JP2023182781A - 動的焦点制御を持つ眼用レンズ - Google Patents

動的焦点制御を持つ眼用レンズ Download PDF

Info

Publication number
JP2023182781A
JP2023182781A JP2023178642A JP2023178642A JP2023182781A JP 2023182781 A JP2023182781 A JP 2023182781A JP 2023178642 A JP2023178642 A JP 2023178642A JP 2023178642 A JP2023178642 A JP 2023178642A JP 2023182781 A JP2023182781 A JP 2023182781A
Authority
JP
Japan
Prior art keywords
glass
main
refractive index
chamber
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023178642A
Other languages
English (en)
Inventor
ブルーノ ベルジェ
Berge Bruno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laclaree
Original Assignee
Laclaree
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laclaree filed Critical Laclaree
Publication of JP2023182781A publication Critical patent/JP2023182781A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/08Auxiliary lenses; Arrangements for varying focal length
    • G02C7/081Ophthalmic lenses with variable focal length
    • G02C7/085Fluid-filled lenses, e.g. electro-wetting lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1616Pseudo-accommodative, e.g. multifocal or enabling monovision
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/08Auxiliary lenses; Arrangements for varying focal length
    • G02C7/088Lens systems mounted to spectacles

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Eyeglasses (AREA)
  • Prostheses (AREA)

Abstract

【課題】眼調節についての障害(老眼、調節痙攣、白内障手術後の患者等)を有する患者のための電子眼鏡に用いる、眼用レンズ又はレンズ群を提供する。【解決手段】主ガラス(120)、副ガラス(160)、主チャンバ(140)及び前記主チャンバ(140)の容積を第1チャンバ(142)及び第2チャンバ(146)に分割するよう構成されている膜(400)を備える眼鏡用眼用レンズ(100)に関し、第1相対密度を有する主流体と第2相対密度を有する副流体を有する。【選択図】図1

Description

本発明は、眼調節についての障害(老眼、調節痙攣、白内障手術後の患者等)を有する患者のための電子眼鏡に関する。より具体的には本発明は、眼用レンズ又はレンズ群に関する。
老眼患者の調節欠如を補償するためには、眼鏡、コンタクトレンズ、又は眼内レンズのような、いくつかの解法が今日、存在する。
患者は、いくつかの眼鏡(それぞれ近視用及び遠視用に最適化された)を装用し得る。しかしいくつかの眼鏡を使用することは、人間工学的に問題を呈し得る。代替として、二重焦点眼鏡が用いられ得る。二重焦点眼鏡は、その下部に、使用者が手元を見るときに近方視力を提供する挿入物を有する。二重焦点眼鏡は、実質的に読書用眼鏡であって、中間視力は質が低い。累進レンズは、下部(読書)から上部へと補正の連続性を有し、ある程度の中間視力も可能にする。しかし中間視力は、狭い領域、いわゆる視力の「コリドー」(corridor)内でだけ鮮明であり、その外はぼける。また累進レンズは、画像をかなり変形するので直線を曲げてしまう。累進レンズは、上及び下の間の屈折力(optical power
)の差が1ディオプター未満であるときに、良好な画像品質を提供する。完全に発症した老眼を持つ人が遠見視力及び近見視力の間で完全な視力のためには、3ディオプターが必要であることを考えると、累進レンズは、画像品質の欠如からやはり問題がある。
コンタクトレンズ又は眼内レンズについて、「モノビジョン」と呼ばれる主要な治療は、左右の眼でコンタクトレンズを2つの異なる距離に調節することである。明らかにこれは、不快であり得る妥協であるが、ユーザは、与えられた固定された対象までの距離(読書用、中間又は遠距離)について、補正用眼鏡を装用し得る。他の選択肢は、いわゆる複数焦点光学系に依拠する。すなわちいくつかの遠距離及び近距離に対応する複数の画像が網膜上に映される。複数焦点の解決法は、近い距離での読書及び遠い距離で見ることを可能にするが、ある程度、画像の品質が劣化する。この解決法では、例えば、夜間に運転する時のように、ぼやけた画像が問題となり得る。
考慮され得る他の解決法は、レーシック又はレーザー外科手術である。残念ながら、老眼患者は、上述のものと同じ欠点に悩まされる。よってモノビジョン又は複数焦点の2つの可能性だけが提供される。どちらの解決法も不快さ及び欠点を招き得る。加えて手術は不可逆である。
本発明は、従来の問題に対する解決法に関し、調節可能な屈折力を持つ眼鏡に関する。この解決法の目的は、少なくとも中央部分においてその屈折力が調節可能であり、変化の範囲が3ディオプターにまで達する眼鏡を提供することである。装用者は、近距離、中距離、遠距離、又は任意の他の距離において、そのガラス(つまりレンズ)の屈折力の連続的な変化によって、良好な視界の効果を得ることができよう。眼鏡の焦点を合わせる力は、手動で駆動されるか又は自動的に焦点が合わされるかのいずれかであり得る。
この目的を達成するために、本発明は、第1局面によれば、眼鏡用の眼用レンズを提供し、この眼用レンズは、主ガラスであって、前記主ガラスは、第1透明材料を備え、前記主ガラスは、第1主表面及び第2主表面を有し、前記主ガラスは、前記第1主表面から前
記第2主表面へ前記第1透明材料を通して光を透過させるよう構成されている、主ガラス、副ガラスであって、前記副ガラスは、第2透明材料を備え、前記副ガラスは、第1副表面及び第2副表面を有し、前記副ガラスは、前記第1副表面から前記第2副表面へ前記第2透明材料を通して光を透過させるよう構成されている、副ガラス、主チャンバであって、前記主チャンバは、前記第2主表面及び前記第1副表面の間に設けられた主容積を有する、主チャンバ、及び膜であって、前記膜は、変形可能な部分を備え、前記変形可能な部分は、前記主チャンバ内に部分的に設けられ、前記主チャンバを、少なくとも主流体を備えるよう構成されている第1チャンバと、少なくとも副流体を備えるよう構成されている第2チャンバとに完全に分離し、前記第1チャンバは、前記第2主表面及び前記変形可能な部分の間に設けられ、前記第2チャンバは、前記変形可能な部分及び前記第1副表面の間に設けられる、膜を備える眼鏡用の眼用レンズであって、前記主流体は、第1相対密度を有し、前記副流体は、第2相対密度を有し、前記第1相対密度及び前記第2相対密度の間の比は、0.9から1.1であり、特に0.95から1.05であり、好ましくは0.99から1.01である。
第1相対密度及び第2相対密度の間のこのような比は、重力による膜の歪が発生することを防ぐ。
このようなガラスをもつ眼鏡は、少なくとも中央部分で変化し得る光学的屈折力を有し、変化の範囲は3ディオプターに達する。装用者は、膜の連続的な変形によって、近距離、中距離、遠距離、又はあらゆる距離において良好な視力から利益を受け得る。加えて、これら眼用レンズは、患者に真の視力の快適性を提供する。
本発明の実施形態によれば、主ガラス屈折率を有する前記主ガラス、及び主流体屈折率を有する前記主流体は、前記主ガラス屈折率及び前記主流体屈折率の間の差が0.1 x 10-3から25 x 10-3であるように選択され、及び/又は副ガラス屈折率を有する前記副ガラス
、及び副流体屈折率を有する前記副流体は、前記副ガラス屈折率及び前記副流体屈折率の間の差が0.1 x 10-3から25 x 10-3であるように選択される。
本発明の実施形態によれば、屈折率は589nmにおいて測定される。
本発明の実施形態によれば、前記主ガラス(120)は、少なくとも部分的に主開口を囲む中間主表面(234)を備え、前記副ガラス(160)は、少なくとも部分的に副開口を囲む中間副表面(654)を備え、前記中間主表面(234)及び前記中間副表面(654)は、残余光分散を最小化するよう構成されている。
本発明の実施形態によれば、中間主及び副表面の粗さは100 nm RMSより小さく、正確には50 nm RMSより小さく、好ましくは20 nm RMSより小さい。
RMSは二乗平均平方根を意味し、この本願で記載されるRMS粗さは、粗さ計を介して測定され得る。
また当業者なら、境界の形状が与えられた正確さのレベルを満たすように(例えばλNaがナトリウム光の波長であるときに、与えられた正確さのレベルがλNa/4よりも小さいように)、表面を設計するだろう。
よってこの構成は、境界がなるべく見えず、与えられた対象への距離において患者の屈折率誤差をなるべく効果的に補正することを可能にする。
本発明の他の実施形態によれば、膜は、部分的には、中間主表面及び中間副表面の間に
設けられている。
よってこの構成は、膜が中間主表面及び中間副表面のレベルに存在することを可能にする。
本発明の他の実施形態によれば、膜は、少なくとも部分的に前記中間主表面及び前記中間副表面の間に設けられている支持部分を備え、前記支持部分は、前記変形可能な部分を囲む。
よってこの構成は、チャンバのサイズを大きくすると同時に、主ガラス及び/又は副ガラスのために必要とされる重さ又は量を減らすことができる。
本発明の他の実施形態によれば、眼用レンズは、前記主流体を運び、前記第1チャンバに結合するよう構成されている主チャネルを備える主流体通路、及び前記副流体を運び、前記第2チャンバに結合するよう構成されている副チャネルを備える副流体通路を備える。
よってこの構成は、主流体及び副流体を運ぶこと及び第1チャンバ及び第2チャンバにそれぞれ結合することを可能にする。
本発明の他の実施形態によれば、前記主チャネルは、前記主ガラスによって部分的に区切られ、前記膜又は前記副ガラスによって部分的に区切られ、及び/又は前記副チャネルは、前記副ガラスによって部分的に区切られ、前記膜又は前記主ガラスによって部分的に区切られている。
よってこの構成は、部品が薄く壊れやすいにもかかわらず、又は製造上の理由があるにもかかわらず、ガラス内にチャネルをもたせることが可能である。
本発明の他の実施形態によれば、前記主チャネルは、前記主ガラスによって完全に区切られ、及び/又は前記副チャネルは、前記副ガラスによって完全に区切られている。
よってこの構成は、ガラスが壊れやすく及び/又はチャネルに穴が開けられないにもかかわらずチャネルをもたせることが可能である。
本発明の他の実施形態によれば、前記変形可能な部分は、前記主又は副開口のレベルに位置する第1位置、第2位置、及び静止位置の間で変形されるように構成され、前記第1位置及び前記第2位置は、前記静止位置の両側に位置するよう構成されている。
よってこの構成は、流体が膜を第1位置、第2位置、及び静止位置のうちの1つの位置から押すときに、エネルギーを節約することが可能である。このエネルギーの一部は、変形可能な部分の弾性的に変形可能な特性によって提供される。
本発明の他の実施形態によれば、前記第1チャンバは、第1チャンバ形状を有し、前記第2チャンバは、第2チャンバ形状を有し、前記第1チャンバ形状は、前記第2チャンバ形状と異なる。
この構成は、第1チャンバの境界及び第2チャンバの境界が重複し、その境界の残余の可視性が低下することを防ぐ。また選ばれた材料に依存して異なる形状を持つチャンバを製造することが可能であり得る。
本発明の他の実施形態によれば、前記膜の厚さは10μm未満であり、特に前記膜の厚さは5μm未満であり、好ましくは前記膜の厚さは1μm未満である。
本発明の他の実施形態によれば、前記第1相対密度及び前記第2相対密度の間の比は、0.9から1.1であり、膜の厚さは10μm未満であり、特に前記第1相対密度及び前記第2相対密度の間の比は、0.95から1.05であり、膜の厚さは5μm未満であり、好ましくは前記第1相対密度及び前記第2相対密度の間の比は、0.99から1.01であり、膜の厚さは1μm未満である。
第1相対密度及び第2相対密度の間の比がおおよそ1であり、膜の厚さが10μm未満であるという事実は、膜に加えられる応力を減らし、よって後者の歪を減らすことを可能にする。
本発明の実施形態によれば、眼用レンズの上部及び下部の間の光学屈折力の勾配は、0.25D未満である。眼用レンズのこのような構成は、改良された光学品質を有することを可能にする。
本発明の他の実施形態によれば、前記主ガラスは、第1主ガラス及び第2主ガラスを備え、及び/又は前記副ガラスは、第1副ガラス及び第2副ガラスを備え、前記第1主ガラス及び前記第2主ガラスは、第1主ガラス屈折率及び第2主ガラス屈折率をそれぞれ有し、前記第1副ガラス及び前記第2副ガラスは、第1副ガラス屈折率及び第2副ガラス屈折率をそれぞれ有し、前記第1主ガラス屈折率及び前記第2主ガラス屈折率のうちの少なくとも1つと、前記主流体屈折率との間の差は、0.1 x 10-3から25 x 10-3であり、前記第
1副ガラス屈折率及び前記第2副ガラス屈折率のうちの少なくとも1つと、前記副流体屈折率との間の差は、0.1 x 10-3から25 x 10-3である。
よってこの構成は、ガラス及び流体の間の境界が多少なりとも見えないようにできる。
本発明の他の実施形態によれば、前記主流体屈折率は、前記副流体屈折率よりも大きく、及び/又は前記第1主ガラス屈折率は、前記第2副ガラス屈折率よりも大きい。
本発明の他の実施形態によれば、主ガラスは、光を副ガラスの第1副表面を通すことによって、第1主表面から見る人へ伝えるように構成されている。
よってこの構成は、遠距離においては、ある方向に膜が変形されることで、光線が患者に集中するようにし、近視力については他の方向に膜が変形されることで、膜の最大変形を最小化でき、よってエネルギーを節約できる。
本発明の他の実施形態によれば、前記第2主ガラスは、前記主流体を運び、前記第1チャンバに結合するように構成されている主チャネルを備える。
よってこの構成は、主流体が運ばれることを可能にする。
本発明の他の実施形態によれば、前記第1副ガラスは、前記副流体を運び、前記第2チャンバに結合するように構成されている副チャネルを備えている。
よってこの構成は、副流体が運ばれることを可能にする。
本発明は、上記実施形態のうちの1つによる眼用レンズを少なくとも1つは備える眼鏡に関する。
本発明の以下の及び他の目的、特徴、局面及び優位性は、添付の図面を参照して、限定ではなく例示として与えられる、実施形態の以下の詳細な説明から明らかになろう。
図1は、本発明の実施形態による眼用レンズ100の分解図を表す。 図2は、本発明の同じ実施形態による屈折率マッチングをもつ眼用レンズ100の断面図を表す。 図3は、本発明の同じ又は別の実施形態による眼用レンズ100の正面図を表す。 図4は、本発明の他の実施形態による、第1主ガラス200、第2主ガラス300、第1副ガラス500、及び第2副ガラス600を持つ眼用レンズ100の断面図を表す。 図5は、本発明の異なる実施形態による、支持膜400及びチャンバサイズを持つチャンバの断面図を示す。 図6は、本発明の異なる実施形態による、支持膜400及びチャンバサイズを持つチャンバの断面図を示す。 図7は、可変領域がアクティベートされるときに、本発明の他の実施形態による眼用レンズ100の膜がどのように変形するかを示し、点線が遠視力に対応し、実線が近視力に対応する。 図8は、本発明の他の実施形態による遠視患者のための遠視力における正の球補正を示す。 図9は、本発明の他の実施形態による近視患者のための負の球補正を示す。
一般原則
本発明の中心は、図1に示される。機械的にはガラス100は、半分120及び他の半分160から成る。これら2つの半分は、それぞれ異なる材料で構成され得る。一方の半分120は、高い屈折率を有し、他方の半分160は、低い屈折率を有する。それぞれの半分において、半分を構成する透明な固体は、同じ半分の液体の屈折率と一致する屈折率を有する。それぞれの半分は、よって固体材料及び液体材料から構成されるが、屈折率が一致することから、光学的にはこれは単一の材料を有することと等価である。ガラスの組み立て及び液体の充填が終われば、外から観測者が見ても、液体と固体を分ける内部の表面は全く見えない。よって例えば、液体回路は、見えなくなる。また主チャンバ140の底部も見えなくなる。
「ガラス」とは、「ケイ酸塩ガラス」だけを意味するのではない。実際、本発明では、「ガラス」という語は、電磁スペクトルのうち人間の眼に可視である部分である可視光又は可視スペクトルに透明である材料又は化合物を意味する。又は、ガラスとはこれら材料から一部分は作られている部品を意味する。
光学的には、レンズ100は、異なる2つの光学材料でできた第1レンズ120及び第2レンズ160の結合によるダブレットと同様である。全体としての屈折力(optical power)、及びより一般的には屈折及び光散乱又は分散のような全体としての光学特性は、
3つの重要な表面、すなわち2つの外部表面及び分離表面の幾何学的構造の異なる特性から予測可能に変化し得る。外部表面が第1レンズ120の第1主表面210及び第2レンズ160の第2副表面620であるとすれば、この分離表面は、与えられた半径Rsepの球の一部、又はその形状に近い非球面表面のいずれかである。
可変レンズの原理は、膜400がレンズの中央開口の全体にわたって伸ばされ得ることであり得る。この中央開口は、図3に示されるように円形であり得る。膜400のエッジ
は、この円形の開口のエッジによって固定され得る。これは、変形可能な膜400の形状が、常に、可変の曲率半径を持つ球面であり得ることを示唆する。変形可能な膜400のある与えられた位置において、その曲率半径は、2つの半分の間の分離表面の曲率半径Rsepと一致する。その特定の位置の選択(近焦点又は遠焦点のいずれかに対応する)は、製品設計に委ねられ得る。変形可能な膜400の他の全ての位置において、膜400の曲率半径は、分離表面の曲率半径と異なる。レンズのこれら設定によると、二重焦点レンズであり得る。すなわち2つの領域が異なる屈折力(及びよって2つの異なる屈折補正)を有するレンズであって、2つの領域の遷移は鋭いが見えない。加えて、遷移領域の幅は、なるべく小さくあるべきであり、すなわち2つの領域の間の勾配は存在すべきではない。
この種のレンズの光学的バリエーションは、液体であり得る2つの流体の間の屈折率の差に依存する。2つの流体の間の屈折率の差としてなるべく大きいものを選択することが有利であり得る。例えば、低い屈折率の部分としては1.33から1.43の範囲の屈折率を選択でき、ここで多くの固体の透明な材料が、不活性の流体同様に存在する。高い屈折率の部分としては、好ましくは1.55から1.70の範囲の屈折率を選択でき、ここで多くの材料が存在する。下の表は、網羅的ではないがいくつかの例を与える。
Figure 2023182781000002
Figure 2023182781000003
Figure 2023182781000004
Figure 2023182781000005
もちろん、さまざまな屈折特性を持つ多くの透明な固体及び液体が存在するので、ここではそれら全てを挙げるのは不可能であろう。上記リストは、流体の選択肢が膨大であり、流体の混合によって、それら及び選択されたものの間で非常に良好なマッチが得られることを示すよう意図されている。
流体及び固体の屈折率は、なるべく厳密に一致するのが有利であり得る。にもかかわらず、2つの率は、最大で数パーセントのオーダーでわずかな差異なら許容され得る。率がわずかに異なるシステムを使うとき、キャビティ及びチャネルは、わずかに見えたり、又は明るい光の中で又は特殊な照射の条件下でだけ見えたりする。このミスマッチは、製品の機能性には影響しないので、ユーザには許容されるだろう。
システムのほとんどの光学的特性は、均質である限り、同質膜400の屈折率にも、その厚さにも依存しない。光透過性だけがわずかに膜400の屈折率に依存するが、これは、膜400の率が低い率及び高い率の間の中間であるときに最大となるからである。にもかかわらず、実際には典型的な液体の屈折率の場合、膜400の境界における屈折による光の損失は、膜400の屈折率の大きな範囲において、常に1.5%未満である。典型的には膜400の厚さは、1マイクロメートルの何分の一から、マイクロメートルの数パーセントまで(100nmから100μm)である。
膜400の材料には、PDMS及び全てのシロキサンの異型(variants)、さまざまな化学組成のエラストマー(ブタジエンベースのもの等)、特に溶媒(3MTM製のTHV221、PiezotechTMによって販売されるコポリマー及びターポリマー)に可溶性の、フッ素化され
た化合物、AF1600のような、フッ素化された溶媒に可溶性であり得るテフロンのような材料、CytonixTMによって販売される製品、反応性化学種に基づくノボラック樹脂及び類似
の樹脂、すなわちエポキシ、ポリウレタン、CR39のような樹脂、透明ポリエステルが含まれる。
PECVD(プラズマ堆積)によってチャンバ内で蒸発させ堆積された、HMDSOとしても知られるヘキサメチルジシロキサンベースの材料のような、低温で薄膜を堆積させることが可能な材料を用いることも有利であり得る。PMMA(ポリメチルメタクリレート)、PC(ポ
リカーボネート)、PS(ポリスチレン)、及びマイクロテクノロジー工作物で用いられ得る全ての樹脂のような、スピンコーティングによって堆積される可溶性のポリマー(反応性又は非反応性)も用いられ得る。
膜400は、物理化学的特性(液体の低平衡吸着が材料中で起こらなければならない)及び透明性と併せて、機械的特性(ヤング率、ポアソン比、弾性変形領域)の組み合わせを有し得る。
膜400の屈折率は、可視光についての膜400の境界の全体的な反射率を最小化するために、好ましくは2つの面の率の間の範囲にあり、最も好ましくは両者の率の幾何平均である。
第1レンズ120の第2主表面220及び/又は第2レンズ160の第1副表面610であり得る、主チャンバの底部は、屈折率の一致によって、光学的に見えないように作られる。にもかかわらず、屈折率がわずかに一致しない場合には、良好な光学品質を持つ表面を有することが有利であり得る。すなわちその形状は、装用者にとっていかなる歪をも作り出さないために、球形か、又は球形に近いかのいずれかであるべきである。
わずかな屈折率の不一致の可能性と同じ理由で、液体及び固体の間の分離の全ての表面は、これらの境界で散乱する残留光を最小化するために、非常に小さい粗さ(Ra < 100 nm RMS, 正確にはRa < 50 nm RMSであり、好ましくはRa < 20 nm RMS)を持つ磨かれた表
面でなければならない。RMS粗さは、粗さ計を介して測定され得る。
反対に、これらの設計原理は全て、屈折率ミスマッチを許容できるウィンドウを大きくすることを許す。
同じ原理が、底部キャビティについてのチャンネル形状及び設計についても適用される。
図4において、より多くの分離表面が用いられ得る眼用レンズ100が示され、すなわち、この解決法は、2から4個の異なる材料を用い得る。図4に示されるように、これら2つの材料は、屈折率が主液体及び副液体に合わされ得て、これら材料のうちのいずれかが外側シェルを作り、CR39又はPC(ポリカーボネート)のような第3材料は、眼用レンズに使用可能な任意のポリマーであり得る。この最後の解決法は、外側の表面がJRのガラスと同様であり、反射防止コーティング、傷防止、曇り防止、カラーコーティング等、眼鏡のための眼用光学業界で何年にもわたって開発されてきたあらゆる表面処理から利益を享受できる可能性があるので、有利であろう。異なるシェルに対して4つの異なる材料を用いることも可能であり、さらには、前述の概念の任意の組み合わせによってもよい。
図5に示されるように、この変形例は、先の図におけるよりもチャネルがより開放的であり、膜400が、変形可能な膜400よりもより厚く、より固い支持部435によって支持される。支持部435及び変形可能な部分470は、同じ材料で作られてもよく、そうでなくてもよい。図5の積層は、上から下に上記変形例を使用し得る。
第1主ガラス200は、CR39のような従来の材料から作られ得て、眼鏡に必要とされる全ての種類のコーティングを支持する。
第2主ガラス300は、中央開口及び外部へのチャネルを有し得る。この部分は、主流体と屈折率が合わせられ得る。
支持部435を持つ膜400は、薄く変形可能な膜で覆われた円形の中央開口を有し得る。
第1副ガラス500は、同じ中央開口及び外部へのチャネルを有し得る。この部品は、第2液体と屈折率が合わされ得る。
第2副ガラス600も、フロントシェルと同じ材料で作られ得る。
図6は、図5の非対称の変形例を示す。ここで流体及び固体の間の境界は、同じ直径を有していなくてもよく、ひょっとすると両方の区画について同じ形状でなくてもよい。
これらシェルの間の全ての分離表面は、かなりよく定義されなければならないかもしれない。特に、全ての分離表面及び前側表面及び裏側表面の異なる曲率半径は、複合レンズ全体の、総合的な光学的屈折力を決定し、単一焦点レンズにおけるように調節可能ではないかもしれない。おそらくは、これは、遠視のユーザの屈折誤差に調節され得る。全ての他の補正眼鏡については、乱視のための補正、又は眼の収差について補正するためのプリズム又は任意の特徴を含ませるように異なる表面を設計することが可能であり得る。唯一の差は、中央領域において、遠距離から読書まで、全ての距離に対して視力を調節するための追加の光学的屈折力を有することであり得る。本応用例では、中央領域又は中央部という語は、膜400の中央領域又は中央部に関連し得る。
実際には、図5にしたがった実現の一例は、背面表面、すなわち第2レンズ160の第2副表面620を除いて、全ての分離表面が球形であるように、ガラスを設計することであろう。この第2副表面620は、近視又は遠視のために必要とされる屈折補正の一部と共に、プリズム及び乱視補正を含むことを可能にする自由曲線表面であり得て、その他の部分は、前部表面210及び中間表面に配置される。
図7は、膜が両極端の位置にあるときのガラスの光学積層体を要約する。ここで主ガラスは、副ガラスよりも高い屈折率を有し、点線は遠視のセットを示し、実線は膜の近視の位置を示す。膜の残りの位置は、これら2つの両極端の位置の間で平坦である(不図示)ようにされる。
これら図8及び9は、どのように患者の補正が考慮されるかを示す。良好な屈折補正を得るためには、それぞれの患者の眼は、例えば乱視及び近視又は遠視のような球面誤差については、無限遠の視力について測定されなければならない。この補正は、図に示されるように、複合ガラスの前面及び/又は背面表面に含まれる。図は、背面及び前面表面の両方に曲面が付けられることによって、屈折誤差の補正に寄与する、特定の場合を示すが、1つの表面だけを使用することも可能である。また業界標準であるように、球面補正については前面表面を用い、乱視及びより複雑な補正については背面表面の自由曲面製造を用いることも可能である。前面表面及び背面表面とは、空気と主ガラスとの境界及び空気と副ガラスとの境界をそれぞれ意味する。分離表面を用いて患者の屈折補正に寄与することも可能である。
第1実施形態による本発明の詳細な説明
第1実施形態によれば、本発明は、図1に示される眼鏡のための眼用レンズ100に関する。この眼用レンズ100は、主ガラス120、副ガラス160、主チャンバ140、膜400、主流体及び副流体を備え得る。
主ガラス120は、第1透明材料を備え得る。この第1透明材料は、表1のうちの1つ
から選ばれ得る屈折率を有し得る。
主ガラス120は、図1に示されるように、第1主表面210及び第2主表面220を有し得る。これら表面は、一方の側つまり端部から他方へと光を伝達するよう構成され得る。より正確には、主ガラス120は、第1主表面210から第2主表面220へ第1透明材料を通して光を伝達するよう構成され得る。
光は、さらに遠くへ到達し得て、主チャンバ140及び膜400を透過して副グラス160に到達し得る。
副ガラス160は、第2透明材料を備え得る。この第2透明材料は、表4のうちの1つ選ばれ得る屈折率を有し得る。
副ガラス160は、図1に示されるように、第1副表面610及び第2副表面620を有し得る。これら表面は、一方の側つまり端から他方へと光を伝達するようにも構成され得る。より正確には、副ガラス160は、光を第1副表面610から第2副表面620へと第2透明材料を通して伝達するように構成され得る。
主チャンバ140は、第2主表面220及び第1副表面610の間に設けられた主容積を有し得て、主チャンバ140は、第2主表面220及び第1副表面610の間で規定され得る。
全ての実施形態では、膜400が存在し得て、これは変形可能な部分470を備え得て、これは主チャンバ140内に配置され得る。実際、この変形可能な部分470は、部分的には主チャンバ140内に含まれ得て、主チャンバ140を少なくとも第1チャンバ142及び第2チャンバ146に完全に又は部分的に分離し得る。第1チャンバ142は、主流体を備えるよう構成され得て、それ、すなわち第1チャンバ142は、主ガラス120の第2主表面220と変形可能な部分470との間に設けられ得る。
膜400の反対側には、第2チャンバ146が存在し得る。このチャンバは、副流体を備えるよう構成され得て、それ、すなわち第2チャンバ146は、変形可能な部分470及び第1副表面610の間に設けられ得る。
ガラス及び流体の間の境界を見えないようにするために、主ガラス120は、主ガラス120の屈折率を有し、主流体は、主流体の屈折率を有するが、これらは実際に互いに近い値であり得る。具体的には、主ガラス120の屈折率及び主流体の屈折率の間の差は、0.1 x 10-3及び25 x 10-3の間で構成され得る。これは、副ガラス160及び副流体の間
の境界についても同じであり得る。
副ガラス160は、副ガラス屈折率を有し得て、副流体は、副流体屈折率を有し得て、それらの差は、すなわち副ガラス屈折率及び副流体屈折率の間の差は、0.1 x 10-3及び25
x 10-3の間で構成され得る。
主流体及び膜400の間の境界、及び副流体及び膜400の間の境界が患者の視野を妨げないように膜400の厚さが薄いことは、それほど厳密に要求されるものではない。
製造中に、膜400は、主ガラス120の上、又は副ガラス160の上のいずれかに置かれ得る。より正確には、主ガラス120は、少なくとも部分的に主開口を囲む中間主表面234を備え得て、ここで膜400が配置され得る。この構成では、膜400は、静止位置として記述され得る位置に配置され得る。
主ガラスと同様に、副ガラスは、少なくとも部分的に副開口を囲む中間副表面を備え得る。中間主表面及び中間副表面は、それらの境界において分散する残余光を最小化し、与えられた対象の距離における患者の屈折誤差を補正するよう構成される。
眼用レンズ100を製造する他の方法は、膜400を中間副表面654上に配置することであり得て、より正確には、静止位置として呼ばれ得る副開口のレベルに配置することであり得るが、これは膜400には圧力がかからないからである。
第1チャンバ142は、膜400によって封止され得る第1容積を備え得て、第2チャンバ146は、同じく膜400によって封止され得る第2容積を備え得る。換言すれば、第1容積及び第2容積は、チャンバ間での流体連通において一切の漏れが許されない、完全に不透過性であり得る。
前述のチャンバは、具体的には第1チャンバ142及び第2チャンバ146は、それらの容積を増加又は減少させるように構成され得る。実際、これは、チャンバの容積を増加又は減少させるよう構成され得る膜400であり得る。実際、膜400の変形可能な部分470は、第1位置及び第2位置の間で変形されるように構成され得る。既に述べたように、静止位置は、圧力が印加されていない時に、主開口又は副開口のレベルにおいて配置され得て、膜400は、静止位置の両側に配置され得る第1位置及び第2位置の間で自身を弾性的に変形する。この技術的特徴は、膜400が静止位置に戻り、圧力が印加されていないときに、膜400の弾性力の一部が利用され得るという優位性を持ち得る。これはエネルギーを節約することを可能にし得る。
膜400に対する不当な負荷を避けるために、チャンバが主流体及び副流体で満たされているときは、相対密度が合わされて、主流体が第1相対密度を有し、第2流体が第2相対密度を有する。第1相対密度及び第2相対密度の間の比は、0.9及び1.2の間で構成され得て、特に0.95及び1.06の間であり、好ましくは0.99及び1.01の間である。よって、この構成のおかげで、重力は、流体に影響を与えず、膜400に間接的に影響を与えない。換言すれば、膜400に歪が現れないが、これは静水圧が膜400の両側において等価だからである。
主流体及び副流体の間の密度一致は、膜400の機械的特性、特に変形・圧力曲線から間接的に差し引かれる水平張力と、又は膜400の材料的特性と組み合わせられ得て、レンズの光学的品質を最適化し得る。眼用レンズ100が垂直で動作されると、すなわち光軸が水平であることを意味するが、眼用レンズ100の上部及び下部の間には大きな高さの差が存在するので、静水圧が重さによって変化し得る。膜400の両側において主流体及び副流体の密度の完全な一致が存在するとき、この圧力は、両側において釣り合わされ得る。すなわち仮に圧力の絶対値が変化しても、変形可能な膜400の一方の側と他方の側との圧力差は、あらゆる場所で打ち消され得る。
一方で、密度のミスマッチが存在するときは、このミスマッチは、膜400のなんらかの変形を誘発するので、光学的な「コマ」収差を生む。この光学的収差が仕様より小さく、よって光学品質がより良い、パラメータ空間の領域が存在することが知られている。以下の表5は、主流体及び副流体のいくつかの構成及び膜厚さのいくつかの構成をまとめたものである。
表5において、密度ミスマッチ比は、主流体の第1相対密度及び副流体の第2相対密度の間の比を表す。理解されるように、眼用レンズ100の上部及び下部の間の光学的屈折力の勾配が0.25D未満であるときに、光学品質が達成される。換言すれば、光学品質
は、第1相対密度及び第2相対密度の間の比が0.9及び1.1の間で構成されるときに、及び膜厚さが10μm未満であるときに、特に第1相対密度及び第2相対密度の間の比が0.95及び1.05の間で構成されるときに、及び膜厚さが5μm未満であるときに、好ましくは第1
相対密度及び第2相対密度の間の比が0.99及び1.01の間で構成されるときに、及び膜厚さが1μm未満であるときに、達成される。
Figure 2023182781000006
前述の中間副表面654は、副ガラス160によって構成され得て、それ、すなわち中間副表面654は、副開口を少なくとも部分的に囲み得る。ここでも、中間主表面234及び中間副表面654の間の境界に特に注意が払われなければならず、他の実施形態では、中間主表面234及び膜400の間の境界、及び中間副表面654及び膜400の間の境界に同じ注意が払われなければならない。事実上、境界は、分散する残余光を最小化するよう構成され得る。そうでなければ、患者は、眼が遠くを見るとき視野の端において不快な感覚を受け得る。
読者に解釈されるように、できるだけ透明で改善された快適さを持つ眼用レンズ100を常に提供することに特に注意が払われなければならない。
第2実施形態による本発明の詳細な説明
この第2実施形態では、前述の技術的特徴の全体が多かれ少なかれ本実施形態においても同じである。しかし第2実施形態では、膜400は、部分的には中間主表面234及び中間副表面654の間に設けられる支持部分435を備え得る。この支持部分435は、変形可能部分470を囲み得て、この構成では、支持部分435は、チャンバのサイズを大きくし、同時に主及び/又は副ガラス160に必要となる重さ又は量を小さくする優位性を提供し得る。この技術的特徴は、コストを低下し、視覚快適性を増し、及び/又は製
造を促進することにつながり得る。実際、主ガラス120及び副ガラス160は、異なる屈折率を有し、異なる材料から作られ得るので、第1チャンバ142が第1チャンバ形状を有し、第2チャンバが第2チャンバ形状を有するとき、これらは互いに異なる形状及び/又は寸法を有し得る。換言すれば、第1チャンバ形状は、第2チャンバ形状とは異なり得る。
第3実施形態による本発明の詳細な説明
この第3実施形態では、前述の実施形態との差異は、主ガラス120及び副ガラス160の構成にある。実際、主ガラス120は、第1主ガラス200及び第2主ガラス300を備え得て、及び/又は副ガラス160は、第1副ガラス500及び第2副ガラス600を備え得る。
第1主ガラス200は、第1主ガラス屈折率を有し得て、第2主ガラス300は、第2主ガラス屈折率を有し得る。第1主ガラス屈折率は、表1にある屈折率の1つから、又は任意の光学材料から選択され得る。第2主ガラス屈折率についても同様であり得る。
第1副ガラス500は、第1副ガラス屈折率を有し得て、第2副ガラス600は、第2副ガラス屈折率を有し得る。第1副ガラス屈折率は、表4にある屈折率の1つから選択され得る。第2副ガラス屈折率についても同様であり得る。
第1主ガラス屈折率及び第2主ガラス屈折率のうちの少なくとも1つと主流体屈折率との差は、0.1 x 10-3及び25 x 10-3の間で構成され得て、第1副ガラス屈折率及び第2副
ガラス屈折率のうちの少なくとも1つと副流体屈折率との差は、0.1 x 10-3及び25 x 10-3の間で構成され得る。この技術的特徴は、ガラスと流体との差は、無視でき、患者には
、この機構がほとんど目には見えず、患者の快適性を大きく向上させるので、特に有利であり得る。
この技術的特徴は、第2主ガラス300は、主流体を運び、第1チャンバ142につながるよう構成された主チャネルを備え得て、又は第1副ガラス500は、副流体を運び、第2チャンバ146につながるよう構成された副チャネルを備え得て、主流体を備える主チャネル及び副流体を備える副チャネルは、屈折率が合わせられているので多少なりとも目に見えないので、実に便利であり得る。
この実施形態全体で、主流体は、主流体通路123を介して第1チャンバ142内で運ばれ得て、副流体は、副流体通路156を介して第2チャンバ146内で運ばれ得る。
主流体通路123は、第1チャンバ142と流体的に連通するよう構成されている主チャネルを備え得る。この主チャネルは、上述の実施形態の1つによれば、部分的には主ガラス120によって境界が定められ、部分的には膜400又は副ガラス160によって境界が定められる。いくつかの製造上の理由のため、この技術的特徴は、副ガラス160に穴あけができない場合には興味深いかもしれない。
副流体通路156は、第2チャンバ146と流体的に連通するよう構成されている副チャネルを備え得る。この副チャネルは、上述の実施形態の1つによれば、部分的には副ガラス160によって境界が定められ、部分的には膜400又は主ガラス120によって境界が定められる。いくつかの製造上の理由のため、この技術的特徴は、副ガラス160に穴あけができない場合には興味深いかもしれない。
ある実施形態では、主流体通路123及び副流体通路156は、外部との流体的接続を促進するように、ある流体がそのチャンバ内で運ばれるときに、もう一方の流体通路にお
ける膜400の制約条件を避けるために、異なるレベルに配置され得る。
他の実施形態では、主チャネルは、主ガラス120によって完全に区切られてもよい。副チャネルについても同様であり得る。すなわち、副チャネルが、副ガラス160によって完全に区切られてもよい。
本記載からは、主チャネル又は副チャネルがそれら自身の構成を、互いから独立して有し得ることが明らかである。
本記載から解釈され得るように、実施形態の全体において、低屈折率部分160は、高屈折率部分120及び眼の間に備えられ得る。実際には、主ガラス屈折率は、副ガラス屈折率よりも大きくてもよく、及び/又は第1主ガラス屈折率は、第2副ガラス屈折率よりも大きくてもよい。
これら技術的特徴のうちのいくつかは、そのような眼用レンズ100を備える眼鏡において、又は顕微鏡、ドンダースズームモジュール、精密アイピース、単眼鏡、双眼鏡、カメラ及びプロジェクター、対物レンズ、又は人間の眼に入る前に光を変換するよう構成される任意の装置のためのアイピースにおいて見出され得る。
一般公衆は、日々の仕事(読書、TVを見ること、コンピュータで作業をすること、運転すること、スポーツを行うこと等)における遠近調節の損失を補償するために、これらペアから利益を享受し得るが、高度に正確なタスクを実行するときに、視力の正確さを増すために非老眼の人々によっても用いられ得る。

Claims (15)

  1. 主ガラス(120)であって、前記主ガラス(120)は、第1透明材料を備え、前記主ガラス(120)は、第1主表面(210)及び第2主表面(220)を有し、前記主ガラス(120)は、前記第1主表面(210)から前記第2主表面(220)へ前記第1透明材料を通して光を透過させるよう構成されている、主ガラス、
    副ガラス(160)であって、前記副ガラス(160)は、第2透明材料を備え、前記副ガラス(160)は、第1副表面(610)及び第2副表面(620)を有し、前記副ガラス(160)は、前記第1副表面(610)から前記第2副表面(620)へ前記第2透明材料を通して光を透過させるよう構成されている、副ガラス、
    主チャンバ(140)であって、前記主チャンバ(140)は、前記第2主表面(220)及び前記第1副表面(610)の間に設けられた主容積を有する、主チャンバ、及び
    膜(400)であって、前記膜(400)は、変形可能な部分(470)を備え、前記変形可能な部分(470)は、前記主チャンバ(140)内に部分的に設けられ、前記主チャンバ(140)を、少なくとも主流体を備えるよう構成されている第1チャンバ(142)と、少なくとも副流体を備えるよう構成されている第2チャンバ(146)とに完全に分離し、前記第1チャンバ(142)は、前記第2主表面(220)及び前記変形可能な部分(470)の間に設けられ、前記第2チャンバ(146)は、前記変形可能な部分(470)及び前記第1副表面(610)の間に設けられる、膜
    を備える眼鏡用の眼用レンズ(100)であって、
    前記主流体は、第1相対密度を有し、前記副流体は、第2相対密度を有し、前記第1相対密度及び前記第2相対密度の間の比は、0.9から1.2であり、特に0.95から1.06であり、好ましくは0.99から1.01である
    眼用レンズ。
  2. 主ガラス屈折率を有する前記主ガラス、及び主流体屈折率を有する前記主流体は、前記主ガラス屈折率及び前記主流体屈折率の間の差が0.1 x 10-3から25 x 10-3であるように
    選択され、及び/又は
    副ガラス屈折率を有する前記副ガラス、及び副流体屈折率を有する前記副流体は、前記副ガラス屈折率及び前記副流体屈折率の間の差が0.1 x 10-3から25 x 10-3であるように
    選択される
    請求項1に記載の眼用レンズ(100)。
  3. 前記主ガラス(120)は、少なくとも部分的に主開口を囲む中間主表面(234)を備え、
    前記副ガラス(160)は、少なくとも部分的に副開口を囲む中間副表面(654)を備え、
    前記中間主表面(234)及び前記中間副表面(654)は、残余光分散を最小化するよう構成されている
    請求項1-2のいずれか1項に記載の眼用レンズ(100)。
  4. 前記膜(400)は、少なくとも部分的には前記中間主表面(234)及び前記中間副表面(654)の間に設けられている
    請求項3に記載の眼用レンズ(100)。
  5. 前記膜(400)は、少なくとも部分的に前記中間主表面(234)及び前記中間副表面(654)の間に設けられている支持部分(435)を備え、
    前記支持部分(435)は、前記変形可能な部分(470)を囲む
    請求項3-4のいずれか1項に記載の眼用レンズ(100)。
  6. 前記主流体を運び、前記第1チャンバ(142)に結合するよう構成されている主チャネルを備える主流体通路(123)、及び
    前記副流体を運び、前記第2チャンバ(146)に結合するよう構成されている副チャネルを備える副流体通路(156)を備える
    請求項1-5のいずれか1項に記載の眼用レンズ(100)。
  7. 前記主チャネルは、前記主ガラス(120)によって部分的に区切られ、前記膜(400)又は前記副ガラス(160)によって部分的に区切られ、及び/又は
    前記副チャネルは、前記副ガラス(160)によって部分的に区切られ、前記膜(400)又は前記主ガラス(120)によって部分的に区切られている
    請求項6に記載の眼用レンズ(100)。
  8. 前記主チャネルは、前記主ガラス(120)によって完全に区切られ、及び/又は
    前記副チャネルは、前記副ガラス(160)によって完全に区切られている
    請求項6-7のいずれか1項に記載の眼用レンズ(100)。
  9. 前記変形可能な部分(470)は、前記主又は副開口のレベルに位置する第1位置、第2位置、及び静止位置の間で変形されるように構成され、
    前記第1位置及び前記第2位置は、前記静止位置の両側に位置するよう構成されている請求項1-8のいずれか1項に記載の眼用レンズ(100)。
  10. 前記第1チャンバ(142)は、第1チャンバ形状を有し、前記第2チャンバ(146)は、第2チャンバ形状を有し、前記第1チャンバ形状は、前記第2チャンバ形状と異なる
    請求項1-9のいずれか1項に記載の眼用レンズ(100)。
  11. 前記膜の厚さは10μm未満であり、特に前記膜の厚さは5μm未満であり、好ましくは前記膜の厚さは1μm未満である
    請求項1-10のいずれか1項に記載の眼用レンズ(100)。
  12. 前記主ガラス(120)は、第1主ガラス(200)及び第2主ガラス(300)を備え、及び/又は
    前記副ガラス(160)は、第1副ガラス(500)及び第2副ガラス(600)を備え、
    前記第1主ガラス(200)及び前記第2主ガラス(300)は、第1主ガラス(200)屈折率及び第2主ガラス(300)屈折率をそれぞれ有し、
    前記第1副ガラス(500)及び前記第2副ガラス(600)は、第1副ガラス(500)屈折率及び第2副ガラス(600)屈折率をそれぞれ有し、
    前記第1主ガラス(200)屈折率及び前記第2主ガラス(300)屈折率のうちの少なくとも1つと、前記主流体屈折率との間の差は、0.1 x 10-3から25 x 10-3であり、
    前記第1副ガラス(500)屈折率及び前記第2副ガラス(600)屈折率のうちの少なくとも1つと、前記副流体屈折率との間の差は、0.1 x 10-3から25 x 10-3である
    請求項1-11のいずれか1項に記載の眼用レンズ(100)。
  13. 前記主流体屈折率は、前記副流体屈折率よりも大きく、及び/又は
    前記第1主ガラス(200)屈折率は、前記第2副ガラス(600)屈折率よりも大きい
    請求項1-12のいずれか1項に記載の眼用レンズ(100)。
  14. 前記第2主ガラス(300)は、前記主流体を運び、前記第1チャンバ(142)に結
    合するように構成されている主チャネルを備え、及び/又は
    前記第1副ガラス(500)は、前記副流体を運び、前記第2チャンバ(146)に結合するように構成されている副チャネルを備えている
    請求項1-13のいずれか1項に記載の眼用レンズ(100)。
  15. 請求項1-14のいずれか1項に記載の眼用レンズ(100)を備える眼鏡。
JP2023178642A 2016-07-08 2023-10-17 動的焦点制御を持つ眼用レンズ Pending JP2023182781A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR1656610A FR3053800B1 (fr) 2016-07-08 2016-07-08 Verres ophtalmiques avec controle dynamique de focale
FR16/56610 2016-07-08
PCT/EP2017/066722 WO2018007425A1 (en) 2016-07-08 2017-07-05 Ophthalmic lens with dynamic focus control
JP2019521515A JP2019526079A (ja) 2016-07-08 2017-07-05 動的焦点制御を持つ眼用レンズ
JP2021179209A JP2022009875A (ja) 2016-07-08 2021-11-02 動的焦点制御を持つ眼用レンズ

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021179209A Division JP2022009875A (ja) 2016-07-08 2021-11-02 動的焦点制御を持つ眼用レンズ

Publications (1)

Publication Number Publication Date
JP2023182781A true JP2023182781A (ja) 2023-12-26

Family

ID=57348817

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2019521515A Pending JP2019526079A (ja) 2016-07-08 2017-07-05 動的焦点制御を持つ眼用レンズ
JP2021179209A Pending JP2022009875A (ja) 2016-07-08 2021-11-02 動的焦点制御を持つ眼用レンズ
JP2023178642A Pending JP2023182781A (ja) 2016-07-08 2023-10-17 動的焦点制御を持つ眼用レンズ

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2019521515A Pending JP2019526079A (ja) 2016-07-08 2017-07-05 動的焦点制御を持つ眼用レンズ
JP2021179209A Pending JP2022009875A (ja) 2016-07-08 2021-11-02 動的焦点制御を持つ眼用レンズ

Country Status (6)

Country Link
US (1) US11061256B2 (ja)
EP (1) EP3482252A1 (ja)
JP (3) JP2019526079A (ja)
CN (2) CN109477981A (ja)
FR (1) FR3053800B1 (ja)
WO (1) WO2018007425A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3055429B1 (fr) 2016-09-01 2018-08-10 Laclaree Dispositif a actionnement electrostatique
DE102017101352A1 (de) * 2017-01-25 2018-07-26 tooz technologies GmbH Brillenglas für eine auf den Kopf eines Benutzers aufsetzbare und ein Bild erzeugende Anzeigevorrichtung
CN110658570A (zh) * 2019-10-17 2020-01-07 天津大学 一种基于液体变焦透镜的显微镜系统及其显微成像方法
EP3910398B1 (en) 2020-05-13 2023-11-01 Essilor International Three-state optical article and method for controlling same
FR3139205A1 (fr) 2022-08-24 2024-03-01 Laclaree Paire de lunettes adaptatives et procédé de commande d’une telle paire de lunettes adaptatives.

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01302301A (ja) * 1988-05-31 1989-12-06 Asahi Optical Co Ltd 液体封入光学素子
US6715876B2 (en) * 2001-11-19 2004-04-06 Johnnie E. Floyd Lens arrangement with fluid cell and prescriptive element
JP2004233945A (ja) 2003-01-29 2004-08-19 Futofumi Nagao 光学装置
US7773306B2 (en) 2003-05-09 2010-08-10 Koninklijke Philips Electronics N.V. Electrowetting cells
EP1735644A4 (en) * 2004-03-31 2010-01-27 Univ California FLUID ADAPTIVE GLASS
US7453646B2 (en) * 2004-03-31 2008-11-18 The Regents Of The University Of California Fluidic adaptive lens systems and methods
WO2007049058A2 (en) * 2005-10-28 2007-05-03 J & J Technologies Limited Variable focus lens
DE102007004080A1 (de) * 2007-01-26 2008-08-07 Universität Freiburg Variables achromatisches Membranlinsensystem sowie Verfahren zum Betrieb
US8922902B2 (en) * 2010-03-24 2014-12-30 Mitsui Chemicals, Inc. Dynamic lens
GB0806561D0 (en) 2008-04-10 2008-05-14 Adlens Ltd Variable focus lens and spectacles
US8699141B2 (en) * 2009-03-13 2014-04-15 Knowles Electronics, Llc Lens assembly apparatus and method
KR20130139952A (ko) 2010-10-26 2013-12-23 옵토투네 아게 두 개의 액체 챔버가 구비된 가변 초점 렌즈
ES2634438T3 (es) 2010-11-10 2017-09-27 Adlens Beacon, Inc. Lentes llenas de fluido y sus sistemas de accionamiento
CN103454705B (zh) * 2012-06-04 2015-07-29 清华大学 液体透镜
CN103576217B (zh) * 2013-11-11 2015-08-19 浙江大学 仿人眼晶状体调节的液体变焦透镜及其像差校正方法

Also Published As

Publication number Publication date
CN115598861A (zh) 2023-01-13
JP2022009875A (ja) 2022-01-14
US11061256B2 (en) 2021-07-13
FR3053800B1 (fr) 2019-06-07
JP2019526079A (ja) 2019-09-12
FR3053800A1 (fr) 2018-01-12
US20190227346A1 (en) 2019-07-25
CN109477981A (zh) 2019-03-15
EP3482252A1 (en) 2019-05-15
WO2018007425A1 (en) 2018-01-11

Similar Documents

Publication Publication Date Title
JP6711895B2 (ja) 可変焦点型液体充填レンズ器械
JP2023182781A (ja) 動的焦点制御を持つ眼用レンズ
US10531950B2 (en) Intraocular lens having an extended depth of focus
TWI612359B (zh) 一種隱形眼鏡套組
Pieh et al. In vitro strehl ratios with spherical, aberration-free, average, and customized spherical aberration-correcting intraocular lenses
WO2012177453A1 (en) Lens systems for presbyopia
US20050213220A1 (en) Viewing device
CN113671725A (zh) 三状态光学物品及其控制方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231113