JP2023177036A - 自動運転車両及び自動運転車両のバッテリの充電方法 - Google Patents

自動運転車両及び自動運転車両のバッテリの充電方法 Download PDF

Info

Publication number
JP2023177036A
JP2023177036A JP2022089717A JP2022089717A JP2023177036A JP 2023177036 A JP2023177036 A JP 2023177036A JP 2022089717 A JP2022089717 A JP 2022089717A JP 2022089717 A JP2022089717 A JP 2022089717A JP 2023177036 A JP2023177036 A JP 2023177036A
Authority
JP
Japan
Prior art keywords
power generation
driving vehicle
automatic driving
vehicle
solar power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022089717A
Other languages
English (en)
Inventor
泰造 増田
Taizo Masuda
太郎 長谷川
Taro Hasegawa
友弥 竹田
Tomoya Takeda
由華 西山
Yuka Nishiyama
寛也 千葉
Hiroya Chiba
達也 菅野
Tatsuya Sugano
峻 太田
Shun Ota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2022089717A priority Critical patent/JP2023177036A/ja
Priority to US18/187,896 priority patent/US20230391361A1/en
Priority to CN202310304682.4A priority patent/CN117141243A/zh
Publication of JP2023177036A publication Critical patent/JP2023177036A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • B60L8/003Converting light into electric energy, e.g. by using photo-voltaic systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0015Planning or execution of driving tasks specially adapted for safety
    • B60W60/0018Planning or execution of driving tasks specially adapted for safety by employing degraded modes, e.g. reducing speed, in response to suboptimal conditions
    • B60W60/00182Planning or execution of driving tasks specially adapted for safety by employing degraded modes, e.g. reducing speed, in response to suboptimal conditions in response to weather conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0023Planning or execution of driving tasks in response to energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/70Interactions with external data bases, e.g. traffic centres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/32Auto pilot mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/20Ambient conditions, e.g. wind or rain
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Mathematical Physics (AREA)
  • Physics & Mathematics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)
  • Photovoltaic Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】太陽光で発電された電力の利用を増やすことができる自動運転車両を提供する。【解決手段】本開示の自動運転車両2は、太陽電池と、太陽電池で発電された電力を充電可能なバッテリとを搭載する。本開示の自動運転車両2は、バッテリの充電電力量が現在地よりも増加する太陽光発電ポイントを探し、太陽光発電ポイントまで自動運転で移動する。【選択図】図2

Description

本開示は、太陽電池と太陽電池で発電された電力を充電可能なバッテリとを搭載した自動運転車両及び自動運転車両のバッテリの充電方法に関する。
特許文献1はソーラーパネルを搭載した車両を開示している。特許文献1に開示された車両は、所定の期間駐車させたときに期間内の総発電量が最大になると推定されるソーラーパネルの方向を駐車位置及び現在日時に基づいて決定する。そして、決定された方向へソーラーパネルが向くように、サスペンション装置を用いて駐車向きに応じて車両の姿勢を制御する。
特開2018-121395号公報
今日、社会全体での省エネを促進するべく、太陽光で発電された電力の車両での利用を増やすことが求められている。特許文献1に記載のように駐車中の車両で太陽光発電を行うことは、太陽光を有効に利用する一つの方法である。しかし、太陽光が当たらない位置に車両が駐車された場合には、どのようにソーラーパネルの方向を変えようとも太陽光による発電を行うことができない。
本開示は、上述のような課題に鑑みてなされたものである。本開示は、太陽光で発電された電力の車両での利用を増やすことによって省エネを促進することを目的とする。
本開示は上記目的を達成するための自動運転車両を提供する。本開示の自動運転車両は、太陽電池と太陽電池で発電された電力を充電可能なバッテリとを搭載する。本開示の自動運転車両は、バッテリの充電電力量が現在地よりも増加する太陽光発電ポイントを探すことと、太陽光発電ポイントまで自動運転で移動することとを実行するように構成されている。このような構成によれば、太陽光で発電された電力の自動運転車両での利用を増やすことができ、省エネを促進することができる。
本開示の自動運転車両は、周辺地域の天気予報に基づいて太陽光発電ポイントを決定することを実行するように構成されてもよい。天気予報を利用することで、太陽光発電に適した場所を予測して車両を移動させることができる。
本開示の自動運転車両は、照度センサによって検出された照度が周囲よりも高い場所を太陽光発電ポイントとして決定することを実行するように構成されてもよい。照度センサを用いることで、車両の近辺において太陽光発電に適した場所を車両が移動しながら自動で探すことできる。
本開示の自動運転車両は、時刻ごと場所ごとの照度データが蓄積された照度データベースに基づいて太陽光発電ポイントを決定することを実行するように構成されてもよい。過去の実績が蓄積された照度データベースを利用することで、太陽光発電に適した場所を予測して車両を移動させることができる。
本開示の自動運転車両は、3D地図データと日時とに基づいて日陰でない場所を特定し、日陰でない場所の中から太陽光発電ポイントを決定することを実行するように構成されてもよい。3D地図データからは建物の大きさが分かり、日時からは太陽の位置が分かるので、太陽光発電ポイントに適した日陰でない場所を精度よく予測することができる。
本開示の自動運転車両は、登録された場所ごとに太陽電池による所定時間あたりの発電電力量を計算することと、登録された場所ごとに移動によって消費する消費電力量を計算することと、登録された場所ごとの発電電力量と消費電力量との差分に基づき登録された場所の中から太陽光発電ポイントを決定することとを実行するように構成されてもよい。移動に要する消費電力量を計算に入れることで、車を移動させるだけのメリットが太陽光発電により得られる場所なのかどうか判断することができる。
本開示の自動運転車両は、太陽光発電ポイントまで移動する前に少なくとも太陽電池のパネルに対して自動クリーニングを行うことを実行するように構成されてもよい。クリーニングにより太陽電池のパネルの汚れを落とすことで、発電量を増大させることができる。好ましくは、太陽電池のパネルを水洗いすることで、太陽電池の温度を下げて発電量をより増大させることができる。
また、本開示は太陽電池を搭載した自動運転車両のバッテリへの充電方法を提供する。本開示の充電方法は、バッテリの充電電力量が自動運転車両の現在地よりも増加する太陽光発電ポイントを探すことと、太陽光発電ポイントまで自動運転車両を自動運転で移動させることとを含む。このよう充電方法によれば、太陽光で発電された電力の自動運転車両での利用を増やすことができ、省エネを促進することができる。
以上のように、本開示の自動運転車両及び自動運転車両のバッテリの充電方法によれば、太陽光で発電された電力の車両での利用を増やすことによって省エネを促進することができる。
本開示の実施形態に係る自動運転車両のシステム構成を示すブロック図である。 図1に示す自動運転車両において実行されるバッテリの充電方法を説明する図である。 図1に示す自動運転車両において実行されるバッテリの充電方法を説明する図である。 図1に示す自動運転車両において実行されるバッテリの充電方法を説明する図である。 図1に示す自動運転車両において実行されるバッテリの充電方法を説明する図である。 図1に示す自動運転車両において実行されるバッテリの充電方法を説明する図である。
以下、図を参照して本開示の実施形態に係る自動運転車両及び自動運転車両で実行されるバッテリの充電方法について説明する。
図1は、本実施形態に係る自動運転車両2のシステム構成を示す。自動運転車両2は、米国の自動車技術会(SAE)の定義においてレベル4以上の自律走行が可能な自動運転システム10を備える。自動運転システム10は、車両の周辺状況を認識するカメラ、LiDAR等の外部センサと、加速度やヨーレートなどの車両状態を検出する車両状態センサと、それらセンサの情報を処理して車両の目標軌跡を生成する1又は複数のECUとを備える。自動運転システムの構成及び機能は公知であり、その公知のものを自動運転車両2に適用することができることから、自動運転システム10の詳細については説明を省略する。
自動運転車両2は、バッテリ12に蓄えられた電力によって走行する電気自動車(EV)である。自動運転車両2は、バッテリ電動自動車(BEV)だけでなく、プラグインハイブリッド車(PHEV)でもよいしハイブリッド車(HEV)でもよい。以下、自動運転車両2を単に車両2と表記する。
車両2は、バッテリ12に蓄える電力を発電するための太陽電池20を備える。太陽電池20は車両2のルーフ上に搭載されている。太陽電池20はボンネット或いはトランクの上にも搭載されてもよい。なお、バッテリ12に対する充電は、太陽電池20による太陽光発電に加えて、外部の充電装置による充電、内燃機関による発電、或いは回生ブレーキによる電力回生によって行われる。バッテリ12に対する充電制御のため、車両2はバッテリマネジメントシステム22を備える。
車両2はナビゲーションシステム24、通信装置26、及び照度センサ28を備える。ナビゲーションシステム24は設定された目的地までの経路を地図情報に基づいて計算する。通信装置26は移動体通信を用いて車両の外部と通信する。通信装置26によって外部から取得される情報は天気予報情報を含む。照度センサ28は車両2の周囲の照度を計測する。照度センサ28は自動運転用のカメラに搭載されているものでもよい。
車両2は太陽光発電マネージャ14を備える。太陽光発電マネージャ14は太陽電池20を用いた太陽光発電を管理するコンピュータである。例えば、1つ又は複数のECUによって太陽光発電マネージャ14が構成される。太陽光発電マネージャ14は太陽電池20から発電状態情報を取得し、バッテリマネジメントシステム22からバッテリ情報を取得するように構成されている。また、太陽光発電マネージャ14は、ナビゲーションシステム24から目的地までの経路情報を取得する機能と、通信装置26を用いて天気予報情報や駐車場情報を取得する機能と、照度センサ28を用いて照度情報を取得する機能とを備える。
太陽光発電マネージャ14は、バッテリ12のSOCに空きが有る場合、太陽光発電による充電によってバッテリ12のSOCを増加させるようにプログラムされている。具体的には、太陽光発電マネージャ14は、バッテリ12の充電電力量が車両2の現在地よりも増加する場所を探し、その場所を太陽光発電ポイントとして指定するようにプログラムされている。太陽光発電マネージャ14は、さらに、指定した太陽光発電ポイントを自動運転システム10に送信し、自動運転システム10に対して車両2を太陽光発電ポイントまで移動させるように指示するようにプログラムされている。
自動運転システム10が車両2を自律走行させて太陽光発電ポイントまで移動させることで、移動させなかった場合よりも、太陽電池20によるバッテリ12への充電電力量を増加させることができる。ただし、その効果を得ることができるのは、太陽光発電ポイントを適切に決定することができた場合に限られる。以下、太陽光発電ポイントの決定方法別に車両2で実行されるバッテリの充電方法について説明する。
<第1の例>
第1の例は、天気予報情報に基づき現在地よりも高い発電電力量を期待できる場所を求めて車両2を移動させる例である。例えば、図2に示されるように、前日の時点、或いは、当日の朝の時点において、車両2が停車している場所(ポイントA)における天気の予報は曇りであったとする。その場合、車両2をポイントAに駐車させ続けたとしても、太陽電池20に当たる太陽光の不足によって太陽光発電による発電電力量はなかなか上昇しない。
そこで、太陽光発電マネージャ14は、通信装置26によって得られる天気予報情報に基づき他の場所の天気を調べる。太陽光発電マネージャ14によって天気を調べられる場所は、日中に車両2を駐車することができる駐車場である。図2に示される例では、ポイントAから略等距離のところに4つの駐車場(ポイントB、C、D、E)が存在する。天気予報によれば、ポイントBの今後の天気は曇り、ポイントCの今後の天気は晴れ後曇り、ポイントDの今後の天気は晴れ、ポイントEの今後の天気は晴れ時々曇りである。このように天気予報を利用することで、離れた場所にある太陽光発電に適した場所を探すことができる。
太陽光発電マネージャ14は、近隣の4つのポイントB、C、D、Eのうち最も天気が良いポイントDを新たな太陽光発電ポイントとして決定する。ポイントDは、4つのポイントB、C、D、Eのうちで最も強い太陽光を最も長い時間期待できる場所である。新たな太陽光発電ポイントが設定されることで、自動運転システム10はその太陽光発電ポイントに向けて車両2を移動させる。これにより、当所の場所に車両2を駐車させ続ける場合に比較して、太陽光発電によるバッテリ12の充電電力量を増大させることができる。その結果、太陽光で発電された電力の車両2での利用を増やし、省エネを促進することができる。
なお、太陽光発電マネージャ14が利用する天気予報情報は、できるだけ細かいメッシュに分割されたものが望ましい。例えば、数km間隔、好ましくは1km以下の間隔のメッシュに分割された天気予報情報が用いられる。雨雲レーダーの情報を天気予報情報として用いることも可能である。その場合、太陽光発電マネージャ14は雨雲が発生しない場所に車両2を移動させる。
また、新たな太陽光発電ポイントを決定する上では、車両2の移動先となる駐車場に空きがあるかどうかが検索される。太陽光発電マネージャ14は、通信装置26によって得られる駐車場情報に基づいて駐車場の空きを調べる。駐車場情報は専用の駐車場検索サーバが提供してもよいし、車両2を含む自動運転車両のグループを管理する車両管理サーバが提供してもよい。なお、車両2の移動先となる駐車場が有料の場合、太陽光発電マネージャ14は、車両2がその駐車場に移動した場合に、現在地に留まる場合と比較して増加すると見込まれる発電電力量を算出する。そして、増加が見込まれる発電電力量を電気料金に換算した額が駐車料金を上回るのであれば、太陽光発電マネージャ14は、その駐車場を新たな太陽光発電ポイントとして決定する。
<第2の例>
第2の例は、移動に伴う消費電力量も考慮した上で、現在地よりも高い発電電力量を期待できる場所を求めて車両2を移動させる例である。車両2の移動はバッテリ12に蓄えられた電力によって行われる。図3に示される例では、前日の時点、或いは、当日の朝の時点において、車両2が停車している場所(ポイントA)における天気の予報は曇りであったとする。
太陽光発電マネージャ14は、通信装置26によって得られる天気予報情報に基づき他の場所の天気を調べる。調査の結果、ポイントBの天気が晴れ時々曇りで、ポイントCの天気が終日晴れであることが分かった。この場合、移動に伴う電力の消費を考えなければ、車両2を移動させるべき太陽光発電ポイントはポイントCとなる。しかし、ポイントAからの道程次第で車両2が消費する電力量には差が生じる。
ここで、ポイントBにおいて期待される発電電力量をX1kWh、ポイントCにおいて期待される発電電力量をX2kWhとする。また、ポイントAからポイントBまでの移動で予測される消費電力量をY1kWh、ポイントAからポイントCまでの移動で予測される消費電力量をY2kWhとする。消費電力量は直近の電費と地図上の距離とに基づいて計算される。より天気が良いのはポイントCであるので、ポイントCにおける発電電力量のほうがポイントBにおける発電電力量よりも大きい。すなわち、X2>X1である。しかし、ポイントCのほうがポイントBよりもポイントAからの距離が長いので、ポイントCまでの消費電力量のほうがポイントCまでの電電力量よりも大きい。すなわち、Y2>Y1である。
新たな太陽光発電ポイントとしてポイントCとポイントBのどちらが選択されるかは、上記の発電電力量と消費電力量との差分により決まる。図3に示されるように、X2-Y2>X1-Y1となる場合、ポイントBが新たな太陽光発電ポイントとして選択される。つまり、天気予報から期待される発電電力量は相対的に少ないとしても、その場所に移動するまでの消費電力量も相対的に少ない場合には、最も天気が良い場所以外の場所が太陽光発電ポイントとして決定されることがありうる。
しかし、ポイントB及びポイントCのポイントAからの距離によっては、ポイントB及びポイントCの双方において消費電力量が発電電力量を上回ってしまうことがありうる。その場合、車両2を移動させることにメリットはない。ゆえに、消費電力量を上回る発電電力量を期待できる場所がない場合、太陽光発電マネージャ14は太陽光発電ポイントをポイントAに維持する。移動に要する消費電力量を計算に入れることで、車2を移動させるだけのメリットが太陽光発電により得られる場所なのかどうか判断することができる。
<第3の例>
第3の例は、駐車場内において日当たりの良い場所を求めて車両2を移動させる例である。図4Aに示されるように、駐車場への入庫時、太陽光発電マネージャ14は他の物体の陰に入らない駐車枠を選択して車両2を駐車させる。どの駐車枠が日当たりがよいかは、照度センサ28から得られる照度情報に基づいて判別することができる。選択された駐車枠は太陽光発電ポイントの初期位置として設定される。
しかし、車両2が置かれている状況は車両2が駐車された時点から変化していき、必ずしも日当たりの良い状態が続くとは限らない。例えば、図4Bに示されるように、車両2の隣の駐車枠に大型トラック4が駐車されることがある。大型トラック4の方が車両2よりも車高があるため、太陽の向きによっては、大型トラック4によって作りされる陰40の中に車両2が入ってしまう。車両2が陰40の中に入り太陽電池20に太陽光が当たらなくなることで、太陽光発電による発電電圧は低下してしまう。
太陽光発電マネージャ14は、車両2が陰40の中に入ったことを太陽電池20から得られる発電状態情報から認識する。例えば、発電電圧が急激に低下し、その状態が一定時間継続している場合には、車両2が何らかの物体の陰に入ったと判断することができる。太陽電池20の発電電圧は一時的に太陽が雲に隠れた場合にも低下する。しかし、発電電圧の低下が雲による一時的なものなのか、車両2が物体の陰に隠れたことによるものなのかは、発電電圧の変化の様子から判別することができる。また、車両2が陰40の中に入ったかどうかは、照度センサ28から得られる照度情報から判定することも可能である。
車両2が陰40の中に入り太陽電池20の発電電圧が低下した場合、太陽光発電マネージャ14は、新たな太陽光発電ポイントを探索する。新たな太陽光発電ポイントは、太陽電池20に太陽光を当てることができる場所の中で、現在地からの移動距離が最も短い場所である。太陽電池20に太陽光を当てることができる場所は、照度センサ28から得られる照度情報に基づいて判別することができる。移動距離が最も短い場所が選定される理由は、移動のための消費エネルギーを最小限に抑えるためである。
図4Cに示される例では現在の駐車枠の隣の駐車枠が空いているため、太陽光発電マネージャ14は、その駐車枠を新たな太陽光発電ポイントとして決定する。新たな太陽光発電ポイントが設定されることで、自動運転システム10はその太陽光発電ポイントに向けて車両2を移動させる。これにより、太陽電池20に太陽光を当て続けることができ、太陽光発電によるバッテリ12の充電電力量を増大させることができる。その結果、太陽光で発電された電力の車両2での利用を増やし、省エネを促進することができる。
<第4の例>
第4の例は、時間ごと場所ごとの照度データが蓄積された照度データベース50に基づいて車両2を移動させる場所を決定する例である。図5には照度データベース50のイメージが示されている。図5において色の濃いマスは照度が低い場所を示し、色の薄いマスは照度が高い場所を示している。図5に示される例では、予め登録された20か所の場所における8時、11時、14時、及び17時の照度データが照度データベース50に蓄積されている。
照度データは各場所に設置された照度センサで得られたデータであってもよいし、車両が備える照度センサで得られたデータであってもよい。照度データベース50は、複数の自動運転車両を管理する車両管理サーバに構築されている。各自動運転車両は、GPSで取得された位置情報と時刻とともに照度センサで取得した照度データを車両管理サーバに送信する。車両管理サーバは、各自動運転車両から送られてきた照度データを照度データベース50に蓄積していく。
太陽光発電マネージャ14は、所定の時間間隔で照度データベース50にアクセスする。そして、現在時刻よりも将来の時刻における照度データに基づき、車両2を移動させるべきかどうか、移動させるのであればどの場所を新たな太陽光発電ポイントとして決定すべきかを判断する。具体的には、次の登録時刻において現在地の照度が低下することを照度データが示している場合、太陽光発電マネージャ14は、照度が維持される場所の中で現在地から最も近い場所を新たな太陽光発電ポイントとして決定する。このように、過去の実績が蓄積された照度データベース50を利用することで、太陽光発電に適した場所を予測して車両2を移動させることができる。
<第5の例>
第5の例は、3D地図データと日時とに基づいて車両2を移動させる場所を決定する例である。図6には3D地図データ60と太陽モデル62の各イメージが示されている。3D地図データ60には地形や建造物の高さのデータが含まれている。太陽モデル62は日時と太陽の位置とを紐づけたモデルである。3D地図データ60に太陽モデル62を組み合わせたシミュレーションにより、平面図においてどこが日陰となる場所なのか、日陰でない場所なのかを求めることができる。
太陽光発電マネージャ14は3D地図データ60と太陽モデル62とを用いたシミュレーションを自身で行ってもよいし、車両管理サーバが行ったシミュレーションの結果を受信してもよい。太陽光発電マネージャ14は、車両2を駐車可能な駐車場のうちで日陰でない駐車場を特定し、日陰でない駐車場の中から太陽光発電ポイントを決定する。3D地図データ60からは建物の大きさが分かり、太陽モデル62からは太陽の位置が分かるので、太陽光発電に適した日陰でない場所を精度よく予測して車両2を移動させることができる。
<変形例>
第2の例で説明された、移動に伴う消費電力量も考慮した上で、現在地よりも高い発電電力量を期待できる場所を求めて車両2を移動させることは、第3の例、第4の例、及び第5の例にも適用することができる。また、第1の例で説明された、駐車料金を考慮しても移動する価値がある場合に限り車両2を移動させることは、第2の例、第3の例、第4の例、及び第5の例にも適用することができる。
車両2を駐車させるべき太陽光発電ポイントを決定する処理は車両管理サーバが行ってもよい。つまり、上述の実施形態において車両2に設けられた太陽光発電マネージャ14が備える機能を車両2とネットワークで接続された車両管理サーバに移し、車両管理サーバからの指示に従って車両2が移動するようにしてもよい。また、車両2がユーザの端末と接続される場合には、ユーザの端末から車両2に対して車両2を駐車させるべき太陽光発電ポイントを指示するようにしてもよい。
車両2を太陽光発電ポイントまで移動させる際、車両2を自動洗車機にかけてから太陽光発電ポイントまで移動させるようにしてもよい。車両2を自動洗車機にかけることで、太陽電池20のパネルの汚れを落とすとともに太陽電池20の温度を下げることができる。これにより、太陽電池20の発電効率を高めた状態にして車両2を太陽光発電ポイントに向かわせることができる。また、太陽電池20のパネルを拭きとるワイパーを車両2に設けて、車両2が太陽光発電ポイントまで移動する前にワイパーで太陽電池20のパネルを拭きとるようにしてもよい。車両2の屋根にはよごれが付きやすいので、ワイパーでパネルを拭きとるだけでも太陽電池20の発電効率を向上させる効果は期待できる。
2 自動運転車両
4 大型トラック
10 自動運転システム
12 バッテリ
14 太陽光発電マネージャ
20 太陽電池
22 バッテリマネジメントシステム
24 ナビゲーションシステム
26 通信装置
28 照度センサ
40 陰
50 照度データベース
60 3D地図データ
62 太陽モデル

Claims (7)

  1. 太陽電池と前記太陽電池で発電された電力を充電可能なバッテリとを搭載した自動運転車両において、
    前記バッテリの充電電力量が現在地よりも増加する太陽光発電ポイントを探すことと、
    前記太陽光発電ポイントまで自動運転で移動することと、を実行するように構成されている
    ことを特徴とする自動運転車両。
  2. 請求項1に記載の自動運転車両において、
    周辺地域の天気予報に基づいて前記太陽光発電ポイントを決定すること、を実行するように構成されている
    ことを特徴とする自動運転車両。
  3. 請求項1に記載の自動運転車両において、
    照度センサによって検出された照度が周囲よりも高い場所を前記太陽光発電ポイントとして決定すること、を実行するように構成されている
    ことを特徴とする自動運転車両。
  4. 請求項1に記載の自動運転車両において、
    時刻ごと場所ごとの照度データが蓄積された照度データベースに基づいて前記太陽光発電ポイントを決定すること、を実行するように構成されている
    ことを特徴とする自動運転車両。
  5. 請求項1に記載の自動運転車両において、
    3D地図データと日時とに基づいて日陰でない場所を特定し、前記日陰でない場所の中から前記太陽光発電ポイントを決定すること、を実行するように構成されている
    ことを特徴とする自動運転車両。
  6. 請求項1乃至5のいずれか1項に記載の自動運転車両において、
    登録された場所ごとに前記太陽電池による所定時間あたりの発電電力量を計算することと、
    前記登録された場所ごとに移動によって消費する消費電力量を計算することと、
    前記登録された場所ごとの発電電力量と消費電力量との差分に基づき前記登録された場所の中から前記太陽光発電ポイントを決定することと、を実行するように構成されている
    ことを特徴とする自動運転車両。
  7. 太陽電池を搭載した自動運転車両のバッテリへの充電方法であって、
    前記バッテリの充電電力量が前記自動運転車両の現在地よりも増加する太陽光発電ポイントを探し、
    前記太陽光発電ポイントまで前記自動運転車両を自動運転で移動させる、
    ことを特徴とする充電方法。
JP2022089717A 2022-06-01 2022-06-01 自動運転車両及び自動運転車両のバッテリの充電方法 Pending JP2023177036A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022089717A JP2023177036A (ja) 2022-06-01 2022-06-01 自動運転車両及び自動運転車両のバッテリの充電方法
US18/187,896 US20230391361A1 (en) 2022-06-01 2023-03-22 Autonomous driving vehicle and method for charging battery of autonomous driving vehicle
CN202310304682.4A CN117141243A (zh) 2022-06-01 2023-03-27 自动驾驶车辆以及自动驾驶车辆的蓄电池的充电方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022089717A JP2023177036A (ja) 2022-06-01 2022-06-01 自動運転車両及び自動運転車両のバッテリの充電方法

Publications (1)

Publication Number Publication Date
JP2023177036A true JP2023177036A (ja) 2023-12-13

Family

ID=88884893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022089717A Pending JP2023177036A (ja) 2022-06-01 2022-06-01 自動運転車両及び自動運転車両のバッテリの充電方法

Country Status (3)

Country Link
US (1) US20230391361A1 (ja)
JP (1) JP2023177036A (ja)
CN (1) CN117141243A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210291666A1 (en) * 2020-03-19 2021-09-23 Honda Motor Co., Ltd. Solar power generation control device

Also Published As

Publication number Publication date
CN117141243A (zh) 2023-12-01
US20230391361A1 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
CN104973057A (zh) 智能预测控制系统
JP4946713B2 (ja) 駐車位置判定装置、駐車位置判定方法及びコンピュータプログラム
CN108515963B (zh) 一种基于its系统的插电式混合动力汽车能量管理方法
JP7111469B2 (ja) 車両制御システム、車両制御方法、およびプログラム
CN106585383B (zh) 电动汽车控制方法和装置
JP6271034B2 (ja) 走行制御装置
US20180283887A1 (en) Electric vehicle charging
US20230391361A1 (en) Autonomous driving vehicle and method for charging battery of autonomous driving vehicle
JP7097188B2 (ja) 車両制御システム、車両制御方法、およびプログラム
CN113497483A (zh) 太阳能发电控制装置
CN108133329B (zh) 考虑充电反馈效应的电动汽车出行与充电需求分析方法
CN108045336A (zh) 一种充电控制方法、装置及车辆
Fahad et al. Efficient V2G model on smart grid power systems using genetic algorithm
US20240067039A1 (en) Server and vehicle management method
US11810458B2 (en) Parking lot management system, parking lot management method, and storage medium
CN109488469B (zh) 一种增程式电动汽车发动机控制方法及控制装置
CN103318047A (zh) 一种增程式电动城市客车及其能量分配方法和系统
CN112785070A (zh) 一种电动汽车停车充电的负荷预测方法及装置
EP4279320A1 (en) Controlling power consumption for a vehicle having photovoltaics at a vehicle body
US11834032B2 (en) Vehicle control device and vehicle control method
US20230304814A1 (en) Server, power transfer system, and power transfer method
US20230173937A1 (en) Collaborative generation solar radiation maps
CN113954664B (zh) 一种车载无人机无线充电方法和系统
JP7497183B2 (ja) 太陽光発電制御装置
US20230022823A1 (en) Route determination device and vehicle dispatch system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240415