて実像である空間浮遊映像3を表示する。
この空間浮遊映像3の解像度は、液晶表示パネル11の解像度の他に、図3の(B)で示す再帰反射部材2の再帰反射部2aの外形DとピッチPに大きく依存する。例えば、7インチのWUXGA(1920×1200画素)の液晶表示パネル11を用いる場合には、1画素(1トリプレット)が約80μmであっても、例えば再帰反射部2aの直径Dが240μmでピッチPが300μmであれば、空間浮遊映像3の1画素は300μm相当となる。このため、空間浮遊映像3の実効的な解像度は、1/3程度に低下する。そこで、空間浮遊映像3の解像度を映像表示装置10の解像度と同等にするためには、再帰反射部2aの直径DとピッチPを液晶表示パネル11の1画素に近づけることが望まれる。他方、再帰反射部材2aと液晶表示パネル11の画素によるモアレの発生を抑えるためには、それぞれのピッチ比を1画素の整数倍から外して設計するとよい。
また、形状は、再帰反射部2aのいずれの一辺も液晶表示パネル11の1画素のいずれの一辺と重ならないように配置するとよい。
一方、再帰反射部材2を低価格で製造するためには、ロールプレス法を用いて成形するとよい。この方法は、具体的には、再帰反射部2aを整列させフィルム上に賦形する方法である。この方法は、賦形する形状の逆形状をロール表面に形成し、固定用のベース材の上に紫外線硬化樹脂を塗布し、ロール間を通過させることで、必要な形状を賦形し、紫外線を照射して硬化させ、所望形状の再帰反射部材2を得る。
[空間浮遊映像の形成に関する第2方式]
次に、図4は、本実施例の空間浮遊映像情報表示システムにおける空間浮遊映像3の形成、および再帰反射部材の構成に関する他の一例(第2方式とする)を示す。図4の(A)は、第2方式での再帰反射部材330を用いた空間浮遊映像3の形成の概要を示す。再帰反射部材330に対し、一方の空間(本例ではZ方向で下側の空間)内にある物体P(対応する点P)からの光は、再帰反射部材330に入射し、再帰反射されて、他方の空間(本例ではZ方向で上側の空間)内に、空間浮遊映像331(対応する点Q)を形成する。
図4の(B)は、代表的な再帰反射部材330として、今回の検討に用いた株式会社アスカネット製の再帰反射部材の動作原理を説明するための表面形状を示す。再帰反射部材330は、表面(図示のX-Y面)において、規則的に配列された4面の構造体(言い換えると四面体)330Aを有する。側壁330B間に、複数の構造体330Aが配列されている。4面の構造体330Aは、例えばZ方向に延在する四角柱形状を有するマイクロミラーである。例えば物体Pからの光(物体光とも記載)が4面の構造体330Aの内部に入射する。4面の構造体330Aの内部に入射した光線は、4面の構造体330Aの壁面のうち、2つの面(例えば反射面RS1と反射面RS2)で反射される。反射された光線(反射面RS1から上側へ出射される光線と、反射面RS2から上側へ出射される光線との両方)を、反射光R0として示す。反射光R0は、再帰反射光として、入射光に対応した方向に出射し、図4の(A)のように、物体Pに基づいた実像である空間浮遊映像331を形成・表示する。
この空間浮遊映像331の解像度も、前述した図3の第1方式の再帰反射部材2と同様に、再帰反射部材330の再帰反射部(4面の構造体330A)の外形(直径)DSとピッチPTに大きく依存する。例えば、7インチのWUXGA(1920×1200画素)の液晶表示パネルを用いる場合には、1画素(1トリプレット)が約80μmであっても、例えば再帰反射部の外形(直径)DSが120μmでピッチPTが150μmであれば、空間浮遊像331の1画素は150μm相当となる。このため、空間浮遊映像331の実効的な解像度は、1/2程度に低下する。
そこで、空間浮遊映像331の解像度を映像表示装置10の解像度と同等にするためには、再帰反射部(構造体330A)の直径DSとピッチPTを、液晶表示パネルの1画素に近づけることが望まれる。他方、再帰反射部材330と液晶表示パネルの画素によるモアレの発生を抑えるためには、前述のようにそれぞれのピッチ比を1画素の整数倍から外して設計するとよい。また、形状は、再帰反射部(構造体330A)のいずれの一辺も液晶表示パネルの1画素のいずれの一辺と重ならないように配置するとよい。
なお、空間浮遊映像331を形成する光は、再帰反射部材330から空中浮遊映像331の光学像へ収束する光線の集合であり、これらの光線は、空中浮遊映像331の光学像を通過後も直進する。よって、空間浮遊映像331は、一般的なプロジェクタなどでスクリーン上に形成される拡散映像光とは異なり、高い指向性を有する映像となる。
図4の構成では、矢印Aの方向からユーザが視認する場合には、空間浮遊映像331は、明るい映像として視認されるが、例えば矢印Bの方向から他の人物が視認する場合には、空間浮遊映像331は映像として一切視認できない。このような空間浮遊映像331の特性は、前述の第1方式の再帰反射部材2を用いた空中浮遊映像と同様に、高いセキュリティが求められる映像や、ユーザに正対する人物には秘匿したい秘匿性の高い映像を表示するシステムなどに採用する場合に、非常に好適である。
なお、第2方式の再帰反射部材330においては、物体Pからの光は、図4(B)に示すように、再帰反射部材330に対して一方の側(Z方向の下側)から入射し、再帰反射部材330を構成する4面の壁面に設けられた2つの反射面(RS1,RS2)で反射し、反射光R0として、他方の側(Z方向の上側)に、点Qの位置に、空間浮遊映像331を結像する。この時、2つの反射面(RS1,RS2)では、反射光R0とは反射方向が異なる光として異常光R1,R2が発生する。2つの反射面(RS1,RS2)で発生した異常光R1,R2により、図4の(A)に示すようなゴースト像332,333を発生させる。このため、ゴースト像332,333が空間浮遊映像331の画質の低下を引き起こす要因となり得る。
上述したように、第1方式での再帰反射部材2は、反射面の数に応じてゴースト像が発生する。それに対し、第2方式での再帰反射部材330は、物体光の入射角度により特定の2方向にのみゴースト像が発生する。よって、第2方式での再帰反射部材330の方が、ゴースト像の影響が少なく、高画質な空間映像表示が可能となる。そのため、以下に示す空間浮遊映像表示装置および空間浮遊映像情報表示システムとしては、第2方式の再帰反射部材330を適用する場合に絞って説明する。
[ゴースト像を低減する技術手段]
ゴースト像を低減した高画質な空間浮遊映像を形成できる空間映像表示装置などを実現するためには、映像表示素子としての液晶表示パネルからの映像光の発散角を制御して、所望の方向に曲げるために、液晶表示パネルの出射面に映像光制御シートを設けるとよい。さらに、再帰反射部材330の光線出射面、または光線入射面、またはそれらの両面に、映光制御シートを設けて、ゴースト像を発生させる要因となる異常光R1,R2(図4の(B))を吸収させるとよい。
図5には、上記映像光制御シートを空間浮遊映像表示装置に適用する具体的な方法および構成例を示す。図5では、映像光制御シート334が、映像表示素子である液晶表示パネル335の出射面に設けられる。図5では、液晶表示パネル335の出射面を、図示のX軸とY軸とが為す平面(X-Y面)として示している。映像光制御シート334は、主面(X-Y面)において、透過部と光吸収部とを有している。この場合に、液晶表示パネル335の画素と映像光制御シート334の透過部および光吸収部とのピッチによる干渉によってモアレが発生し得る。このモアレを低減するためには、以下に示す2つの方法が有効である。
(1)第1の方法としては、映像光制御シート334の透過部と光吸収部により生じる縦縞(図示の斜め線)を、液晶表示パネル335の画素の配列(X軸およびY軸)に対して、所定の角度(傾き)θ0だけ傾けて配置する。
(2)第2の方法としては、液晶表示パネル335の画素寸法をA、映像光制御シート334の縦縞のピッチをBとした場合に、これらの比率(B/A)を、整数倍から外した値に選択する。液晶表示パネル335の1画素は、RGBの3色のサブ画素が並列して成り、一般的には正方形であるため、上述したモアレの発生を画面全体で抑えることはできない。このため、(1)の第1の方法に示した傾きθ0は、空間浮遊映像を表示させない箇所にモアレの発生位置を意図的にずらして配置できるように、5度から25度の範囲内で最適化すればよい。
上記モアレを低減するために、液晶表示パネルと映像光制御シート334を題材に述べたが、再帰反射部材330に映像光制御シート334を設ける場合に再帰反射部材330と映像光制御シート334との間に発生するモアレについても、同様の方法・構成が適用できる。再帰反射部材330と映像光制御シート334は、両者が線状の構造体であるため、映像光制御シート334を、再帰反射部材330のX軸およびY軸に着目して最適に傾ければよい。これにより、目視でも視認できる、波長が長く周波数が低い大柄なモアレを低減できる。
図6の(A)は、液晶表示パネル335の映像光出射面3351に映像光制御シート334が配置された構成を有する映像表示装置10の垂直断面図を示す。映像光制御シート334は、主面において、光透過部336と光吸収部337とが交互に配置して構成され、粘着層338により、液晶表示パネル335の映像光出射面3351に粘着固定されている。
また、前述したように、映像表示装置10として7インチのWUXGA(1920×1200画素)の液晶表示パネルを用いる場合には、1画素(1トリプレット)(図中のAで示す)が約80μmであっても、以下の構成で、空間浮遊映像331の両側に発生する図4の(A)のゴースト像332,333を軽減できる。例えば、映像光制御シート334のピッチBとして、透過部336の距離d2が300μmと、光吸収部337の距離d1が40μmとからなるピッチBを340μmとする。この場合、映像光制御シート334により、十分な透過特性と、異常光の発生原因となる映像表示装置10からの映像光の拡散特性とを制御することで、ゴースト像を軽減できる。この場合、映像制御シート334の厚さは、ピッチBの2/3以上とすると、ゴースト低減効果が大幅に向上する。
図6の(B)は、再帰反射部材330(図4)の映像光出射面に映像光制御シート334が配置された構成の垂直断面図を示す。映像光制御シート334は、光透過部336と光吸収部337とが交互に配置されて構成され、再帰反射部材330に対し、再帰反射光3341の出射方向に合わせて所定の傾斜角θ1を持って傾斜配置されている。この結果、映像光制御シート334によって、前述した再帰反射に伴って発生する異常光R1,R2(図4の(B))を吸収し、他方、正常反射光は、再帰反射光3341として、損失無く透過させることができる。
再帰反射部材330は、前述の4面の構造体330A(図4)による再帰反射部に対応する空間3301が配列されている。再帰反射部に対応する空間3301は、側壁330Bの面によって区切られている。空間3301内は例えば反射面R1や反射面R2を有する。再帰反射部材330に対し、例えば下側から入射した光a1は、例えば空間3301の反射面R1で反射され、反射された光a2はさらに例えば反射面R2で反射されて、再帰反射部材330の上側に出射する。その出射した光は、映像光制御シート334に入射されて、再帰反射光3341として出射される。
7インチのWUXGA(1920×1200画素)の液晶表示パネルを用いる場合には、1画素(1トリプレット)が約80μmであっても、以下の図4の(A)のような構成で、空間浮遊映像331330の両側に発生するゴースト像332,333を軽減できる。図6の(B)に示すように、例えば、映像光制御シート334のピッチBとして、再帰反射部材330の透過部336の距離d2が400μmと、光吸収部337の距離d1が20μmとからなるピッチBが420μmとする。この場合、映像光制御シート334により、十分な透過特性と、再帰反射部材330での異常光の発生原因となる映像表示装置10からの映像光の拡散特性を制御し、ゴースト像を軽減できる。
上述した映像光制御シート334は、他方、外界からの外光が空間浮遊映像表示装置内に侵入する妨げにもなるため、構成部品の信頼性向上にも繋がる。この映像光制御シート334としては、例えば信越ポリマー(株)の視野角制御フィルム(VCF)が適している。そのVCFの構造は、透明シリコンと黒色シリコンとが交互に配置され、光入出射面に合成樹脂が配置されて、サンドウィッチ構造となっている。そのため、このVCFを本実施例の映像光制御シート334として適用した場合に、上述の効果が期待できる。
[空間浮遊映像に対する操作をセンシングする技術]
ユーザ(利用者、操作者などと記載する場合もある)は、空間浮遊映像情報表示システム1による空間浮遊映像3(図2など)を介して、システムと双方向で接続される。言い換えると、ユーザは、空間浮遊映像3を見て操作することで、システムのアプリケーション(例えばキオスク端末のチケット販売機能)などを利用する。そのために、ユーザが空間浮遊映像3を疑似的に操作してその操作をセンシングするためのセンシング技術が必要である。このセンシング技術の例について、以下に具体例を挙げて説明する。ここでいう「センシング技術」とは、図2を用いて説明した空中操作検出センサ1351および空中操作検出部1350を含み、特に、3次元空間におけるユーザの操作(言い換えると空中操作)を検出するための技術である。空中操作検出センサ1351および空中操作検出部1350を、センシングシステムと記載する場合がある。
図7の(A)は、第1のセンシング技術を説明するための原理図を示す。図7の(A)に示すように、空間浮遊映像FIに対するセンシングエリアa0、a1、a2、a3は、それぞれ複数のエリア(言い換えると領域)に分割される。本実施例では、センシングエリアa0、a1、a2、a3は、縦横で3×4=12のエリアに12分割されている。図7の(A)では、空間浮遊映像FIの面をx-y面として示しており、面に対する前後方向をz方向で示している。例えば、図示のエリアA301は、センシング面a3のうちの左上の1つのエリアである。
第1のセンシング技術では、空間浮遊映像FIのそれぞれのエリアに対応したTOF(Time of Flight)システムを内蔵した第1の測距装置340が設けられる。第1の測距装置340は、図2での空中操作検出センサ1351の代わりに設けられる。第1の測距装置340の発光部から、システムの信号に同期させて、光源である近赤外線発光のLED(Light Emitting Diode)を発光させる。LEDの光線出射側には、発散角を制御するための光学素子が設けられ、受光素子としてピコ秒の時間分解能を持つ高感度なアバランシェダイオード(ABD)を一対として、12エリアに対応するように、縦4列、横3行に整列配置される。システムからの信号に同期させて、光源であるLEDが発光し、その光が、測距すべき対象物(ここではユーザの手指UHの先端)に反射して、受光部に戻るまでの時間だけ、位相のずれ(位相シフト)、すなわち、発光タイミングと受光タイミングの時間的なずれ、より具体的には、後述する、図9中のΔt0~Δt11が生じる。
図9の(B)に示すセンシングシステムの演算ユニットは、システムからの信号と、第1の測距装置340の受光部であるアバランシェダイオードによって生成される信号とを受け取り、これらの信号から、位相シフトを計算することで、対象物までの距離を算出する。エリアごとに対応付けられたTOFシステム(TOF1~TOF12)ごとに、距離が算出される。図7の(A)で、空間浮遊映像FIの面に対し、z方向で、対象物(手指UH)に近い側には、測距装置340の計測階層として、対象物に近い順に、センシング面a3,a2,a1(第1センシング面a3、第2センシング面a2、第3センシング面a1とも記載)を示し、さらに空間浮遊映像FIから離れる側に、計測階層として、センシング面a0を示す。距離L1はセンシング面a0までの距離、距離L2はセンシング面a1までの距離、距離L3はセンシング面a2までの距離、距離L4はセンシング面a1までの距離を示す。
次に、センシングシステムは、対象物(手指UH)の移動の方向については、それぞれの計測階層(センシング面a3~a1)において、12のエリアのどのエリアを通過したかを認識し、それぞれの計測階層の移動時間を前述した方法で算出することで、システムとして認識できる。
図9の(A)には、12の測定エリアごとのLED光源の発光のタイミングと受光素子の受光のタイミングを示す。SU1~SU12は、各エリアおよびTOFに対応付けられたセンシングユニットごとの発光タイミングと受光タイミングを示す。図9の(A)に示すように、センシングユニットSU1においては、発光タイミングと受光タイミングとの時間差はΔt0であり、センシングユニットSU2においては、発光タイミングと受光タイミングとの時間差はΔt1であり、センシングユニットSU12においては、発光タイミングと受光タイミングとの時間差はΔt11であることがわかる。ここで、センシングシステムは、LEDの発光のタイミングを12の測定エリアごとに遅延させることで、個々のデータを画一化させている。
実際に、システムに双方向で接続されるために、ユーザが、意思によって、空間浮遊映像FIに向けて手指UHを伸ばしたとする。その場合、センシングシステムは、空中浮遊映像FIから最も遠いセンシング面a3において例えばエリアA301で感知した第1感知信号S1と、例えばセンシング面a2の特定エリアで感知した第2の感知信号S2と、例えば第3センシング面a1の特定エリアで感知した第3の感知信号S3とを得る。センシングシステムは、これらの感知信号(S1~S3)によって、手指UHの移動方向とそれぞれのセンシング面を横切った時間差から、空間浮遊映像FIとの接点位置を計算処理して求める。
さらに高精度な位置情報を取得するため、空間浮遊映像FIから奥に離れた位置のセンシング面a0が設定される。センシングシステムは、センシング面a0での感知に基づいて、空間浮遊映像FIを手指UHが通過したことを終了信号として検知するとともに、その感知の位置座標と、前述した2つの感知信号とから、空間浮遊映像FIへの接触点を3次元座標として求める。
また、図7の(B)は、ユーザの手指UH(特に指先端)によって空間浮遊映像FIの一部を選択する動作と、ユーザの手指UHが空間浮遊映像FIの一部から離れる動作とを示す。図7の(B)に示すように、第1のセンシング技術では、ユーザが空間浮遊映像FIの所望の位置座標に接触した後、手指UHを戻した場合には、以下のようになる。すなわち、センシングシステムは、第3センシング面a3で感知した第3の感知信号S3と第2センシング面a2で感知した第2の感知信号S2とによって、さらに第1センシング面a1で感知した第1の感知信号S1を、順次、センシングシステムの演算ユニットに伝達し、計算処理する。これにより、空間浮遊映像FIの特定座標からユーザの手指UHが離れたことが、システム上で認識される。
次に、空間浮遊映像を疑似的に操作するためのさらに高精度なセンシング技術について以下に説明する。
図8の(A)は、第2のセンシング技術を説明するための原理図を示す。第2のセンシング技術は、図7の(A)に示した第1のセンシング技術との違いとしては、第1の測距装置340に加え、第2の測距装置341が配置併設され、より高精度なセンシングを実現する。第1の測距装置340と第2の測距装置341が併設されてもよい。第2のセンシング技術では、第2の測距装置341(特にCMOSセンサ)を第2センシングシステムとして、第1センシングシステムと組み合わせて用いる。図8の(A)に示すように、第2の測距装置341は、第1の測距装置340と同様の範囲(センシング面a1,a2,a3,a0)を対象としてセンシングする。
第1の測距装置340は、上述したように、空間浮遊映像FIにおける例えば12個に分割された複数のエリアの各エリアに対応したTOFシステムを内蔵している(図8の(B)での第1センシングシステム)。他方、第2の測距装置341は、2次元の画像センサ、例えばセンシングカメラ用途の1/4インチCMOSセンサを適用する。このCMOSセンサの縦横比は、3:4が一般的である。このため、本実施例では、そのCMOSセンサの縦横比に合わせて、第1の測距装置340のTOFシステムについても、センシングエリアを上述のように縦3分割、横4分割として合計12エリアとしている。
また、CMOSセンサの解像度は、100万画素程度でも十分な分解能が得られるが、通常のカメラシステムとは異なり、RGBの色分離フィルターを設ける必要が無い。そのため、CMOSセンサは、同一画素数では小型化や高感度化が実現できるばかりでなく、近赤外光に対する感度が高い。そのため、第2のセンシング技術では、第1の測距装置340のTOFシステムの光源光によって測距すべき対象物(手指UHの先端)がエリアごとに決められたタイミングで照明されるので、検知精度が大幅に向上する。詳解は省くが、図9の(B)には、以上述べたシステムを機能ブロック図として示している。
図8の(B)は、第1の測距装置340によるセンシング面a1,a2,a3と、それらに対応して設けられた、第2の測距装置341によるセンシング面b1,b2,b3と、を示す。そして、図8の(B)は、それらのセンシング面に対する、手指UHによる、空間浮遊映像FIの一部を選択する動作や、一部から離れる動作を示す。
図8の(B)に示すように、第2のセンシング技術を用いた空間浮遊映像情報表示システムにおいては、ユーザが意思によって空間浮遊映像FIに向けて手指UHを伸ばした場合、以下のようになる。この場合、上述した第1の測距装置340による3次元情報の他に、第2の測距装置341による3次元情報が得られる。空中浮遊映像FIから最も遠い第1の測距装置340のセンシング面a3に対応した第2の測距装置341のセンシング面b3の平面分解能は、使用しているCMOSセンサの解像度に合わせて高精度化できる。同様に、センシング面a2にはセンシング面b2が対応し、センシング面a1にはセンシング面b1が対応している。これにより、平面方向の分解能を大幅に向上させたセンシングシステムが実現できる。
この時、対象物(ユーザの手指UHの先端)の移動方向については、第1の測距装置340および第2の測距装置341のそれぞれのセンシング面を横切った時間差から、空間浮遊映像FIとの接点位置が、計算処理で求められる。さらに高精度な位置情報を取得するため、空間浮遊映像FIから奥側に離れたセンシング面a0が設定される。センシングシステムは、空間浮遊映像FIを手指UHが通過したことを終了信号として検知するとともに、そのセンシング面a0での位置座標と前述した2つの感知信号から、空間浮遊映像FIへの接触点を、より精細度の高い3次元座標として算出できる。
また、CMOSセンサのフレームレートを1/20秒から1/30秒、1/120秒と高速化した場合には、平面方向の検知精度に加え、単位時間当たりに取り込む平面情報が増えるため、分解能が大幅に向上する。この時、第2のセンシング技術による検出情報は、第1のセンシング技術による位置情報とは、システムから供給される同期信号により、系統付けされる。
さらに、図8の(B)に示すように、ユーザが空間浮遊映像FIの所望の位置座標に接触した後、手指UHを戻した場合には、上述した第1のセンシング技術と同様に、第3センシング面a3で感知した第3の感知信号S3、第2センシング面a2で感知した第2の感知信号S2、および第1のセンシング面a1で感知した第1の感知信号S1が、順次にセンシングシステムの演算ユニットに伝達される。そして、演算ユニットでの計算処理によって、空間浮遊映像FIの特定座標からユーザの手指UHが離れたことが、システム上で認識される。
以上述べたセンシングシステムの第1の測距装置340のTOFセンサで使用するLED光源は、測距装置の太陽光などの外光に対する精度低下を防ぎ、肉眼で視認できない可視光範囲(380nm~780nm)を超えた領域で光のエネルギーが高い近赤外光を用いるとよい。
図10には、太陽光の分光放射照度の特性図を示している。TOFセンサのLEDの光源光の波長としては、図10に示した太陽光の分光放射照度のエネルギーが少ない920nmの波長λ1の光を用いるとよい。
[空間浮遊映像に対し文字や図形を入力する技術]
次に、実施例の空間浮遊映像情報表示システムとして、ユーザが空間浮遊映像に文字や図形などの任意の像を入力できる技術について説明する。この技術を用いることで、ユーザが空間浮遊映像に対し例えばサイン(署名)の入力を行うことができる。
前述の図2の空中操作検出センサ1351を用いたセンシング技術や、図7や図8のTOFシステムを用いたセンシング技術を用いることで、対象物としてユーザの手指の指先位置や移動方向、空間浮遊映像との接点位置、空間浮遊映像から指が離れた位置(離脱位置とも記載)などを求めることができる。よって、空間浮遊映像情報表示システムは、上記接点位置および離脱位置の検出情報に基づいて、それらの2点を結ぶ線分を、空間浮遊映像の面に像として描画が可能となる。
本実施例では、上記センシング技術を利用することで、空間浮遊映像の面上で、ユーザの手指の動き、言い換えると接点の位置の移動を検出することで、文字などの線を入力・表示することができる。
例えば、空間浮遊映像情報表示システムは、空間浮遊映像とユーザの指先との接点位置を検出し、その後、指先が面内で別の位置に移動し、その移動した先で指先が空間浮遊映像から離れたことおよび離脱点を検出する。これにより、空間浮遊映像の面上で、例えば、線分や曲線などの図形、あるいは、アルファベットや数字のような文字の描画が可能となる。これにより、あたかも、タッチパネル付きの液晶ディスプレイの面上で図形や文字を描くことと同様に、空間浮遊映像の面上で図形や文字の入力ができる。
また、図示しないが、空間浮遊映像情報表示システムは、センシング技術を用いて、空間浮遊映像に対するユーザの指先の動きを、所定の時間間隔(例えば100ミリ秒)でサンプリングし、各サンプリング点を結ぶように空間浮遊映像に線を描画する。これにより、例えば数字の1、2、3、アルファベットのLやMなどのような、一筆書きができる文字や図形である場合、空間浮遊映像として描画が可能である。
さらに、例えば、4やHなどのような、一筆書きができない文字や図形の場合には、以下のように対応できる。すなわち、ユーザが例えばHの文字を入力する場合、システムは、まず、空間浮遊映像の面に対する指の連続的な接触による縦の線(第1の線)を検出・描画する。次に、システムは、ユーザが面から一旦指を離してから再び指を別の位置に接触したことを検出して、横の線(第2の線)を検出・描画する。最後に、システムは、ユーザが面から指を離して再び別の位置に接触したことを検出して、縦の線(第3の線)を検出・描画する。これにより、空間浮遊像の面にHの文字を描画できる。
図12は、上記空間浮遊映像に対するユーザの手指による文字や図形などの像を入力・描画する技術についての説明図を示す。図12では、空間浮遊映像情報表示システム1により表示される空間浮遊映像FIをユーザの視点から見た場合の模式図を示す。本例では、空間浮遊映像FIは、システムの筐体1201の水平面に対し斜めに配置されており、ユーザの視点からはやや斜め下に空間浮遊映像FIを見る。本例では、空間浮遊映像FIは、四角形の枠1202(なお、これは枠状のデバイスではない)の表示を含んでいる。最初、枠1202は所定の色(例えば緑色)で表示されており、枠1202内には所定の背景色のみが表示されているとする。
図12の例では、ユーザの手指の指先UFによって、空間浮遊映像FI面上に、単純な文字の例として、アルファベットのLを描く様子を示している。その際、ユーザは、文字を描くという意思を、何らかの方法で空間浮遊映像情報表示システム1に伝える。例えば、一実施例では、物理的な押しボタンとして、文字入力ボタン1203が、空間浮遊映像情報表示システム1の任意の箇所、本例では筐体1201上の右下の位置に設けられている。ユーザが文字入力ボタン1203を押した場合、システムは、ユーザが空間浮遊映像FIに対し文字などを入力する意思として捉え、空間浮遊映像FIに対し入力・描画するモード(文字入力モードとも記載)に遷移する。また、物理的な押しボタンではなく、音声で文字を描くという意思を空間浮遊映像情報表示システム1に伝えることも可能となる。
これに限らず、他の実施例では、空間浮遊映像情報表示システム1が提供する空間浮遊映像FIの一部に、ユーザインタフェースとして、文字入力ボタンが表示されてもよい。ユーザがその文字入力ボタンをタッチ操作することで、同様に、システムは、空間浮遊映像FIに対し入力・描画するモードに遷移する。
空間浮遊映像情報表示システム1は、文字入力モードでは、空間浮遊映像FIの画面全体を例えば白色の表示に変化させる。また、システムは、文字入力モードでは、空間浮遊映像FIの枠1202を、所定の色、例えば赤色に変化させる。システムは、空間浮遊映像FIの面に対するユーザの指UFの動きや接点位置を前述のように3次元的にセンシングする。そして、システムは、そのセンシングに基づいて、空間浮遊映像FIの面において、指UFの動きに対応した接点位置を、背景である白色とは異なる所定の色、例えば黒色あるいは青色などで描画する。これにより、指UFの動きの軌跡が、空間浮遊映像FIの白色の背景面上に、線として描画される。そうすれば、ユーザ自身が、空間浮遊映像FIにおける自分が描いた線を見ながら、所望の文字や図形を描くことができる。
システムは、空間浮遊映像FIの面に指UFが接触していない状態(言い換えると指先が面の手前にある状態)と、空間浮遊映像FIの面に指UFが接触している状態(言い換えると指先が面の奥に差し込まれた状態)とで、空間浮遊映像FIの表示状態が異なるように表示を制御する。これにより、ユーザは、自分の指UFが空間浮遊映像FIの面に触れているか否かをより容易に認識できる。
図12で、ユーザが空間浮遊映像FIの面上にアルファベットのLを描く場合の手順を説明する。まず、手順S121として、ユーザは、空間浮遊映像FI上の任意の位置に対し、奥方向に指UFを差し込む(言い換えると接触を維持させる)。次に、手順S122として、ユーザは、空間浮遊映像FI上で、その指UFを、接触の状態のまま、下方に移動させる。下向きの矢印は、指UFの移動方向(面に沿って下方)を示す。システムは、この移動の検出に伴い、Lという文字のうちの縦の線(第1の線)1211を、空間浮遊映像FIの一部として描画する。
次に、手順S122は、縦の第1の線1211の下方の終端位置まで指UFが達した状態を示す。ここまでで縦の第1の線1211が描画された。この状態で指UFの接触は維持されている。次に、手順S123は、第1の線1211が描かれた時点から、ユーザが指UFを右向きに移動させる。システムは、この移動の検出に伴い、Lという文字のうちの横の線(第2の線1212)を描画する。指UFの位置は、横の第2の線1212の右端位置まで達している。
次に、手順S124として、ユーザは、第2の線1212の右端位置にある指UFを、空間浮遊映像FIの面からに手前側に離す。システムは、この指UFの離脱を検出し、第2の線1212の描画終了とする。上記のような一連の操作により、ユーザは、Lという文字を空間浮遊映像FI上に一筆書きで描くことができる。
ユーザにより、文字入力ボタン1203が押下されて文字入力モードになった場合、空間浮遊映像FIは、画面全体(背景面)が白色に変化するのみならず、空間浮遊映像FIの枠1202の部分が例えば緑色から赤色に変化する。これにより、ユーザは文字入力モードであることを容易に認識できるので、好適である。また、文字入力モードを終了したいときには、ユーザは、再び、文字入力ボタン1203を押下すればよい。その場合、システムは、文字入力モードを終了させて、元のモードに戻る。上記例では、空間浮遊映像FIの画面全体が白色に変化するとしたが、これに限らず、白色以外の色、例えば黒色やその他の色でも構わない。
なお、上記文字入力モードとした上で、ユーザが空間浮遊映像FIにタッチ(指UFが接触)することで、空間浮遊映像FIの枠1202の部分が、例えば赤色に変化するようにしてもよい。空間浮遊映像FIの枠1202の部分を赤色に変化させることで、ユーザは、自分の指が空間浮遊映像FIの面に接触していて文字を描画できる状態であることを認識できる。
上記した一連の動きにより、ユーザが指先を移動させることで、所望の文字や図形などを空間浮遊映像FIの像として入力・描画できる。なお、空間浮遊映像FIの枠1202の部分についても、赤色以外の色、例えば青色やその他の色としても構わない。さらに、上記例では、図形や文字などの像を入力・描画できる領域を空間浮遊映像FIの画面全体とした。これに限らず、像を入力・描画できる領域は、空間浮遊映像FIの画面のうちの所定の一部としても構わない。
ユーザは、空間浮遊映像FIを、操作メニューなどのユーザインタフェースとして用いることができるのみならず、上記文字入力モードにおいては、空間浮遊映像FI上に、自分の手指(あるいは導電性の材質によるペンなどでもよい)により、任意の文字や図形を入力・描画可能となる。これにより、空間浮遊映像および空間浮遊映像表示装置の適用範囲を従来よりもさらに広げることができ、好適である。
<空間浮遊映像情報表示システムの第2の構成例>
図13の(A)は、一実施例に係る空間浮遊映像情報表示システム1の主要部構成を示す。また、図13の(B)は、図13の(A)に示す映像表示装置10の映像光出射側、つまり表示パネル11の映像光出射側に配置されたレンチキュラーレンズ1103の拡大図である。図13の(A)に示す空間浮遊映像情報表示システム1は、監視者であるユーザが空間浮遊映像3を斜め上方から観察するのに適したシステムである。図13の(A)中の座標系(X,Y,Z)では、空間浮遊映像情報表示システム1の筐体350が水平面(X-Y面)に配置されており、空間浮遊映像3は、鉛直方向(Z方向)に対し、前後方向(Y方向)でやや斜めに傾いて形成されている。ユーザの視点Eから、空間浮遊映像3の面を正対して好適に視認する場合、視点Eは、図示のように、空間浮遊映像3の面に対し、光軸J2に合わせて、Y方向でやや斜め上に配置される。ユーザは、視点EからY方向でやや斜め下の視線で空間浮遊映像3を好適に視認できる。一方、図13の(B)は液晶パネルより出射された光の方向と逆方向から見た図である。図13の(B)に示すように、レンチキュラーレンズ1103は、液晶パネルの光出射面に略平行または平行し、かつ、液晶パネル面より出射される映像光側に配置される。また、レンチキュラーレンズのかまぼこ状の複数の半円筒は、X-Z平面から見て縦に並んで配置される。なお、上記座標系は、図13の(A)(B)で共通である。
筐体350内には、映像表示装置10などが所定の位置関係で配置されている。筐体350の上面(X-Y面)は、開口部となっており、所定の角度α1で、再帰反射部材330が配置されている。映像表示装置10の光軸J1は、Y方向に対し所定の角度β1で斜め上を向いている。
映像表示装置10は、映像表示素子としての液晶表示パネル11と、挟角な拡散特性を有する特定偏波の光を生成する光源装置13とを備えて構成されている。液晶表示パネル11は、画面サイズが5インチ程度の小型のものから80インチを超える大型なものまで適用可能であり、それらから選択されたパネルで構成される。液晶表示パネル11からの映像光は、光軸J1上、再帰反射部材330(再帰反射部または再帰反射板とも記載)に向けて出射される。液晶表示パネル11には、後述する狭発散角な光源装置13からの光を入射させる。これにより、狭発散角な映像光束φ1が生成される。その狭発散角な映像光束φ1を、光軸J1に沿って、Z方向で下側から再帰反射部材330に入射させる。この再帰反射部材330での再帰反射により、前述の図4で説明した原理に従って、再帰反射部材330に対しZ方向で上側に、光軸J2の方向に、狭発散角な映像光束φ2が生成される。その映像光束φ2により、筐体350の外の所定の位置に、空間浮遊映像3(図4での空間浮遊映像331)が得られる。光軸J2は、Y方向に対し所定の角度β2で斜め上を向いている。
空間浮遊映像3は、再帰反射部材330を対称面とした映像表示装置10の対称位置に形成される。斜めに配置された再帰反射部材330の面に対し、映像表示装置10の面と空間浮遊映像3の面とが概略的に略対称な位置または対称的な位置に配置されている。空間浮遊映像3の面において、r2は光軸J2に対応した中心位置を示し、r1は映像光束φ2の下端の光線に対応した下端位置を示し、r3は映像光束φ2の上端の光線に対応した上端位置を示す。
この構成において、図4で説明した、再帰反射部材330により発生するゴースト像332,333を消去して高画質な空間浮遊映像3を得るために、液晶表示パネル11の出射側には、映像光制御シート334(詳しくは前述の図5や図6の(A))が設けられている。これにより、不要な方向の拡散特性が制御される。
さらに、液晶表示パネル11からの映像光は、図11に示すように、再帰反射部材330などの反射部材での反射率を原理的に高くできるので、S偏波(電界成分が入射面に垂直な電磁波、Sはsenkrechtの略)を使用するとよい。しかしながら、ユーザが偏光サングラスを使用した場合には、空中浮遊映像3が偏光サングラスで反射または吸収されるため、これに対策する場合には、P偏波(電界成分が入射面に平行な電磁波、Pはparallelの略)を使用するとよい。そのためには、特定偏波の映像光の一部を光学的に他方の偏波に変換して疑似的に自然光に変換する素子として、図示の偏光解消素子339が設けられる。例えば偏光解消素子339が映像光制御シート334の出射側に配置されている。これにより、ユーザが偏光サングラスを使用している場合でも、良好な空間浮遊映像3を監視できる。
偏光解消素子339の市販品としては、コスモシャインSRF(東洋紡社製)、偏光解消粘着剤(長瀬産業社製)が挙げられる。コスモシャインSRF(東洋紡社製)の場合、画像表示装置上に粘着剤を貼合することにより、界面の反射を低減して輝度を向上させることができる。また、偏光解消粘着剤(長瀬産業社製)の場合、無色透明板と画像表示装置とを偏光解消粘着剤を介して貼合することで使用される。
また、本実施例では、再帰反射部材330の映像出射面にも、映像光制御シート338B(映像光制御シート338と同様のもの、詳しくは前述の図6の(B))が設けられる。これにより、不要光による空間浮遊映像3の正規像の両側に発生するゴースト像332,333(図4)が消去される。
本実施例では、再帰反射部材330を水平軸(Y方向)に対して所定の角度α1で傾斜させ、空間浮遊映像3を水平軸に対して斜め(特に、水平面よりは垂直面に近い角度での斜め)に生成する構成とした。これに限らず、構成要素の配置を変更すれば、空間浮遊映像3の配置の位置や傾きを設計可能である。
また、本実施例では、筐体350の所定の位置に、第1の測距装置340(図7)が装着されている。すなわち、このシステムには、図7と同様のセンシング技術が実装されている。これにより、ユーザが空間浮遊映像3にアクセス、インタラクトできるシステムとする。第1の測距装置340を含む第1のセンシングシステムは、空間浮遊映像3に対するユーザの手指などによる操作の状態を検出する。さらに、図8や図9の(B)と同様に、第2の測距装置341を含む第2のセンシングシステムを追加した構成としてもよい。
第1の測距装置340の取り付け位置と視野角α3は、空間浮遊映像3の大きさを十分カバーできるように適宜選択するとよい。本例では、第1の測距装置340は、筐体350のうち、Y方向で奥側(ユーザおよび空間浮遊映像3の位置に対し奥側)で、再帰反射部材330の斜面の延長上で、かつ、映像光の映像光束を遮らないように少し離れた位置である、図示の位置に取り付けられている。第1の測距装置340の視野角α3(上端Aから下端Bまでの範囲)は、本例では、空間浮遊映像3全体とそれを基準位置(正対する位置)の視点Eから視認するユーザの顔を含む領域とをカバーできるように、十分に広い視野角とされている。視野角α3は、空間浮遊映像3全体を捉える視野角α2を内包している。視野角α2は、例えば図7のセンシング面a0,a1,a2,a3と対応している。
第1の測距装置340のTOFセンサは、図7(あるいは図8)に示したように、空間浮遊映像3のセンシング面を複数のエリアに分割した測距システムを使用する。これにより、センシングの領域ごとの分解能が高められる。さらに、図8および図9の(B)のようなCMOSセンサを使用した第2のセンシング技術を使用する場合には、検知精度をより一層向上できる。
また、本実施例では、光源装置13として、狭角の指向特性を有する可視光を発散させる光源を使用し、第1測距装置340(さらには第2の測距装置341)を、筐体350側において挟角の映像光束に対し外側の位置に配置する。また、第2の測距装置341は配置されてもよい。これにより、空間浮遊映像3を形成する映像光のセンシング精度に対する悪影響を除くことができる。
図13の(A)に示す上記構成において、液晶表示パネル11の映像光出射側(斜線で示す位置)にレンチキュラーレンズ1103を配置する。より具体的には、液晶表示パネル11の映像光出射側に、図13の(B)に示す向きとなるように、レンチキュラーレンズ1103を配置する。この構成とすることで、図2で述べたように、利用者が、レンチキュラーレンズを形成する半円筒状レンズ(かまぼこ状のレンズ)が並んでいる方向に移動することで、利用者はそれぞれの位置から異なる画像(または映像)を見ることが可能となる。すなわち、画像または映像として、視差画像を表示することにより、運動視差が生じ、液晶表示パネル11上に表示された画像または映像を立体像として認識することができる。多視点映像と運動視差については、後述する。
図13の(A)において、空間浮遊映像3は、再帰反射部材330を対称面とした映像表示装置10または液晶表示パネル11の対称位置に形成される実像であるので、利用者は、空間浮遊映像3を、運動視差を伴う立体像として視認することができる。すなわち、レンチキュラーレンズを配置した上記構成によれば、空間浮遊像3を、単に、液晶表示パネル11上に表示された二次元映像ではなく、運動視差を伴う立体像を表示することが可能となる。
<空間浮遊映像情報表示システムの第3の構成例>
図14の(A)は、空間浮遊映像情報表示システムの他の実施例を示す。また、図14の(B)は、図14の(A)に示す映像表示装置10の映像光出射側、つまり表示パネル11の光出射側に配置されたレンチキュラーレンズ1103の拡大図である。図14の(A)中の座標系(X,Y,Z)では、空間浮遊映像情報表示システム1の筐体350が水平面(X-Y面)に配置されており、空間浮遊映像3は、鉛直方向(Z方向)に対し、前後方向(Y方向)でやや斜めに傾いて形成されている。ユーザの視点Eから、空間浮遊映像3の面を正対して好適に視認する場合、視点Eは、図示のように、空間浮遊映像3の面に対し、光軸J2に合わせて、Y方向でやや斜め上に配置される。ユーザは、視点EからY方向でやや斜め下の視線で空間浮遊映像3を好適に視認できる。一方、図14の(B)において、レンチキュラーレンズ1103は、液晶パネルの光出射面に略平行または平行し、かつ、液晶パネルより出射される映像光側に配置される。また、レンチキュラーレンズのかまぼこ状の複数の半円筒は、X-Z平面から見て縦に並んで配置される。なお、上記座標系は、図14の(A)(B)で共通である。
筐体350内には、映像表示装置10、ミラー360などが所定の位置関係で配置されている。筐体350の開口部、本例では概略的に鉛直方向に立つ面(X-Z面)を持つ開口部には、Z方向に対し所定の角度γ1(やや斜め下に傾いた角度)で、再帰反射部材330が配置されている。ミラー360は平面ミラーである。
本実施例では、映像表示装置10からの映像光は、ミラー360で反射されてから、再帰反射部材330に入射される。筐体350は、Z方向で上側に凸状に出ている部分を有し、その部分内に映像表示装置10が配置されている。映像表示装置10の光軸J1は、Z方向で下側、Y方向で奥側に、Z方向に対する所定の角度δ1で斜め下を向いている。
映像表示装置10は、映像表示素子としての液晶表示パネル11と、挟角な拡散特性を有する特定偏波の光を生成する光源装置13とを備えて構成されている。液晶表示パネル11は、画面サイズが5インチ程度の小型のものから80インチを超える大型なものまで適用可能であり、それらから選択されたパネルで構成される。液晶表示パネル11からの映像光は、光軸J1上、光路折り返しミラーであるミラー360によって折り返され、折り返し後の光軸J1B上で、再帰反射部330材に向けて出射される。
液晶表示パネル11には、後述する狭発散角な光源装置13からの光を入射させる。これにより、狭発散角な映像光束φ1が生成される。狭発散角な映像光束φ1は、ミラー360で反射後、映像光束φ1Bとなる。その狭発散角な映像光束φ1Bを、光軸J1Bに沿って、図示のY方向で右側から再帰反射部材330に入射させる。この再帰反射部材330での再帰反射により、前述の図4で説明した原理に従って、再帰反射部材330に対しY方向で左側に、光軸J2の方向に、狭発散角な映像光束φ2が生成される。その映像光束φ2により、筐体350の開口部に対して外の所定の位置に、空間浮遊映像3(図4での空間浮遊映像331)が得られる。光軸J2は、Y方向に対し所定の角度δ2(Z方向に対しては角度(90度-δ2))で斜め上を向いている。
空間浮遊映像3は、再帰反射部材330を対称面として、ミラー360に対し概略的に対称位置に形成される。本実施例では、ミラー360により光路を折り返す構成であるため、映像表示装置10は、Z方向で空間浮遊映像3よりも上に配置されている。この結果、映像光線が再帰反射部材330に対し斜め上方から入射し、斜め上方に出射して、図示のように斜めに傾いた空間浮遊映像3を形成するシステムを実現できる。
また、空間浮遊映像3を筐体350に対して斜め上向き(図示の光軸J2上)に結像させるためには、再帰反射部材330を、図示のように筐体350の底面の垂直軸(Z方向)に対して所定の角度γ1で傾斜させて配置することで実現できる。また、このように再帰反射部材330の出射軸がやや斜め下に傾いた構成の結果、外光が再帰反射部材330に入射して筐体350内部に侵入することで発生し得る空間浮遊映像3の画質低下を防止できる。
空間浮遊映像3で発生し得るゴースト像(図4)を消去してより高画質な空間浮遊映像3を得るためには、第2の実施例(図13の(A)、(B))と同様に、本実施例でも、液晶表示パネル11の出射側に、映像光制御シート334(図5、図6の(A))を設けることで、不要な方向の拡散特性を制御してもよい。また、再帰反射部材330の映像出射面にも、映像光制御シート334B(図6の(B))を設けることで、不要光により空間浮遊映像3の正規像の両側に発生するゴースト像を消去してもよい。
以上述べた構造物が筐体350の内部に配置されることで、再帰反射部材330に対し外光が入射することを防止し、ゴースト像の発生を防止することができる。
本実施例でも、液晶表示パネル11からの映像光は、図13の(A)と同様に、S偏波を使用してもよいし、偏光サングラスに対応する場合には、P偏波を使用して偏光解消素子339を設けてもよい。
本実施例では、再帰反射部材330を鉛直軸(Z方向)に対して所定の角度γ1で傾斜させ、空間浮遊映像3を水平軸に対して斜め(特に、水平面よりは垂直面に近い角度での斜め)に生成する構成とした。これに限らず、構成要素の配置を変更すれば、空間浮遊映像3の配置の位置や傾きを設計調整可能である。
また、本実施例では、筐体350の所定の位置に、第1の測距装置340(図7)が装着されている。すなわち、このシステムには、図7と同様のセンシング技術が実装されている。これにより、ユーザが空間浮遊映像3にアクセス、インタラクトできるシステムとする。第1の測距装置340を含む第1のセンシングシステムは、空間浮遊映像3に対するユーザの手指などによる操作の状態を検出する。さらに、図8や図9の(B)と同様に、第2の測距装置341を含む第2のセンシングシステムを追加した構成としてもよい。
第1の測距装置340の取り付け位置と視野角γ3は、空間浮遊映像3の大きさを十分カバーできるように適宜選択するとよい。本例では、第1の測距装置340は、筐体350の底面部のうち、Y方向で再帰反射部材330の手前の近傍で、かつ、映像光の映像光束を遮らないように少し離れた位置である、図示の位置に取り付けられている。第1の測距装置340の視野角γ3は、本例では、空間浮遊映像3全体とそれを基準位置の視点Eから視認するユーザの顔を含む領域とをカバーできるように、十分に広い視野角とされている。視野角γ3は、空間浮遊映像3全体を捉える視野角を内包している。
第1の測距装置340のみならず、さらに、図8および図9の(B)のようなCMOSセンサを使用した第2のセンシング技術を使用してもよい。
また、本実施例では、光源装置13として、狭角の指向特性を有する可視光を発散させる光源を使用し、第1測距装置340(さらには第2の測距装置341)を、筐体350側において挟角の映像光束に対し外側の位置に配置する。これにより、空間浮遊映像3を形成する映像光のセンシング精度に対する悪影響を除くことができる。
さらに、本実施例では、空間浮遊映像3と再帰反射部材330との間に、図示のように、静電容量方式のタッチパネル361を、支持部材362で固定して配置してもよい。支持部材362は、例えば枠状として、内側にタッチパネル361を支持する。支持部材362は、例えば筐体350の底面部に対し固定されている。このタッチパネル361は、空間浮遊映像3を形成するための映像光、および第1の測距装置340からの光を透過させる部材で構成されている。
このタッチパネル361は、静電容量方式で、当該タッチパネルの面に対するユーザの手指の近接の状態を検出する。もしくは、このタッチパネル361は、当該タッチパネルの面に対するユーザの手指の接触の状態を検出する。このタッチパネル361を含む第3のセンシング技術を、第1のセンシング技術などと併用することで、検知精度をより一層向上できる。この静電容量方式のタッチパネル361の大きさと取り付け位置についても、同様に、空間浮遊映像3を十分カバーできるように選択するとよい。
高精度な位置情報を取り込むことができる静電容量方式のタッチパネル361としては、例えば投影型静電容量方式を採用できる。この方式のタッチパネルは、例えば、微細な線間距離を有する透明電極(Y軸電極)であるITOと微細な線間距離を有する透明電極(X軸電極)である銅薄膜とを、透明ガラス基板の両面にフォトリソエッチングによりパターンニングすることで製造される。そのため、この透明ガラス基板に対象物(例えば指先端)が近づいた場合に、X軸電極とY軸電極のそれぞれで静電容量の変化を捉え、対象物の相対座標が得られる。また、この方式は、透明電極の線間距離が短いほど、高い分解能を得られるので、多点検出が可能である。そのため、この方式では、複数の指での同時入力も可能となる。
図14の(A)に示す上記構成においても、図13の(A)に示す空間浮遊映像情報表示システム1同様、液晶表示パネル11の映像光出射側(斜線で示す位置)にレンチキュラーレンズ1103を配置する。より具体的には、図14の(B)に示すように、液晶表示パネル11の映像光出射側に、レンチキュラーレンズ1103を配置する。この構成とすることで、利用者は、空間浮遊像3を、運動視差を伴う立体像として、認識することができる。すなわち、レンチキュラーレンズ1103を配置した上記構成によれば、空間浮遊像3として、単に、液晶表示パネル11上に表示された二次元映像ではなく、立体像を表示することが可能となる。
ここで、利用者が空間浮遊像3を立体像として認識できることは、特に、表示される立体像が人物(特に顔)である場合、空間浮遊像が二次元平面である従来のシステムにはない、新たな効果をもたらす。例えば、後述するように、空間浮遊像として表示される人物(の顔)は、利用者が空間浮遊像の周辺であれば、どの位置に存在しても、常に利用者の方に向くという新たな効果をもたらす。このことにより、利用者は、空間浮遊像として表示される人物が、あたかも自分だけに話しかけてくれているような感覚を有することになり、表示される人物が、例えば、利用者に対して、何かを説明するような場面、あるいは、コンシェルジュのように何等かのアシスト(支援)を行うような場面において、特に好適である。
[多視点映像を空間浮遊像として表示するための技術]
既に述べたように、レンチキュラーレンズを用いた多視点画像(または多視点映像)により、運動視差が得られることはよく知られている。レンチキュラーレンズは、その表面が半円筒状の「かまぼこ」のような形状を有するレンズを所定方向に配列されたの集合体であり、1つの半円筒状レンズの下部には、多視点画像(または映像)の視点の数に相当する、異なる映像を表示する液晶パネルが配置されている。本実施の形態での所定方向は縦方向となる。
図15の(A)は、本実施の形態における、レンチキュラーレンズ1103を用いる多視点画像を生成するための原理を示す図である。また、図15の(B)は、レンチキュラーレンズ1103の構成をよりわかりやすく示すために、レンチキュラーレンズ1103を斜め上方から俯瞰して見た図である。なお、ここでは、多視点画像として9視点の場合について説明する。図15の(A)において、液晶パネル11の画素は、数字で1~9と示す9つの画素を1グループとして、9視点の多視点画像を形成する。
一方、人間の眼の間隔、すなわち瞳孔間の距離は、ほぼ一定(例えば約64mm)であることが知られており、レンチキュラーレンズのピッチ、すなわち、1つの半円筒状の間隔を、人間の眼の間隔の半分、すなわち、約32mmと略同一とすることで、観察者(利用者)の右眼と左眼には、図15の(A)に示すように、それぞれ異なる画素からの光が到達する。より具体的には、観察者の右眼には、画素6に表示される画像からの光が到達し、観察者の左眼には、画素4に表示される画像からの光が到達する。
このため、観察者は、右眼と左眼で、それぞれ異なる画素に表示された画像を見ることになり、それぞれの画素に、同一の物体あるいは人物を、視点を変えて撮影した画像を表示すれば、観察者の両眼には視差が生じる。その結果、観察者は、撮影された画像を立体として認識することが可能となる。すなわち、図15の(A)は、観察者の右眼には、画素6に表示される画像からの光が到達し、観察者の左眼には、画素4に表示される画像からの光が到達することを示している。上記のように、液晶パネルの光出射側にレンチキュラーレンズを配置することで観察者の右眼と左眼には、異なる画素からの光が到達するため、観察者は、立体的な画像を認識することができる。
ここで、観察者が左右に移動すると、観察者の右眼と左眼には、移動前とは異なる画素からの光が到達する。より具体的には、図15の(A)に示すように、観察者が右方向に移動すると、観察者の右眼には、画素7に表示される画像からの光が到達し、観察者の左眼には、画素5に表示される画像からの光が到達する。すなわち、観察者が移動(運動)するに伴って、移動する前とは異なる画素の光が到達することとなる。この結果、観察者は、自分が左右に移動することに伴って、同一の物体あるいは人物を別の角度から見たのと同等の効果、すなわち、運動視差を得ることができる。よって、液晶パネルの光出射側にレンチキュラーレンズを配置することで、観察者の目が移動することによって立体感がある画像を角度を変えて見たのと同等の効果を得ることができる。
図16は、上記した運動視差を生じさせるための画像、すなわち、多視点画像を撮影するための装置の一例を示す図である。図16では、9つの異なる視点から、被写体である人物(の顔部分)を撮影する様子を示している。より具体的には、9つのカメラNo.1~No.9を、図16に示すように、被写体から所定距離の位置で互いの角度を所定角度ずつ移動した位置に配置して撮影する。本実施の形態では被写体から等距離の位置で互いの角度を22.5度ずつ移動して位置に配置しているが、視点の数により被写体からの距離、および角度を変更してよい。この時、被写体が静止していれば、1台のカメラを、カメラNo.1~No.9の位置に順に移動させて撮影することで、多視点画像を撮影することも可能である。しかし、被写体が動きのあるもの、例えば、表情を変えながら、口を動かして話をしている人物の顔である場合には、9台のカメラを用いて、それぞれの位置にカメラを固定して、動画(動画像、映像)として撮影する。
上記のようにして撮影された、9台のカメラによる、それぞれの画像(あるいは映像)は、映像表示部(ここでは液晶パネル)の9つの各画素に割り当てられて表示される。図16に示すように、1つの被写体の映像は、それぞれ異なる角度から撮影された画像(あるいは映像)として表示することで、運動視差を伴う多視点画像(または、多視点映像)を得ることができる。なお、図16に示した実施例では、被写体である人物(の顔部分)を9つのカメラNo.1~No.9により、異なる角度で撮影することで多視点画像(または映像)を得る例を示したが、多視点画像(または映像)を得る方法としては、上記のように複数のカメラを用いる方法に限らず、コンピュータグラフィックス(CG)により、多視点画像(または映像)をレンダリングする方法であってもよい。
ここで、レンダリングとは、画像や動画像(映像)をコンピュータ処理により、CGとして生成または編集することをいう。レンダリングによりCGを生成することにより、複数のカメラを用いた大掛かりな撮影装置は必要なくなり、より簡便に、カメラの台数に起因する視点数の制約もなく、かつ、短時間に多視点画像(または映像)を得ることができ、特に多視点画像や多視点映像の生成では好適である。
図17は、多視点映像表示装置による表示例を示す図である。ここで、多視点映像表示装置とは、映像表示装置10(液晶パネル11、光源13等より構成される)の映像光出射側に、レンチキュラーレンズ1103を配置した構成を備える表示装置をいう。具体的には、多視点映像表示装置は、光源、映像表示部(液晶パネル)、およびレンチキュラーレンズを有している。ここで、映像表示部(液晶パネル)11の映像出射面とレンチキュラーレンズ1103の入射面とは平行である。また、映像表示部(液晶パネル)11の映像出射面とレンチキュラーレンズ1103の入射面とは所定の距離をもって配置される。本実施形態においては、レンチキュラーレンズ固有の焦点距離に基づき、レンチキュラーレンズ1103の光入射面と液晶パネル11の光出射面との間の所定距離を調整して配置する。この時、レンチキュラーレンズ1103の焦点距離が相対的に大きな値であれば、上記所定の距離は大きくし、逆に、レンチキュラーレンズ1103の焦点距離が相対的に小さな値であれば、上記所定の距離は小さくするように、レンチキュラーレンズ1103の光入射面と液晶パネル11の光出射面との距離、すなわち上記所定の距離を調整することで、好適な多視点映像を売ることができる。
図17では、9つの異なる視点を有する多視点映像を表示する多視点映像表示装置をしており、図17の(A)は、液晶パネルの画素1~9に対して、カメラNo.1~No.9による画像を配置した場合を示し、一方、図17の(B)は、液晶パネルの画素1~9に対して、(A)とは逆の順序で、液晶パネルの画素1~9に対して、カメラNo.9~No.1による画像を配置した場合を示している。図17の(A)と(B)の効果の違いは、以下の通りである。まず、図17の(A)では、利用者(ユーザ)が、多視点映像表示装置に対して左側から右側に移動すると、左側からは、被写体(人物の顔)を左側から見た画像を観察でき、右側からは、被写体(人物の顔)を右側から見た画像を見ることになる。すなわち、実際の被写体を中心において、利用者が被写体の左側から、および、右側から観察した場合と同様の被写体を観察することとなる。
それに対して、図17の(B)では、図17の(A)と逆となり、利用者(観察者)が、多視点映像表示装置に対して左側から右側に移動すると、左側からは、被写体(人物の顔)を図17の(A)の右側から見た画像を観察でき、右側からは、被写体(人物の顔)を図17の(A)の左側から見た画像を観察することになる。この結果、図17の(B)では、利用者から被写体(人物の顔)を見ると、利用者が被写体に対してどの位置(相対的な角度)に存在しても、被写体である人物が、常に、利用者の方に視線を向けているように感じることができる。
上記、図17の(B)の見え方、すなわち、被写体である人物が、利用者の位置にかかわらず、常に利用者の方に視線を向けているように見えるという特徴は、利用者からは、被写体である人物が、常に自分(利用者)と向き合い、話しかけられているように感じるという効果を生じる。こうした効果は、被写体である人物が、利用者一人だけに対して、何等かの説明や案内をするような場面では、特に好適である。
次に、図18、図19は、図17に示す多視点映像表示装置(映像表示装置10とレンチキュラーレンズ1103より構成される)から発せられた映像光を、再帰反射板330を介することにより、空間浮遊像3を生成した状態を模式的に示す図である。図18、図19に示す実施例は、ともに、多視点映像表示装置と再帰反射板330により、空間浮遊像3が生成される点は同じである。
上記、図18と図19の2つの実施例の相違点は、多視点映像表示装置上の多視点画像の順序が異なる点にある。すなわち、図18では、図17の(A)に対応しており、利用者から見て、多視点映像表示装置の左から右に、すなわち液晶パネルの画素1~9に対して、カメラNo.1~No.9による画像が割り当てられており、再帰反射板330を介して生成される空間浮遊像3では多視点画像の順序は、利用者から見て、逆に、右から左にカメラNo.1~No.9による画像が表示される。
一方、図19では、図17の(B)に対応しており、多視点映像表示装置の右から左に、すなわち液晶パネルの画素1~9に対して、カメラNo.1~No.9による画像が割り当てられている。その結果、再帰反射板330を介して生成される空間浮遊像3では、利用者から見ると、多視点画像の順序は、図18とは逆に、左から右にカメラNo.1~No.9による画像が表示される。
上記のように、再帰反射板330を介して生成される空間浮遊像3では、映像表示装置10と再帰反射板330との間にレンチキュラーレンズ1103を配置することにより、映像表示装置10に表示される多視点映像の順番と、空間浮遊映像3による多視点映像の順番が逆の順序で、利用者に認識される。すなわち、利用者に対して、運動視差を有する空間浮遊像を提供する場合、利用者に対して、どのような多視点画像を提供することが好適であるかすべきかという目的に応じて、液晶パネル11上の画素に対して、カメラNo.1~No.9による画像の順序を、適宜に定めて配置することができる。
これをさらに具体的に説明すると、図18の実施例では、コンシェルジュの顔を被写体とする空間浮遊像3を利用者から見ると、多視点画像の順序は、右から左にカメラNo.1~No.9による画像が認識される。この場合、コンシェルジュは、利用者の位置にかかわらず、常に利用者に視線を向けている。一方、図19の実施例では、コンシェルジュの顔を被写体とする空間浮遊像3を利用者から見ると、多視点画像の順序は、左から右にカメラNo.1~No.9による画像が認識される。この場合、コンシェルジュは、利用者の位置に関係なく、常に、一定の方向、すなわち、正面の方向に視線を向けている。
上記の通り、図18の実施例では、利用者が空間浮遊像としてのコンシェルジュを見たとき、常に、コンシェルジュが利用者に向かって、何等かの説明や案内などの情報を音声とともに伝えるような場面において特に好適であり、利用者はコンシェルジュに対して感情移入をしやすく、コンシェルジュによる説明や案内により集中できる、という効果をもたらすことができる。
一方、図19に示すように、利用者が空間浮遊像としてのコンシェルジュを見たとき、コンシェルジュが、常に、一定の方向、すなわち正面を向いて話す場合には、利用者は、コンシェルジュが自分だけに向かって話しかけているのではないということを認識し、空間浮遊像3の周囲にいる不特定多数の人々に対して、例えば、何等かのプレゼンテーションを行っているように感じる。
すなわち、空間浮遊像としてのコンシェルジュを表示する場合に、上に述べた2つの実施例のうち、図18のように、コンシェルジュが常に利用者に向かって話しかけるような表示形式(これを「表示形式A」と呼ぶ)とするか、図19のように、コンシェルジュが常に正面を向いて話しているような表示形式(これを「表示形式B」と呼ぶ)とするか、上記二通りの表示形式を適宜選択することが可能である。
<キオスク端末に係わる実施の形態1>
上記の通り、図15~19を用いて、空間浮遊像として、コンシェルジュを表示する2つの形式、すなわち、「表示形式A」と「表示形式B」について述べた。次に、本発明の一実施の形態として、空間浮遊映像情報表示システム1を、いわゆるキオスク端末に適用した場合(実施の形態1とする)について以下説明する。
キオスク端末とは、従来、不特定多数の人が、タッチパネル操作などのマン・マシン・インタフェースやユーザインタフェースを通じて、必要な情報にアクセスしたり、様々なサービスを利用したりするための情報端末である。キオスク端末は、公共施設や交通機関、遊園地などのエンタテイメント施設、また、近年では、いわゆるコンビニエンスストアの店内などにも設置されている。キオスク端末は、各種のチケットの販売や、行政サービス(例えば、住民票の発行)にも用いられている。
なお、以下の実施の形態の説明において、特定の構成を有する情報端末を、「キオスク端末」という用語で表現している。この「キオスク端末」という用語の代わりに、「情報端末」の他、「情報表示装置」、「情報処理端末」、「発券端末」、「書類発行端末」、「行政端末」、「サービス端末」などと表現してもよい。実施の形態の説明で主として用いる「キオスク端末」の用語は、これらの用語の代表例として用いている。
図20に、従来技術に基づいた一般的なキオスク端末の外観の一例を示す。このキオスク端末1400は、例えば高さ120~50cmほどの金属製の筐体1450を備えており、筐体1450の表面(ユーザに対向する側の面、特に斜面1451)には、液晶表示画面1410や入力ボタン1420が設けられている。液晶表示画面1410は、液晶表示装置の一部であり、各種情報を表示して利用者のタッチ操作を受け付けるタッチパネル付きの画面である。入力ボタン1420は、利用者に固有の暗証番号などを入力するための物理的なボタン、あるいはタッチパネルで構成された画面内のタッチボタンである。また、筐体1450の表面の一部には、取り出し口1430が設けられている。取り出し口1430は、キオスク端末1400に対する操作により発行された、例えば、チケットや行政書類などを利用者が取り出すための取り出し口である。
図21には、実施の形態1の空間浮遊映像情報表示システムとしてのキオスク端末の外観例を示す。図21ではキオスク端末1500を斜め右から見た場合の概要を示す。図21のキオスク端末1500は、図20のキオスク端末1400との違いとしては、以下がある。図21のキオスク端末1500では、筐体1550の表面(特に斜面1570)に、液晶表示装置による液晶表示画面1510に加え、下方に、前述の空間浮遊映像3を表示するための空間浮遊映像表示部1520を備えている。すなわち、キオスク端末1500は、液晶表示画面1510と空間浮遊映像表示部1520との2画面を有し、斜面1570において液晶表示画面1510と空間浮遊映像表示部1520との2つの表示部に分かれている構成を備えている。
図21に示す構成では、2画面のうち、基本として使用されるのは、空間浮遊映像表示部1520の画面(以下、第1画面ともいう)である。この第1画面には、空間浮遊映像3によるユーザインタフェースとして、コンシェルジュや操作メニューが表示される。空間浮遊映像表示部1520の第1画面は、縦横に所定のサイズの領域を備えている。本例では、第1画面は、若干横長のサイズを有する。
他方、液晶表示画面1510(以下、第2画面ともいう)は、任意の映像が表示可能であるが、例えば、一般的なキオスク端末と同様に、広告表示などの用途で使用される。液晶表示画面1510は、例えばタッチセンサを備えた液晶タッチパネル画面であってもよい。
なお、実施の形態1の変形例として、液晶表示画面1510である第2画面を、空間浮遊映像表示部1520の第1画面と合わせて、操作メニューなどのユーザインタフェースとして使用してもよい。
また、さらなる変形例として、液晶表示画面1510である第2画面を設けない構成も可能である。
図21の空間浮遊映像表示部1520の第1画面に、1つの空間浮遊映像3としてコンシェルジュと操作メニューとの両方を表示させてもよい。ただし、第1画面のサイズが限られているので、第1画面内にそれらの両方を表示させた場合、小さく細かい表示内容となり、見にくい可能性がある。よって、図21の実施例では、第1画面内には、コンシェルジュと操作メニューとのうちのいずれか一方を大きく表示するように、表示の切り替え制御を行ってもよい。
勿論、液晶表示画面1510と空間浮遊映像表示部1520との位置関係は、図21の構成例に限らず、例えばこれらの上下の配置を逆としてもよい。すなわち、斜面1570において、空間浮遊映像表示部1520が上部に配置され、下部に液晶表示画面1510が配置されてもよい。また、斜面1570において、それらが左右に並列して配置されてもよい。ただし、後述の図22に、内部構造を示すように、キオスク端末1500として液晶表示画面1510に加え空間浮遊映像表示部1520も備える構成では、液晶表示画面1510を上、空間浮遊映像表示部1520を下に配置する構成とした方が、筐体1550内の部品配置(空間の利用効率)としてはより好適である。
また、図21に示すように2つの表示部による2画面を有する構成である場合、それらの2つの表示部の画面がそれぞれ液晶表示画面1510と空間浮遊映像表示部1520であることがユーザにわかりやすいように、それぞれの画面上に、例えば「これは液晶画面です」、「これは空間浮遊映像です」のように、その旨を伝える表示をしてもよい。これにより、ユーザにとっての使い勝手が良くなる。また、画面上の表示ではなく、それぞれの画面の枠部分などの近傍位置に、予め物理的に「液晶画面」、「空間浮遊映像」といった表記をしておいてもよい。
図21に示す例では、空間浮遊映像表示部1520には、空間浮遊映像3として、コンシェルジュ1521(人物像、コンシェルジュ映像とも記載)が表示されている。詳細は後述するが、図21に示す構成では、ユーザは、液晶表示画面1510に表示された画像または映像情報に加え、空間浮遊映像表示部1520に表示されるコンシェルジュ1521による操作案内に従って、画面(特に空間浮遊映像表示部1520に表示される操作メニューなど)を操作することが可能である。コンシェルジュ1521は、ユーザに対し、映像と音声によって、操作案内(操作ガイド、操作説明などとも記載)などを行う。
しかも、実施の形態1では、空間浮遊映像表示部1520に表示されるコンシェルジュ1521は、運動視差を伴う多視点映像として表示されるので、単に二次元平面像が空間浮遊像として表示される場合に比べて、ユーザは、あたかも、キオスク端末1500上に実際の人物(コンシェルジュ)が存在するような感覚を得ることができる。さらに、そのコンシェルジュが、ユーザに対し、キオスク端末1500の操作方法などについての説明を丁寧に行う。そのため、初めてキオスク端末に触れるユーザであっても、戸惑うことなく、キオスク端末1500をより容易に操作でき、所望のサービスを受けることができる。
ここで、図21に示す空間浮遊映像表示部1520は、空間浮遊映像3を形成するための方式としては、前述の図3の再帰反射部材2などを用いた構成を適用してもよいし、あるいは、前述の図13や図14の再帰反射部材330などを用いた構成を適用してもよい。また、上記方式に限らず、空中に空間浮遊映像を表示できる他の方式を適用してもよい。本実施例では、特に図14の構成を適用した場合(内部構造は、図22を参照)を示す。
さらに、図21の実施例における、空間浮遊映像3に対するユーザの操作を検出する検出方式(センシング技術)については、前述の図2の空中操作検出センサ1351と空中操作検出部1350の組み合わせによる方式を適用してもよいし、前述の図7や図8の、第1または第2のセンシング技術による方式を適用してもよい。また、上記方式に限らず、空間浮遊映像に対する空中操作を検出できる他の方式を適用してもよい。
また、図21のキオスク端末1500には、筐体1550(特に斜面1570)の左右の位置に、2つのカメラ1541,1542が備えられている。これらのカメラは、図2の撮像部1180に対応するステレオカメラである。カメラ1541,1542は、このキオスク端末1500の正面(図示のY方向での手前側)に対し近くにいるユーザ(例えば空間浮遊映像3を操作するユーザ)の顔や虹彩などを含む領域を撮像する。空間浮遊映像情報表示システム1であるキオスク端末1500の制御部1110(図2)は、カメラ1541,1542の撮像画像に基づいて、ユーザがキオスク端末1500に近づいたことを検出する処理、ユーザを識別・特定する処理、あるいはユーザの認証処理などを行うように構成されている。本実施例では2つのカメラ1541,1542が配置されているが、1つまたは2つ以上でも構わない。また、カメラが筐体1550内部に配置されてもよいし、外部に配置されたカメラが撮像した撮像情報を有線または無線でキオスク端末1500に送信するように構成されてもよい。
また、左右の2つのカメラ1541,1542により、ステレオ撮影が可能であり、ユーザの顔などを立体像として撮像でき、ユーザの顔部分までの距離や、その3次元的な造形も計算可能である。よって、このシステムでは、1つのカメラによりユーザの顔を平面像として撮像する場合と比較して、ユーザの顔認証の精度を高めることができ、不正使用防止の観点からも好適である。
また、図21のキオスク端末1500には、筐体1550の左右の位置に、2つのスピーカ、特に2つの超指向性スピーカ1551,1552(図2のスピーカ/超指向性スピーカ30と対応)が備えられている。超指向性スピーカを備えることで、このキオスク端末1500を操作しようとしているユーザのみにしか聞き取ることのできない、指向性が非常に高い音声を発することができる。キオスク端末1500には、通常の可聴帯域の音声を出力するスピーカを備えてもよいが、以下のような場合には、対象ユーザ以外の他の人には聞き取ることができないように、特に超指向性スピーカ1551,1552を備える構成とすると好適である。すなわち、ユーザの操作などに応じてキオスク端末1500から発する音声を、例えばユーザの氏名や生年月日や入力番号情報などとする場合などには、特に秘匿性を高くしてセキュリティに配慮する必要がある。このような場合には、超指向性スピーカの適用が好適である。
なお、図21では、超指向性スピーカ1551,1552は、筐体1550の外部に張り出すように設置されているが、これに限らず、筐体1550の内部に配置されてもよい。超指向性スピーカ1551,1552により、空間浮遊映像3の操作メニューのボタンなどが押下されたことを表す音声信号を、ユーザにのみ聞こえるように出力してもよい。
図22の(A)は、図21のキオスク端末1500の内部構造の説明図を示す。図22の(A)では、図21の筐体1550を右側面から見た場合の内部透視のY-Z断面を示している。筐体1550の上部は、斜面1570を有する形状である。その上部の中に、図14で説明した空間浮遊映像情報表示システム1の構成要素である、映像表示装置10、レンチキュラーレンズ1103、ミラー360、再帰反射部材330などが収容されている。一方、図22の(B)は、図22の座標軸におけるZ軸方向から見たときのレンチキュラーレンズ1103を示す。また、図22の(A)(B)の構成により、利用者が、空間浮遊映像3を、運動視差を伴う多視点映像として視認できる点も、図14を用いて説明した通りである。
筐体1550の下部の中には、図2の制御部1110を実装した制御装置や、通信部1132を実装した通信装置や、電源装置などの他の構成要素が収容されていてもよい。また、筐体1550の下部(例えば前面)には、図示のように、人感センサ1560が設けられてもよい。人感センサ1560は、キオスク端末1500に人が近づいたことを検出する。
図22の(A)の構成では、図14と同様に、筐体1550内の映像表示装置10から発される映像光の向きをミラー360によって変えて再帰反射部材330に入射させる。そして、再帰反射部材330による再帰反射光を、映像表示装置10とは反対側(Y方向で手前側)での斜め上に出射させる。これにより、空間浮遊映像表示部1520に空間浮遊映像3が生成される。
筐体1550の斜面1570は、水平面(Y方向)に対し所定の角度ε1を有する。斜面1570上において、上方の液晶表示画面1510に対し、斜め下の位置に、空間浮遊映像表示部1520の開口部(点線で示す)が設けられている。開口部には透明部材などが設けられてもよい。再帰反射部材330からの映像光は、その開口部を斜め上に通過し、斜面1570の外の所定の位置に、実像である空間浮遊映像3を形成する。この空間浮遊映像3は、斜面1570に対しては所定の角度ε2で前側に傾いて形成される。そのため、ユーザからは、空間浮遊映像3は、斜面1570に対し手前に張り出して浮遊したように見える。ユーザは、空間浮遊映像表示部1520に表示される空間浮遊映像3を、図14と同様に、斜め上の視点Eから斜め下への視線によって好適に視認できる。
なお、キオスク端末1500に図14の構成を適用した場合、筐体1550内でミラー360によって光路を折り返す構成であるため、筐体1550内での、映像表示装置10から再帰反射部材330までの光路をより長くすることができる。これにより、再帰反射部材330に対し空間浮遊映像3が前方斜め上に飛び出し量が大きくなるという効果を得ることができる。また、この構成により、筐体1550の奥行方向(Y方向)での厚さ寸法は抑えることができる。
また、図22の(A)の構成では、第1の測距装置340(前述のTOFセンサなどを含む)は、空間浮遊映像表示部1520の開口部を通じて、空間浮遊映像3の全体をカバーする範囲をセンシングする。上記第1の測距装置340を用いることで、主に、利用者(ユーザ)の、空間浮遊映像3に対するタッチ操作などのセンシングを行う。なお、図22の(A)では、第1の測距装置340によるセンシングの範囲の下端Bは、開口部に合わせて、水平面(Y方向)に対し斜め上となっているが、これに限らず、水平方向(Y方向)に近づけてもよい。筐体1550の開口部の位置や第1の測距装置340の配置位置を変更することで、そのセンシングの範囲を設計可能である。
また、第1の測距装置340を含むセンシングシステムを、ユーザがキオスク端末1500(筐体1550の斜面1570、または空間浮遊映像3など)に対し十分に近づいたかどうかの検出、あるいは、カメラと合わせてその検出の補助に用いてもよい。また、図22の(A)の構成で図8のような第1の測距装置340と第2の測距装置341を設ける場合には、それらを例えば再帰反射部材330に対しX方向で左右の位置に配置し、測距の光軸を水平面(Y方向)に近づけてもよい。
キオスク端末1500は、第1の測距装置340を含むセンシングシステムを用いて、空間浮遊映像表示部1520の空間浮遊映像3に対するユーザの手指による操作をセンシングする。キオスク端末1500の制御部1110は、そのセンシング結果を含む検出情報に応じて、空間浮遊映像表示部1520での空間浮遊映像3の表示内容(コンシェルジュ1521や後述の操作メニューなどのユーザインタフェース)を制御する。
上記の通り、実施の形態1の空間浮遊映像情報表示システムであるキオスク端末によれば、空間浮遊像3を、運動視差を伴う多視点映像として表示することができる。したがって、空間浮遊像3を、平面映像として表示する場合に比較して、キオスク端末などの利用者に対して、より好適な空間浮遊映像によるインタフェースおよび必要な情報を提供できる。実施の形態1のシステムによれば、空間浮遊映像として表示された操作メニューなどのユーザインタフェースの操作が初めてのユーザ、操作に不慣れなユーザ、あるいは高齢のユーザなどであっても、当該ユーザに対し、空間浮遊映像、かつ多視点映像として表示された、親しみやすい人物像としてのコンシェルジュによる操作案内を提供することができる。これにより、空間浮遊映像のインタフェースに対するユーザの誤入力や誤操作を回避または低減でき、より確実な操作を可能とする。
<キオスク端末に係わる実施の形態2>
図23は、キオスク端末に係わる他の実施例(実施の形態2とする)の外観構成例を示す。図23に示すキオスク端末1600は、図21に示したキオスク端末とは異なり、液晶表示画面1510を備えず、筐体1650の斜面1670において、概略的に全面に、空間浮遊映像表示部1620が備えられている。この空間浮遊映像表示部1620による1つの画面は、図21での空間浮遊映像表示部1520の画面よりもサイズが大きい。図23の実施例では、空間浮遊映像表示部1620は、縦長のサイズの1つの画面を有し、1つの空間浮遊映像3が表示される。本例では、この1つの画面の空間浮遊映像3内に、コンシェルジュと操作メニューとの両方が並列で表示され、コンシェルジュが操作メニューの操作についてガイドする。
空間浮遊映像表示部1620では、斜面1670に対し手前側に、空間浮遊映像3が表示される。本例では、空間浮遊映像3は、上部にコンシェルジュ1621が映し出されており、下部には、操作メニュー1622が映し出されている。操作メニュー1622には、例えば操作ボタン(丸や三角で示す)などが含まれている。コンシェルジュ1621は、操作メニュー1622に関する操作方法などを説明、ガイドする。この図23の構成の場合でも、図21の場合と同様に、ユーザは、多視点の空間浮遊映像として表示されるコンシェルジュ1621によるガイドに従って、キオスク端末1600、特に操作メニュー1622を容易に操作でき、所望のサービスを受けることができる。
図23の構成でも、筐体1650に、カメラ1641,1642や、超指向性スピーカ1651,1652や、人感センサ1660を備えており、これらについては、図21の構成と同様である。
図24の(A)は、図23のキオスク端末1600の内部構造の一例を示す図であり、キオスク端末1600を右側面から見た場合の内部透視のY-Z断面を示している。このキオスク端末1600は、筐体1650内に、前述の図13の空間浮遊映像情報表示システム1の構成要素が収容されている。すなわち、筐体1650内の上部に、映像表示装置10、レンチキュラーレンズ1103、再帰反射部材330などが配置されている。一方、図24の(B)は、図24の座標軸におけるZ軸方向から見たときのレンチキュラーレンズ1103を示す。また、図24の(A)(B)の構成により、利用者が空間浮遊像3を、運動視差を伴う多視点映像として視認できる点も、図13を用いて説明した通りである。
図24の(A)の構成では、筐体1650内の上部の底面部の上に、映像表示装置10が略水平面(詳しくは、Y方向に対し奥側がやや上に傾いた状態)に沿って配置されており、映像表示装置10の光軸J1は略鉛直上方(Z方向)を向いている。また、筐体1650の上部の斜面1670には、空間浮遊映像表示部1620の開口部(点線で示す)が設けられている。筐体1650の上部内で、その開口部に対し近くには、再帰反射部材330が所定の角度で配置されている。斜面1670は所定の角度ε1を有しており、再帰反射部材330は、斜面1670に対し所定の角度ε2で配置されている。
図24の(A)の構成では、図13の場合と同様に、映像表示装置10からの映像光を再帰反射部材330に入射し、再帰反射光を映像表示装置10とは反対側、すなわち斜面1670の開口部の方に出射する。これにより、斜面1670の空間浮遊映像表示部1620における、開口部の外側の所定の位置に、実像である空間浮遊映像3が、多視点映像として生成される。この空間浮遊映像3は、斜面1670に対し所定の角度ε2で斜めに配置されている。ユーザは、空間浮遊映像3に対し、斜め上の視点Eから、斜め下の視線によって、この空間浮遊映像3を好適に視認できる。
また、図24の(A)の構成では、筐体1650の上部内の所定の位置、本例では再帰反射部材330の上端の付近の位置に、第1の測距装置340(TOFセンサなどを含む)が設置されている。この第1の測距装置340の光軸は、空間浮遊映像3の方を向いており、視野角は、空間浮遊映像3の全体をカバーする広さとされている。このキオスク端末1600に実装されている、第1の測距装置340を含むセンシングシステムは、空間浮遊映像表示部1620の空間浮遊映像3に対するユーザの手指UHによる操作をセンシングする。
図23、図24に示す実施の形態2では、1つの空間浮遊映像表示部1620に、空間浮遊映像3としてのコンシェルジュ1621の姿と、空間浮遊映像3としての操作メニュー1622との両方が、運動視差を伴う多視点映像として表示される。この時、コンシェルジュ1621だけを多視点立体映像として表示し、操作メニュー1622は平面映像をして表示してもよい。この場合、空間浮遊映像3を多視点立体映像として表示するか、あるいは、平面映像として表示するかは、レンチキュラーレンズ1103を配置した状態であっても、映像表示装置10に表示する映像を、多視点立体映像とするか、あるいは、平面映像とするかを切り替えるだけで可能となる。
キオスク端末における空間浮遊映像の表示方法は、これに限らない。変形例としては、空間浮遊映像表示部1620の1画面内で、図23のように、コンシェルジュの表示と操作メニューの表示とを同時に表示するのではなく、コンシェルジュの表示と操作メニューの表示とを、適宜切り替えるようにしてもよい。
<キオスク端末の使用シーン>
以上、キオスク端末に係る、2つの実施の形態について説明した。次に、実際の利用者によるキオスク端末の使用シーンについて説明する。図25は、1人の利用者が、実施の形態1の空間浮遊映像情報表示システムとしてのキオスク端末を、使用するシーンを示す図である。図25において、キオスク端末1500には、空間浮遊像としての多視点映像であるコンシェルジュ(女性の顔)が表示されている。
ここで、空間浮遊像としての多視点画像であるコンシェルジュは、キオスク端末1500の近傍に位置する利用者が、上記コンシェルジュを視認できる範囲内であれば、どの位置にあっても、コンシェルジュが常に自分の(利用者の)方に視線を向けているように視認することが可能である。より具体的には、図25に示すように、利用者がキオスク端末の斜め左側に立っている場合、コンシェルジュは利用者の立っている方向、すなわち、斜め左の方を向いているように、利用者により視認することができる。一方、利用者がキオスク端末の斜め右側に立っている場合、コンシェルジュは利用者の立っている方向、すなわち、斜め右の方を向いているように、利用者により視認することができる。
上記のように、空間浮遊像としてのコンシェルジュを表示するためには、図18に示す「表示形式A」で、多視点画像としてのコンシェルジュを表示すればよい。その結果、利用者が、キオスク端末1500、すなわち、空間浮遊像に向かって右から順に、カメラNo.1~No.9によるコンシェルジュの映像を、運動視差を伴う9視点の多視点の空間浮遊像として表示することができる。
また、利用者がキオスク端末1500に対して、例えば、向かって右側から左側の向きに移動した場合には、利用者は、図15に示すような多視点画像特有の運動視差を認識することができ、空間浮遊像としてのコンシェルジュを立体画像(または立体映像)として認識することができる。この結果、単に二次元画像として空間浮遊像が表示されている場合と比較して、利用者は、コンシェルジュを実際の人物であるかのように立体的かつ運動視差を伴う多視点映像として視認することができる。さらに、利用者は、キオスク端末1500の近傍を移動した場合であっても、常にコンシェルジュが自分の(利用者の)方に視線を向けて語りかけているような感覚を得ることができる、というこれまでにない、新たな効果を得ることができる。
<キオスク端末に係わる実施の形態3>
図26は、一実施例(実施の形態3とする)として、キオスク端末における空間浮遊映像3の表示の一例を示す。図26のキオスク端末は、図21のキオスク端末1500を例とした構成を示す。図26のキオスク端末は、空間浮遊映像情報表示システム1により形成される空間浮遊映像3をユーザインタフェースとして適用したキオスク端末である。また、図27、図28は、図26のキオスク端末をユーザが操作する場合の動作フローを示す。
図27は、図26のキオスク端末の起動時に係わる第1動作フローを示す。第1動作フローは基本的な動作を示す。ステップS100で、フロー開始時、キオスク端末は、待機状態(言い換えるとスリープ状態)である。ステップS101で、キオスク端末は、ユーザがこのキオスク端末に近づいたかどうかを検知する。キオスク端末を利用しようとするユーザが、キオスク端末に近づいてくる、あるいは、ユーザがキオスク端末の近傍の所定の位置に立つ。ユーザがこのキオスク端末に近づいた際には、カメラ1541,1542による撮像に基づいて、ユーザがこのキオスク端末(特に斜面1570の正面)に近づいたことが検知される。もしくは、カメラの代わりに、図21に示す赤外線を用いた人感センサ1560などによって、ユーザがこのキオスク端末1500に近づいたことを検知してもよい。ユーザがキオスク端末に近づいたことを検知した場合(YES)、ステップS102で、キオスク端末は、起動状態に遷移する。その後、起動状態で、ユーザは、キオスク端末を使用できる。
ステップS103で、キオスク端末は、空間浮遊映像表示部1520に、コンシェルジュ1521または操作メニュー1522を表示して、ユーザに対し、操作方法などをガイドなどしながら、操作メニュー1522での操作(言い換えると入力)を受け付け、その操作の検出に応じた所定の処理(アプリケーションやサービスの処理)を行う。具体例では、最初時には、図26の(A)のように、空間浮遊映像表示部1520にコンシェルジュ1521が表示され、コンシェルジュ1521の映像および音声により、ユーザに対し、あいさつや操作案内を行う。そして、あいさつなどが終わると、自動的に、図26の(B)のように、空間浮遊映像表示部1520の表示はコンシェルジュ1521から操作メニュー1522に遷移する。ユーザは操作メニュー1522に対し手指で操作を行う。キオスク端末は、センシング技術を用いて操作を検出し、検出した操作に応じた処理を行う。
なお、コンシェルジュ1521の映像は、既に述べたように、運動視差を伴う多視点映像に基づく空間浮遊映像である。多視点映像としては、実際の人を予め多視点から、すなわち視点の数に対応した複数のカメラによって撮影した動画でもよいし、コンピュータでレンダリングにより生成したCGに基づく人物像でもよいし、人の姿を表すアニメーションなどでもよい。また、人に限らず、動物やフィクション上のキャラクターなどとしてもよい。
ステップS104では、ユーザがこのキオスク端末から離れたかどうかを検知する。ユーザがこのキオスク端末から離れた場合、カメラ1541,1542による撮像に基づいて、ユーザがこのキオスク端末(特に正面の斜面1570)から離れたことが検知される。もしくは、カメラの代わりに、図21に示す人感センサ1560などによって、ユーザがこのキオスク端末から離れたことを検知してもよい。ユーザがキオスク端末から離れたことを検知した場合(Y)、ステップS105で、キオスク端末は、待機状態に遷移する。
図28は、図26の実施の形態3でのキオスク端末の起動時に係わる第2動作フローを示す。第2動作フローは、第1動作フローよりも詳しい実施例を示す。第2動作フローは、キオスク端末が起動状態となった後の動作として、ユーザの認証などを行う場合の動作フローを示す。
ステップS200で、フロー開始時、キオスク端末は、待機状態である。ユーザは、キオスク端末の正面に近づいてくる、あるいは、キオスク端末の近傍の所定の位置に立つ。ステップS201で、キオスク端末は、このキオスク端末(特に斜面1570の正面)にユーザが近づいたかどうかを2台のカメラによるステレオ撮影などによって検知する。ユーザを検知した場合(Y)、ステップS202で、キオスク端末は、空間浮遊映像表示部1520に、図26の(A)のように、まず、コンシェルジュ1521を表示し、コンシェルジュ1521の映像および音声により、ユーザに対し、例えば「いらっしゃいませ、ご利用ありがとうございます。」などのあいさつを行い、また、あいさつのメッセージも表示する。
次に、ステップS203で、キオスク端末は、検知したユーザの認証を行う。この際、キオスク端末は、空間浮遊映像3として、「認証しています」などの、認証中を表すメッセージも表示する。キオスク端末は、認証として、2台のカメラ1551,1552の撮像画像(特に顔画像)に基づいて、近づいてきた人(すなわち検知したユーザ)の顔認証を行うことで、ユーザを識別・特定してもよい。または、ユーザの目の虹彩画像に基づいた認証が行われてもよい。ここでの認証とは、キオスク端末の正面前方の所定の範囲内に存在しているユーザの顔または虹彩などの部分を、2台のカメラで撮影して得られたステレオ画像に基づいて、ユーザが、予め本システムに登録された、このキオスク端末の正規のユーザであるか否かを判定することである。
ここで、1台のカメラによる撮影によってもユーザの画像の基づいた認証は可能であるが、2台のカメラ1551,1552によるステレオ画像を用いることで、1台のカメラ画像による認証と比較して、より精度が高く、不正利用のしにくいユーザ認証が可能となる。例えば、顔を正面からのみ撮影した画像が紙に印刷された顔画像を用いた、不正な認証を、見抜くことが可能となる。
上記顔認証などに限らず、ユーザの認証の他の方法としては、以下も適用できる。ユーザが所持しているマイナンバーカードなどの本人確認証、運転免許証などの情報を、キオスク端末に読み込ませることで、ユーザ認証する方法も適用可能である。また、ユーザが所持する携帯端末などに記憶されているユーザ情報を、携帯端末とキオスク端末との近距離無線通信で授受することで、ユーザ認証を行う方法も適用できる。
また、ユーザが所持するスマートフォンなどの携帯端末に、ユーザを特定できる個人情報(例えば氏名、住所、生年月日、キオスク端末の使用履歴など)を含むQRコード(登録商標)などのコード情報を表示し、そのコード情報をキオスク端末の空間浮遊映像表示部1520に対し提示(例えばカメラ1551,1552に対しかざす)させる。そして、キオスク端末のカメラ1551,1552により、上記提示されたユーザの情報を読み込むことで、ユーザ認証を行う方法も適用できる。
ステップS204では、キオスク端末は、上記ユーザの認証が成功したかを確認し、成功の場合にはステップS206へ、失敗の場合にはステップS205へ進む。ステップS205では、キオスク端末は、他の認証方法を促し、ステップS203に戻り、他の認証方法での認証を試みる。上記ユーザの認証のプロセスを経た後、キオスク端末は、空間浮遊映像表示部1520に、所定の操作メニュー画面(不特定多数のユーザに対応した操作メニュー)を提示してもよいし、あるいは、認証で特定された個々のユーザに最適なメニュー画面(個人用の操作メニュー)を提示するようにしてもよい。
具体例では、認証成功後、図26の(A)、(B)に示すように、空間浮遊映像表示部1520の表示は、コンシェルジュ1521から操作メニュー1522に変化・遷移する。(B)の操作メニュー1522は、内容例としては、「タッチして項目を選んでください」とメッセージ(文字画像)が表示され、選択肢、項目となる押しボタンとして、例えば、「1 住民票発行」、「2 チケット購入」、「3 登録情報」、「4 別のメニュー」が表示されている。「1 住民票発行」は、住民票の発行などの行政手続きに係わる項目である。「2 チケット購入」は、コンサートや映画など、または電車などのチケットの購入や受け取りに係わる項目である。「3 登録情報」は、ユーザに係わる登録情報の確認や変更などに係わる項目である。「4 別のメニュー」は、別のメニューに遷移するための項目である。ユーザは、目的に応じて、例えば「2 チケット購入」項目のボタンを押す。キオスク端末は、押されたボタンに応じて、次の操作メニューの表示に遷移させる。さらに詳細な例について以下に示す。
[コンシェルジュによる操作案内]
図28のステップS206で、キオスク端末の空間浮遊映像情報表示システム1は、通信部1132(図2)を介して、通信網上のキオスクサーバにアクセスし、上記ユーザ認証の結果情報を通知する。また、キオスク端末は、当該ユーザが過去に当該キオスク端末を使用したことのあるユーザであるか否かを、キオスクサーバ内の利用者データベースから当該ユーザの属性情報などを取得・参照することで判断する。もしくは、キオスク端末は、上記ユーザの携帯端末からのコード情報などに基づいて、ユーザの属性情報などを取得・参照してもよい。ユーザの属性情報には、例えばユーザの性別、年齢、過去のキオスク端末の使用履歴などの情報を含む。
また、ステップS206では、キオスク端末は、ユーザの携帯端末から無線通信でユーザ属性情報を含むユーザ情報などを取得してもよい。また、キオスク端末は、ユーザ属性情報のみならず、キオスクサーバなどの外部装置から、当該ユーザおよび操作メニューに係わる他の所定のデータ、例えばチケット予約情報などのユーザが予め入力・登録済みの情報を併せて取得してもよい。また、ステップS206で、キオスク端末は、カメラ1541,1542の画像に基づいて、当該ユーザの年齢などの属性を判断してもよい。ステップS206で取得されたユーザ属性情報は、次のステップS207の判定で使用される。
次のステップS207では、キオスク端末は、ステップS206で得られた、ユーザの属性情報に基づいて、当該ユーザが、当該キオスク端末を利用する「初めてのユーザ」、あるいは「高齢のユーザ」であるかを判断する。そのような所定の条件に該当するユーザであると判定された場合(YES)にはステップS208に進み、条件に該当しないユーザであると判定された場合(NO)にはステップS209に進む。
本システムは、ステップS207の判定結果に応じて、対応を分岐する。ここでは大きく2つの対応に分かれる。一方は、慣れたユーザを想定した第1処理フロー(ステップS209からのフロー)であり、他方は、不慣れなユーザ(初めてのユーザや高齢のユーザ)を想定した第2処理フロー(ステップS208からのフロー)である。第1処理フローでは、キオスク端末は、コンシェルジュによる操作ガイドを省略する、または、第2処理フローに比べて簡易化した操作ガイドとする。第2処理フローでは、キオスク端末は、コンシェルジュによる詳しい操作ガイドを行う。
ステップS208では、キオスク端末は、空間浮遊映像表示部1520において、「コンシェルジュによる音声付操作ガイド」を行う。なお、「コンシェルジュ」とは、「案内人」を意味し、例えば図26の(A)に示すように、運動視差を伴う多視点画像(または映像)に基づく空間浮遊映像3として、例えば、人物の上半身の映像としてのコンシェルジュ1521(図面では模式で図示している)が表示される。コンシェルジュ1521は、空間浮遊映像3をユーザインタフェースとして用いたキオスク端末の操作が初めてのユーザ、あるいは、その操作に不慣れな高齢のユーザのために、音声や身振りをまじえて、当該ユーザに対し、操作方法などに関するガイドを行う。コンシェルジュ1521は、(B)のような操作メニュー1522の操作に関してユーザがわからない箇所について説明やガイドを行う。
より具体的には、ステップS208では、まず、図26の(A)に示すように、空間浮遊映像表示部1520の画面上に、コンシェルジュ1521の映像が現れる。コンシェルジュ1521は、「私が、操作方法についてご案内させていただきますので、お客様は、私の説明に従って、メニュー操作をしてください。」などの文字映像および音声を出力する。音声は、例えば図26の(A)の超指向性スピーカ1551,1552により、当該ユーザにのみ聞き取ることができる方法で提供される。コンシェルジュ1521は、キオスク端末および操作メニューの使用方法を、逐次、ユーザに伝えることによって、操作ガイドを行う。
次に、ステップS208とステップS209とのいずれの場合でも、図26の(A)、(B)のように、空間浮遊映像3としてのコンシェルジュ1521の映像は、空間浮遊映像3としての操作メニュー1522の映像に切り替わる。ここで、ステップS208では、空間浮遊映像3の画面が操作メニュー1522に切り替わった後でも、コンシェルジュ1521によるガイドが継続する。キオスク端末は、適宜に、空間浮遊映像表示部1520でのコンシェルジュ1521の表示と操作メニュー1522の表示とを切り替える。ユーザは、コンシェルジュ1521の操作ガイドに従って、空間浮遊映像表示部1520の画面上の操作メニュー1522の操作を行う。
次に、ステップS210では、ユーザが、キオスク端末の操作メニュー1522に対し、所定の一連の操作、例えばチケットを発行するための、暗証番号の入力操作などを行う。キオスク端末は、その操作を検出して処理を行い、チケットを発行する。ユーザは、取り出し口1530からチケットを受け取る。ユーザの所望の操作およびそれに対応したキオスク端末の動作、例えばチケット発行が完了した場合(Y)、ステップS212に移行する。
ステップS212では、キオスク端末は、空間浮遊映像表示部1520の画面に、再び操作メニュー1622(例えば最初のメニュー画面、または、次のメニューがある場合の次のメニュー画面、あるいは、最後のメニュー画面など)を表示する。もしくは、キオスク端末は、空間浮遊映像表示部1520での表示を終了する。また、キオスク端末は、表示終了の際には、画面に最後にコンシェルジュ1521を表示し、ユーザに対し終了の旨(「ご利用ありがとうございました」など)を出力させてもよい。
一方、ステップS209では、キオスク端末は、操作が初めてではなくある程度慣れているユーザを想定した表示を行う。キオスク端末は、空間浮遊映像表示部1520の画面の表示を、図26の(B)のように、操作メニュー1522に切り替える。その後、ユーザは、画面の操作メニュー1622に従って、項目の選択などの所望の操作を行う。ステップS211では、ステップS210と同様に、所定の一連の操作およびそれに対応する動作(例えばチケット発行)が完了した場合(Y)、ステップS212に移行する。
ここで、ステップS209に進んだ場合でも、ユーザによる操作がうまくいかない可能性を考慮し、ステップS212が設けられている。ステップS211で、ユーザの所定の一連の操作が完了しない場合(N)、ステップS212に進む。ステップS212で、キオスク端末は、操作メニュー1522において、ユーザの操作がうまくいっているかどうかを判断する。具体例では、キオスク端末は、操作メニュー1522において、ユーザによる操作が、所定の時間(例えば30秒)よりも長い時間、停止(言い換えると入力が無い)しているかどうかを判断する。ユーザは、空間浮遊映像3としての操作メニュー1522の操作がよくわからない場合などに操作を停止している可能性がある。キオスク端末は、カメラやセンシング技術などを用いて、その長時間操作停止を検出する。長時間操作停止しているなどと判断された場合(Y)にはステップS206に進み、そうでない場合(N)にはステップS209に進む。
また、他の例では、ステップS212で、キオスク端末は、ユーザが空間浮遊映像3の面(操作メニュー1522)に対し誤った操作をしているかどうかを判断してもよい。例えば手指が項目のボタンなどから離れた位置でタッチしようとしているなどが判断されてもよい。
ステップS212からステップS208に進んだ場合、キオスク端末は、当該ユーザに対し、空間浮遊映像表示部1520にコンシェルジュ1521を表示し、コンシェルジュ1521による操作ガイドを行う。この際、キオスク端末は、コンシェルジュ1521による操作ガイドとして、予め規定された内容による操作ガイドの再生としてもよいが、より好ましくは、ステップS212で当該ユーザが操作停止した操作メニュー1522の箇所についての操作ガイドを行う。例えば、図26の(B)の「2.チケット購入」ボタンが押された後の操作メニューでユーザの操作が止まっていた場合には、キオスク端末は、その操作メニュー内で次にどのような操作をすればよいかを、コンシェルジュ1521によってガイドする。
なお、上述した動作例は、図23の実施例、すなわち1つの空間浮遊映像3の画面内にコンシェルジュ1621と操作メニュー1622との両方を並列に表示する構成例にも、同様に適用できる。この場合、画面内で、コンシェルジュ1621が操作メニュー1622を例えば指先で指し示しながら操作ガイドすることなどが可能である。
実施の形態3によれば、キオスク端末は、ユーザがキオスク端末に近づいたことを契機として、空間浮遊映像3としてコンシェルジュ1521を表示し、コンシェルジュ1521による操作ガイドを開始する。コンシェルジュ1521の映像は、運動視差を伴う多視点画像(または映像)による空間浮遊映像であるので、ユーザは、コンシェルジュ1521の映像を立体像として視認することができる。そのため、ユーザは、コンシェルジュ1521の映像を、あたかも、実際の人物がそこに存在するかのような感覚を覚えることとなり、キオスク端末を初めて操作するユーザや、操作に不慣れな高齢者などのユーザであっても、コンシェルジュ1521による操作ガイドや、超指向性スピーカの音声(他の人には聞こえない操作ガイド)などに従って、所定の操作を確実に行うことができる。
実施の形態3によれば、認証によりユーザを特定し、ユーザの年齢やシステム利用履歴に基づいて、初めて操作を行うユーザや、操作に不慣れなユーザや、高齢のユーザに対しては、コンシェルジュにより丁寧に操作方法などを説明する。よって、そのようなユーザでも、空間浮遊映像としての操作メニューに対し、確実なキー入力操作などを行うことができる。慣れたユーザに対しては操作ガイドを省略または簡易化することで、効率的なサービスも可能である。
実施の形態3などの変形例として以下も可能である。図31は、その変形例での表示例を示す。キオスク端末は、空間浮遊映像表示部1520による空間浮遊映像3の1画面内に、操作メニュー1522の映像をベースとしてなるべく大きく表示する。キオスク端末は、その操作メニュー1522上に、コンシェルジュ1521の映像を、相対的に小さいサイズで重畳表示させる。そして、キオスク端末は、そのコンシェルジュ1521により操作メニュー1522の操作をガイドさせる。コンシェルジュ1521は、例えば身振り、手振り、口や目の動きなどをまじえて動き、かつ、運動視差を伴う多視点映像に基づく空間浮遊映像とすると好ましい。キオスク端末は、操作メニュー1522の画面内で適宜にコンシェルジュ1521の表示有無や表示位置などを変えてもよい。
<キオスク端末に係わる実施の形態4>
図29は、他の実施例(実施の形態4とする)として、キオスク端末と、ユーザが保持する携帯端末との連携動作を行う実施例を示す。図29のキオスク端末1700は、空間浮遊映像情報表示システム1により形成された空間浮遊映像3をユーザインタフェースとして適用したキオスク端末である。ユーザ1710がこのキオスク端末1700を操作する場合に、キオスク端末1700と、ユーザ1710が所持するスマートフォンなどの携帯端末1740との連携を行う。図29のキオスク端末1700は、図23のキオスク端末1600の構成をベースとしている。
一例として、ユーザ1710がキオスク端末1700を利用してチケット(例えばあるコンサートのチケット)を購入する手続きを行う場合について説明する。前述の、図27、図28に示すフローチャートと同様に、ユーザ1710がキオスク端末1700に近づいた場合、キオスク端末1700は、ユーザ1710の認証を行い、空間浮遊映像表示部1720に、コンシェルジュ1721や操作メニュー1722を表示する。ユーザは、コンシェルジュ1721によるガイドなどに従い、操作メニュー1722を操作する。例えば図26の(B)のような操作メニュー1522から、「2 チケット購入」が選択操作される。キオスク端末は、空間浮遊映像表示部1720の画面内に、「2 チケット購入」から遷移する操作メニュー1722を表示する。ユーザ1720は、操作メニュー1722で、チケットを購入するための詳細な操作を行う。
チケットは、例えば紙に印刷された形で発行され、ユーザ1710は、その紙のチケットを受け取る。あるいは、チケットの入手方法としては、紙に印刷されたチケットを受け取るだけではなく、いわゆる電子チケット(あるいは「eチケット」)の形で受け取ることも可能である。この場合、ユーザ1710は、紙に印刷されたチケットの代わりに、紙に印刷されたチケットと同一の情報(すなわち電子チケット)を、ユーザ1710が所有する携帯端末1740で受信する。本例では、操作メニュー1722での操作の際に、携帯端末1740とキオスク端末1700との間で、例えばBluetooth(登録商標)などの通信インタフェースでの近距離無線通信が行われる。キオスク端末1700から、ユーザの携帯端末1740に、上記電子チケットを直接送信する。この際に、キオスク端末は、コンシェルジュ1721により、その通信の操作をガイドする。
他の例として、図29に示すように、キオスク端末1700は、空間浮遊映像表示部1720の画面上に、空間浮遊映像3(例えば操作メニュー1722の一部)として、上記電子チケットの情報内容を含む、バーコードまたはQRコード(登録商標)などのコード情報1760(言い換えるとコード映像)を表示する。ユーザ1710は、自分の携帯端末1740を用いて、そのコード情報を読み取る。例えば、ユーザ1710は、コンシェルジュ1721によるガイドに従い、操作メニュー1722内に表示されたコード情報1760を携帯端末1740のカメラなどのリーダ機能によって読み取る操作を行う。コンシェルジュ1721は、その読み取りの操作をガイドする。携帯端末1740は、読み取ったコード情報1760に基づいて、電子チケットを取得し、携帯端末1740内部のメモリなどに保持する。
ユーザ1710がキオスク端末1700から受け取ることができるものや情報は、紙のチケットや電子チケットに限らず、例えば買い物に利用できるクーポンやポイントの情報、さらには電子書籍などであってもよい。紙に印刷されたチケットやクーポンは、紛失する可能性があるが、電子チケットやクーポンであれば、携帯端末1740の内部に保持されるので、紛失する可能性を低減できる。また、紛失の可能性を低減するのみならず、電子チケットやクーポンを携帯端末1740の内部に保持することで、紙に印刷されたチケットやクーポンに比べ、実際にチケットを利用する場合に、携帯端末を提示する、または、携帯端末に保持された電子チケットをチケット発行者が読み取るなどの利用形態が可能である。これにより、ユーザにとっての使い勝手が向上する。
キオスク端末は、空間浮遊映像3の操作メニューに対するユーザの操作に応じて、ユーザの携帯端末に対し、無線通信で、その操作メニューに関連する情報(例えばアクセス履歴情報、操作履歴情報など)を送信してもよい。
<キオスク端末に係わる実施の形態5>
図30は、一実施例(実施の形態5とする)として、前述の空間浮遊映像3に対しユーザが任意の文字や図形を入力・描画できる機能(図12)に関する詳しい実施例を示す。例えば、図27、28に示すフローチャートを用いて説明した一連の手続きによって、ユーザがキオスク端末から紙ベースのチケットまたは電子チケットを受け取った場合に、ユーザが、チケットを受け取ったことをユーザが認めるための「サイン」(署名)を行う。
図30のキオスク端末2000は、図21や図23のキオスク端末の構成をベースとした例で、空間浮遊映像表示部2020のみを図示している。図30の(A)は、空間浮遊映像表示部2020に、多視点映像である空間浮遊映像3としてコンシェルジュ2021が表示された状態を示す。(B)は、空間浮遊映像3としてサイン入力のためのユーザインタフェースが表示された状態を示す。(C)は、そのユーザインタフェース内にユーザによりサインが入力され描画された状態を示す。(D)は、空間浮遊映像3としてサイン入力の終了に応じたコンシェルジュ2021が表示された状態を示す。
キオスク端末がチケットを発行してユーザがそのチケットを受け取った後、キオスク端末は、図30の(A)に示すように、空間浮遊映像表示部2020に、空間浮遊映像3としてのコンシェルジュ2021を表示する。コンシェルジュ2021は、ユーザに対し、例えば「お客様がチケットをお受け取りになったことを確認するため、最後に、サインをお願い致します」といったメッセージの映像および音声を出力する。これにより、ユーザに対し、空間浮遊映像3に対するサイン(言い換えると受領サイン)を行うことを促す。
次に、キオスク端末は、コンシェルジュ2021の姿の表示を消し、図30の(B)に示すように、空間浮遊映像表示部2020に、空間浮遊映像3としてのサイン用画面2022(言い換えるとサイン入力のユーザインタフェース)を表示する。
図30の(B)の例では、サイン用画面2022上に空間浮遊映像3として描かれた文字として「チケット受領サインをお願い致します」といった文言が表示される。その文言の下には、サインをする領域を示す枠線(サイン枠線領域)2023が表示される。枠線2021は、例えば所定の背景色(例えば黒)をベースに、4辺の枠線が所定の色(例えば緑色)で表示される。枠線2021内に指先が差し込まれていない時には、枠線2021はその所定の色(例えば緑色)で表示される。
次に、図30の(C)に示すように、ユーザは、自身の手指UHの指先、もしくは所定の導電性のペンを用いて、枠線2023内に、サインとして、自分の名前、本例では筆記体で“Tоm”、を描くように操作を行う。この際、キオスク端末は、前述(図12)と同様に、センシング技術を用いて、空間浮遊映像3の面での空中操作を検出し、検出した指先の接点位置などに合わせて、空間浮遊映像3の面内(枠線2023内)に、リアルタイムで線分を描画する。線分2024は、入力・描画されたサイン(“Tоm”)に相当する一筆書きの線である。線分2024は、所定の色で表示される。
ユーザは、自分の名前をサインとして描き終えると、指先を空間浮遊映像3のサイン枠線領域2023から手前に離す。キオスク端末は、指先が離された後、所定の時間(例えば5秒)が経過したことを判断・検出すると、ユーザによるサインの入力が完了したとみなす。そして、キオスク端末は、図30の(D)のように、サイン入力終了を表す画面2025に遷移させる。この画面2025では、例えばコンシェルジュ2021の姿と共に、「サインを頂き、ありがとうございました」といった文言が表示および音声出力される。以上で、ユーザがチケットを受け取ったことをユーザ自身が認めるための「サイン」を行う一連の操作が終了する。
なお、図30の(C)に示した、ユーザが自身の指先などを用いて空間浮遊映像3としての枠線2023内に自分の名前をサインとして記入する技術は、前述の図12で説明した技術を同様に適用できる。また、図12の説明では、ユーザが自身の指先を空間浮遊映像3の面上の任意の位置に対し奥に差し込んだ時に、空間浮遊映像3全体の枠が例えば赤色に変化する例を記載した。これに対し、図30の(C)の例では、空間浮遊映像3全体の枠ではなく、空間浮遊映像3内の一部の領域(サイン枠線領域2023)のみを、サインを入力し描画するための領域とする。そして、キオスク端末は、その領域内に指先が差し込まれた(言い換えると接触した)ことを検出した時に、その領域の枠線2023を、例えば赤色に変化させてもよい。
また、ユーザが自身の指先を空間浮遊映像3の面上の任意の位置に差し込んだ時、すなわち接触有りの状態の時に、枠線2023は、赤色に限らず、別の所定の色、例えば青色に表示されてもよい。また、接触有りの状態の時に、枠線2023を点滅させるようにしてもよい。さらに、接触有りの状態の時に、枠線2023内の背景領域を、白色に変化させ、その背景領域に書き込まれた線分の色を、別の所定の色、例えば黒色としてもよい。また、枠線2023内の背景領域を黒色とし、その背景領域に書き込まれた線分の色を白色としてもよい。すなわち、サイン枠線領域2023において、ユーザの指先の動きに従って描かれた文字や図形の線分が、ユーザにとって認識しやすいように、キオスク端末は、サイン枠線領域2023での表示を制御する。キオスク端末は、サイン枠線領域2023に対する指先の接触有無などの状態に応じて、サイン枠線領域2023での表示の態様を変えるように制御する。
従来の空間浮遊映像表示装置は、空間浮遊映像による操作メニューにおいてユーザが選択肢のボタンから選択する操作を行うことが主である。それに対し、実施の形態5では、空間浮遊映像3に対し、ユーザが手指を動かして任意の文字などをサインとして入力できる機能(空中サイン機能)が提供される。また、この機能では、空間浮遊映像3の面に指先が接触しているか否かに応じて枠線2023などの表示が変化するので、ユーザは、自分が空間浮遊映像3の面に指先が接触しているか否かの状態がわかりやすく、サインが入力しやすい。上記例では、空間浮遊映像3に対する入力を、サインに利用する例を示したが、これに限らず、他のアプリケーションにも利用できる。
<映像表示装置の第1構成例>
次に、図32~図34以降を用いて、空間浮遊映像情報表示システム1の詳細構成例を説明する。図32は、空間浮遊映像情報表示システム1を構成する映像表示装置10についてのより具体的な構成の一例を示す。図32の光源装置13は、例えばプラスチックなどのケース内に、LED、コリメータ、偏光変換素子、合成拡散ブロック、導光体などを収納して構成されている。その光源装置13の上面には、液晶表示パネル11が取り付けられている。また、光源装置13のケースの1つの側面には、半導体光源であるLED素子102Aや、LED素子の制御回路を実装したLED基板102が取り付けられている。それと共に、LED基板102の外側面には、LED素子102Aおよび制御回路で発生する熱を冷却するための部材であるヒートシンク(図示せず)が取り付けられる。
また、ケースの上面に取り付けられた液晶表示パネルフレームには、当該フレームに取り付けられた液晶表示パネル11と、さらに、液晶表示パネル11に電気的に接続されたフレキシブル配線基板(Flexible Printed Circuit:FPC)などが取り付けられて構成されている。すなわち、液晶表示素子である液晶表示パネル11は、固体光源であるLED素子102Aと共に、電子装置を構成する制御回路からの制御信号に基づいて、透過光の強度を変調することによって、表示映像を生成する。
<光源装置の第1構成例>
続いて、上記映像表示装置の第1構成例における、ケース内に収納されている光源装置などの光学系の構成例について、図32と共に、図33を参照しながら、詳細に説明する。図32で、光源を構成するLED102Aは、コリメータ15に対し、所定の位置に取り付けられている。なお、図32では、一断面を図示しているので、1つのLED素子やコリメータしか見えていないが、LED基板102には複数のLED素子が配列されており、それらに対応させて複数のコリメータが配列されている。コリメータ15は、各々、例えばアクリルなどの透光性の樹脂により形成されている。コリメータ15は、放物断面を回転して得られる円錐凸形状の外周面156を有すると共に、頂部(LED基板102に接する側)における中央部に、凸部(すなわち凸レンズ面)157が形成された凹部153を有する。
また、コリメータ15の平面部(上記頂部とは逆の側)の中央部には、外側に突出した凸レンズ面(あるいは、内側に凹んだ凹レンズ面でもよい)154を有している。なお、コリメータ15の円錐形状の外周面を形成する放物面156は、LED素子102Aから周辺方向に出射する光を内部で全反射することが可能な角度の範囲内において設定され、あるいは、反射面が形成されている。
また、LED素子102A(図33の(A)ではLED素子14a,14b)は、LED基板102の表面上の所定の位置にそれぞれ配置されている。このLED基板102は、コリメータ15に対し、表面上のLED素子102Aが、それぞれ、凹部153の中央部に位置するように配置されて固定されている。
かかる構成によれば、上述したコリメータ15によって、LED102Aから放射される光のうち、特に、中央部分から上方(図面での右方向)に向かって放射される光は、コリメータ15の外形を形成する2つの凸レンズ面157,154により集光されて略平行光となる。また、その他の部分から周辺方向に向かって出射される光は、コリメータ15の円錐形状の外周面を形成する放物面によって反射され、同様に、集光されて、略平行光となる。換言すれば、中央部に凸レンズを構成すると共に周辺部に放物面を形成したコリメータ15によれば、LED素子102Aにより発生された光のほぼすべてを平行光として取り出すことが可能となる。これにより、発生した光の利用効率を向上可能となる。
なお、コリメータ15の光の出射側には、偏光変換素子21(言い換えると偏光変換部材)が設けられている。偏光変換素子21は、入射された光の偏光特性を変換する素子である。偏光変換素子21は、図33の(A)に示すように、断面が平行四辺形である柱状(平行四辺形柱)の透光性部材と、断面が三角形である柱状(三角形柱)の透光性部材とを組み合わせ、コリメータ15からの平行光の光軸に対して直交する面に平行に、複数、アレイ状に配列して構成されている。さらに、これらアレイ状に配列された隣接する透光性部材間の界面には、交互に、偏光ビームスプリッタ(PBS膜)211と反射膜212とが設けられている。また、偏光変換素子21へ入射してPBS膜211を透過した光が出射する出射面には、λ/2位相板213(言い換えると半波長板)が備えられている。
偏光変換素子21の出射面には、さらに、図33の(A)にも示すように、矩形状の合成拡散ブロック16が設けられている。LED素子102Aから出射された光は、コリメータ15の働きにより平行光となって、偏光変換素子21を通じて偏光特性が変換された後、合成拡散ブロック16へ入射し、出射側のテクスチャー161により拡散された後、導光体17に到る。
導光体17は、図33の(B)に示すように、例えばアクリルなどの透光性の樹脂により断面が略三角形の棒状に形成された部材である。そして、導光体17は、図32にも示すように、合成拡散ブロック16の出射面に対し、第1の拡散板18aを介して対向する入射面を含んだ導光体光入射部171と、斜面を形成する反射面を含んだ導光体光反射部172と、第2の拡散板18bを介して液晶表示パネル11と対向する出射面を含んだ導光体光出射部173とを備えている。
導光体17の導光体光反射部172には、図33の(B)にも示すように、多数の反射面172aと連接面172bとが交互に鋸歯状に形成されている。そして、反射面172a(図面では右上がりの線分)は、水平面に対して、角度として、αn(nは自然数であり本例では1~130である)を形成している。一例として、ここでは、αnを43度以下(ただし0度以上)に設定している。
導光体入射部171は、光源側に傾斜した湾曲の凸形状に形成されている。これによれば、合成拡散ブロック16の出射面からの平行光は、第1の拡散板18aを介して拡散されて入射する。この入射光は、図面からも明らかなように、導光体入射部171により上方に僅かに屈曲、偏向しながら、導光体光反射部172に達してここで反射される。この反射光は、図面での上方の導光体出射部173の出射面から出射して、当該出射面に対し設けられた液晶表示パネル11に到る。
以上の映像表示装置10によれば、光利用効率や均一な照明特性をより向上するとともに、モジュール化されたS偏波の光源装置13を含め、小型かつ低コストで製造可能となる。なお、上記説明では、偏光変換素子21をコリメータ15の後に取り付けるものとしたが、これに限定されず、偏光変換素子21は液晶表示パネル11に到る光路中に設けられればよい。
なお、導光体光反射部172には、多数の反射面172aと連接面172bとが交互に鋸歯状に形成されており、照明光束は、各々の反射面172a上で全反射されて上方に向かう。さらに、導光体光出射部173には挟角拡散板を設けて、略平行な拡散光束として指向特性を調整する光方向変換パネル54に入射し、斜め方向から液晶表示パネル11へ入射する。本実施例では、光方向変換パネル54を導光体17の出射面と液晶表示パネル11との間に設けたが、光方向変換パネル54を液晶表示パネル11の出射面に設けても同様の効果が得られる。
<映像表示装置の第2構成例>
続いて、図34を用いて、映像表示装置10の具体的な構成の他の例を説明する。図34の映像表示装置10の光源装置は、前述の例と同様に、LED基板102に、光源を構成する複数のLED素子が設けられている(ただし断面図であるため1個のみ図示されている)。これらのLED素子はコリメータ15に対し所定の位置に取り付けられている。LED素子からの光(P偏光とS偏光が混在する光)の発散光束を、コリメータ15により略平行光束に変換し、反射型導光体304の反射面により、液晶表示パネル11に向けて反射する。反射光は、液晶表示パネル11と反射型導光体304との間に配置された反射型偏光板49に入射する。
反射型偏光板49では、特定の偏波(例えばP偏光)を透過して、液晶表示パネル11に入射する。反射型偏光板49では、他方の偏波(例えばS偏光)は反射され、再び反射型導光体304へ向かう。反射型偏光板49は、反射型導光体304の反射面からの光の主光線に対して垂直とならないように傾きを持って設置されており、反射型偏光板49で反射された光の主光線は、反射型導光体304の透過面に入射する。
反射型導光体304の透過面に入射した光は、反射型導光体304の背面を透過し、位相差板であるλ/4板270を透過し、反射板271で反射される。反射板271で反射された光は、再びλ/4板270を透過し、反射型導光体304の透過面を透過する。反射型導光体304の透過面を透過した光は、再び反射型偏光板49に入射する。
この時、反射型偏光板49に再度入射する光は、λ/4板270を2回通過しているため、反射型偏光板49を透過する偏波(例えばP偏光)へ偏光変換されている。よって、偏光変換されている光は、反射型偏光板49を透過し、液晶表示パネル11に入射する。なお、偏光変換に係る偏光設計について、上述の説明から、S偏光とP偏光との偏波を逆にする構成としても構わない。
この結果、光源であるLED素子からの光は、特定の偏波(例えばP偏光)に揃えられて、液晶表示パネル11に入射し、映像信号に合わせて輝度変調されて、パネル面に映像を表示する。
図34でのコリメータ15は、各々例えばアクリルなどの透光性の樹脂またはガラスにより形成されている。図34でのコリメータ15は、図32でのコリメータ15と同様に、放物断面を回転して得られる円錐凸形状の外周面を有してもよく、頂部では、中央部に凸部(すなわち凸レンズ面)を形成した凹部を有してもよい。また、コリメータ15の「平面部の中央部には、外側に突出した凸レンズ面(あるいは、内側に凹んだ凹レンズ面でもよい)を有してもよい。コリメータ15の円錐形状の外周面を形成する放物面は、LEDから周辺方向に出射する光を内部で全反射可能な角度の範囲内において設定され、あるいは、反射面が形成されている。
図34でのLED素子は、LED基板102の表面上の所定の位置にそれぞれ配置されている。LED基板102の表面上のLEDは、それぞれ、コリメータ15に対し、円錐凸形状の頂部の中央部(頂部に凹部が有る場合はその凹部)に位置するように配置されて固定されている。
かかる構成によれば、コリメータ15によって、LED素子から放射される光のうち、特に、中央部分から放射される光は、コリメータ15の外形を形成する凸レンズ面により集光されて平行光となる。また、その他の部分から周辺方向に向かって出射される光は、コリメータ15の円錐形状の外周面を形成する放物面によって反射され、同様に、集光されて平行光となる。換言すれば、中央部に凸レンズを構成すると共に、周辺部に放物面を形成したコリメータ15によれば、LED素子により発生された光のほぼすべてを平行光として取り出すことが可能となり、発生した光の利用効率を向上可能となる。
以上説明した光源装置13などの構成は、前述の図13や図14などに示した空間浮遊映像情報表示システム1を構成する映像表示装置10の光源装置13として適用できる。
さらに、図32に示したコリメータ15により略平行光に変換された光は、反射型導光体304で反射される。この反射光のうち、反射型偏光板49の作用により、特定の偏波の光は、反射型偏光板49を透過し、反射型偏光板49の作用により反射された他方の偏波の光は、再度導光体304を透過する。この光は、反射型導光体304に対し、液晶表示パネル11とは逆の位置にある反射板271で反射される。この時、この光は、位相差板であるλ/4板270を2度通過することで偏光変換される。
反射板271で反射した光は、再び導光体304を透過して、反対面に設けられた反射型偏光板49に入射する。この入射光は、偏光変換がなされているので、反射型偏光板49を透過して、偏光方向を揃えて、液晶表示パネル11に入射される。この結果、光源の光をすべて利用できるので、光の幾何光学的な利用効率が2倍になる。また、反射型偏光板の偏光度(言い換えると消光比)もシステム全体の消光比に乗せられるので、本実施例の光源装置13を用いることで、表示装置全体としてのコントラスト比が大幅に向上する。
なお、反射型導光体304の反射面の面粗さおよび反射板271の面粗さを調整することで、それぞれの反射面での光の反射拡散角を調整できる。液晶表示パネル11に入射する光の均一性がより好適になるように、設計ごとに、反射型導光体304の反射面の面粗さおよび反射板271の面粗さを調整すればよい。
<自動販売機に係る実施の形態>
次に、図35を用いて、本発明の他の実施の形態として、空間浮遊映像情報表示システムを、自動販売機に適用した例について説明する。図35は、例えば、ドリンク類の自動販売機に本発明を適用した場合を示す図である。
図35において、自動販売機本体2900には、空間浮遊映像表示部2920が備えられている。この空間浮遊映像表示部2920も、図示はしないが、図13や図14に示した内部構成を備えており、空間浮遊映像は、映像表示装置10とレンチキュラーレンズ1103による多視点映像に基づき生成される。また、この自動販売機2900には、自動販売機2900により販売されているドリンク類を表示するドリンク類ディスプレイ部2980、お札を投入するためのお札投入部2981、コインを投入するためのコイン投入部2982、つり銭を取り出すためのつり銭取り出し口2983、利用者によって購入されたドリンクを取り出すためのドリンク取り出し口2984が備えられている。
自動販売機本体2900には、キオスク端末同様、カメラまたは人感センサ―が備えられており、利用者が近づくと、空間浮遊映像表示部2920が起動する。次に、図35に示すように、空間浮遊映像表示部2920には、コンシェルジュ2921が表れて、利用者に対して、例えば、「いらっしゃいませ。ご利用ありがとうございます。画面が数字ボタンに変わります。ご希望の商品番号をお選びください。」という音声を発する。その後、空間浮遊映像表示部2920は、コンシェルジュ2921の姿が消え、続いて、数字ボタン2922と決定ボタン2923が表示される。この時、図示はしないが、数字ボタン2922と決定ボタン2923に加えて、取り消しボタンや、戻るボタンが表示されてもよい。
上記の通り、図35に示す空間浮遊映像表示部2920に表示されるコンシェルジュ2921の映像は、運動視差を伴う多視点映像に基づく空間浮遊映像である。これにより、利用者は、コンシェルジュ2921の映像を立体像として視認することができる。さらに、利用者が自動販売機本体2900の周辺を移動した場合には、利用者は、コンシェルジュ2921が、利用者の移動に伴い、常に利用者の方に視線を向けて話しかけるように見える。そのため、利用者は、コンシェルジュ2921の映像を、あたかも、実際の人物がそこに存在し、しかも、自分一人に向かって話しかけてくれているような感覚を得ることができる、という新たな効果をもたらす。
利用者が、空間浮遊映像表示部2920に表示された数字ボタン2922と決定ボタン2923を操作することによりドリンクを選択し、所定の金額を、お札投入部2981やコイン投入部2982に投入することで、当該ドリンクがドリンク取り出し口2984から取り出すことができる形で供出される。その後、空間浮遊映像表示部2920には、数字ボタンと決定ボタンが消えて、再び、コンシェルジュ2921が表れ、例えば、「ありがとうございました。またのご利用をお持ちいたしております。」という音声を発する。この場合でも、キオスク端末同様、音声は、通常のスピーカから発せられてもよいし、超指向性スピーカにより、利用者だけが聞こえるように発せられてもよい。
上記の一連の操作により、利用者は所望のドリンクを購入することができる。なお、図35の例では、空間浮遊映像表示部だけの例を示したが、自動販売機においても、キオスク端末の例と同様に、液晶表示装置と空間浮遊映像表示部の両方が備えられていてもよいし、また、空間浮遊映像表示部が1か所ではなく、2か所以上に備えられてもよい。なお、空間浮遊映像表示部が2か所に備えられている場合には、そのうちのいずれか1つの空間浮遊映像表示部には、運動視差を伴う多視点映像としてコンシェルジュが表示され、他の空間浮遊映像表示部には、数字ボタンと決定ボタンが表示されるように構成してもよい。
また、コンシェルジュ2921として、複数の、年齢や性別の異なる、別の人物像やアニメーションによるキャラクターを表示するようにしてもよい。上記複数の、年齢や性別の異なる、別の人物像やアニメーションによるキャラクターを表示するためのデータは、図2の不揮発性メモリ1108に格納されており、適宜、それら複数の人物像やアニメーションによるキャラクターのうちの1つが選択されて、コンシェルジュ2921として、空間浮遊映像表示部に表示されるようにしてもよい。その場合、利用者の属性(年齢など)に応じて、いずれの人物像またはキャラクターを表示するかを決定するようにしてもよい。
以上、記載したように、本実施の形態でも、キオスク端末の場合と同様に、運動視差を伴う多視点画像(または映像)に基づく空間浮遊映像表示部を備えているので、利用者は非接触で商品を選択して購入することができる。また、利用者が自動販売機に近づくことを検知して、空間浮遊映像が自動的に表示され、さらに、空間浮遊映像表示部には、運動視差を伴う多視点画像(または映像)表示に基づく、立体像として認識されるコンシェルジュ2921としての人物像やキャラクターを表示することができる。その結果、通常の自動販売機に比べて、利用者は、コンシェルジュ2921の映像を、あたかも、実際の人物がそこに存在し、しかも、自分がどの位置に移動しても、常に自分に向かって話しかけてくれているような感覚を得ることができる、という効果を得ることができる。従って、上記のようなコンシェルジュ2921の表示に関わるもの珍しさから、利用者をより引き付けることができ、自動販売機による商品の売り上げ向上にも資することが期待できる。
以上、本発明を実施の形態に基づいて具体的に説明したが、本発明は前述の実施の形態に限定されず、要旨を逸脱しない範囲で種々変更可能である。各実施の形態は、必須構成要素を除き、構成要素の追加・削除・置換などが可能である。特に限定しない場合、各構成要素は、単数でも複数でもよい。各実施の形態を組み合わせた形態も可能である。
実施の形態に係る技術では、空間浮遊映像を高解像度かつ高輝度な映像情報を空間浮遊した状態で表示することにより、例えば、ユーザは感染症の接触感染に対する不安を感じることなく操作を可能にする。不特定多数のユーザが使用するシステムに本実施例に係る技術を用いれば、感染症の接触感染のリスクを低減し、不安を感じることなく使用できる非接触ユーザインタフェースを提供可能にする。このような技術を提供する本発明によれば、国連の提唱する持続可能な開発目標(SDGs:Sustainable Development Goals)の「3すべての人に健康と福祉を」に貢献する。
また、実施の形態に係る技術では、出射する映像光の発散角を小さくし、さらに特定の偏波に揃えることで、再帰反射部材に対して正規の反射光だけを効率良く反射させるため、光の利用効率が高く、明るく鮮明な空間浮遊映像を得ることが可能になる。実施の形態に係る技術によれば、消費電力を大幅に低減可能な、利用性に優れた非接触ユーザインタフェースを提供できる。このような技術を提供する本発明によれば、国連の提唱する持続可能な開発目標(SDGs:Sustainable Development Goals)の「9産業と技術革新の基盤をつくろう」および「11住み続けられるまちづくりを」に貢献する。
さらに、実施の形態に係る技術では、指向性(直進性)の高い映像光による空間浮遊映像の形成を可能にする。本実施例に係る技術では、いわゆるキオスク端末のような高いセキュリティが求められる映像や、ユーザに正対する人物には秘匿したい秘匿性の高い映像を表示する場合でも、指向性の高い映像光を表示することで、ユーザ以外に空間浮遊映像を覗き込まれる危険性が少ない非接触ユーザインタフェースを提供可能にする。本発明は、以上のような技術を提供することにより、国連の提唱する持続可能な開発目標(SDGs:Sustainable Development Goals)の「11住み続けられるまちづくりを」に貢献する。
1…空間浮遊映像情報表示システム、2…再帰反射部材、3…空間浮遊映像、10…映像表示装置、11…液晶表示パネル、13…光源装置、330…再帰反射板、1103…レンチキュラーレンズ、1400、1500、1600、1700…キオスク端末、1510…液晶表示画面、1520、1620、1720…空間浮遊映像表示部、1521、1621、1721、2921…コンシェルジュ、1522、1622、1722…操作メニュー、1530…取り出し口、1541,1542…カメラ、1550…筐体、1551,1552…超指向性スピーカ、1560…人感センサ、1570…斜面、2922…数字ボタン、2923…決定ボタン。

Claims (35)

  1. 空中に空間浮遊映像を形成する空間浮遊映像情報表示システムであって、
    少なくとも1個のオブジェクトの映像を表示する映像表示装置と、
    前記映像表示装置の映像光出射側に配置されたレンチキュラーレンズと、
    前記映像表示装置からの映像光を再帰反射させることで空中に前記空間浮遊映像を形成するための再帰性反射部材と、
    を備え、
    前記映像表示装置は、前記オブジェクトとして、複数の視点により撮影またはレンダリングして得られた多視点画像を表示する、
    空間浮遊映像情報表示システム。
  2. 請求項1に記載の空間浮遊映像情報表示システムにおいて、
    前記レンチキュラーレンズは、前記映像表示装置と前記再帰反射部材との間に配置される、
    空間浮遊映像情報表示システム。
  3. 請求項1に記載の空間浮遊映像情報表示システムにおいて、
    前記レンチキュラーレンズは、前記映像表示装置の表示パネルの出射面から所定の距離に配置される、
    空間浮遊映像情報表示システム。
  4. 請求項3に記載の空間浮遊映像情報表示システムにおいて、
    前記レンチキュラーレンズと前記映像表示装置との距離が、前記レンチキュラーレンズの焦点距離により調整される、
    空間浮遊映像情報表示システム。
  5. 請求項1に記載の空間浮遊映像情報表示システムにおいて、
    前記映像表示装置の表示パネルの出射面と、前記レンチキュラーレンズの入射面とが平行である、
    空間浮遊映像情報表示システム。
  6. 請求項1に記載の空間浮遊映像情報表示システムにおいて、
    前記オブジェクトは、人物像としての形状を有する、
    空間浮遊映像情報表示システム。
  7. 請求項1に記載の空間浮遊映像情報表示システムにおいて、
    前記レンチキュラーレンズは、前記映像表示装置と前記再帰反射部材との間に配置され、
    前記映像表示装置および前記再帰性反射部材を収納する筐体と、
    所定操作に基づいて所定の処理を実行する制御装置と、を備え、
    前記オブジェクトは、人物像としての形状を有し、
    前記多視点画像として表示された人物像は、ユーザの移動に伴って運動視差を有する、
    空間浮遊映像情報表示システム。
  8. 請求項7に記載の空間浮遊映像情報表示システムにおいて、
    前記多視点画像として表示された人物像の顔の向きは、前記ユーザの移動に従って、ユーザの方に向くように移動する、
    空間浮遊映像情報表示システム。
  9. 請求項7に記載の空間浮遊映像情報表示システムにおいて、
    前記人物像は、前記ユーザに対し前記操作をガイドするコンシェルジュである、
  10. 請求項7に記載の空間浮遊映像情報表示システムにおいて、
    前記筐体に対し前記ユーザが近づいたことを検知した場合に、前記空間浮遊映像として、最初に、前記オブジェクトとして人物像を表示し、次に、操作メニューを表示する、
    空間浮遊映像情報表示システム。
  11. 請求項7に記載の空間浮遊映像情報表示システムにおいて、
    前記筐体に対し前記ユーザが近づいたことを検知した場合に、前記空間浮遊映像として、前記オブジェクトとしての人物像と操作メニューとの両方を表示する、
    空間浮遊映像情報表示システム。
  12. 請求項7に記載の空間浮遊映像情報表示システムにおいて、
    前記ユーザを撮像する撮像装置を備え、
    前記撮像装置により取得した前記ユーザが写った画像に基づいて、前記ユーザが近づいたことを検知する、
    空間浮遊映像情報表示システム。
  13. 請求項7に記載の空間浮遊映像情報表示システムにおいて、
    前記制御装置は、前記ユーザの認証を行い、前記認証の結果に基づいて、前記オブジェクトとして前記人物像の表示から前記操作メニューの表示へ遷移させる、
    空間浮遊映像情報表示システム。
  14. 請求項7に記載の空間浮遊映像情報表示システムにおいて、
    前記ユーザを撮像する撮像装置を備え、
    前記撮像装置により取得した前記ユーザが写った画像に基づいて、前記ユーザの認証を行う、
    空間浮遊映像情報表示システム。
  15. 請求項1に記載の空間浮遊映像情報表示システムにおいて、
    前記空間浮遊映像として、少なくとも2つ以上の選択肢を含んだ操作メニューを表示する、
    空間浮遊映像情報表示システム。
  16. 請求項9に記載の空間浮遊映像情報表示システムにおいて、
    前記空間浮遊映像として、前記コンシェルジュと、少なくとも2つ以上の選択肢を含んだ操作メニューとを表示し、
    前記コンシェルジュの映像および音声により、前記操作メニューに対する操作をガイドする、
    空間浮遊映像情報表示システム。
  17. 請求項7に記載の空間浮遊映像情報表示システムにおいて、
    前記ユーザにのみ聴取可能に音声信号を出力する超指向性スピーカを備える、
    空間浮遊映像情報表示システム。
  18. 請求項7に記載の空間浮遊映像情報表示システムにおいて、
    前記制御装置は、前記ユーザの属性情報を取得し、前記属性情報に基づいて、前記ユーザが前記空間浮遊映像情報表示システムを初めて使用するユーザであるか、所定の年齢以上のユーザであるか、の少なくともいずれかを含む条件を判定し、
    前記条件を満たすユーザに対し、前記空間浮遊映像として前記コンシェルジュによるガイドを行う、
    空間浮遊映像情報表示システム。
  19. 請求項1に記載の空間浮遊映像情報表示システムにおいて、
    前記空間浮遊映像に対するユーザによる操作を検出するためのセンサを含むセンシングシステムと、
    前記映像表示装置および前記再帰性反射部材を備えた筐体と、
    検出された前記操作に基づいて所定の処理を実行する制御装置と、を備え、
    前記制御装置は、検出された前記操作に基づいて、書類を発行する処理を実行し、
    前記筐体の一部に、前記書類の取り出し口を備える、
    空間浮遊映像情報表示システム。
  20. 請求項19に記載の空間浮遊映像情報表示システムにおいて、
    前記空間浮遊映像情報表示システムは、前記書類としてチケットまたは行政証書を発行する機能を有するキオスク端末である、
    空間浮遊映像情報表示システム。
  21. 請求項7に記載の空間浮遊映像情報表示システムにおいて、
    前記ユーザの所持する携帯端末との間で無線通信を行う通信部を備える、
    空間浮遊映像情報表示システム。
  22. 請求項8に記載の空間浮遊映像情報表示システムにおいて、
    前記無線通信に基づいて、前記携帯端末から送信された前記ユーザの情報を受信する、
    空間浮遊映像情報表示システム。
  23. 請求項22に記載の空間浮遊映像情報表示システムにおいて、
    前記制御装置は、検出された前記操作に基づいて、書類を発行する処理を実行し、
    前記無線通信に基づいて、前記書類の情報を前記携帯端末に送信する、
    空間浮遊映像情報表示システム。
  24. 請求項7記載の空間浮遊映像情報表示システムにおいて、
    前記空間浮遊映像として、前記ユーザの携帯端末に読み取らせるためのコード情報を表示する、
    空間浮遊映像情報表示システム。
  25. 請求項7記載の空間浮遊映像情報表示システムにおいて、
    前記ユーザを撮像する撮像装置を備え、
    前記撮像装置により、前記ユーザの携帯端末に表示されたコード情報を読み取る、
    空間浮遊映像情報表示システム。
  26. 請求項1記載の空間浮遊映像情報表示システムにおいて、
    前記空間浮遊映像に対するユーザによる操作を検出するセンサと、
    前記映像表示装置および前記再帰性反射部材を収納する筐体と、
    検出された前記操作に基づいて所定の処理を実行する制御装置と、を備え、
    前記空間浮遊映像の面に対する前記ユーザの手指または所持物による接触の状態を、センシングシステムを用いて検出し、
    前記空間浮遊映像の面において前記接触がされた位置に線を前記空間浮遊映像として描画する、
    空間浮遊映像情報表示システム。
  27. 請求項26に記載の空間浮遊映像情報表示システムにおいて、
    前記制御装置は、前記空間浮遊映像の面において文字や図形として描画された前記線を、前記ユーザによる入力情報として取得する、
    空間浮遊映像情報表示システム。
  28. 請求項26に記載の空間浮遊映像情報表示システムにおいて、
    前記制御装置は、前記空間浮遊映像の面において文字や図形として描画された前記線を、前記ユーザによるサインとして取得する、
    空間浮遊映像情報表示システム。
  29. 請求項26に記載の空間浮遊映像情報表示システムにおいて、
    前記空間浮遊映像の面において描画される前記線は、前記ユーザの氏名または属性に関する情報である、
    空間浮遊映像情報表示システム。
  30. 請求項26に記載の空間浮遊映像情報表示システムにおいて、
    前記空間浮遊映像の全体または一部の領域に、枠を表示し、
    前記制御装置は、前記空間浮遊映像の面における前記一部の領域に対する前記ユーザの手指または所持物による接触の有無に応じて、前記枠の色を変えるように、表示を制御する、
    空間浮遊映像情報表示システム。
  31. 請求項26に記載の空間浮遊映像情報表示システムにおいて、
    前記空間浮遊映像の全体または一部の領域に、枠を表示し、
    前記制御装置は、前記空間浮遊映像の面における前記枠の内側の領域に対する前記ユーザの手指または所持物による接触の有無に応じて、前記枠の内側の領域の背景色を変えるように、表示を制御する、
    空間浮遊映像情報表示システム。
  32. 請求項26に記載の空間浮遊映像情報表示システムにおいて、
    前記空間浮遊映像の全体または一部の領域に、枠を表示し、
    前記制御装置は、前記空間浮遊映像に対し前記線を描画するモードと、前記空間浮遊映像に対し前記線を描画しないモードとの切り替えを制御し、前記線を描画するモードと前記線を描画しないモードとで、前記枠の色を変えるように、表示を制御する、
    空間浮遊映像情報表示システム。
  33. 請求項26に記載の空間浮遊映像情報表示システムにおいて、
    前記空間浮遊映像の全体または一部の領域に、枠を表示し、
    前記制御装置は、前記空間浮遊映像の面に対する前記ユーザの手指または所持物による接触の有無に応じて、前記枠を点滅させるように、表示を制御する、
    空間浮遊映像情報表示システム。
  34. 請求項26に記載の空間浮遊映像情報表示システムにおいて、
    前記筐体の所定の箇所に、前記空間浮遊映像の面に対する前記操作の検出および前記線の描画を行うモードに移行させるための物理的なボタンを備える、
    空間浮遊映像情報表示システム。
  35. 請求項26に記載の空間浮遊映像情報表示システムにおいて、
    前記空間浮遊映像の面に対する前記操作の検出および前記線の描画を行うモードに移行させるためのボタンを、前記空間浮遊映像の一部として表示する、
    空間浮遊映像情報表示システム。
JP2022097620A 2022-06-16 2022-06-16 空間浮遊映像情報表示システム Pending JP2023183847A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022097620A JP2023183847A (ja) 2022-06-16 2022-06-16 空間浮遊映像情報表示システム
PCT/JP2023/013028 WO2023243181A1 (ja) 2022-06-16 2023-03-29 空間浮遊映像情報表示システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022097620A JP2023183847A (ja) 2022-06-16 2022-06-16 空間浮遊映像情報表示システム

Publications (1)

Publication Number Publication Date
JP2023183847A true JP2023183847A (ja) 2023-12-28

Family

ID=89192544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022097620A Pending JP2023183847A (ja) 2022-06-16 2022-06-16 空間浮遊映像情報表示システム

Country Status (2)

Country Link
JP (1) JP2023183847A (ja)
WO (1) WO2023243181A1 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011095743A (ja) * 2009-10-28 2011-05-12 Seiko Epson Corp 画面システムおよび三次元ディスプレイの作成方法
JP6314688B2 (ja) * 2014-06-25 2018-04-25 船井電機株式会社 入力装置
US10191295B2 (en) * 2017-01-05 2019-01-29 Looking Glass Factory, Inc. Advanced retroreflecting aerial displays
WO2022018926A1 (ja) * 2020-07-22 2022-01-27 日本電産サンキョー株式会社 入力装置および入力装置の制御方法
JPWO2022038918A1 (ja) * 2020-08-20 2022-02-24
JP2022086081A (ja) * 2020-11-30 2022-06-09 マクセル株式会社 空間浮遊映像表示装置

Also Published As

Publication number Publication date
WO2023243181A1 (ja) 2023-12-21

Similar Documents

Publication Publication Date Title
US8042949B2 (en) Projection of images onto tangible user interfaces
JP2016009271A (ja) 映像表示システム
US20180348960A1 (en) Input device
WO2022158209A1 (ja) 空間浮遊映像表示装置
WO2022137940A1 (ja) 空間浮遊映像表示装置
WO2022138297A1 (ja) 空間浮遊映像表示装置
WO2022113745A1 (ja) 空間浮遊映像表示装置
WO2023243181A1 (ja) 空間浮遊映像情報表示システム
KR101698779B1 (ko) 마이크로 미러 어레이 및 그 제조 방법, 그리고 이러한 마이크로 미러 어레이를 포함하는 플로팅 디스플레이
WO2023276921A1 (ja) 空中浮遊映像表示装置
WO2023112463A1 (ja) 空間浮遊映像情報表示システム
JP2022097901A (ja) 空間浮遊映像表示装置
US20240184133A1 (en) Air floating video display apparatus
CN118355356A (zh) 空间悬浮影像信息显示系统
JP2024080390A (ja) 空間浮遊映像表示装置
JP2022129473A (ja) 空中映像表示装置
WO2023162690A1 (ja) 空中浮遊映像表示装置
JP2022089271A (ja) 空間浮遊映像表示装置
WO2024062749A1 (ja) 空中浮遊映像表示装置
WO2022270384A1 (ja) 空中浮遊映像表示システム
CN118131500A (zh) 空中悬浮影像显示装置
WO2023085069A1 (ja) 空中浮遊映像表示装置
WO2023068021A1 (ja) 空中浮遊映像表示システム
KR101540099B1 (ko) 사용자 인터랙션형 영상 디스플레이 시스템
JP2023006618A (ja) 空間浮遊映像表示装置