JP2023179039A - infrared sensor - Google Patents

infrared sensor Download PDF

Info

Publication number
JP2023179039A
JP2023179039A JP2022092079A JP2022092079A JP2023179039A JP 2023179039 A JP2023179039 A JP 2023179039A JP 2022092079 A JP2022092079 A JP 2022092079A JP 2022092079 A JP2022092079 A JP 2022092079A JP 2023179039 A JP2023179039 A JP 2023179039A
Authority
JP
Japan
Prior art keywords
infrared
substrate
detection element
infrared sensor
infrared rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022092079A
Other languages
Japanese (ja)
Inventor
悠介 西田
Yusuke Nishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kodenshi Corp
Original Assignee
Kodenshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kodenshi Corp filed Critical Kodenshi Corp
Priority to JP2022092079A priority Critical patent/JP2023179039A/en
Publication of JP2023179039A publication Critical patent/JP2023179039A/en
Pending legal-status Critical Current

Links

Abstract

To suppress variation in a temperature of an infrared detector itself and stabilize an output signal in a reflection type infrared sensor.SOLUTION: An infrared sensor for detecting infrared rays radiated from an object includes a board having a detection surface oriented toward the object, a thermal type infrared detector mounted on a back face of the detection surface in the board, an infrared ray transmitting window that is formed on the board and transmits infrared rays in a predetermined wavelength region to the back face side, and a reflection part that is provided in a back face side of the board and reflects infrared rays transmitted through the infrared ray transmitting window and guiding them to the thermal type infrared detector, and is formed such that the infrared ray transmitting window does not overlap with the infrared detector when viewed from the detection surface side.SELECTED DRAWING: Figure 3

Description

本発明は、熱型の赤外線検出素子を用いた赤外線センサに関するものである。 The present invention relates to an infrared sensor using a thermal infrared detection element.

従来、対象物の温度等を非接触で測定する手段として、サーモパイル素子等の熱型の赤外線検出素子を用いた赤外線センサがある。この赤外線センサとしては、赤外線のみを透過させる材料からなるレンズを赤外線検出素子の前方に設置し、対象物から放射された赤外線をレンズにより熱型の赤外線検出素子に集光させるように構成するものが知られている。またこのような赤外線センサとしては、特許文献1に示すように、赤外線を透過させるシリコン基板の裏面側に赤外線検出素子と反射鏡を配置し、シリコン基板を透過させた赤外線を反射鏡で反射させて赤外線検出素子に集光させるようにした、所謂反射型のものも知られている。 2. Description of the Related Art Conventionally, as a means for non-contactly measuring the temperature of an object, there is an infrared sensor using a thermal infrared detecting element such as a thermopile element. This infrared sensor is constructed so that a lens made of a material that transmits only infrared rays is installed in front of an infrared detection element, and the infrared rays emitted from an object are focused by the lens onto a thermal infrared detection element. It has been known. In addition, as shown in Patent Document 1, such an infrared sensor has an infrared detection element and a reflecting mirror arranged on the back side of a silicon substrate that transmits infrared rays, and the infrared rays that have passed through the silicon substrate are reflected by the reflecting mirror. A so-called reflective type is also known in which the light is focused on an infrared detection element.

特開2002-048637号公報Japanese Patent Application Publication No. 2002-048637

ところで前記したような反射型の赤外線センサでは、赤外線検出素子の前方にレンズを配置するタイプの赤外線センサに比べて、赤外線検出素子自体の温度が変動しやすく、赤外線検出素子からの出力信号が不安定になりやすいという問題があった。 By the way, in the reflective infrared sensor described above, the temperature of the infrared detection element itself fluctuates more easily than in the type of infrared sensor in which a lens is placed in front of the infrared detection element, and the output signal from the infrared detection element may become unstable. There was a problem that it was easy to become stable.

本発明は上記した問題に鑑みてなされたものであり、反射型の赤外線センサにおいて、赤外線検出素子自体の温度の変動を抑制し、出力信号の安定化を図ることを主たる課題とするものである。 The present invention has been made in view of the above-mentioned problems, and its main objective is to suppress fluctuations in the temperature of the infrared detection element itself and stabilize the output signal in a reflective infrared sensor. .

上記課題を解決すべく本発明者らが検討した結果、従来の反射型の赤外線センサでは、赤外線を透過させるシリコン基板上に熱型の赤外線検出素子を配置しているため、シリコン基板を透過した赤外線の一部は反射鏡で反射されることなく赤外線検出素子の裏面に直接到達してしまい、これにより赤外線検出素子自体の温度が変動してしまうことを初めて見出し、本発明に至った。 As a result of studies conducted by the present inventors to solve the above problems, it was found that in conventional reflective infrared sensors, a thermal infrared detection element is arranged on a silicon substrate that transmits infrared rays. The inventors discovered for the first time that a portion of the infrared rays directly reaches the back surface of the infrared detecting element without being reflected by a reflecting mirror, which causes the temperature of the infrared detecting element itself to fluctuate, leading to the present invention.

すなわち、本発明に係る赤外線センサは、対象物から放射される赤外線を検出する赤外線センサであって、前記対象物に向けられる検出面を有する基板と、前記基板における前記検出面の裏面に搭載された熱型の赤外線検出素子と、前記基板に形成され、所定の波長域の赤外線を前記裏面側に透過させる赤外線透過窓と、前記基板の裏面側に設けられて、前記赤外線透過窓を透過した赤外線を反射させて前記熱型赤外検出素子に導く反射部とを備え、前記検出面側から視て、前記赤外線透過窓が前記赤外線検出素子と重複しないように形成されていることを特徴とする。 That is, the infrared sensor according to the present invention is an infrared sensor that detects infrared rays emitted from an object, and includes a substrate having a detection surface facing the object, and a substrate mounted on the back surface of the detection surface of the substrate. a thermal-type infrared detecting element; an infrared transmitting window formed on the substrate to transmit infrared rays in a predetermined wavelength range to the back surface side; and a reflecting part that reflects infrared rays and guides them to the thermal infrared detection element, and is formed such that the infrared transmission window does not overlap with the infrared detection element when viewed from the detection surface side. do.

このようにした本発明によれば、反射型の赤外線センサにおいて、赤外線検出素子自体の温度の変動を抑制し、出力信号の安定化を図ることができる。 According to the present invention, in a reflective infrared sensor, fluctuations in the temperature of the infrared detection element itself can be suppressed, and the output signal can be stabilized.

本発明の一実施形態の赤外線センサの全体構成を検知面側から視た斜視図である。FIG. 1 is a perspective view of the overall configuration of an infrared sensor according to an embodiment of the present invention, viewed from the detection surface side. 同実施形態の赤外線センサの全体構成を裏面側から視た斜視図である。FIG. 2 is a perspective view of the overall configuration of the infrared sensor according to the embodiment, viewed from the back side. 同実施形態の赤外線センサの内部構成を示す断面図。FIG. 3 is a cross-sectional view showing the internal configuration of the infrared sensor according to the embodiment. 同実施形態の赤外線センサを検知面側から視た平面図。FIG. 3 is a plan view of the infrared sensor of the embodiment viewed from the detection surface side. 他の実施形態の赤外線センサを検知面側から視た平面図。FIG. 7 is a plan view of an infrared sensor according to another embodiment as viewed from the detection surface side.

以下に、本発明の一実施形態に係る赤外線センサ100について図面を参照して説明する。 EMBODIMENT OF THE INVENTION Below, the infrared sensor 100 based on one Embodiment of this invention is demonstrated with reference to drawings.

本実施形態の赤外線センサ100は、対象物から放射される赤外線を熱型の赤外線検出素子2で検出することで、対象物の温度を非接触で測定するよう構成されたものである。 The infrared sensor 100 of this embodiment is configured to measure the temperature of an object in a non-contact manner by detecting infrared rays emitted from the object with a thermal infrared detection element 2.

具体的にこの赤外線センサ100は、図1~図3に示すように、対象物に向けられる検出面11を有する基板1と、基板1における検出面11の裏面12に搭載された赤外線検出素子2と、赤外線検出素子2を覆って収容するように基板1の裏面12に取付けられたケーシング3と、基板1に形成され、所定の波長域(測定波長域)の赤外線のみを透過させる赤外線透過窓4と、演算部5とを有している。ケーシング3は、赤外線透過窓4を透過した赤外線を反射して赤外線検出素子2に導く反射部31を内部に有しており、基板1の検出面11を対象物に向けると、対象物から放射された赤外線が赤外線透過窓4を通ってケーシング3内に導入され、当該導入された赤外線は反射部31で反射されて赤外線検出素子2で検出される。以下、各部を説明する。 Specifically, as shown in FIGS. 1 to 3, the infrared sensor 100 includes a substrate 1 having a detection surface 11 facing an object, and an infrared detection element 2 mounted on the back surface 12 of the detection surface 11 on the substrate 1. , a casing 3 attached to the back surface 12 of the substrate 1 so as to cover and accommodate the infrared detection element 2 , and an infrared transmission window formed on the substrate 1 that transmits only infrared rays in a predetermined wavelength range (measurement wavelength range). 4 and a calculation section 5. The casing 3 has a reflection part 31 inside that reflects the infrared rays that have passed through the infrared transmitting window 4 and guides them to the infrared detection element 2. When the detection surface 11 of the substrate 1 is directed toward the object, the rays emitted from the object are reflected. The infrared rays thus introduced are introduced into the casing 3 through the infrared transmitting window 4, and the introduced infrared rays are reflected by the reflection section 31 and detected by the infrared detection element 2. Each part will be explained below.

基板1は、測定波長域の赤外線に対する透過性が低い樹脂材料等から成るものであり、具体的にはプリント基板(リジット基板)である。この基板1は矩形板状を成しており、対象物に向けられる検出面11の裏面12には導体配線が施されている。 The substrate 1 is made of a resin material or the like that has low transmittance to infrared rays in the measurement wavelength range, and is specifically a printed circuit board (rigid board). This substrate 1 has a rectangular plate shape, and conductive wiring is provided on the back surface 12 of the detection surface 11 facing the object.

赤外線検出素子2は、赤外線を吸収したときの温度変化を起電力の変化として検知する熱型のものであり、具体的には、複数の熱電対を直列に並べて薄膜化したサーモパイル素子である。この赤外線検出素子2は、基板1の裏面12に直接搭載されている。この赤外線検出素子2は、平面視して、温接点である面状の受光部がその中央に設定されており、受光部の周囲に複数の冷接点が設定されている。なお赤外線検出素子2は単画素のものでもよく、複数をアレイ状に並べた多画素のものであってもよい。 The infrared detection element 2 is a thermal type that detects a temperature change when absorbing infrared rays as a change in electromotive force, and specifically, it is a thermopile element made of a plurality of thermocouples arranged in series and made into a thin film. This infrared detection element 2 is directly mounted on the back surface 12 of the substrate 1. When viewed from above, this infrared detection element 2 has a planar light-receiving portion, which is a hot junction, set in the center thereof, and a plurality of cold contacts are set around the light-receiving portion. Note that the infrared detection element 2 may have a single pixel, or may have a plurality of pixels arranged in an array.

ケーシング3は、基板1の裏面12側から赤外線検出素子2をすっぽり覆う箱状をなすものであり、裏面12側からの外乱光を遮光するとともに、外気や風を遮断するものである。ケーシング3は、少なくとも測定波長域の赤外線に対する遮光性が高い材料から構成されており、ここではその全体が、例えば鉄、ステンレス、アルミニウム等の金属材料により形成されている。その表面は金メッキやニッケルメッキ等により被覆されていてもよい。 The casing 3 has a box shape that completely covers the infrared detection element 2 from the back surface 12 side of the substrate 1, and blocks external disturbance light from the back surface 12 side as well as outside air and wind. The casing 3 is made of a material that has a high light-shielding property against at least infrared rays in the measurement wavelength range, and here, the entire casing 3 is made of a metal material such as iron, stainless steel, or aluminum. The surface may be coated with gold plating, nickel plating, or the like.

反射部31は、赤外線透過窓4を透過した赤外線を反射して赤外線検出素子2に集光させるものであり、基板1の裏面12側における赤外線透過窓4に対向する位置に設けられている。具体的にこの反射部31はケーシング3の内側面を凹面状に加工することで形成されており、ケーシング3の内側面が反射面31sとして機能する。この反射面31は、赤外線を反射できるよう例えば鏡面加工されているのが好ましいが、これに限らず例えば粗面加工されたものであってもよい。なおケーシング3の内側面のうち反射面31sを構成しない領域は、反射面31sよりも反射率が低くなるよう構成されるのが好ましく、例えば黒色塗料や樹脂等が塗布されていてもよく、その表面が極端に粗くなるよう加工されていてもよい。 The reflecting section 31 reflects the infrared rays that have passed through the infrared transmitting window 4 and focuses the reflected light on the infrared detecting element 2, and is provided at a position facing the infrared transmitting window 4 on the back surface 12 side of the substrate 1. Specifically, this reflective portion 31 is formed by machining the inner surface of the casing 3 into a concave shape, and the inner surface of the casing 3 functions as a reflective surface 31s. This reflective surface 31 is preferably mirror-finished, for example, so that it can reflect infrared rays, but is not limited thereto, and may be, for example, rough-finished. Note that the area of the inner surface of the casing 3 that does not constitute the reflective surface 31s is preferably configured to have a lower reflectance than the reflective surface 31s, and may be coated with, for example, black paint or resin. The surface may be processed to be extremely rough.

赤外線透過窓4は、基板1を厚み方向に貫通して検出面11及び裏面12に開口する貫通孔41と、貫通孔41を塞ぐ光学フィルタ42とにより構成されている。光学フィルタ42は、測定波長域の赤外線のみを透過させる材料から構成されるものであり、例えば単結晶のシリコンにより構成されている。この光学フィルタ42は板状をなしており、貫通孔41を覆うようにして基板1の裏面12に取付けられている。 The infrared transmission window 4 includes a through hole 41 that penetrates the substrate 1 in the thickness direction and opens to the detection surface 11 and the back surface 12, and an optical filter 42 that closes the through hole 41. The optical filter 42 is made of a material that transmits only infrared rays in the measurement wavelength range, and is made of, for example, single crystal silicon. This optical filter 42 has a plate shape and is attached to the back surface 12 of the substrate 1 so as to cover the through hole 41.

演算部5は、CPU及びメモリ等を備えた電子回路あり、メモリの所定領域に格納された所定プログラムに従ってCPUや周辺機器を協働させることによりその機能が実現されるものである。本実施形態の演算部5は、対象物の温度に比例した電圧を出力するものであり、より具体的には、赤外線検出素子2から出力される電気信号を受け取り、赤外線検出素子2が受光した赤外線量(又は対象物の温度)に比例した電圧を出力する機能を発揮する。また演算部5は、赤外線検出素子2から出力される電気信号を増幅させる機能、出力電圧を増幅する機能、周囲温度を測定する機能、周囲温度に基づいて出力電圧を補正する機能等を発揮するようにしてもよい。 The arithmetic unit 5 is an electronic circuit including a CPU, a memory, etc., and its functions are realized by making the CPU and peripheral devices work together according to a predetermined program stored in a predetermined area of the memory. The calculation unit 5 of this embodiment outputs a voltage proportional to the temperature of the object, and more specifically, it receives an electric signal output from the infrared detection element 2 and receives the electric signal that is received by the infrared detection element 2. It has the function of outputting a voltage proportional to the amount of infrared rays (or the temperature of the object). Furthermore, the calculation unit 5 has a function of amplifying the electrical signal output from the infrared detection element 2, a function of amplifying the output voltage, a function of measuring the ambient temperature, a function of correcting the output voltage based on the ambient temperature, etc. You can do it like this.

赤外線センサ100はまた、図示しない電源等に接続するためのコネクタ6を有している。このコネクタ6は基板1の検出面11側に取付けられている。なおコネクタ6は基板1の裏面12側に取付けられていてもよい。 The infrared sensor 100 also has a connector 6 for connecting to a power source (not shown) or the like. This connector 6 is attached to the detection surface 11 side of the board 1. Note that the connector 6 may be attached to the back surface 12 side of the board 1.

しかして本実施形態の赤外線センサ100は、図4に示すように検出面11側(又は板厚方向)から視て、赤外線透過窓4が赤外線検出素子2と重複しないように(避けるように)形成されている。具体的にこの赤外線センサ100では、赤外線透過窓4は、基板1における赤外線検出素子2の周辺であって、赤外線検出素子2の冷接点よりも外側の領域に形成されている。またこの赤外線透過窓4は、赤外線検出素子2の全周を取り囲まないように形成されている。そして赤外線透過窓4を構成する貫通孔41は丸孔形状をなしており、検出面11側から視てその全体が赤外線検出素子2と重複しない位置に1つだけ形成されている。 In the infrared sensor 100 of this embodiment, as shown in FIG. It is formed. Specifically, in this infrared sensor 100, the infrared transmitting window 4 is formed around the infrared detecting element 2 on the substrate 1 in an area outside the cold junction of the infrared detecting element 2. Further, the infrared transmitting window 4 is formed so as not to surround the entire circumference of the infrared detecting element 2. The through hole 41 constituting the infrared transmitting window 4 has a round hole shape, and only one through hole 41 is formed at a position that does not entirely overlap with the infrared detecting element 2 when viewed from the detection surface 11 side.

またこの赤外線センサ100では、反射部31は、その反射面31sが放物面状ではなく球面状(凹球面状)をなすように形成されている。そしてこの反射面31sは、赤外線透過窓4に対向する領域における傾きが、赤外線検出素子2の受光面を焦点とする理想的な放物面の傾きと略同一となるように形成されている。 Further, in this infrared sensor 100, the reflecting portion 31 is formed so that its reflecting surface 31s is not parabolic but spherical (concave spherical). The reflective surface 31s is formed so that the inclination in the region facing the infrared transmitting window 4 is approximately the same as the inclination of an ideal paraboloid having the light receiving surface of the infrared detecting element 2 as its focal point.

さらに基板1の検出面11には、測定波長域の赤外線を含む光を反射する反射膜7が積層されている。反射膜7は、少なくとも赤外線検出素子2の裏側に対応する領域に形成されており、ここでは、ケーシング3の裏側に対応する全領域に亘って形成されている。反射膜7は、例えば銅箔や金メッキ等により構成されている。 Further, on the detection surface 11 of the substrate 1, a reflective film 7 that reflects light including infrared radiation in the measurement wavelength range is laminated. The reflective film 7 is formed at least in a region corresponding to the back side of the infrared detecting element 2 , and here, it is formed over the entire region corresponding to the back side of the casing 3 . The reflective film 7 is made of, for example, copper foil or gold plating.

このように構成した本実施形態の赤外線センサ100によれば、赤外線検出素子2は、赤外線を透過しにくいプリント基板上に直接搭載されるとともに、検出面11側から視て赤外線透過窓4が赤外線検出素子2と重複しないように形成されており、さらにはプリント基板の検出面11には反射膜7が形成されているので、赤外線透過窓4を透過した赤外線が赤外線検出素子2の裏面から到達することによりサーモパイルの冷接点が加温されることを防止でき、出力信号を安定化させることができる。 According to the infrared sensor 100 of the present embodiment configured in this manner, the infrared detection element 2 is directly mounted on the printed circuit board through which infrared rays are difficult to pass, and the infrared transmitting window 4 is transparent when viewed from the detection surface 11 side. It is formed so as not to overlap with the detection element 2, and furthermore, a reflective film 7 is formed on the detection surface 11 of the printed circuit board, so that the infrared rays transmitted through the infrared transmission window 4 reach the infrared detection element 2 from the back surface. By doing so, the cold junction of the thermopile can be prevented from being heated, and the output signal can be stabilized.

なお、本発明は前記実施形態に限られるものではない。 Note that the present invention is not limited to the above embodiments.

例えば、赤外線透過窓4を構成する貫通孔41は丸穴形状に限らず、赤外線検出素子2と重複しない位置に形成されていれば、図5に示すように、長孔形状や角孔形状等の任意の形状であってよい。 For example, the through hole 41 constituting the infrared transmitting window 4 is not limited to a round hole shape, and as long as it is formed at a position that does not overlap with the infrared detecting element 2, it may have an elongated hole shape, a square hole shape, etc., as shown in FIG. may be of any shape.

また検出面11側から視て赤外線検出素子2と重複しないのであれば、赤外線透過窓4は赤外線検出素子2の周りに複数設けられていてもよい。 Further, a plurality of infrared transmission windows 4 may be provided around the infrared detection element 2 as long as they do not overlap with the infrared detection element 2 when viewed from the detection surface 11 side.

さらに、前記実施形態では反射部31の反射面31sは球面状に形成されていたがこれに限らない。他の実施形態では反射面31sは放物面状に形成されていてもよい。 Further, in the embodiment described above, the reflective surface 31s of the reflective section 31 is formed in a spherical shape, but the present invention is not limited to this. In other embodiments, the reflective surface 31s may be formed in a parabolic shape.

また、前記実施形態の赤外線センサ100は対象物の温度を測定するものであったが、これに限らない。他の実施形態の赤外線センサ100は、人体検知や非接触操作等の用途に用いられてもよい。 Further, although the infrared sensor 100 in the embodiment described above measures the temperature of an object, the present invention is not limited thereto. The infrared sensor 100 of other embodiments may be used for applications such as human body detection and non-contact operation.

また前記実施形態の赤外線検出素子2はサーモパイル素子であったが、これに限らない。他の実施形態では赤外線検出素子2は、ボロメータや焦電センサであってもよい。 Further, although the infrared detection element 2 in the embodiment described above is a thermopile element, it is not limited to this. In other embodiments, the infrared detection element 2 may be a bolometer or a pyroelectric sensor.

その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。例えば本発明の赤外線センサは、以下の態様を含んでいる。 In addition, it goes without saying that the present invention is not limited to the embodiments described above, and that various modifications can be made without departing from the spirit thereof. For example, the infrared sensor of the present invention includes the following aspects.

(態様1)対象物から放射される赤外線を検出する赤外線センサであって、前記対象物に向けられる検出面を有する基板と、前記基板における前記検出面の裏面に搭載された熱型の赤外線検出素子と、前記基板に形成され、所定の波長域の赤外線を前記裏面側に透過させる赤外線透過窓と、前記基板の裏面側に設けられて、前記赤外線透過窓を透過した赤外線を反射させて前記熱型赤外検出素子に導く反射部とを備え、前記検出面側から視て、前記赤外線透過窓が前記赤外線検出素子と重複しないように形成されている赤外線センサ。 (Aspect 1) An infrared sensor that detects infrared rays emitted from an object, including a substrate having a detection surface facing the object, and a thermal infrared sensor mounted on the back side of the detection surface of the substrate. an infrared transmitting window formed on the substrate to transmit infrared rays in a predetermined wavelength range to the back side; and an infrared transmitting window provided on the back side of the substrate to reflect the infrared rays transmitted through the infrared transmitting window. an infrared sensor that is provided with a reflective portion that leads to a thermal infrared detection element, and is formed such that the infrared transmission window does not overlap with the infrared detection element when viewed from the detection surface side.

このような構成であれば、赤外線検出素子は、検出面側から視て赤外線透過窓が赤外線検出素子と重複しないように形成されているので、赤外線透過窓を透過した赤外線が赤外線検出素子の裏面から到達することはない。これにより赤外線検出素子が加温されることを防止でき、出力信号を安定化させることができる。 With this configuration, the infrared detection element is formed so that the infrared transmission window does not overlap with the infrared detection element when viewed from the detection surface side, so the infrared rays transmitted through the infrared transmission window are directed to the back surface of the infrared detection element. It cannot be reached from This can prevent the infrared detection element from heating up and stabilize the output signal.

(態様2)前記赤外線透過窓が、前記赤外線検出素子の周辺において前記基板を貫通する貫通孔と、前記貫通孔を塞ぐともに前記所定の波長域の赤外線を透過させる光学フィルタとからなる態様1に記載の赤外線センサ。 (Aspect 2) In aspect 1, the infrared transmitting window includes a through hole penetrating the substrate around the infrared detecting element, and an optical filter that blocks the through hole and transmits infrared rays in the predetermined wavelength range. Infrared sensor as described.

(態様3)前記基板がプリント基板である態様1又は2に記載の赤外線センサ。
このようにすれば、赤外線を透過しにくいプリント基板上に赤外線検出素子を搭載しているので、対象物から放射された赤外線が基板を透過して赤外線検出素子の裏面に到達するのを防ぐことができる。
(Aspect 3) The infrared sensor according to aspect 1 or 2, wherein the substrate is a printed circuit board.
In this way, since the infrared detection element is mounted on a printed circuit board that does not easily transmit infrared rays, it is possible to prevent infrared rays emitted from the object from passing through the board and reaching the back side of the infrared detection element. I can do it.

(態様4)前記基板の前記検出面において、前記赤外線検出素子の裏側に対応する領域に反射膜が積層されている態様1~3のいずれかに記載の赤外線センサ。
このようにすれば、基板を透過して赤外線検出素子に到達する赤外線をより一層低減できる。
(Aspect 4) The infrared sensor according to any one of aspects 1 to 3, wherein a reflective film is laminated on the detection surface of the substrate in a region corresponding to the back side of the infrared detection element.
In this way, infrared rays that pass through the substrate and reach the infrared detection element can be further reduced.

(態様5)前記反射部の反射面が凹球面状をなすものである態様1~4のいずれかに記載赤外線センサ。
このようにすれば、製造時において反射面を放物面状にする場合に比べて出来栄え確認における寸法測定を容易にできる。
(Aspect 5) The infrared sensor according to any one of aspects 1 to 4, wherein the reflective surface of the reflective portion has a concave spherical shape.
In this way, dimensions can be easily measured to check the workmanship compared to the case where the reflecting surface is made into a parabolic shape during manufacturing.

(態様6)前記検出面側から視て、前記赤外線透過窓が、前記赤外線検出素子の全周を取り囲まないように形成されている態様5に記載赤外線センサ。
このようにしておけば、赤外線検出素子を取り囲む全周方向から反射面により光を集光させる必要がないので、反射面を放物面にすることなく球面状に形成することができる。
(Aspect 6) The infrared sensor according to Aspect 5, wherein the infrared transmission window is formed so as not to surround the entire circumference of the infrared detection element when viewed from the detection surface side.
By doing so, it is not necessary to use the reflective surface to condense light from the entire circumferential direction surrounding the infrared detecting element, so that the reflective surface can be formed into a spherical shape without having to be a paraboloid.

(態様7)前記赤外線検出素子がサーモパイル素子である態様1~6のいずれかに記載の赤外線センサ。
このように測定原理上冷接点の温度変化を抑える必要があるサーモパイル素子を赤外線検出素子とすれば、本発明の効果をより顕著に奏することができる。
(Aspect 7) The infrared sensor according to any one of aspects 1 to 6, wherein the infrared detection element is a thermopile element.
If the thermopile element, which needs to suppress the temperature change of the cold junction due to the principle of measurement, is used as an infrared detection element, the effects of the present invention can be more pronounced.

100・・・赤外線センサ
1 ・・・基板
11 ・・・検出面
12 ・・・裏面
2 ・・・赤外線検出素子
3 ・・・ケーシング
31 ・・・反射部
31s・・・反射面
4 ・・・赤外線透過窓
41 ・・・貫通孔
42 ・・・光学フィルタ
5 ・・・演算部
6 ・・・コネクタ
100...Infrared sensor 1...Substrate 11...Detection surface 12...Back surface 2...Infrared detection element 3...Casing 31...Reflection part 31s...Reflection surface 4... Infrared transmission window 41...Through hole 42...Optical filter 5...Calculation unit 6...Connector

Claims (7)

対象物から放射される赤外線を検出する赤外線センサであって、
前記対象物に向けられる検出面を有する基板と、
前記基板における前記検出面の裏面に搭載された熱型の赤外線検出素子と、
前記基板に形成され、所定の波長域の赤外線を前記裏面側に透過させる赤外線透過窓と、
前記基板の裏面側に設けられて、前記赤外線透過窓を透過した赤外線を反射させて前記赤外検出素子に導く反射部とを備え、
前記検出面側から視て、前記赤外線透過窓が前記赤外線検出素子と重複しないように形成されている赤外線センサ。
An infrared sensor that detects infrared rays emitted from an object,
a substrate having a detection surface facing the object;
a thermal infrared detection element mounted on the back side of the detection surface of the substrate;
an infrared transmitting window formed on the substrate and transmitting infrared rays in a predetermined wavelength range to the back surface side;
a reflecting part provided on the back side of the substrate to reflect infrared rays that have passed through the infrared transmitting window and guide them to the infrared detection element;
The infrared sensor is formed such that the infrared transmission window does not overlap with the infrared detection element when viewed from the detection surface side.
前記赤外線透過窓が、前記赤外線検出素子の周辺において前記基板を貫通する貫通孔と、前記貫通孔を塞ぐともに前記所定の波長域の赤外線を透過させる光学フィルタとからなる請求項1に記載の赤外線センサ。 The infrared rays according to claim 1, wherein the infrared rays transmitting window comprises a through hole penetrating the substrate around the infrared detecting element, and an optical filter that blocks the through hole and transmits infrared rays in the predetermined wavelength range. sensor. 前記基板がプリント基板である請求項1に記載の赤外線センサ。 The infrared sensor according to claim 1, wherein the substrate is a printed circuit board. 前記基板の前記検出面において、前記赤外線検出素子の裏側に対応する領域に反射膜が積層されている請求項1に記載の赤外線センサ。 The infrared sensor according to claim 1, wherein a reflective film is laminated on the detection surface of the substrate in a region corresponding to the back side of the infrared detection element. 前記反射部の反射面が凹球面状をなすものである請求項1に記載の赤外線センサ。 The infrared sensor according to claim 1, wherein the reflective surface of the reflective section has a concave spherical shape. 前記検出面側から視て、前記赤外線透過窓が、前記赤外線検出素子の全周を取り囲まないように形成されている請求項5に記載赤外線センサ。 The infrared sensor according to claim 5, wherein the infrared transmission window is formed so as not to surround the entire circumference of the infrared detection element when viewed from the detection surface side. 前記赤外線検出素子がサーモパイル素子である請求項1に記載の赤外線センサ。 The infrared sensor according to claim 1, wherein the infrared detection element is a thermopile element.
JP2022092079A 2022-06-07 2022-06-07 infrared sensor Pending JP2023179039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022092079A JP2023179039A (en) 2022-06-07 2022-06-07 infrared sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022092079A JP2023179039A (en) 2022-06-07 2022-06-07 infrared sensor

Publications (1)

Publication Number Publication Date
JP2023179039A true JP2023179039A (en) 2023-12-19

Family

ID=89199318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022092079A Pending JP2023179039A (en) 2022-06-07 2022-06-07 infrared sensor

Country Status (1)

Country Link
JP (1) JP2023179039A (en)

Similar Documents

Publication Publication Date Title
KR101639838B1 (en) Infrared sensor and a circuit board therewith
JP5054523B2 (en) Sensor
JP5793679B2 (en) Infrared sensor module
WO2011083593A1 (en) Non-contact temperature sensor
WO2018008215A1 (en) Infrared ray detector and radiation thermometer
JP6350933B2 (en) Infrared detector
JP2000146701A (en) Temperature sensing device
JP2023179039A (en) infrared sensor
JP2006337345A (en) Noncontact-type temperature detector
WO2017145670A1 (en) Infrared sensor device
JP6132223B2 (en) Infrared sensor
JP2011128065A (en) Infrared array sensor device
JP2012103206A (en) Infrared sensor module and method of manufacturing the same
KR20190068425A (en) Radiation thermometer
JP2005195435A (en) Noncontact type temperature detector
JP5296353B2 (en) Sensor
JP2011128066A (en) Infrared sensor module
JP2002048637A (en) Infrared detector and temperature measuring instrument equipped with it
JPS6255529A (en) Radiation thermometer
CN215178179U (en) Sensor and temperature measuring device
JP6202440B2 (en) Infrared gas sensor
US20230184591A1 (en) Thermal Radiation Detection Device and System, as Well as Electronic Device Comprising Such a Device or System
JPH1137847A (en) Narrow-field thermistor bolometer
KR100554618B1 (en) Passive infrared sensor detector
JP6001992B2 (en) Perspective determination device