JP2023174689A - 車両および車両制御方法 - Google Patents

車両および車両制御方法 Download PDF

Info

Publication number
JP2023174689A
JP2023174689A JP2023158822A JP2023158822A JP2023174689A JP 2023174689 A JP2023174689 A JP 2023174689A JP 2023158822 A JP2023158822 A JP 2023158822A JP 2023158822 A JP2023158822 A JP 2023158822A JP 2023174689 A JP2023174689 A JP 2023174689A
Authority
JP
Japan
Prior art keywords
coolant
refrigerant
heat exchange
layer
exchange plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023158822A
Other languages
English (en)
Inventor
圭俊 野田
Yoshitoshi Noda
祐紀 牧田
Yuki Makita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2023158822A priority Critical patent/JP2023174689A/ja
Publication of JP2023174689A publication Critical patent/JP2023174689A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】冷媒および冷却液を用いた熱交換プレートを備えた車両等を提供する。【解決手段】車両は、コンプレッサおよびコンデンサを備え、冷媒が循環する冷媒回路と、リザーバおよびポンプを備え、冷却液が循環する冷却液回路と、冷却液を循環させる冷却液層および冷媒を循環させる冷媒層を備えた熱交換プレートと、熱交換プレートに沿って配置された電池モジュール群とを備え、冷却液層の少なくとも一部は冷媒層と重なって配置され、熱交換プレートの冷却液層を流れる冷却液の流量が、冷却開始時からの経過時間に応じて変わるように冷却液の流量を制御する。【選択図】図8

Description

本開示は、車両および車両制御方法に関する。
ハイブリッド車や電気自動車には、駆動源であるモータに電力を供給する車載電池が搭載されている。車載電池の温度上昇を抑制するために、冷媒と冷却液の二つを同時に供給する熱交換器が知られている(特許文献1参照)。
特許文献1は、複数の電池セルを連結してなる電池ブロックと、電池セルに熱結合されて、供給される冷媒で電池セルを冷却する冷却プレートと、冷却プレートに冷媒を供給する冷却機構と、冷却機構を制御して冷却プレートの冷却状態を制御する制御回路とを備える車両用の電源装置であり、電池を効率よく速やかに冷却しながら、電池セルの温度差を少なくして電池セルのアンバランスによる弊害を防止することが開示されている。
特開2010-50000号公報
本開示は、冷媒および冷却液を用いたハイブリッド式熱交換プレートを用いた車両および車両制御方法を提供することを目的とする。
本開示は、少なくともコンプレッサと、コンデンサと、を備え、冷媒が循環する冷媒回路と、リザーバとポンプを備え、冷却液が循環する冷却液回路と、第1面と前記第1面と反対の第2面を有し、前記第1面と前記第2面の間において冷却液を循環させる冷却液層と、前記第1面と前記第2面の間において冷媒を循環させる冷媒層と、を備えた熱交換プレートと、複数の電池モジュールを有し、前記熱交換プレートの前記第1面に沿って配置された電池モジュール群と、前記冷媒回路、前記冷却液回路、前記熱交換プレート、および前記電池モジュール群を収容する車体と、前記車体に結合された第1車輪および第2車輪と、前記電池モジュール群から供給される電力を用いて、前記第1車輪を駆動する電動機と、を備え、前記第1車輪および前記第2車輪を用いて走行可能であり、前記冷却液層の少なくとも一部は、前記冷媒層と重なって配置され、前記熱交換プレートは、前記冷媒層に向かって前記冷媒が入る冷媒入力部と、前記冷媒層から前記冷媒が出る冷媒出力部とを備え、前記熱交換プレートは、前記冷却液層に向かって前記冷却液が入る冷却液入力部と、前記冷却液層から前記冷却液が出る冷却液出力部とを備え、前記冷却液回路が、前記冷却液入力部および前記冷却液出力部と接続されており、前記冷媒経路が、前記冷媒入力部および前記冷媒出力部と接続された車両であって、前記熱交換プレートの前記冷却液層を流れる冷却液の流量が、冷却開始時からの経過時間に応じて変わるように、前記冷却液の流量を制御する、車両を提供する。
また、本開示は、少なくともコンプレッサと、コンデンサと、を備え、冷媒が循環する冷媒回路と、リザーバとポンプを備え、冷却液が循環する冷却液回路と、第1面と前記第1面と反対の第2面を有し、前記第1面と前記第2面の間において冷却液を循環させる冷却液層と、前記第1面と前記第2面の間において冷媒を循環させる冷媒層と、を備えた熱交換プレートと、複数の電池モジュールを有し、前記熱交換プレートの前記第1面に沿って配置された電池モジュール群と、前記冷媒回路、前記冷却液回路、前記熱交換プレート、および前記電池モジュール群を収容する車体と、前記車体に結合された第1車輪および第2車輪と、前記電池モジュール群から供給される電力を用いて、前記第1車輪を駆動する電動機と、を備え、前記第1車輪および前記第2車輪を用いて走行可能であり、前記冷却液層の少なくとも一部は、前記冷媒層と重なって配置され、前記熱交換プレートは、前記冷媒層に向かって前記冷媒が入る冷媒入力部と、前記冷媒層から前記冷媒が出る冷媒出力部とを備え、前記熱交換プレートは、前記冷却液層に向かって前記冷却液が入る冷却液入力部と、前記冷却液層から前記冷却液が出る冷却液出力部とを備え、前記冷却液回路が、前記冷却液入力部および前記冷却液出力部と接続されており、前記冷媒経路が、前記冷媒入力部および前記冷媒出力部と接続された車両で利用可能な車両制御方法であって、前記熱交換プレートの前記冷却液層を流れる冷却液の流量が、冷却開始時からの経過時間に応じて変わるように、前記冷却液の流量を制御する、車両制御方法を提供する。
本開示によれば、冷媒および冷却液を用いたハイブリッド式熱交換プレートを用いた車両および車両制御方法を提供することができる。
電池モジュール群10の温度を調整する熱交換プレート21を示す概念図 電池モジュール群10および熱交換プレート21の断面図 図1に示した熱交換プレート21の分解斜視図 熱交換プレート21が車両100に搭載される搭載例を示す概念図 本開示の熱交換プレート21を備えた電池温度調整システム1の第1の実施形態を示す回路図 冷媒と冷却液の双方を用いた熱交換プレート21による、冷却速度を計測した実験結果を示す表 このような第1コンプレッサ51の出力値βの値を決定する関数f(Tf-Taim)を示すグラフ 本開示の電池温度調整システム1による、冷却液の流量制御の実施例を示すフローチャート ポンプPの出力値を算出する算出ロジックを示す、2種類のグラフ(グラフAおよびグラフB) コンプレッサの回転数に応じた、コンプレッサーオイルの状態を示す実験結果をまとめた表 オイル戻しの制御例を示すフローチャート 本開示の第2の実施形態に係る、熱交換プレート21を備えた電池温度調整システム1Bを示す回路図 本開示の電池温度調整システム1Bによる、冷却液の流量制御の実施例を示すフローチャート 本開示の電池温度調整システム1または1Bに用いることが可能な、変形例に係る熱交換プレート70を示す図であり、(a)上面図、(b)電池モジュール群10を載置した状態の側面断面図 冷媒層40を持たない第3熱交換プレート21Cを更に備えた、変形例に係る熱交換プレート70を示す図であり、(a)上面図、(b)電池モジュール群10を載置した状態の側面断面図 車体102に収容可能な電池パック90の一例を示す概念図
以下、適宜図面を参照しながら、本開示に係る車両および車両制御方法を具体的に開示した実施形態(以下、「本実施形態」という)を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。なお、添付図面及び以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。
(実施形態1)
図1は、電池モジュール群10の温度を調整する熱交換プレート21を示す概念図である。
電池モジュール群10は、複数の電池モジュール11を有している。電池モジュール11は、例えば、ハイブリッド車または電気自動車における走行用モータの駆動源となる電気エネルギーを蓄積する電池であり、冷却や加熱など温度調整を要する部品である。
熱交換プレート21は、後述の冷却液と冷媒とを用いて、電池モジュール群10に含まれる電池モジュール11の温度調整を行う。熱交換プレート21は、第1面22と、第1面22と反対の第2面23を有している。図示されているように、電池モジュール群10は、熱交換プレート21の第1面22に沿って配置される。図1においては、熱交換プレート21の第1面22上に、2列に分かれて5つずつの電池モジュール11が載るように配列されているが、電池モジュール11の配列については特に限定されない。そのため、下記の説明においては、複数の電池モジュール11をまとめて1つの部材として図示及び表現することがある。
ここで、理解を容易とするため、各図に示すように、x軸、y軸、z軸からなる直交座標系が規定される。z軸は、x軸及びy軸に対して垂直である。また、各軸の正の方向は、図1における矢印の方向に規定され、負の方向は、矢印と逆向きの方向に規定される。ここで、x軸の正方向を「前側」と表現し、x軸の負方向を「後側」と表現し、y軸の正方向側を「右側」と表現し、y軸の負方向側を「左側」と表現し、z軸の正方向側を「上側」と表現し、z軸の負方向側を「下側」と表現することがある。
図2は、電池モジュール群10および熱交換プレート21の断面図である。
図1と同様に、電池モジュール群10が熱交換プレート21の第1面22に沿って配置されている。熱交換プレート21は、冷却液層30と冷媒層40とを備えている。冷却液層30は、熱交換プレート21の第1面22と前記第2面23の間において冷却液を循環させる(図3参照)。冷却液は、例えばエチレングリコールを含む不凍液である。冷媒層40は、熱交換プレート21の第1面22と第2面23の間において冷媒を循環させる(図3参照)。冷媒は、気体(ガス)と液体とが混じった2相状態のものであってよく、一例は、HFC(Hydrofluorocarbon)である。ただし、冷媒はHFC以外のものであってもよい。冷却液層30と冷媒層40との間には、中間面24があってよい。この中間面24は、第1面22と第2面23との間に配置される。
冷却液層30の少なくとも一部は、冷媒層40と重なって配置される。図2に示された構成例においては、冷却液層30のほぼ全体が、冷媒層40と重なって配置されている。かし、例えば、冷媒層40のx軸方向における寸法が、冷却液層30のx軸方向における寸法よりも小さい場合、冷却液層30の一部が冷媒層40と重なる。この場合、冷却液層30と冷媒層40とが重なっている部分において、冷却液と冷媒との間での熱交換が行われる。図示は省略するが、x軸方向における寸法の小さな冷媒層40が、x軸方向における寸法の大きな冷却液層30の中央付近に埋め込まれるような構造であってもよい。
冷却液層30と冷媒層40とが重なっている部分において、冷却液層30は、前記冷媒層40と電池モジュール群10の間に配置可能である。図2に示された構成例においては、冷却液層30が冷媒層40より上側(電池モジュール群10に近い側)に配置されている。しかし、冷却液層30と冷媒層40の位置関係は、これとは逆でもよい。すなわち、冷却液層30と前記冷媒層40とが重なっている部分において、冷媒層40は、冷却液層30と電池モジュール群10の間に配置可能である。
冷却液層30は、冷却液が流れる冷却液通路31を備えている。冷媒層40は、冷媒が流れる冷媒通路41を備えている。冷媒通路41の容積は、冷却液通路31の容積よりも少ないものであってよい。冷却液通路31及び冷媒通路41について、詳しくは、図3以降を参照して後述する。
冷却液通路31の高さ(図のz方向における長さ)の平均値をhcoolとし、冷媒通路41の高さ(図のz方向における長さ)の平均値をhrefとする。この時、冷媒通路41の高さの平均値hrefが、冷却液通路31の高さの平均値hcoolよりも小さいものであってよい。
図3は、図1に示した熱交換プレート21の分解斜視図である。図4は、熱交換プレート21が車両100に搭載される搭載例を示す概念図である。図3及び図4を参照して、熱交換プレート21の構造と、熱交換プレート21の車両100への搭載例について説明する。
本開示の熱交換プレート21は、冷媒層40を流れる冷媒と冷却液層30を流れる冷却液を併せて用いるハイブリッド式であることにより、電池モジュール群10の発熱特性に合わせて電池温度調整制御を行うことができるものである。
まず、車両100について、図4を参照して説明する。車両100は、車輪101と、車体102とを備える。車体102は、熱交換プレート21を収容する。また、図1及び図2に示したように、電池モジュール群10が熱交換プレート21の第1面22に沿って配置されるので、車体102は、電池モジュール群10も収容する。すなわち車体102は、熱交換プレート21及び電池モジュール群10を収容する。図示した例においては、熱交換プレート21及び電池モジュール群10は、車体102の底面103の上に載置されている。なお、車体102は、図5以降を参照して後述する第1冷媒回路5、冷却液回路6、管理装置7、第2冷媒回路8等も収容する。
車輪101は、車体102に結合された第1車輪101aと第2車輪101bとを含んでいてよい。車輪101はさらに、車体102に結合された第3車輪101cと第4車輪101dを含んでいてよく、典型的には車両100は4輪の自動車である。ただし車両100は、2輪のバイクやオート3輪などの、4輪以外の車輪を有する車両(5輪以上を含む)であってもよい。
車体102は、第1車輪101a及び第2車輪101bを結合している。車体102が備える、図示を省略する電動機が、電池モジュール群10から供給される電力を用いて、前記第1車輪101aを駆動する。一方、第2車輪101bは駆動輪ではなく、操舵輪であってよい。ただし、電動機は第1車輪101a以外の車輪を駆動してもよい。電動機の数は1つには限られず、例えば4輪駆動の自動車などの場合、第1の電動機が第1車輪101aを駆動し、第2の電動機が第2車輪101bを駆動してもよい。
車両100は、第1車輪101a及び第2車輪101bを用いて所定の方向(第1方向とする)に走行可能である。車体102は、そのような車両100を構成可能である。なお、第1方向と直交する方向を第2方向とする。第2方向は車両100の水平方向であってよい。ただし、第2方向は車両100の水平方向でなくともよい。
次に、車両100に収容可能な熱交換プレート21の構成について、図3及び図4を参照して説明する。熱交換プレート21の冷却液層30は、上述の第1方向に沿って配置されることが可能である。熱交換プレート21の冷媒層40は、上述の第1方向に沿って配置されることが可能である。
熱交換プレート21は、上述の第1方向について第1の幅を有する。熱交換プレート21は、上述の第2方向について第2の幅を有する。このとき、第1の幅は第2の幅より長くすることが可能である。第2方向を車両100の水平方向にした、図示されている例においては、熱交換プレート21の長手方向が第1方向に沿っており、熱交換プレート21の短手方向が第2方向に沿っている。
冷媒入力部40Aと冷媒出力部40Bは、図5以降を参照して後述する第1冷媒回路5、または図12以降を参照して後述する第2冷媒回路8と接続されている。第1冷媒回路5については後述するが、典型的には、膨張弁を通って減圧された気液二相の冷媒が、冷媒入力部40Aから冷媒層40に入り、冷媒層40の中を流れる。冷媒層40の中を流れる冷媒は、冷却液層などから受ける熱を吸収して徐々にガス化し、冷媒出力部40Bを通って出て行く。すなわち、冷媒層40が備える冷媒通路41は、冷媒入力部40Aから冷媒出力部40Bに向かって前記冷媒が流れるものである。この冷媒が流れる方向を、図3及び図4において、矢印で示している。
ここで、熱交換プレート21は、上述の第1方向について上述の一端部と反対の他端部を有している。熱交換プレート21の一端部は、熱交換プレート21の他端部よりも車両100の前方部に近い側であってよい。車両100の前方部は、車両100において常用される進行方向側を指す。図示した例においては、熱交換プレート21の、車両100の進行方向前側(x軸の正方向)の端部が一端部であり、熱交換プレート21の、車両100の進行方向後ろ側(x軸の負方向)の端部が他端部である。すると、図示されているように、熱交換プレート21の、冷媒入力部40A及び冷媒出力部40Bを備える一端部が、車両100の前方部に近い側に配置されることになる。後述する第1冷媒回路5が車両100の前方部に配置されている場合、冷媒入力部40A及び冷媒出力部40Bと、第1冷媒回路5とを接続するための配管が短くて済み、車内空間に配置される熱交換プレート21や第1冷媒回路5のセットを省スペース化することができる。
一方、第1冷媒回路5が車両100の後方部に配置されている場合、熱交換プレート21の一端部と他端部との位置関係が逆になってもよい。すなわちこの場合、熱交換プレート21の、冷媒入力部40A及び冷媒出力部40Bを備える一端部は、他端部よりも車両100の前方部から遠い側であってよい。
さらに、冷媒通路41は、分岐冷媒通路411を備える。分岐冷媒通路411は、いくつかの通路に枝分かれした冷媒通路である。すなわち、分岐冷媒通路は少なくとも2本、存在する。図3に示した例では、冷媒通路41は分岐冷媒通路411A~411Dの4本の分岐冷媒通路に枝分かれしており、図4に示した例では、冷媒通路41は分岐冷媒通路411A~411Fの6本の分岐冷媒通路に枝分かれしている。分岐冷媒通路の数は3本以下でも、5本でも、7本以上であってもよい。したがって、分岐冷媒通路411A、411B、411C、411D・・・を、それぞれ、第1冷媒通路、第2冷媒通路、第3冷媒通路、第4冷媒通路・・・と表現した場合、冷媒通路41は、第1冷媒通路と第2冷媒通路とを少なくとも有することになる。
なお、2本以上(図3の例では4本、図4の例では6本)の分岐冷媒通路を有する冷媒通路41から、任意の2本の分岐冷媒通路を選んで、それぞれ第1冷媒通路及び第2冷媒通路と表現し分けることができる。ここで、第1冷媒通路の少なくとも一部は、第2冷媒通路の少なくとも一部より、第1方向について一端部に近く配置される。
冷媒通路41内を流れる冷媒は、分岐冷媒通路411A~411D(F)の入口(分岐部)で複数に分岐し、分岐冷媒通路411A~411D(F)の出口(結合部)で合流する。すなわち冷媒通路41は、第1冷媒通路(例えば分岐冷媒通路411A)と第2冷媒通路(例えば分岐冷媒通路411B)に分岐する分岐部と、前記第1冷媒通路と前記第2冷媒通路が結合する結合部とを有している。
第1冷媒通路(例えば分岐冷媒通路411A)の少なくとも一部は、上述の第1方向と直交する第2方向に沿って配置されることができる。第2冷媒通路(例えば分岐冷媒通路411B)の少なくとも一部は、上述の第1方向と直交する第2方向に沿って配置されることができる。図示した例においては、分岐冷媒通路411A~411Dが直線形状を呈しており、第1冷媒通路(例えば分岐冷媒通路411A)及び第2冷媒通路(例えば分岐冷媒通路411B)の全体が第2方向に沿って配置されている。しかし、分岐冷媒通路411A~411D(F)は必ずしも直線形状であるとは限らず、第2方向に沿っていない箇所が部分的に存在してもよい。
次に、冷却液層30が備える冷却液通路31について説明する。冷却液通路31は、第1部分31Aと第2部分31Bの、2つの部分を有している。冷却液通路31の第1部分31Aは上述の第1方向に沿って配置されることが可能である。冷却液通路31の第2部分31Bも上述の第1方向に沿って配置されることが可能である。ただし、冷却液通路31の第1部分31Aと冷却液通路31の第2部分31Bとは、冷却液の流れる方向が逆になっている。すなわち、冷却液通路31の第1部分31Aの冷却液は上述の第1方向に流れ、冷却液通路31の第2部分31Bの冷却液は、上述の第1方向と反対の方向に流れる。
熱交換プレート21は、冷却液層30に向かって冷却液が入る冷却液入力部30Aと、冷却液層30から冷却液が出る冷却液出力部30Bとを備えている。図示されているように、冷却液入力部30A及び冷却液出力部30Bは、熱交換プレート21において、前記第1方向について上述の一端部に配置されてよい。冷却液入力部30Aと冷却液出力部30Bとを一端部に配置することにより、冷却液が流れる配管を一カ所(一つの端部)にまとめることができるので、車体102に収容される熱交換プレート21の外側の配管をより省スペース化することができる。また、車両100の内部の限られた空間において、配管のレイアウトを容易にすることができる。
冷却液層30に向かって冷却液入力部30Aから入った冷却液は、冷却液通路31の第2部分31Bを流れた後で折り返し、冷却液通路31の第1部分31Aを流れて、冷却液出力部30Bから出て行く。冷却液入力部30Aと冷却液出力部30Bは、図5以降を参照して後述する冷却液回路6と接続されており、冷却液回路6が備えるポンプPによって冷却液が流される。
冷却液は、冷却液通路31の長手方向(x軸の正方向、負方向)に沿って流れる。冷却液が流れる方向の例を、図3及び図4に矢印で示している。
図3及び図4に示した構成において、冷媒通路41における分岐冷媒通路411は、熱交換プレート21の長手方向(上述の第1の幅方向)に沿って分岐する。また、冷却液通路31における冷却液は、熱交換プレート21の長手方向(上述の第1の幅方向)に沿って流れる。このような構成とすることにより、以下に説明するように、温度ばらつきを低減することができる。電池モジュール群10に含まれる電池モジュール11は、図1に示したように複数並んで配置され、電池モジュール群10の中央部に位置する電池モジュールに熱がこもりやすい傾向がある。そこで、熱交換プレート21の長手方向に冷却液を流すことにより、電池モジュール群10の中央部分の熱を長手方向に逃がすようにして、温度ばらつきを低減することができる。また、分岐冷媒通路411を熱交換プレート21の長手方向(上述の第1の幅方向)に沿って分岐するように構成することにより、各分岐冷媒通路411A~411D(F)の長さ(上述の第2の幅に相当)をより短くすることができる。そのため、冷媒の圧力損失を低減し、温度ばらつきを低減することができる。
また、各分岐冷媒通路411A~411D(F)の少なくとも一部は、上述の第1方向と直交する第2方向に沿って配置されることができる。従って、各分岐冷媒通路411A~411D(F)の少なくとも一部における冷媒の流れは、第1方向と直交する第2方向に沿うことになる。一方で、冷却液通路31の冷却液は上述の第1方向または第1方向と反対の方向に流れる。すると、冷却液層30と冷媒層40とが重なっている部分において、冷媒が流れる方向と冷却液が流れる方向はほぼ直交する。この構成により、冷媒の温度ばらつきが冷却液により積極的に緩和される。
図5は、本開示の熱交換プレート21を備えた電池温度調整システム1の第1の実施形態を示す回路図である。
電池温度調整システム1は、第1冷媒回路5と、冷却液回路6と、管理装置7とを備える。電池温度調整システム1はさらに、熱交換プレート21と、電池モジュール群10を備えている。なお、熱交換プレート21と、電池モジュール群10とを筐体などの内部に納めて、電池パックを構成してもよい(図16参照)。
第1冷媒回路5は、第1コンプレッサ51と、第1コンデンサ52とを備える。第1冷媒回路5は、第1コンデンサ52と第1コンプレッサ51との間を冷媒が流れる第1冷媒経路5Aおよび第2冷媒経路5Bを備える。第1冷媒経路5Aおよび第2冷媒経路5Bは、第1冷媒回路5において並列に配置されている。第1冷媒回路5は、図中の矢印で示した方向に冷媒が循環する。
第1冷媒回路5の第1冷媒経路5Aは、第1膨張弁53とエバポレータ55とを備えている。一方、第2冷媒経路5Bは第2電磁弁57と第2膨張弁54とを備えており、第2冷媒経路5Bが、第2膨張弁54を介して、冷媒入力部40Aおよび冷媒出力部40Bと接続されている。第1冷媒経路5Aは、第1コンデンサ52とエバポレータ55との間であり、かつ第1冷媒経路5A内に配置された第1電磁弁56を、追加で備えていてもよい。
第1コンプレッサ51、第1コンデンサ52、第1膨張弁53、エバポレータ55は、それぞれ、車両100の室内空調(カーエアコン)用の冷凍サイクルを構成する圧縮機、凝縮器、膨張弁、および蒸発器であってよい。
第2膨張弁54は、温度式膨張弁(Thermal eXpansion Valve)であってよい。第2膨張弁54は、車両100の車内空調(カーエアコン)用の冷凍サイクルを構成する膨張弁であってよい。また、第2膨張弁54は、電池冷却用熱交換器(熱交換プレート21か、後述のチラー59)へ流入する冷媒を制御する。
第2膨張弁54は、クロスチャージ方式の温度式膨張弁であってよい。第2膨張弁54は、第2電磁弁57と一体化された電子式膨張弁であってもよい。本明細書において、第2電磁弁57を開くという表現、あるいは第2電磁弁57を閉じるという表現は、第2電磁弁57と一体化された電子式膨張弁を開くあるいは閉じることを意味していてもよい。
第1電磁弁56は、第1冷媒経路5Aを流れる冷媒の量を制御する電磁弁である。
第2電磁弁57は、電池冷却用熱交換器(熱交換プレート21か、後述のチラー59)への冷媒供給の有無を切り替える弁である。第2電磁弁57は、第2膨張弁54または配管に設置されてよい。
第2膨張弁54の下流には、熱交換プレート21(のうちの冷媒通路41)が接続されており、熱交換プレート21の上に電池モジュール群10が載置されている。電池モジュール群10には図示を省略するセンサが取付けられており、センサには、例えば電池温度センサ、電流センサ、電圧センサなどが含まれる。センサが温度センサである場合、このセンサは電池モジュール11におけるセル本体やバスバーに設置されていてよい。
冷却液回路6は、リザーバ61とポンプPを備え、図中の矢印で示した方向に冷却液が循環する。冷却液回路6は、冷却液入力部30Aおよび冷却液出力部30Bと接続されている(図3参照)。冷却液回路6は、例えばポンプPの下流などの位置に、ヒータ62を備えていてもよい。
リザーバ61およびポンプPは、冷却液回路6の冷却液サイクルを構成する貯水タンクよび水ポンプであってよい。ヒータ62は、冷却液回路6を流れる冷却液を加熱する。
管理装置7は、電池モジュール群10を管理する。管理装置7は、バッテリーを管理するユニット(BMU)であってよい。管理装置7は典型的にはECUとして実装されてよいが、CPUその他の情報処理装置が管理装置7として用いられてもよい。
管理装置7は、電池温度調整システム1に含まれる種々の構成要素を管理する。図5に示された信号1~信号11は、管理装置7と各構成要素との通信ラインを示している。
例えば、管理装置7は第1コンプレッサ51に、稼働速度を示す信号を送信する(コンプレッサの駆動信号である信号1)。また、管理装置7は第1コンプレッサ51から、稼働ステータスを示す信号を取得する(コンプレッサのインバータから返される信号2)。
管理装置7はポンプPに、稼働速度を示す信号を送信する(水ポンプ駆動信号である信号3)。管理装置7はポンプPから、稼働ステータスを示す信号を取得する(信号4)。
管理装置7は電池モジュール群10から、電池モジュール11の温度を示す信号を取得する(バッテリーセルの温度センサが示す温度値である、信号5)。
管理装置7は第2電磁弁57に、弁の開閉を示す信号を送信する(信号6)。
管理装置7は冷却液回路6の温度センサ501から、冷却液の温度を示す信号を取得する(信号9)。温度センサ501は、冷却液回路6において熱交換プレート21とリザーバ61の間に設置されている。なお、温度センサ501は、これに限らず、冷却液回路6において他の場所に設置するようにしてもよい。
管理装置7はCANを経由して、車両100における各種の情報通信を行う(信号10)。
管理装置7は、ヒータ62に、出力を示す情報を送信する(ヒータ出力信号である信号11)。
ここで、後述の第1電磁弁56や送風機58等を、車両100の車内空調(カーエアコン)側にある、図示を省略する処理手段が管理してよい。管理装置7が、当該第1電磁弁56や送風機58等を管理してもよい。
(冷却液の流量制御)
図6は、冷媒と冷却液の双方を用いた熱交換プレート21による、冷却速度を計測した実験結果を示す表である。図6の横軸は、熱交換プレート21による冷却開始からの時間である。図6の縦軸は、熱交換プレート21の第1面22(プレート冷却面)の平均温度である。図6に示した表において、3つの曲線C1、C2、およびC3が描画されている曲線C1、C2、およびC3はそれぞれ、熱交換プレート21における冷却液層30を流れる冷却液の流量が0リットル/時間、90リットル/時間、および150リットル/時間である場合を示している。
図6の表からわかるように、所定の時刻(図の例では、熱交換プレート21による冷却開始から約60秒経過時)より前は、曲線C1、C2、C3の順でプレート冷却面の平均温度の下降速度が速い。一方、所定の時刻(図の例では、熱交換プレート21による冷却開始から約60秒経過時)より後は、この順序は逆転し、曲線C3、C2、C1の順でプレート冷却面の平均温度の下降速度が速い。
ここで、熱交換プレート21は、冷媒と冷却液の双方を用いて電池モジュール群10を冷却するプレートである。従って、図6の表から、熱交換プレート21による冷却開始時には、第1冷媒回路5における冷凍サイクルが形成され冷媒温度が低下するまでの初期段階においては、冷却液の循環流量を抑える事により、熱交換プレート21の冷却速度が上がる事を読み取ることができる。一方で、冷却液の循環流量が低いままにしておくと、温度が低下した冷媒と熱交換を行った冷却液が熱交換プレート21全体に回らいない為、熱交換プレート21による電池モジュール群10の冷却性能は落ちる事を、図6の表から読み取ることができる。
従って、管理装置7がポンプPを制御することによって、冷却液層30を流れる冷却液の流量を可変制御することにより、熱交換プレート21が最速な冷却運転立ち上がりを実現することができ、最適な冷却性能を発揮出来る事が、本願発明者の鋭意工夫によりわかった。
そのため、本開示においては、管理装置7が、熱交換プレート21の冷却液層30を流れる冷却液の流量が、冷却開始時からの経過時間に応じて変わるように、冷却液の流量を制御する。これにより、熱交換プレート21の冷却性能が最適化される。
例えば、管理装置7は、第1の時刻における冷却液層30を流れる冷却液の流量が、第2の時刻における冷却液層30を流れる冷却液の流量よりも少なくなるように、冷却液の流量を制御してよい。ここで、第1の時刻は、冷却開始時から所定の経過時間(図6の例では60秒)を経過する前の時刻であり、第2の時刻は、冷却開始時から所定の経過時間(図6の例では60秒)を経過した後の時刻である。
また、電池モジュール群10の冷却負荷が低い場合、そもそも上述のような冷却性能の最適化を行わなくとも、十分な冷却を実施できると考えられる。そのため、管理装置7は、熱交換プレート21による電池モジュール群10の冷却負荷の大きさを示す値が所定の値よりも大きい場合に、第1の時刻における冷却液層30を流れる冷却液の流量が、第2の時刻における冷却液層30を流れる冷却液の流量よりも少なくなるように、前記冷却液の流量を制御してよい。ここで、第1の時刻は、冷却開始時から所定の経過時間(図6の例では60秒)を経過する前の時刻であり、第2の時刻は、冷却開始時から所定の経過時間(図6の例では60秒)を経過した後の時刻である。
電池モジュール群10の冷却負荷の大きさを示す値として、種々の値を用いることができる。電池モジュール群10の冷却負荷の大きさを示す値は、例えば、電池モジュール群10に含まれる電池モジュール11の平均温度や、第1コンプレッサ51の出力値βなどであってよい。
また、第1コンプレッサ51の出力値βは、電池モジュール群10に含まれる電池モジュール11の平均温度と、電池モジュール群10に含まれる電池モジュール11の平均温度の目標値との差に応じて定まる値であってよい。図7は、このような第1コンプレッサ51の出力値βの値を決定する関数f(Tf-Taim)を示すグラフである。ここで、Tfは、電池モジュール群10に含まれる電池モジュール11の現在の平均温度である。Taimは、電池モジュール群10に含まれる電池モジュール11の平均温度の目標値(熱交換プレート21によって冷却した結果、到達したい目標温度)である。図7に示されているグラフの横軸は、TfとTaimの差である。図7に示されているグラフの縦軸は、第1コンプレッサ51の出力値βを決定する関数f(Tf-Taim)の値である。図7のグラフに示されているように、電池モジュール群10に含まれる電池モジュール11の平均温度Tfと、電池モジュール群10に含まれる電池モジュール11の平均温度の目標値Taimとの差が大きいほど、第1コンプレッサ51の出力値βが大きい。ここで、図7のグラフに示されているように、第1コンプレッサ51の出力値βは右肩上がりに上昇するが、ある時点から一定値である最大値βmaxとなっていてよい。
図8は、本開示の電池温度調整システム1による、冷却液の流量制御の実施例を示すフローチャートである。管理装置7は、電池モジュール群10に含まれる各電池モジュール11の温度を検出する(St101)。この検出は、電池モジュール11に取付けられた温度センサからの信号を管理装置7が受信する(信号5)ことにより実施することができる。管理装置7は、各電池モジュール11の温度に基づいて、電池モジュール11の現在の平均温度Tfを算出してよい。
管理装置7は、冷却液回路6からの信号(信号9)を受信して、熱交換プレート21内の冷却液の温度を検出する(St102)。
管理装置7は、取得済みである各電池モジュール11の平均温度を参照して、電池モジュール11についての、目標とする平均温度を決定する(St103)。
管理装置7は、電池モジュール11の冷却が必要か否かを判定する(St104)。この判定基準として、管理装置7は例えば、電池モジュール11の現在の平均温度Tfが所定の設定値を超えた場合に、電池モジュール11の冷却が必要と判定してよい。その他、管理装置7は、電池モジュール11に対する急速充電が行われる、車両100が急加速するなどの要因によって、電池モジュール11の温度が上昇すると予測される場合に、電池モジュール11の冷却が必要と判定してよい。
電池モジュール11の冷却が必要と判定された場合(St104:Yes)、管理装置7は、冷却液回路6の冷却液を循環させるだけで電池モジュール11を冷却可能か否か判定する(St105)。この判定基準として、管理装置7は例えば、冷却液の温度(St102)が所定の温度より低かった場合(電池モジュール11の現在の平均温度Tf-冷却液の温度>x℃、等)に、冷却液回路6の冷却液を循環させるだけで電池モジュール11を冷却可能と判定してよい。その他、管理装置7は、電池モジュール11に対する急速充電が行われない、車両100も急加速しないなどの要因によって、電池モジュール11の温度が上昇しないと予測される場合に、冷却液回路6の冷却液を循環させるだけで電池モジュール11を冷却可能と判定してよい。
冷却液回路6の冷却液を循環させるだけで電池モジュール11を冷却可能であると判定された場合(St105:YES)、冷却液回路6内の冷却液を循環させるポンプPの出力値αを算出する(St112)。そして、管理装置7が、算出された出力値αに基づいて、ポンプPの出力を制御する(信号3)。なお、出力値αの算出については後述する。
冷却液回路6の冷却液を循環させるだけで電池モジュール11を冷却可能ではないと判定された場合(St105:NO)、管理装置7は、第2電磁弁57または、電子式の第2膨張弁54を開く(St106)(信号6)。これにより、第1冷媒回路5内の冷媒が、熱交換プレート21内へと流れ込み、熱交換プレート21を冷却することができる。
次に、管理装置7は、第2電磁弁57または、電子式の第2膨張弁54を開いてから所定の時間が経過したか否かを判定する(St107)。所定の時間が経過していた場合(St107:YES)、管理装置7が、冷却液回路6内の冷却液を循環させるポンプPの出力値αを算出する。そして、管理装置7が、算出された出力値αに基づいて、ポンプPの出力を制御する(St111)(信号3)。なお、出力値αの算出については後述する。所定の時間が経過していなかった場合(St107:NO)、ステップSt108へと処理が遷移する。
管理装置7は、第1コンプレッサ51の出力値β=f(Tf-Taim)を算出し、出力値βを上述の最大値βmaxと比較する(St108)。f(Tf-Taim)<βmaxである場合(St108:NO)、上述のステップSt111へと処理が遷移する。f(Tf-Taim)≧βmaxである場合(St108:YES)、管理装置7が、冷却液回路6内の冷却液を循環させるポンプPの出力値αを最小値に設定する(St109)。出力値αの最小値は、例えば冷却液の流量が0リットル/時間となるような値であってよい。
管理装置7は、第1コンプレッサ51の出力値β=f(Tf-Taim)を算出あるいは取得する(ステップSt110)。ステップSt108を経由した場合は、この出力値βは既に算出済みであるので、管理装置7は出力値βを単に取得すればよい。そして、管理装置7は、第1コンプレッサ51の出力値がβになるように、第1コンプレッサ51を制御する(信号1)。
その後、図11に基づいて後述する、オイル戻し制御(A)が行われてよい。
ステップSt111およびSt112におけるポンプPの出力値αは、管理装置7によって、例えば以下のようにして算出されてよい。図9は、ポンプPの出力値を算出する算出ロジックを示す、2種類のグラフ(グラフAおよびグラフB)である。
グラフAは、出力値α1を算出するためのグラフである。グラフAの横軸は、電池モジュール群10に含まれる電池モジュール11の現在の平均温度Tfと、電池モジュール群10に含まれる電池モジュール11の平均温度の目標値(熱交換プレート21によって冷却した結果、到達したい目標温度)Taimとの差である。グラフAの縦軸は、ポンプPの出力値α1である。グラフAに示されているように、電池モジュール11において、現在の平均温度と、目標とする平均温度の間に差があるほどに、ポンプPの出力値α1が大きくなるように、出力値α1を決定してよい。
グラフBは、出力値α2を算出するためのグラフである。グラフBの横軸は、電池モジュール群10における各電池モジュール11に取付けられた温度センサから受信した値における、最大値と最小値との差である。グラフBの縦軸は、ポンプPの出力値α2である。グラフBに示されているように、電池モジュール群10に含まれる複数の電池モジュール11の間で、温度のばらつきが大きいほどに、ポンプPの出力値α2が大きくなるように、出力値α2を決定してよい。
そして、管理装置7は、グラフAおよびグラフBに基づいて算出された出力値α1とα2のうち、大きい方の値を、ポンプPの出力値αと決定する。
(エバポレータ55による熱交換の一時キャンセル)
再び図5を参照して説明する。車両100における車体102が備える第1冷媒回路5は、車内空調(カーエアコン)に用いられ得る。車両空調で車両100の室内への冷房要求が低い場合、または、電池モジュール群10が発熱して、熱交換プレート21による電池冷却が最優先される場合などにおいては、管理装置7は、エバポレータ55による熱交換を一時的にキャンセルするように、電池温度調整システム1を制御してよい。エバポレータ55による外部との熱交換を一時的にキャンセルすれば、冷却能力を保ったままの冷媒が第1冷媒回路5から熱交換プレート21へと流れ込むので、熱交換プレート21における冷却性能は増加する。エバポレータ55による熱交換を一時的にキャンセルするために、第1冷媒回路5は、エバポレータ55において冷媒が第1冷媒回路5の外部と熱交換を行うことを妨げる熱交換阻害機構を備える。
熱交換阻害機構の一例は、エバポレータ55と共に用いられる送風機58である。通常、管理装置7は、送風機58による送風の強度、送風の有無を管理していてよい。そして、管理装置7は、送風機58による送風を抑制(あるいは完全に停止)させることにより、エバポレータ55において冷媒が第1冷媒回路5の外部と熱交換を行うことを妨げることができる。
熱交換阻害機構の他の一例は、第1コンデンサ52とエバポレータ55との間であり、かつ第1冷媒経路5A内に配置された第1電磁弁56である。第1電磁弁56の開閉を管理する管理装置7は、第1電磁弁56を閉じることにより、第1冷媒経路5Aを流れる冷媒の量を減らして(あるいはゼロにして)、エバポレータ55において冷媒が第1冷媒回路5の外部と熱交換を行うことを妨げる。
(第1コンプレッサ51による冷媒回収)
電池モジュール群10に含まれる電池モジュール11の温度が低すぎる場合、電池の性能を引き出すことができない。そのため、上述のように、冷却液回路6がヒータ62を備え、冷却液回路6を流れる冷却液をヒータ62によって温めて循環させることにより、電池モジュール11を熱交換プレート21越しに温めることができる。
冷却液回路6を循環する冷却液によって、電池モジュール11を温める際には、第1冷媒回路5は作動させないのが自然である。第1冷媒回路5を作動させると、冷媒が熱交換プレート21へと流れ込むので、この冷媒が冷却液を冷やしてしまうからである。
しかしここで、本開示の熱交換プレート21は、冷媒層40を備えているため、一部の冷媒が熱交換プレート21側に残留している。例えば、熱交換プレート21の冷媒層40の中を通る冷媒通路41等に冷媒が残留する事がある。冷媒層40内の冷媒と、冷却液層30内の冷却液とは、互いに熱交換が可能であるため、冷却液をヒータ62で温める状況においては、冷媒層40に存在する冷媒が熱容量を増加させ、ヒータ62による加熱速度が遅くなる可能性がある。そこで、第1冷媒回路5を短時間(例えば1分間)だけ作動させて、熱交換プレート21内に残留する冷媒を回収する。そのため、冷却液回路6の冷却液を加熱するヒータ62が、冷却液回路6に配置されており、管理装置7は、ヒータ62が冷却液回路6の冷却液を加熱する際に、冷媒層40から第1冷媒回路5へと冷媒を回収するように、第1コンプレッサ51を制御する。すなわち、管理装置7が第1コンプレッサ51を作動させて、冷媒層40内に残留する冷媒を短時間だけ吸い上げる。これにより、冷却液をヒータ62で加熱することによる暖房性能を向上させることができる
なお、第1冷媒回路5を長時間作動させると、第1冷媒回路5から熱交換プレート21へと流れ込む、冷却能力を備えた冷媒が熱交換プレート21内の冷却液を冷やすため、逆効果となる。第1冷媒回路5を作動させる時間は、電池温度調整システム1の構成に応じて、適宜決定されてよい。
(オイル戻し制御)
車両100における車体102が備える第1冷媒回路5は、車内空調(カーエアコン)に用いられ得る。車両空調と共用される電池温度調整システム1は、図6に示されているように、第1コンプレッサ51および第1コンデンサ52は共用である一方、エバポレータ55(蒸発器)と熱交換プレート21(蒸発器)とが並列に配置されている。ここで、第1コンプレッサ51の焼き付きを防止するために、コンプレッサーオイルが冷媒に混入されているのが一般的である。
特に冷媒が液から蒸発してガス状態に変換される蒸発器内では、液冷媒に溶け込んでいるコンプレッサーオイルが滞在しやすい。すなわち、蒸発器にコンプレッサーオイルが溜まった結果、潤滑に必要なオイルが第1コンプレッサ51まで戻って来なくなり、第1コンプレッサ51の焼き付き不良が発生し得る。
そこで、本開示の電池温度調整システム1においては、所定のタイミングで、第1冷媒回路5と熱交換プレート21との間の弁(第2電磁弁57または、電子式の第2膨張弁54)を開き、第1コンプレッサ51を所定の回転数で回転させる。これにより、熱交換プレート21内にあるコンプレッサーオイルの少なくとも一部が、熱交換プレート21から第1冷媒回路5へと移動する。熱交換プレート21から第1冷媒回路5へと移動したコンプレッサーオイルは、第1コンプレッサ51へと戻ってくることとなり、第1コンプレッサ51の焼き付きを防止することができる。
オイル戻し制御を行う所定のタイミングは、例えば、熱交換プレート21内に残留するコンプレッサーオイルの推定量が、所定の量以上になった時であってよい。また、オイル戻しは、冷媒を熱交換プレート21内に循環させる必要の無い時、すなわち、電池モジュール群10に含まれる電池モジュール11の温度が高くない時に行われてもよい。
(オイル戻し時の第1コンプレッサ51の回転数)
図10は、コンプレッサの回転数に応じた、コンプレッサーオイルの状態を示す実験結果をまとめた表である。本願発明者が行った実験により、第1コンプレッサ51の回転数が低回転(例えば回転数3000rpm)である場合、高回転時と比べて、電池温度調整システム1内のコンプレッサーオイルの循環率、および熱交換プレート21内に残留するコンプレッサーオイル量が、いずれも著しく低いことがわかった。これは、第1コンプレッサ51の回転数が低回転時には、第1コンプレッサ51からのオイル排出量がそもそも少ないことも関係している。そのため、常に第1コンプレッサ51を低回転で運転するのであれば、上述のオイル戻しの制御を行う必要がない。しかしながら、電池モジュール群10に含まれる電池モジュール11が高温になった場合など、電池モジュール11の冷却が必要な時には、第1コンプレッサ51の回転数を高回転にして冷媒を循環させ、熱交換プレート21によって電池モジュール11を冷却する必要がある。そこで、本開示においては、第1コンプレッサ51の運転履歴を管理装置7が取得して、熱交換プレート21内に滞在するコンプレッサーオイルの量を推定し、必要な時に上述のオイル戻し運転を行う。
図11は、オイル戻しの制御例を示すフローチャートである。管理装置7は、熱交換プレート21を冷却するために、第1冷媒回路5を稼働させ始めた時からの経過時間(電池冷却モード稼働時間)を検出する(St201)。続いて、管理装置7は、その電池冷却モードにおける、第1コンプレッサ51の回転数、および回転頻度(第1コンプレッサ51を何度回転させたか)を検出する(St202)。
管理装置7は、オイル戻し制御が可能か否かを判定する(St203)。この判定の基準として、種々の条件が用いられることができる。例えば、電池温度調整システム1が車両100の室内空調(カーエアコン)と併用の場合、室内空調側の冷房要求との優先順位が判定基準として用いられ得る。オイル戻し制御の方が、室内空調側の冷房要求よりも優先順位が高い場合、管理装置7はオイル戻し制御が可能であると判定する(St203:YES)。
室内空調側の冷房要求の方が、オイル戻し処理よりも優先順位が高い場合、第1コンプレッサ51をオイル戻し制御用の所定の低速回転数(例えば3000rpm以下)で回転しても室内空調側の冷房要求を満たすことができるならば、管理装置7はオイル戻し制御が可能であると判定する(St203:YES)。逆に、室内空調側の冷房要求の方が、オイル戻し処理よりも優先順位が高く、かつ、第1コンプレッサ51をオイル戻し制御用の所定の低速回転数(例えば3000rpm)で回転した場合に室内空調側の冷房要求を満たすことができないならば、管理装置7は、オイル戻し制御が可能ではないと判定する(St203:NO)
また、電池モジュール群10に含まれる電池モジュール11の冷却が必要であり、第1コンプレッサ51を、オイル戻し制御用の所定の低速回転数(例えば3000rpm以下)で作動させては、電池モジュール11を冷却する冷却能力が不足する場合、管理装置7は、オイル戻し制御が可能ではないと判定する(St203:NO)。
オイル戻し制御が可能であると判定された場合(St203:YES)、管理装置7は、オイル戻し制御が必要か否かを判定する(St204)。例えば、管理装置7は、既に検出済みの情報である、電池冷却モード稼働時間(St201)と、その電池冷却モードにおける、第1コンプレッサ51の回転数、および回転頻度(第1コンプレッサ51を何度回転させたか)とに基づいて、熱交換プレート21にあるコンプレッサーオイルの推定量を算出する。この推定量が所定の値以上である場合、管理装置7は、オイル戻し制御が必要であると判定する(St204:YES)。
オイル戻し制御が必要であると判定された場合(St204:YES)、管理装置7は、第1冷媒回路5と熱交換プレート21との間の弁(第2電磁弁57または、電子式の第2膨張弁54)を開く(St205)(信号6)。続いて、管理装置7は、第1コンプレッサ51を所定の回転数(例えば3000rpm以下の低速回転数)で作動させる(St206)(信号1)。第1コンプレッサ51を低速で回転させれば、熱交換プレート21に滞留していたコンプレッサーオイルが、第1コンプレッサ51から再び排出されにくい。
管理装置7は、作動された第1コンプレッサ51による冷媒循環によって、電池モジュール群10に含まれる電池モジュール11の温度(平均温度など)が、所定の温度より下がってしまったかを判定する(St207)(信号5)。電池モジュール11の温度(平均温度など)が、所定の温度より下がった場合(St207:YES)、ステップSt209へと処理が遷移する。
管理装置7は、第2電磁弁57を開いてから所定の時間が経過したか否かを判定する(St208)。ここで所定の時間の経過は、オイル戻し運転を開始した時刻を基準とするものである。この時間の経過については、図示しない別のフローチャートで管理される。所定の時間が経過した場合(St208:YES)(信号2)、ステップSt209へと処理が遷移する。所定の時間が経過していない場合、ステップSt201へと処理が戻る。
ステップSt209において管理装置7は、所定の時間を計時するタイマーをリセットさせる。また、管理装置7は、第2電磁弁57を閉じる。図11に示す通りSt209の後にこのフローチャートは終了するが、この終了の後に、図8のフローチャートの開始に戻るようにしてもよい。
(オイル戻し制御の開始タイミング)
図11においては、管理装置7が、熱交換プレート21にあるコンプレッサーオイル量を推定し、前記コンプレッサーオイル量が所定の値以上である場合に、第2電磁弁57(または電子式の第2膨張弁54)を開き、オイル戻し制御を開始することを説明した。しかし、オイル戻し制御の開始タイミングは、必ずしも、熱交換プレート21にあるコンプレッサーオイル量の推定に基づかなくともよい。例えば、車両100の停車時に第2電磁弁57を開き、オイル戻し制御を開始してもよい。車両100が停車している場合、電池モジュール群10に含まれる電池モジュール11は発熱せず、また、人が車両100に乗っていなければ、室内空調(カーエアコン)による冷房要求も無い。そのため、車両100が停車している場合にオイル戻し制御を開始すれば、電池モジュール11の冷却や、室内空調(カーエアコン)による冷房要求による制約を受けずに、オイル戻し制御を行うことができる。例えば、管理装置7は、車両100が停車していることを示す情報を、CAN経由で取得し(信号10)、第2電磁弁57を開いて、オイル戻し制御を開始してよい。また、管理装置7は、人が車両100に乗っていないことを示す情報を、車両100に設けられた(図示を省略する)人感センサから、CAN経由で取得し(信号10)、第2電磁弁57を開いて、オイル戻し制御を開始してよい。
オイル戻し制御は、タイマー制御に基づいて開始されてもよい。例えば、第1コンプレッサ51が高回転(例えば5000rpm)で作動している時間を管理装置7が計測し、所定の時間が経過した場合に、第2電磁弁57(または電子式の第2膨張弁54)を開いて、オイル戻し制御を開始してよい。ただし、車両空調(カーエアコン)側の冷房要求に反しないかぎり、前記のオイル戻し制御を開始することができる。タイマー制御の他の例として、時間差をつけてオイル戻し制御を開始してもよい。例えば、熱交換プレート21にあるコンプレッサーオイルの推定量が所定の値以上(ステップSt204相当)になってから、一定時間経過した後に、第2電磁弁57(または電子式の第2膨張弁54)を開いて、オイル戻し制御を開始してよい。
上記のような、種々のタイミングにオイル戻し制御を開始した場合であっても、第2電磁弁57を開いてオイル戻し制御を開始した後、管理装置7は、電池モジュール群10に含まれる電池モジュール11の平均温度が所定の値を下回った場合に、第2電磁弁57を閉じてよい(ステップSt207相当)。同様に、種々のタイミングにオイル戻し制御を開始した場合であっても、第2電磁弁57を開いてオイル戻し制御を開始した後、管理装置7は、第2電磁弁57を開いてから所定の時間が経過した後に、第2電磁弁57を閉じてよい(ステップSt208相当)。
第2膨張弁54の絞りは、第2膨張弁54から冷媒入力部40Aへと流れる冷媒に液状の冷媒が含まれるように調整されてよい。例えば、第2膨張弁54として、クロスチャージ方式の温度式膨張弁を用いる。第2膨張弁54が備える感温筒を、熱交換プレート21の、冷媒入力部40Aの付近(地点Xとする)に取付ける。すると、地点Xの冷媒温度が低い低負荷時にでも膨張弁が開く(クロスチャージ方式の温度式膨張弁の低負荷時特性)。従って、液混じりの冷媒が第2膨張弁54の先へと通る。
第2膨張弁54を、第2電磁弁57と一体化された電子式膨張弁としてもよい。電子式膨張弁の絞りを、管理装置7が制御することで、液混じりの冷媒が第2膨張弁54の先へと通るようにすることができる。
例えば上記のような手段によって、第2膨張弁54の絞りを、第2膨張弁54から冷媒入力部40Aへと流れる冷媒に液状の冷媒が含まれるように調整することができる。これにより、熱交換プレート21へと流入した冷媒が液混じりの状態になり、液冷媒に溶け込んでいるコンプレッサーオイルが熱交換プレート21に滞在しにくくなる。
(第2の実施形態に係る電池温度調整システム1Bの構成)
図12は、本開示の第2の実施形態に係る、熱交換プレート21を備えた電池温度調整システム1Bを示す回路図である。第2の実施形態に係る電池温度調整システム1Bは、図6に示した第1の実施形態に係る電池温度調整システム1と同様に、冷媒回路(第1冷媒回路)5と、冷却液回路6と、熱交換プレート21と、管理装置7とを備える。第2の実施形態に係る電池温度調整システム1Bと、第1の実施形態に係る電池温度調整システム1の間で同様の部分については、同一の参照符号を付して説明を省略し、異なる部分についてのみ説明する。
第1の実施形態に係る電池温度調整システム1と、第2の実施形態に係る電池温度調整システム1Bとの大きな違いは、電池温度調整システム1Bが、第1冷媒回路5に加えて、第2冷媒回路8を備えている点である。
第1冷媒回路5は、車両100の室内空調(カーエアコン)に用いられる冷媒回路である。第1の実施形態に係る電池温度調整システム1においては、第2膨張弁54と第1コンプレッサ51との間には熱交換プレート21が配置されており、第1冷媒回路5は熱交換プレート21へと冷媒を流す役割も果たしていた。一方、第2の実施形態に係る電池温度調整システム1Bにおいては、第2膨張弁54と第1コンプレッサ51との間には、熱交換プレート21ではなくチラー59が配置されている。
チラー59は、冷却液回路6を流れる冷却液と、第1冷媒回路5を流れる冷媒との間の熱交換を行う。より特定的には、チラー59は、冷却液回路6を流れる冷却液と、第1冷媒回路5における第2膨張弁54と第1コンプレッサ51との間を流れる冷媒との間の熱交換を行い得る。
第2の実施形態に係る電池温度調整システム1Bは、第2コンプレッサ81と、第2コンデンサ82と、第3膨張弁83とを有する第2冷媒回路8を備えている。第2冷媒回路8において、図中の矢印で示した方向に冷媒が流れる。車体102は、第2冷媒回路8を収容する。そして、第2冷媒回路8が、冷媒入力部40Aおよび冷媒出力部40Bと接続されている(図3および図4参照)。
第2コンプレッサ81、第2コンデンサ82、および第3膨張弁83は、それぞれ、電池モジュール11の冷却用の冷凍サイクルを構成する圧縮機、凝縮器、および膨張弁であってよい。
管理装置7は、電池温度調整システム1Bに含まれる種々の構成要素を管理する。図12に示された信号1~信号11は、管理装置7と各構成要素との通信ラインを示している。第1の実施形態に係る電池温度調整システム1について、図5で説明した信号については再度の説明を省略し、異なる部分のみ説明する。
管理装置7は第2コンプレッサ81に、稼働速度を示す信号を送信する(コンプレッサの駆動信号である信号7)。また、管理装置7は第2コンプレッサ81から、稼働ステータスを示す信号を取得する(コンプレッサのインバータから返される信号8)。
その他、管理装置7は、後述の第1電磁弁56や送風機58等を管理してもよい。
上記のように構成することにより、電池温度調整システム1Bは、車両100の室内空調システム(第1冷媒回路5)と、冷媒および冷却液を用いたヒートポンプシステム(第2冷媒回路8および冷却液回路6)とを融合することができる。
(第2電磁弁57による冷却制御)
ここで、管理装置7は、第2電磁弁57(または、電子式の第2膨張弁54。以下同様)の開閉を制御(信号6)する。管理装置7が第2電磁弁57を開くことにより、第1冷媒回路5における第2膨張弁54と第1コンプレッサ51との間を流れる冷媒の量が増加する。これとは反対に、管理装置7が第2電磁弁57を閉じることにより、第1冷媒回路5における第2膨張弁54と第1コンプレッサ51との間を流れる冷媒の量が減少する。管理装置7が第2電磁弁57を完全に閉じると、第1冷媒回路5における第2膨張弁54と第1コンプレッサ51との間を流れる冷媒の量はゼロなる。この第2電磁弁57の開閉によって、電池温度調整システム1Bの用いられ方を、下記のように制御することができる。
第2冷媒回路8および冷却液回路6を備えるヒートポンプシステムは、電池モジュール群10に含まれる電池モジュール11の温度調整を行う。すなわち、第2冷媒回路8を循環する冷媒が熱交換プレート21の冷媒層40へと流れ、冷却液回路6を循環する冷却液が熱交換プレート21の冷却液層30へと流れ、冷媒層40内の冷媒と冷却液層30内の冷却液とによって、電池モジュール11を冷却する。なお、冷却液回路6が備える、後述のヒータ62によって冷却液を温めることにより、電池モジュール11を冷却液によって温めることも可能である。
車両100の通常走行時は、第2冷媒回路8および冷却液回路6を備えるヒートポンプシステムのみによって、電池モジュール11の温度調整を独自に制御することが可能である。この時、第1冷媒回路5を備える車両100の室内空調システムもまた、上記のヒートポンプシステムによる影響を受けずに、室内空調のみの制御を行うことが可能である。管理装置7が第2電磁弁57を完全に閉じると、第2電磁弁57の下流に配置されたチラー59へと冷媒が流れなくなる。その結果、チラー59において、冷却液回路6を流れる冷却液と、第1冷媒回路5を流れる冷媒との間の熱交換が行われなくなる。そのため、電池モジュール11の温度調整に用いられる、第2冷媒回路8および冷却液回路6を備えるヒートポンプシステムと、車内空調に用いられる、第1冷媒回路5を備える車両100の室内空調システムとを、別個独立して制御することができる。なお、第1冷媒回路5は、第1冷媒経路5Aと第2冷媒経路5Bとを備えた並列構成となっているため、第2冷媒経路5Bに配置された第2電磁弁57を閉じた場合であっても、第1膨張弁53とエバポレータ55を備えた第1冷媒経路5Aを冷媒が流れる。
電池モジュール群10に含まれる電池モジュール11の冷却負荷が高い場合、第2冷媒回路8および冷却液回路6を備えるヒートポンプシステムと、第1冷媒回路5を備える車両100の室内空調システムの双方を用いて、電池モジュール11をより強く冷却することができる。
管理装置7は、第2電磁弁57を開く。管理装置7は、第2電磁弁57を開くとともに、冷却液回路6のポンプPを動作させる。これにより、冷却液回路6を流れる冷却液と、第1冷媒回路5を流れる冷媒とがチラー59に流れ込み、冷却液回路6を流れる冷却液と、第1冷媒回路5を流れる冷媒との間で熱交換が行われる。チラー59における上記の熱交換によって冷やされた冷却液が、熱交換プレート21内で、冷媒層40を流れる冷媒によってさらに冷やされることになる。すなわち、第1冷媒回路5を流れる冷媒と、第2冷媒回路8(および熱交換プレート21内)を流れる冷媒とを用いて二重に冷やされた冷却液が、電池モジュール11をより強く冷却することができる。
電池モジュール群10に含まれる電池モジュール11の冷却負荷が高い場合の例として、電池モジュール群10の急速充電時や、電池モジュール群10に含まれる電池モジュール11の平均温度が所定の値を上回った場合、などがある。そのため、電池モジュール群10の急速充電時や、電池モジュール群10に含まれる電池モジュール11の平均温度が所定の値を上回った場合に、管理装置7が第2電磁弁57を開き、電池モジュール11をより強く冷却することができる。
(ヒータ62による暖房)
車両100は、寒冷地を走行する事がある。電池モジュール群10に含まれる電池モジュール11の温度が低すぎる場合、電池の性能を引き出すことができない。そのため、冷却液回路6がヒータ62を備え、ヒータ62が、熱交換プレート21に入る冷却液を温める。これにより、温められた冷却液が、電池モジュール11を熱交換プレート21越しに温めることができる。
ここで、冷却液回路6を流れる冷却液が、第1冷媒回路5を流れる冷媒、または第2冷媒回路8を流れる冷媒と熱交換を行った場合、冷却液が冷媒によって冷やされてしまうため、ヒータ62を用いて電池モジュール11を温める効果がなくなる。そこで、管理装置7は、冷媒と冷却液との間の熱交換を抑制するように、電池温度調整システム1Bに含まれる各構成要素を制御する。より具体的には、管理装置7が、第1コンプレッサ51および第2コンプレッサ81を停止させ、第2電磁弁57を閉じ、ヒータ62が熱交換プレート21に入る冷却液を温めるように、第1コンプレッサ51、第2コンプレッサ81、第2電磁弁57、およびヒータ62を制御する。これにより、冷却液回路6を流れる冷却液と、冷媒との間の熱交換が抑制された状態で、当該冷却液をヒータ62によって温めることができる。
図13は、本開示の電池温度調整システム1Bによる、冷却液の流量制御の実施例を示すフローチャートである。管理装置7は、電池モジュール群10に含まれる各電池モジュール11の温度を検出する(St301)。この検出は、電池モジュール11に取付けられた温度センサからの信号を管理装置7が受信する(信号5)ことにより実施することができる。管理装置7は、各電池モジュール11の温度に基づいて、電池モジュール11の現在の平均温度Tfを算出してよい。
管理装置7は、冷却液回路6の温度センサ501からの信号(信号9)を受信して、冷却液の温度を検出する(St302)。
管理装置7は、取得済みである各電池モジュール11の温度(あるいは電池モジュール11の平均温度)を参照して、電池モジュール11についての目標とする平均温度を決定する(St303)。
(第1冷媒回路5と第2冷媒回路8の併用)
管理装置7は、チラー59での電池冷却が必要か否かを判定する(St304)。この判定基準として、管理装置7は例えば、電池モジュール11の現在の平均温度Tfが所定の設定値を超えた場合に、電池モジュール11のチラー59による冷却が必要と判定してよい。その他、管理装置7は、電池モジュール11に対する急速充電が行われる、車両100が急加速するなどの要因によって、電池モジュール11の温度が上昇すると予測される場合に、電池モジュール11のチラー59による冷却が必要と判定してよい。
チラー59での電池冷却が必要と判定された場合(St304:YES)、管理装置7は、第1冷媒回路5と熱交換プレート21との間の弁である第2電磁弁57(または電子式の第2膨張弁54)を開く(St305)(信号6)。
管理装置7は、第1コンプレッサ51の出力を算出し、この出力で作動させる(St306)(信号1)。第1コンプレッサ51が稼働することにより、冷媒回路5の内部を冷媒が循環する。
管理装置7は、Taimの値および電池モジュール群10に含まれる複数の電池モジュール11の間における温度のばらつきに応じて、ポンプPの出力を算出し、この出力で作動させる(St307)。
管理装置7は、熱交換プレート21へと向かう冷媒の流れを制御する電磁弁(図示省略)または、電子式の第3膨張弁83を開く(St308)。
管理装置7は、Taimの値に応じて、第2コンプレッサ81の出力を算出し、この出力で作動させる(St309)。図13に示す通りSt309の後にこのフローチャートは終了するが、この終了の後に、図13のフローチャートの開始に戻るようにしてもよい。
(第2冷媒回路8の単独稼働)
チラー59での電池冷却が必要ではない判定された場合(St304:NO)、管理装置7は、電池モジュール11の冷却が必要か否かを判定する(St310)。この判定基準として、管理装置7は例えば、電池モジュール11の現在の平均温度Tfが所定の設定値を超えた場合に、電池モジュール11の冷却が必要と判定してよい。ただし、ステップSt310における所定の設定値は、ステップSt304における所定の設定値よりも低い値であってよい。その他、管理装置7は、電池モジュール11に対する急速充電が行われる、車両100が急加速するなどの要因によって、電池モジュール11の温度が上昇すると予測される場合に、電池モジュール11の冷却が必要と判定してよい。ただし、ステップSt310において電池モジュール11の冷却が必要と判定されるための電池モジュール11の予想される温度上昇は、ステップSt304においてチラー59での電池冷却が必要と判定されるための電池モジュール11の予想される温度上昇よりも、緩やかなものであってよい。
電池モジュール11の冷却が必要と判定された場合(St310:YES)、管理装置7は、冷却液回路6の冷却液を循環させるだけで電池モジュール11を冷却可能か否か判定する(St311)。この判定基準として、管理装置7は例えば、冷却液の温度(St102で取得済み)が所定の温度より低かった場合(電池モジュール11の現在の平均温度Tf-冷却液の温度>x℃、等)に、冷却液回路6の冷却液を循環させるだけで電池モジュール11を冷却可能と判定してよい。その他、管理装置7は、電池モジュール11に対する急速充電が行われない、車両100も急加速しないなどの要因によって、電池モジュール11の温度が上昇しないと予測される場合に、冷却液回路6の冷却液を循環させるだけで電池モジュール11を冷却可能と判定してよい。
冷却液回路6の冷却液を循環させるだけで電池モジュール11を冷却可能であると判定された場合(St311:YES)、冷却液回路6内の冷却液を循環させるポンプPの出力値αを算出する(St317)。そして、管理装置7が、算出された出力値αに基づいて、ポンプPの出力を制御する(信号3)。なお、出力値αの算出については、図9に基づいて上述したのと同様であるため、説明を省略する。
冷却液回路6の冷却液を循環させるだけで電池モジュール11を冷却可能ではないと判定された場合(St311:NO)、管理装置7は、所定の時間が経過したか否かを判定する(St312)。ここで所定の時間の経過は、第2コンプレッサ81の運転を開始した時刻を基準とするものである。この時間の経過については、図示しない別のフローチャートで管理される。所定の時間が経過していた場合(St312:YES)、管理装置7が、冷却液回路6内の冷却液を循環させるポンプPの出力値αを算出する。そして、管理装置7が、算出された出力値αに基づいて、ポンプPの出力を制御する(St316)(信号3)。なお、出力値αの算出については、図9に基づいて上述したのと同様であるため、説明を省略する。所定の時間が経過していなかった場合(St312:NO)、ステップSt313へと処理が遷移する。
管理装置7は、第2コンプレッサ81の出力値=f(Tf-Taim)を算出し、この算出値を上述の最大値βmaxと比較する(St313)。f(Tf-Taim)<βmaxである場合(St313:NO)、上述のステップSt316が実行される。f(Tf-Taim)≧βmaxである場合(St313:YES)、管理装置7が、冷却液回路6内の冷却液を循環させるポンプPの出力値αを最小値に設定する(St314)。出力値αの最小値は、例えば冷却液の流量が0リットル/時間となるような値であってよい
管理装置7は、第2コンプレッサ81の出力値=f(Tf-Taim)を算出あるいは取得する(ステップSt315)。ステップSt313を経由した場合は、この出力値は既に算出済みであるので、管理装置7はその出力値を単に取得すればよい。そして、管理装置7は、第2コンプレッサ81の出力値がf(Tf-Taim)になるように、第2コンプレッサ81を制御する(信号7)。
(ヒータ62による電池加熱)
ステップSt310において、電池モジュール11の冷却が必要ではないと判定された場合(St310:NO)、管理装置7は、電池モジュール11の過熱が必要か否かを判定する(St318)。この判定基準として、管理装置7は例えば、電池モジュール11の現在の平均温度Tfが所定の設定値を下回った場合に、電池モジュール11の過熱が必要と判定してよい。
電池モジュール11の加熱が必要と判定された場合(St318:YES)、管理装置7は、第1コンプレッサ51および第2コンプレッサ81を停止させる(St319)。
続いて、管理装置7は、第2電磁弁57または電子式の第2膨張弁54を閉じる(St320)(信号6)。
管理装置7は、Tf-Taimの値に基づいて、冷却液回路6内の冷却液を循環させるポンプPの出力値αを算出する。そして、管理装置7が、算出された出力値αに基づいて、ポンプPの出力を制御する(St321)。ここで、Tfは、電池モジュール群10に含まれる電池モジュール11の現在の平均温度である。Taimは、電池モジュール群10に含まれる電池モジュール11の平均温度の目標値(熱交換プレート21によって冷却した結果、到達したい目標温度)である。
そして管理装置7は、Taimの値に応じてヒータ62の出力値γを決定し、ヒータ62の出力を出力値γになるように制御する。
(熱交換プレートが複数に分かれる場合の対処)
図14は、本開示の電池温度調整システム1または1Bに用いることが可能な、変形例に係る熱交換プレート70を示す図であり、(a)上面図、(b)電池モジュール群10を載置した状態の側面断面図である。変形例に係る熱交換プレート70は、第1熱交換プレート21Aと、第2熱交換プレート21Bとを含んでいる。
第1熱交換プレート21Aは、図1~図13に基づいて説明した熱交換プレート21と同様の構成を有しているため、詳細な図示は省略する。第1熱交換プレート21Aは、熱交換プレート21と同様に、第1面22と第1面22と反対の第2面23を有し、第1面22と第2面23の間において冷却液を循環させる冷却液層(第1冷却液層)30と、第1面22と第2面23の間において冷媒を循環させる冷媒層40と、を備えている(図1~3等参照)。
一方、第2熱交換プレート21Bもまた、図1~図13に基づいて説明した熱交換プレート21と同様の構成を有している。ただし、第2熱交換プレート21Bは、第1面22と第2面23の間において冷媒を循環させる冷媒層40を備えていない。すなわち、第2熱交換プレート21Bは、第3面22と第3面22と反対の第4面23を有し、第3面22と第4面23の間において冷却液を循環させる冷却液層(第2冷却液層)30のみを備えている。なお、混同を回避するため、第1熱交換プレート21Aの第1面22に相当する面を、第2熱交換プレート21Bにおいては第3面22と表記している。同様に、第1熱交換プレート21Aの第2面23に相当する面を、第2熱交換プレート21Bにおいては第4面23と表記している。
変形例に係る熱交換プレート70が、少なくとも2つの熱交換プレート、すなわち第1熱交換プレート21Aと第2熱交換プレート21Bとを含むことの技術的意義について説明する。上述したように、車両100は、電池モジュール群10から供給される電力を用いて、第1車輪101aを駆動する電動機を備える。すなわち車両100は、電池モジュール群10から供給される電力を用いて走行する。車両100の航続距離を増大させる観点から、車両100が搭載する電池セルは多い方が良い。そこで、電池モジュール群10(第1電池モジュール群10Aとする)に加えて、増設された第2電池モジュール群10Bが車両100に搭載される。なお、第1電池モジュール群10Aおよび第2電池モジュール群10Bはいずれも、複数の電池モジュール11を有している。
第1電池モジュール群10A、第2電池モジュール群10Bはそれぞれ発熱するので、冷却が必要となる。そのため、例えば図1~図13に基づいて説明した熱交換プレート21の寸法を大きくして、1つの熱交換プレート21に、第1電池モジュール群10Aおよび第2電池モジュール群10Bを両方とも載置する、という構成が考えられる。
しかしながら、車両100の内部空間には制限がある。また車両底部の凹凸等もあるため、寸法の大きな熱交換プレート21を車両100に搭載できないことがある。
そこで、本開示の熱交換プレート70は、少なくとも第1熱交換プレート21Aおよび第2熱交換プレート21Bの2つを備える。第1熱交換プレート21Aの前記第1面22に沿って第1電池モジュール群10Aが配置され、第2熱交換プレート21Bの前記第3面22に沿って第2電池モジュール群10Bが配置される。車体102は、冷媒回路(第1冷媒回路5または第2冷媒回路8)、冷却液回路6、第1熱交換プレート21A、第1電池モジュール群10A、第2熱交換プレート21B、および第2電池モジュール群10Bを収容する。車体102は、これら以外の構成要素を収容してもよい。そして電動機は、第1電池モジュール群10Aおよび第2電池モジュール群10Bの少なくとも一方から供給される電力を用いて、第1車輪101aを駆動する。これにより、より多くの電池セルを車両100に搭載することができる。また、寸法の大きな熱交換プレート21を車両100に搭載できない場合であっても、複数に分かれた第1熱交換プレート21Aおよび第2熱交換プレート21Bを、車両100内の、それぞれ異なる箇所に設置することができる。
ここで、車両100の内部空間に係る課題がさらに生じる。複数設けた熱交換プレートごとに、別の冷却液回路や別の冷媒回路を設けると、車内空間が大きく圧迫される。一方、冷却液回路や冷媒回路を複数の熱交換プレートの間で共用する場合、複数設けた熱交換プレートがそれぞれ、冷媒層と冷却液層とを備え、熱交換プレート間において冷媒層同士を接続し、冷却層同士も接続する構成とすると、接続箇所が多くなり、やはり車内空間が圧迫される。
上記の車内空間の圧迫に係る課題を解決すべく、本開示においては、第2熱交換プレート21Bは冷媒層40を備えない構成とした。そして、第1熱交換プレート21Aの第1冷却液層30と、第2熱交換プレート21Bの第2冷却液層30とが、冷却液層接続通路71を介して接続されている。これにより、熱交換プレートと他の構成要素(他の熱交換プレート、冷媒回路、または冷却液回路)を接続する接続箇所が削減され、車内空間が圧迫されない。
また、第2熱交換プレート21Bから見た場合、通常の水冷プレート(冷却液を用いて電池モジュール11の冷却を行うプレート)は外部に放熱用のチラーが必要であるところ、本開示の上記構成であれば、冷却液と冷媒の双方を用いる第1熱交換プレート21Aを、第2熱交換プレート21Bにとってのチラーとして使用することができる。そのため、より短い経路で、低温の冷却液を水冷プレート(第2熱交換プレート21B)へと供給することができる。
図15は、冷媒層40を持たない第3熱交換プレート21Cを更に備えた、変形例に係る熱交換プレート70を示す図であり、(a)上面図、(b)電池モジュール群10を載置した状態の側面断面図である。図示されているように、熱交換プレート70は、冷却液層30を備えるが冷媒層40を備えない熱交換プレート(第2熱交換プレート21B、第3熱交換プレート21C)を、2つ以上備えてよい。
図16は、車体102に収容可能な電池パック90の一例を示す概念図である。電池パック90は筐体91を備え、筐体91の内部に、上述の第1熱交換プレート21Aと、第1熱交換プレート21Aの第1面22に沿って配置された第1電池モジュール群10Aを備えている。
図示されているように、第1熱交換プレート21Aの冷却液入力部30Aおよび冷却液出力部30Bには配管が設けられ、この配管は電池パック90の外部と接続可能になっている。そのため、冷却液入力部30Aおよび冷却液出力部30Bは、電池パック90の外部にある冷却液回路6と接続可能である。
同様に、第1熱交換プレート21Aの冷媒入力部40Aおよび冷媒出力部40Bには配管が設けられ、この配管は電池パック90の外部と接続可能になっている。そのため、冷媒入力部40Aおよび冷媒出力部40Bは、電池パック90の外部にある第1冷媒回路5または第2冷媒回路8と接続可能である。
同様に、冷却液層接続通路71(図14および図15参照)が配管を備え、この配管は電池パック90の外部と接続可能になっている。そのため、電池パック90の内部に位置する第1冷却液層30と、電池パック90の外部に位置する第2冷却液層30(図示省略)とが、冷却液層接続通路71を介して接続可能である。
(付言)
上述の実施の形態の説明は、下記の事項を、当業者がその実施をすることができるように記載した。
(A1)
コンプレッサと、コンデンサと、第1膨張弁と、第2膨張弁と、エバポレータとを備え、冷媒が循環する冷媒回路と、
リザーバとポンプを備え、冷却液が循環する冷却液回路と、
第1面と前記第1面と反対の第2面を有し、前記第1面と前記第2面の間において冷却液を循環させる冷却液層と、前記第1面と前記第2面の間において冷媒を循環させる冷媒層と、を備えた熱交換プレートと、
複数の電池モジュールを有し、前記熱交換プレートの前記第1面に沿って配置された電池モジュール群と、
前記電池モジュール群を管理する管理装置と、
前記冷媒回路、前記冷却液回路、前記熱交換プレート、前記電池モジュール群、および前記管理装置を収容する車体と、
前記車体に結合された第1車輪および第2車輪と、
前記電池モジュール群から供給される電力を用いて、前記第1車輪を駆動する電動機と、を備え、
前記第1車輪および前記第2車輪を用いて走行可能な車両であって、
前記冷却液層の少なくとも一部は、前記冷媒層と重なって配置され、
前記熱交換プレートは、前記冷媒層に向かって前記冷媒が入る冷媒入力部と、前記冷媒層から前記冷媒が出る冷媒出力部とを備え、
前記熱交換プレートは、前記冷却液層に向かって前記冷却液が入る冷却液入力部と、前記冷却液層から前記冷却液が出る冷却液出力部とを備え、前記冷却液回路が、前記冷却液入力部および前記冷却液出力部と接続されており、
前記冷媒回路が、前記コンデンサと前記コンプレッサとの間を前記冷媒が流れる第1冷媒経路および第2冷媒経路を備え、
前記第1冷媒経路は前記第1膨張弁と前記エバポレータとを備え、
前記第2冷媒経路は第2電磁弁と前記第2膨張弁とを備え、前記第2冷媒経路が、前記冷媒入力部および前記冷媒出力部と接続されており、
前記管理装置は、前記熱交換プレートの前記冷却液層を流れる冷却液の流量が、冷却開始時からの経過時間に応じて変わるように、前記冷却液の流量を制御する、
車両。
(A2)
前記管理装置は、第1の時刻における前記冷却液層を流れる前記冷却液の流量が、第2の時刻における前記冷却液層を流れる前記冷却液の流量よりも少なくなるように、前記冷却液の流量を制御し、
前記第1の時刻は、前記冷却開始時から所定の経過時間を経過する前の時刻であり、
前記第2の時刻は、前記冷却開始時から前記所定の経過時間を経過した後の時刻である、
A1に記載の車両。
(A3)
前記管理装置は、前記熱交換プレートによる前記電池モジュール群の冷却負荷の大きさを示す値が所定の値よりも大きい場合に、第1の時刻における前記冷却液層を流れる前記冷却液の流量が、第2の時刻における前記冷却液層を流れる前記冷却液の流量よりも少なくなるように、前記冷却液の流量を制御し、
前記第1の時刻は、前記冷却開始時から所定の経過時間を経過する前の時刻であり、
前記第2の時刻は、前記冷却開始時から前記所定の経過時間を経過した後の時刻である、
A1に記載の車両。
(A4)
前記冷却負荷の大きさを示す値は、前記コンプレッサの出力値βである、A3に記載の車両。
(A5)
前記コンプレッサの出力値βは、前記電池モジュール群に含まれる電池モジュールの平均温度と、前記電池モジュール群に含まれる電池モジュールの平均温度の目標値との差に応じて定まる値であり、
前記電池モジュール群に含まれる電池モジュールの平均温度と、前記電池モジュール群に含まれる電池モジュールの平均温度の目標値との差が大きいほど、前記コンプレッサの出力値βが大きい、
A4に記載の車両。
(A6)
前記冷媒回路が、前記エバポレータにおいて前記冷媒が前記冷媒回路の外部と熱交換を行うことを妨げる熱交換阻害機構を備える、
A1からA5のいずれか1つに記載の車両。
(A7)
前記熱交換阻害機構が送風機であり、
前記管理装置は、前記送風機による送風を抑制させることにより、前記エバポレータにおいて前記冷媒が前記冷媒回路の外部と熱交換を行うことを妨げる、
A6に記載の車両。
(A8)
前記熱交換阻害機構が、前記コンデンサと前記エバポレータとの間であり、かつ前記第1冷媒経路内に配置された第1電磁弁であり、前記管理装置は、前記第1電磁弁を閉じることにより、前記エバポレータにおいて前記冷媒が前記冷媒回路の外部と熱交換を行うことを妨げる、
A6に記載の車両。
(A9)
前記冷却液回路の冷却液を加熱するヒータが、前記冷却液回路に配置されており、
前記管理装置は、前記ヒータが前記冷却液回路の冷却液を加熱する際に、前記冷媒層から前記冷媒回路へと前記冷媒を回収するように、前記コンプレッサを制御する、
A1からA8のいずれか1つに記載の車両。
(A10)
コンプレッサと、コンデンサと、第1膨張弁と、第2膨張弁と、エバポレータとを備え、冷媒が循環する冷媒回路と、
リザーバとポンプを備え、冷却液が循環する冷却液回路と、
第1面と前記第1面と反対の第2面を有し、前記第1面と前記第2面の間において冷却液を循環させる冷却液層と、前記第1面と前記第2面の間において冷媒を循環させる冷媒層と、を備えた熱交換プレートと、
複数の電池モジュールを有し、前記熱交換プレートの前記第1面に沿って配置された電池モジュール群を管理する管理装置と、を備えた、温度調整システムであって、
前記電池モジュール群を有する車体に収容可能であり、
前記車体は、第1車輪および第2車輪を結合し、前記電池モジュール群から供給される電力を用いて、前記第1車輪を駆動する電動機を備え、前記第1車輪および前記第2車輪を用いて走行可能な車両を構成可能であって、
前記冷却液層の少なくとも一部は、前記冷媒層と重なって配置され、
前記熱交換プレートは、前記冷媒層に向かって前記冷媒が入る冷媒入力部と、前記冷媒層から前記冷媒が出る冷媒出力部とを備え、
前記熱交換プレートは、前記冷却液層に向かって前記冷却液が入る冷却液入力部と、前記冷却液層から前記冷却液が出る冷却液出力部とを備え、前記冷却液回路が、前記冷却液入力部および前記冷却液出力部と接続されており、
前記冷媒回路が、前記コンデンサと前記コンプレッサとの間を前記冷媒が流れる第1冷媒経路および第2冷媒経路を備え、
前記第1冷媒経路は前記第1膨張弁と前記エバポレータとを備え、
前記第2冷媒経路は第2電磁弁と前記第2膨張弁とを備え、前記第2冷媒経路が、前記冷媒入力部および前記冷媒出力部と接続されており、
前記管理装置は、前記熱交換プレートの前記冷却液層を流れる冷却液の流量が、冷却開始時からの経過時間に応じて変わるように、前記冷却液の流量を制御する、
温度調整システム。
(A11)
前記管理装置は、第1の時刻における前記冷却液層を流れる前記冷却液の流量が、第2の時刻における前記冷却液層を流れる前記冷却液の流量よりも少なくなるように、前記冷却液の流量を制御し、
前記第1の時刻は、前記冷却開始時から所定の経過時間を経過する前の時刻であり、
前記第2の時刻は、前記冷却開始時から前記所定の経過時間を経過した後の時刻である、
A10に記載の温度調整システム。
(A12)
前記管理装置は、前記熱交換プレートによる前記電池モジュール群の冷却負荷の大きさを示す値が所定の値よりも大きい場合に、第1の時刻における前記冷却液層を流れる前記冷却液の流量が、第2の時刻における前記冷却液層を流れる前記冷却液の流量よりも少なくなるように、前記冷却液の流量を制御し、
前記第1の時刻は、前記冷却開始時から所定の経過時間を経過する前の時刻であり、
前記第2の時刻は、前記冷却開始時から前記所定の経過時間を経過した後の時刻である、
A10に記載の温度調整システム。
(A13)
冷却負荷の大きさを示す値は、前記コンプレッサの出力値βである、A12に記載の温度調整システム。
(A14)
前記コンプレッサの出力値βは、前記電池モジュール群に含まれる電池モジュールの平均温度と、前記電池モジュール群に含まれる電池モジュールの平均温度の目標値との差に応じて定まる値であり、
前記電池モジュール群に含まれる電池モジュールの平均温度と、前記電池モジュール群に含まれる電池モジュールの平均温度の目標値との差が大きいほど、前記コンプレッサの出力値βが大きい、
A13に記載の温度調整システム。
(A15)
前記冷媒回路が、前記エバポレータにおいて前記冷媒が前記冷媒回路の外部と熱交換を行うことを妨げる熱交換阻害機構を備える、
A10からA14のいずれか1つに記載の温度調整システム。
(A16)
前記熱交換阻害機構が送風機であり、
前記管理装置は、前記送風機による送風を抑制させることにより、前記エバポレータにおいて前記冷媒が前記冷媒回路の外部と熱交換を行うことを妨げる、
A15に記載の温度調整システム。
(A17)
前記熱交換阻害機構が、前記コンデンサと前記エバポレータとの間であり、かつ前記第1冷媒経路内に配置された第1電磁弁であり、前記管理装置は、前記第1電磁弁を閉じることにより、前記エバポレータにおいて前記冷媒が前記冷媒回路の外部と熱交換を行うことを妨げる、
A15に記載の温度調整システム。
(A18)
前記冷却液回路の冷却液を加熱するヒータが、前記冷却液回路に配置されており、
前記管理装置は、前記ヒータが前記冷却液回路の冷却液を加熱する際に、前記冷媒層から前記冷媒回路へと前記冷媒を回収するように、前記コンプレッサを制御する、
A10からA17のいずれか1つに記載の温度調整システム。
(B1)
コンプレッサと、コンデンサと、第1膨張弁と、第2膨張弁と、エバポレータとを備え、冷媒が循環する冷媒回路と、
リザーバとポンプを備え、冷却液が循環する冷却液回路と、
第1面と前記第1面と反対の第2面を有し、前記第1面と前記第2面の間において冷却液を循環させる冷却液層と、前記第1面と前記第2面の間において冷媒を循環させる冷媒層と、を備えた熱交換プレートと、
複数の電池モジュールを有し、前記熱交換プレートの前記第1面に沿って配置された電池モジュール群と、
前記電池モジュール群を管理する管理装置と、
前記冷媒回路、前記冷却液回路、前記熱交換プレート、前記電池モジュール群、および前記管理装置を収容する車体と、
前記車体に結合された第1車輪および第2車輪と、
前記電池モジュール群から供給される電力を用いて、前記第1車輪を駆動する電動機と、を備え、
前記第1車輪および前記第2車輪を用いて走行可能な車両であって、
前記冷却液層の少なくとも一部は、前記冷媒層と重なって配置され、
前記熱交換プレートは、前記冷媒層に向かって前記冷媒が入る冷媒入力部と、前記冷媒層から前記冷媒が出る冷媒出力部とを備え、
前記熱交換プレートは、前記冷却液層に向かって前記冷却液が入る冷却液入力部と、前記冷却液層から前記冷却液が出る冷却液出力部とを備え、前記冷却液回路が、前記冷却液入力部および前記冷却液出力部と接続されており、
前記冷媒回路が、前記コンデンサと前記コンプレッサとの間を前記冷媒が流れる第1冷媒経路および第2冷媒経路を備え、
前記第1冷媒経路は前記第1膨張弁と前記エバポレータとを備え、
前記第2冷媒経路は第2電磁弁と前記第2膨張弁とを備え、前記第2冷媒経路が、前記冷媒入力部および前記冷媒出力部と接続されており、
前記コンプレッサを所定の回転数で回転させ、前記管理装置が前記第2電磁弁を開くことにより、前記熱交換プレートにあるコンプレッサーオイルの少なくとも一部が、前記熱交換プレートから前記冷媒回路へと移動する、
車両。
(B2)
前記管理装置が、前記熱交換プレートにあるコンプレッサーオイル量を推定し、前記コンプレッサーオイル量が所定の値以上である場合に、前記第2電磁弁を開く、
B1に記載の車両。
(B3)
前記管理装置が、前記車両の停車時に、前記第2電磁弁を開く、
B1に記載の車両。
(B4)
前記管理装置が、タイマー制御に基づいて、前記第2電磁弁を開く、
B1に記載の車両。
(B5)
前記管理装置が、前記第2電磁弁を開いてから所定の時間が経過した後に、前記第2電磁弁を閉じる、
B1からB4のいずれか1つに記載の車両。
(B6)
前記管理装置が、前記電池モジュール群に含まれる電池モジュールの平均温度が所定の値を下回った場合に、前記第2電磁弁を閉じる、
B1からB5のいずれか1つに記載の車両。
(B7)
前記第2膨張弁から前記冷媒入力部へと流れる冷媒に液状の冷媒が含まれるように、前記第2膨張弁の絞りが調整される、
B1からB6のいずれか1つに記載の車両。
(B8)
前記第2膨張弁がクロスチャージ方式の温度式膨張弁である、
B7に記載の車両。
(B9)
前記第2膨張弁が、前記第2電磁弁と一体化された電子式膨張弁である、
B7に記載の車両。
(B10)
コンプレッサと、コンデンサと、第1膨張弁と、第2膨張弁と、エバポレータとを備え、冷媒が循環する冷媒回路と、
リザーバとポンプを備え、冷却液が循環する冷却液回路と、
第1面と前記第1面と反対の第2面を有し、前記第1面と前記第2面の間において冷却液を循環させる冷却液層と、前記第1面と前記第2面の間において冷媒を循環させる冷媒層と、を備えた熱交換プレートと、
複数の電池モジュールを有し、前記熱交換プレートの前記第1面に沿って配置された電池モジュール群を管理する管理装置と、を備えた、温度調整システムであって、
前記電池モジュール群を有する車体に収容可能であり、
前記車体は、第1車輪および第2車輪を結合し、前記電池モジュール群から供給される電力を用いて、前記第1車輪を駆動する電動機を備え、前記第1車輪および前記第2車輪を用いて走行可能な車両を構成可能であって、
前記冷却液層の少なくとも一部は、前記冷媒層と重なって配置され、
前記熱交換プレートは、前記冷媒層に向かって前記冷媒が入る冷媒入力部と、前記冷媒層から前記冷媒が出る冷媒出力部とを備え、
前記熱交換プレートは、前記冷却液層に向かって前記冷却液が入る冷却液入力部と、前記冷却液層から前記冷却液が出る冷却液出力部とを備え、前記冷却液回路が、前記冷却液入力部および前記冷却液出力部と接続されており、
前記冷媒回路が、前記コンデンサと前記コンプレッサとの間を前記冷媒が流れる第1冷媒経路および第2冷媒経路を備え、
前記第1冷媒経路は前記第1膨張弁と前記エバポレータとを備え、
前記第2冷媒経路は第2電磁弁と前記第2膨張弁とを備え、前記第2冷媒経路が、前記冷媒入力部および前記冷媒出力部と接続されており、
前記コンプレッサを所定の回転数で回転させ、前記管理装置が前記第2電磁弁を開くことにより、前記熱交換プレートにあるコンプレッサーオイルの少なくとも一部が、前記熱交換プレートから前記冷媒回路へと移動する、
温度調整システム。
(B11)
前記管理装置が、前記熱交換プレートにあるコンプレッサーオイル量を推定し、前記コンプレッサーオイル量が所定の値以上である場合に、前記第2電磁弁を開く、
B10に記載の温度調整システム。
(B12)
前記管理装置が、前記車両の停車時に、前記第2電磁弁を開く、
B10に記載の温度調整システム。
(B13)
前記管理装置が、タイマー制御に基づいて、前記第2電磁弁を開く、
B10に記載の温度調整システム。
(B14)
前記管理装置が、前記第2電磁弁を開いてから所定の時間が経過した後に、前記第2電磁弁を閉じる、
B10からB13のいずれか1つに記載の温度調整システム。
(B15)
前記管理装置が、前記電池モジュール群に含まれる電池モジュールの平均温度が所定の値を下回った場合に、前記第2電磁弁を閉じる、
B10からB14のいずれか1つに記載の温度調整システム。
(B16)
前記第2膨張弁から前記冷媒入力部へと流れる冷媒に液状の冷媒が含まれるように、前記第2膨張弁の絞りが調整される、
B10からB15のいずれか1つに記載の温度調整システム。
(B17)
前記第2膨張弁がクロスチャージ方式の温度式膨張弁である、
B16に記載の温度調整システム。
(B18)
前記第2膨張弁が、前記第2電磁弁と一体化された電子式膨張弁である、
B16に記載の温度調整システム。
(C1)
第1コンプレッサと、第1コンデンサと、第1膨張弁と、第2膨張弁と、エバポレータとを備え、冷媒が循環する第1冷媒回路と、
第2コンプレッサと、第2コンデンサと、第3膨張弁とを備え、冷媒が循環する第2冷媒回路と、
リザーバとポンプを備え、冷却液が循環する冷却液回路と、
第1面と前記第1面と反対の第2面を有し、前記第1面と前記第2面の間において冷却液を循環させる冷却液層と、前記第1面と前記第2面の間において冷媒を循環させる冷媒層と、を備えた熱交換プレートと、
複数の電池モジュールを有し、前記熱交換プレートの前記第1面に沿って配置された電池モジュール群と、
前記第1冷媒回路、前記第2冷媒回路、前記冷却液回路、前記熱交換プレート、および前記電池モジュール群を収容する車体と、
前記車体に結合された第1車輪および第2車輪と、
前記電池モジュール群から供給される電力を用いて、前記第1車輪を駆動する電動機と、を備え、
前記第1車輪および前記第2車輪を用いて走行可能な車両であって、
前記冷却液層の少なくとも一部は、前記冷媒層と重なって配置され、
前記熱交換プレートは、前記冷媒層に向かって前記冷媒が入る冷媒入力部と、前記冷媒層から前記冷媒が出る冷媒出力部とを備え、
前記熱交換プレートは、前記冷却液層に向かって前記冷却液が入る冷却液入力部と、前記冷却液層から前記冷却液が出る冷却液出力部とを備え、前記冷却液回路が、前記冷却液入力部および前記冷却液出力部と接続されており、
前記第2冷媒回路が、前記冷媒入力部および前記冷媒出力部と接続されており、
前記第1冷媒回路が、前記第1コンデンサと前記第1コンプレッサとの間を前記冷媒が流れる第1冷媒経路および第2冷媒経路を備え、
前記第1冷媒経路は前記第1膨張弁と前記エバポレータとを備え、
前記第2冷媒経路は第2電磁弁と前記第2膨張弁とを備え、
前記冷却液回路を流れる冷却液と、前記第1冷媒回路を流れる冷媒との間の熱交換を行うチラーを更に備え、
前記チラーは、前記冷却液回路を流れる冷却液と、前記第1冷媒回路における前記第2膨張弁と前記第1コンプレッサとの間を流れる冷媒との間の熱交換を行い得る、
車両。
(C2)
前記電池モジュール群を管理する管理装置を更に備え、
前記管理装置が前記第2電磁弁を開くことにより、前記第1冷媒回路における前記第2膨張弁と前記第1コンプレッサとの間を流れる冷媒の量が増加し、
前記管理装置が前記第2電磁弁を閉じることにより、前記第1冷媒回路における前記第2膨張弁と前記第1コンプレッサとの間を流れる冷媒の量が減少する、
C1に記載の車両。
(C3)
前記管理装置が、前記第2電磁弁を開くとともに、前記ポンプを動作させる、
C2に記載の車両。
(C4)
前記電池モジュール群の急速充電時に、前記管理装置が前記第2電磁弁を開く、
C2またはC3に記載の車両。
(C5)
前記電池モジュール群に含まれる電池モジュールの平均温度が所定の値を上回った場合に、前記管理装置が前記第2電磁弁を開く、
C2またはC3に記載の車両。
(C6)
前記冷却液回路が、前記熱交換プレートに入る前記冷却液を温めるヒータを備える、
C1からC5のいずれか1つに記載の車両。
(C7)
前記管理装置が、前記第1コンプレッサおよび前記第2コンプレッサを停止させ、前記第2電磁弁を閉じ、前記ヒータが前記熱交換プレートに入る前記冷却液を温めるように、前記第1コンプレッサ、前記第2コンプレッサ、前記第2電磁弁、および前記ヒータを制御する、
C6に記載の車両。
(C8)
第1コンプレッサと、第1コンデンサと、第1膨張弁と、第2膨張弁と、エバポレータとを備え、冷媒が循環する第1冷媒回路と、
第2コンプレッサと、第2コンデンサと、第3膨張弁とを備え、冷媒が循環する第2冷媒回路と、
リザーバとポンプを備え、冷却液が循環する冷却液回路と、
第1面と前記第1面と反対の第2面を有し、前記第1面と前記第2面の間において冷却液を循環させる冷却液層と、前記第1面と前記第2面の間において冷媒を循環させる冷媒層と、を備えた熱交換プレートと、
を備えた、温度調整システムであって、
複数の電池モジュールを有し、前記熱交換プレートの前記第1面に沿って配置された電池モジュール群を有する車体に収容可能であり、
前記車体は、第1車輪および第2車輪を結合し、前記電池モジュール群から供給される電力を用いて、前記第1車輪を駆動する電動機を備え、前記第1車輪および前記第2車輪を用いて走行可能な車両を構成可能であって、
前記冷却液層の少なくとも一部は、前記冷媒層と重なって配置され、
前記熱交換プレートは、前記冷媒層に向かって前記冷媒が入る冷媒入力部と、前記冷媒層から前記冷媒が出る冷媒出力部とを備え、
前記熱交換プレートは、前記冷却液層に向かって前記冷却液が入る冷却液入力部と、前記冷却液層から前記冷却液が出る冷却液出力部とを備え、前記冷却液回路が、前記冷却液入力部および前記冷却液出力部と接続されており、
前記第2冷媒回路が、前記冷媒入力部および前記冷媒出力部と接続されており、
前記第1冷媒回路が、前記第1コンデンサと前記第1コンプレッサとの間を前記冷媒が流れる第1冷媒経路および第2冷媒経路を備え、
前記第1冷媒経路は前記第1膨張弁と前記エバポレータとを備え、
前記第2冷媒経路は第2電磁弁と前記第2膨張弁とを備え、
前記冷却液回路を流れる冷却液と、前記第1冷媒回路を流れる冷媒との間の熱交換を行うチラーを更に備え、
前記チラーは、前記冷却液回路を流れる冷却液と、前記第1冷媒回路における前記第2膨張弁と前記第1コンプレッサとの間を流れる冷媒との間の熱交換を行い得る、
温度調整システム。
(C9)
前記電池モジュール群を管理する管理装置を更に備え、
前記管理装置が前記第2電磁弁を開くことにより、前記第1冷媒回路における前記第2膨張弁と前記第1コンプレッサとの間を流れる冷媒の量が増加し、
前記管理装置が前記第2電磁弁を閉じることにより、前記第1冷媒回路における前記第2膨張弁と前記第1コンプレッサとの間を流れる冷媒の量が減少する、
C8に記載の温度調整システム。
(C10)
前記管理装置が、前記第2電磁弁を開くとともに、前記ポンプを動作させる、
C9に記載の温度調整システム。
(C11)
前記電池モジュール群の急速充電時に、前記管理装置が前記第2電磁弁を開く、
C9またはC10に記載の温度調整システム。
(C12)
前記電池モジュール群に含まれる電池モジュールの平均温度が所定の値を上回った場合に、前記管理装置が前記第2電磁弁を開く、
C9またはC10に記載の温度調整システム。
(C13)
前記冷却液回路が、前記熱交換プレートに入る前記冷却液を温めるヒータを備える、
C8からC12のいずれか1つに記載の温度調整システム。
(C14)
前記管理装置が、前記第1コンプレッサおよび前記第2コンプレッサを停止させ、前記第2電磁弁を閉じ、前記ヒータが前記熱交換プレートに入る前記冷却液を温めるように、前記第1コンプレッサ、前記第2コンプレッサ、前記第2電磁弁、および前記ヒータを制御する、
C13に記載の温度調整システム。
(D1)
コンプレッサと、コンデンサと、膨張弁と、エバポレータとを備え、冷媒が循環する冷媒回路と、
リザーバとポンプを備え、冷却液が循環する冷却液回路と、
第1面と前記第1面と反対の第2面を有し、前記第1面と前記第2面の間において冷却液を循環させる第1冷却液層と、前記第1面と前記第2面の間において冷媒を循環させる冷媒層と、を備えた第1熱交換プレートと、
複数の電池モジュールを有し、前記第1熱交換プレートの前記第1面に沿って配置された第1電池モジュール群と、
第3面と前記第3面と反対の第4面を有し、前記第3面と前記第4面の間において冷却液を循環させる第2冷却液層を備えた第2熱交換プレートと、
複数の電池モジュールを有し、前記第2熱交換プレートの前記第3面に沿って配置された第2電池モジュール群と、
前記冷媒回路、前記冷却液回路、前記第1熱交換プレート、前記第1電池モジュール群、前記第2熱交換プレート、および前記第2電池モジュール群を収容する車体と、
前記車体に結合された第1車輪および第2車輪と、
前記第1電池モジュール群および前記第2電池モジュール群の少なくとも一方から供給される電力を用いて、前記第1車輪を駆動する電動機と、を備え、
前記第1車輪および前記第2車輪を用いて第1方向に走行可能な車両であって、
前記第1冷却液層の少なくとも一部は、前記冷媒層と重なって配置され、
前記第1熱交換プレートは、前記冷媒層に向かって前記冷媒が入る冷媒入力部と、前記冷媒層から前記冷媒が出る冷媒出力部とを備え、前記冷媒回路が、前記冷媒入力部および前記冷媒出力部と接続されており、
前記第1熱交換プレートは、前記第1冷却液層に向かって前記冷却液が入る冷却液入力部と、前記第1冷却液層から前記冷却液が出る冷却液出力部とを備え、前記冷却液回路が、前記冷却液入力部および前記冷却液出力部と接続されており、
前記第1冷却液層と前記第2冷却液層とが、冷却液層接続通路を介して接続されている、
車両。
(D2)
前記冷媒層は、前記冷媒入力部から前記冷媒出力部に向かって前記冷媒が流れる冷媒通路を備え、
前記冷媒通路は、第1冷媒通路と第2冷媒通路と、を少なくとも有し、
前記冷媒通路は、前記第1冷媒通路と前記第2冷媒通路に分岐する分岐部と、前記第1冷媒通路と前記第2冷媒通路が結合する結合部と、を更に有し、
前記第1冷媒通路の少なくとも一部は、前記第1方向と直交する第2方向に沿って配置され、
前記第2冷媒通路の少なくとも一部は、前記第2方向に沿って配置され、
前記第1冷却液層は、前記冷却液が流れる第1冷却液通路を備え、前記第1冷却液通路の第1部分は前記第1方向に沿って配置され、前記第1冷却液通路の第2部分は前記第1方向に沿って配置され、前記第1部分の冷却液は前記第1方向に流れ、前記第2部分の冷却液は、前記第1方向と反対の方向に流れる、
D1に記載の車両。
(D3)
第1面と前記第1面と反対の第2面を有し、前記第1面と前記第2面の間において冷却液を循環させる第1冷却液層と、前記第1面と前記第2面の間において冷媒を循環させる冷媒層と、を備えた熱交換プレートであって、
複数の電池モジュールを有し、前記第1面に沿って配置された第1電池モジュール群を有する車体に収容可能であり、
前記車体は、コンプレッサと、コンデンサと、膨張弁と、エバポレータとを備え、冷媒が循環する冷媒回路と、リザーバとポンプを備え、冷却液が循環する冷却液回路と、第3面と前記第3面と反対の第4面を有し、前記第3面と前記第4面の間において冷却液を循環させる第2冷却液層を備えた第2熱交換プレートと、複数の電池モジュールを有し、前記第2熱交換プレートの前記第3面に沿って配置された第2電池モジュール群とを更に収容可能であり、
前記車体は、第1車輪および第2車輪を結合し、前記第1電池モジュール群および前記第2電池モジュール群の少なくとも一方から供給される電力を用いて前記第1車輪を駆動する電動機を備え、前記第1車輪および前記第2車輪を用いて第1方向に走行可能な車両を構成可能であって、
前記第1冷却液層の少なくとも一部は、前記冷媒層と重なって配置され、
前記冷媒層に向かって前記冷媒が入る冷媒入力部と、前記冷媒層から前記冷媒が出る冷媒出力部とを備え、前記冷媒入力部および前記冷媒出力部が前記冷媒回路と接続可能であり、
前記第1冷却液層に向かって前記冷却液が入る冷却液入力部と、前記第1冷却液層から前記冷却液が出る冷却液出力部とを備え、前記冷却液入力部および前記冷却液出力部が前記冷却液回路と接続可能であり、
前記第1冷却液層と前記第2冷却液層とが、冷却液層接続通路を介して接続可能である、
熱交換プレート。
(D4)
前記冷媒層は、前記冷媒入力部から前記冷媒出力部に向かって前記冷媒が流れる冷媒通路を備え、
前記冷媒通路は、第1冷媒通路と第2冷媒通路と、を少なくとも有し、
前記冷媒通路は、前記第1冷媒通路と前記第2冷媒通路に分岐する分岐部と、前記第1冷媒通路と前記第2冷媒通路が結合する結合部と、を更に有し、
前記第1冷媒通路の少なくとも一部は、前記第1方向と直交する第2方向に沿って配置され、
前記第2冷媒通路の少なくとも一部は、前記第2方向に沿って配置され、
前記第1冷却液層は、前記冷却液が流れる第1冷却液通路を備え、前記第1冷却液通路の第1部分は前記第1方向に沿って配置され、前記第1冷却液通路の第2部分は前記第1方向に沿って配置され、前記第1部分の冷却液は前記第1方向に流れ、前記第2部分の冷却液は、前記第1方向と反対の方向に流れる、
D3に記載の熱交換プレート。
(D5)
第1面と前記第1面と反対の第2面を有し、前記第1面と前記第2面の間において冷却液を循環させる第1冷却液層と、前記第1面と前記第2面の間において冷媒を循環させる冷媒層と、を備えた第1熱交換プレートと、
複数の電池モジュールを有し、前記第1面に沿って配置された第1電池モジュール群と、を備える電池パックであって、
車体に収容可能であり、
前記車体は、コンプレッサと、コンデンサと、膨張弁と、エバポレータとを備え、冷媒が循環する冷媒回路と、リザーバとポンプを備え、冷却液が循環する冷却液回路と、第3面と前記第3面と反対の第4面を有し、前記第3面と前記第4面の間において冷却液を循環させる第2冷却液層を備えた第2熱交換プレートと、複数の電池モジュールを有し、前記第2熱交換プレートの前記第3面に沿って配置された第2電池モジュール群とを更に収容可能であり、
前記車体は、第1車輪および第2車輪を結合し、前記第1電池モジュール群および前記第2電池モジュール群の少なくとも一方から供給される電力を用いて前記第1車輪を駆動する電動機を備え、前記第1車輪および前記第2車輪を用いて第1方向に走行可能な車両を構成可能であって、
前記第1冷却液層の少なくとも一部は、前記冷媒層と重なって配置され、
前記第1熱交換プレートが、前記冷媒層に向かって前記冷媒が入る冷媒入力部と、前記冷媒層から前記冷媒が出る冷媒出力部とを備え、前記冷媒入力部および前記冷媒出力部が前記冷媒回路と接続可能であり、
前記第1熱交換プレートが、前記第1冷却液層に向かって前記冷却液が入る冷却液入力部と、前記第1冷却液層から前記冷却液が出る冷却液出力部とを備え、前記冷却液入力部および前記冷却液出力部が前記冷却液回路と接続可能であり、
前記第1冷却液層と前記第2冷却液層とが、冷却液層接続通路を介して接続可能である、
電池パック。
(D6)
前記冷媒層は、前記冷媒入力部から前記冷媒出力部に向かって前記冷媒が流れる冷媒通路を備え、
前記冷媒通路は、第1冷媒通路と第2冷媒通路と、を少なくとも有し、
前記冷媒通路は、前記第1冷媒通路と前記第2冷媒通路に分岐する分岐部と、前記第1冷媒通路と前記第2冷媒通路が結合する結合部と、を更に有し、
前記第1冷媒通路の少なくとも一部は、前記第1方向と直交する第2方向に沿って配置され、
前記第2冷媒通路の少なくとも一部は、前記第2方向に沿って配置され、
前記第1冷却液層は、前記冷却液が流れる第1冷却液通路を備え、前記第1冷却液通路の第1部分は前記第1方向に沿って配置され、前記第1冷却液通路の第2部分は前記第1方向に沿って配置され、前記第1部分の冷却液は前記第1方向に流れ、前記第2部分の冷却液は、前記第1方向と反対の方向に流れる、
D5に記載の電池パック。
以上、図面を参照して本開示に係る車両および温度調整システムの実施形態について説明したが、本開示はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例、修正例、置換例、付加例、削除例、均等例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。
本開示の車両および車両制御方法は、車載電池の温度調整を望む分野に有用である。
1 電池温度調整システム
1B 電池温度調整システム
5 冷媒回路(第1冷媒回路)
51 第1コンプレッサ
52 第1コンデンサ
53 第1膨張弁
54 第2膨張弁
55 エバポレータ
56 第1電磁弁
57 第2電磁弁
58 送風機
59 チラー
5A 第1冷媒経路
5B 第2冷媒経路
6 冷却液回路
61 リザーバ
62 ヒータ
7 管理装置
8 第2冷媒回路
81 第2コンプレッサ
82 第2コンデンサ
83 第3膨張弁
10、10A、10B 電池モジュール群
11 電池モジュール
21 熱交換プレート
21A 第1熱交換プレート
21B 第2熱交換プレート
21C 第3熱交換プレート
24 中間面
30 冷却液層
30A 冷却液入力部
30B 冷却液出力部
31 冷却液通路
31A 第1部分
31B 第2部分
40 冷媒層
40A 冷媒入力部
40B 冷媒出力部
41 冷媒通路
70 熱交換プレート
71 冷却液層接続通路
90 電池パック
91 筐体
100 車両
101 車輪
101a 第1車輪
101b 第2車輪
101c 第3車輪
101d 第4車輪
102 車体
103 底面
411、411A~F 分岐冷媒通路
501 温度センサ
P ポンプ

Claims (14)

  1. 少なくともコンプレッサと、コンデンサと、を備え、冷媒が循環する冷媒回路と、
    リザーバとポンプを備え、冷却液が循環する冷却液回路と、
    第1面と前記第1面と反対の第2面を有し、前記第1面と前記第2面の間において前記冷却液を循環させる冷却液層と、前記第1面と前記第2面の間において冷媒を循環させる冷媒層と、を備えた熱交換プレートと、
    複数の電池モジュールを有し、前記熱交換プレートの前記第1面に沿って配置された電池モジュール群と、
    前記冷媒回路、前記冷却液回路、前記熱交換プレート、および前記電池モジュール群を収容する車体と、
    前記車体に結合された第1車輪および第2車輪と、
    前記電池モジュール群から供給される電力を用いて、前記第1車輪を駆動する電動機と、を備え、
    前記第1車輪および前記第2車輪を用いて走行可能であり、
    前記冷却液層の少なくとも一部は、前記冷媒層と重なって配置され、
    前記熱交換プレートは、前記冷媒層に向かって前記冷媒が入る冷媒入力部と、前記冷媒層から前記冷媒が出る冷媒出力部とを備え、
    前記熱交換プレートは、前記冷却液層に向かって前記冷却液が入る冷却液入力部と、前記冷却液層から前記冷却液が出る冷却液出力部とを備え、前記冷却液回路が、前記冷却液入力部および前記冷却液出力部と接続されており、
    前記冷媒回路が、前記冷媒入力部および前記冷媒出力部と接続された車両であって、
    前記熱交換プレートの前記冷却液層を流れる前記冷却液の流量が、冷却開始時からの経過時間に応じて変わるように、前記冷却液の流量を制御する、
    車両。
  2. 請求項1に記載の車両であって、
    前記冷媒回路、又は、前記熱交換プレートの前記冷媒層に、
    膨張弁を備える、
    車両。
  3. 請求項1に記載の車両であって、
    第1の時刻における前記冷却液層を流れる前記冷却液の流量が、第2の時刻における前記冷却液層を流れる前記冷却液の流量よりも少なくなるように、前記冷却液の流量を制御し、
    前記第1の時刻は、前記冷却開始時から所定の経過時間を経過する前の時刻であり、
    前記第2の時刻は、前記冷却開始時から前記所定の経過時間を経過した後の時刻である、
    車両。
  4. 請求項1に記載の車両であって、
    前記熱交換プレートによる前記電池モジュール群の冷却負荷の大きさを示す値が所定の値よりも大きい場合に、第1の時刻における前記冷却液層を流れる前記冷却液の流量が、第2の時刻における前記冷却液層を流れる前記冷却液の流量よりも少なくなるように、前記冷却液の流量を制御し、
    前記第1の時刻は、前記冷却開始時から所定の経過時間を経過する前の時刻であり、
    前記第2の時刻は、前記冷却開始時から前記所定の経過時間を経過した後の時刻である、
    車両。
  5. 請求項4に記載の車両であって、
    前記冷却負荷の大きさを示す値は、前記コンプレッサの出力値βである、
    車両。
  6. 請求項5に記載の車両であって、
    前記コンプレッサの出力値βは、前記電池モジュール群に含まれる電池モジュールの平均温度と、前記電池モジュール群に含まれる電池モジュールの平均温度の目標値との差に応じて定まる値であり、
    前記電池モジュール群に含まれる電池モジュールの平均温度と、前記電池モジュール群に含まれる電池モジュールの平均温度の目標値との差が大きいほど、前記コンプレッサの出力値βが大きい、
    車両。
  7. 請求項1から請求項6のいずれか1項に記載の車両であって、
    前記冷却液回路の前記冷却液を加熱するヒータが、前記冷却液回路に配置されており、
    前記ヒータが前記冷却液回路の前記冷却液を加熱する際に、前記冷媒層から前記冷媒回路へと前記冷媒を回収するように、前記コンプレッサを制御する、
    車両。
  8. 少なくともコンプレッサと、コンデンサと、を備え、冷媒が循環する冷媒回路と、
    リザーバとポンプを備え、冷却液が循環する冷却液回路と、
    第1面と前記第1面と反対の第2面を有し、前記第1面と前記第2面の間において前記冷却液を循環させる冷却液層と、前記第1面と前記第2面の間において冷媒を循環させる冷媒層と、を備えた熱交換プレートと、
    複数の電池モジュールを有し、前記熱交換プレートの前記第1面に沿って配置された電池モジュール群と、
    前記冷媒回路、前記冷却液回路、前記熱交換プレート、および前記電池モジュール群を収容する車体と、
    前記車体に結合された第1車輪および第2車輪と、
    前記電池モジュール群から供給される電力を用いて、前記第1車輪を駆動する電動機と、を備え、
    前記第1車輪および前記第2車輪を用いて走行可能であり、
    前記冷却液層の少なくとも一部は、前記冷媒層と重なって配置され、
    前記熱交換プレートは、前記冷媒層に向かって前記冷媒が入る冷媒入力部と、前記冷媒層から前記冷媒が出る冷媒出力部とを備え、
    前記熱交換プレートは、前記冷却液層に向かって前記冷却液が入る冷却液入力部と、前記冷却液層から前記冷却液が出る冷却液出力部とを備え、前記冷却液回路が、前記冷却液入力部および前記冷却液出力部と接続されており、
    前記冷媒回路が、前記冷媒入力部および前記冷媒出力部と接続された車両で利用可能な車両制御方法であって、
    前記熱交換プレートの前記冷却液層を流れる前記冷却液の流量が、冷却開始時からの経過時間に応じて変わるように、前記冷却液の流量を制御する、
    車両制御方法。
  9. 請求項8に記載の車両制御方法であって、
    前記冷媒回路、又は、前記熱交換プレートの前記冷媒層に、
    膨張弁を備える、
    車両制御方法。
  10. 請求項8に記載の車両制御方法であって、
    第1の時刻における前記冷却液層を流れる前記冷却液の流量が、第2の時刻における前記冷却液層を流れる前記冷却液の流量よりも少なくなるように、前記冷却液の流量を制御し、
    前記第1の時刻は、前記冷却開始時から所定の経過時間を経過する前の時刻であり、
    前記第2の時刻は、前記冷却開始時から前記所定の経過時間を経過した後の時刻である、
    車両制御方法。
  11. 請求項8に記載の車両制御方法であって、
    前記熱交換プレートによる前記電池モジュール群の冷却負荷の大きさを示す値が所定の値よりも大きい場合に、第1の時刻における前記冷却液層を流れる前記冷却液の流量が、第2の時刻における前記冷却液層を流れる前記冷却液の流量よりも少なくなるように、前記冷却液の流量を制御し、
    前記第1の時刻は、前記冷却開始時から所定の経過時間を経過する前の時刻であり、
    前記第2の時刻は、前記冷却開始時から前記所定の経過時間を経過した後の時刻である、
    車両制御方法。
  12. 請求項11に記載の車両制御方法であって、
    前記冷却負荷の大きさを示す値は、前記コンプレッサの出力値βである、
    車両制御方法。
  13. 請求項12に記載の車両制御方法であって、
    前記コンプレッサの出力値βは、前記電池モジュール群に含まれる電池モジュールの平均温度と、前記電池モジュール群に含まれる電池モジュールの平均温度の目標値との差に応じて定まる値であり、
    前記電池モジュール群に含まれる電池モジュールの平均温度と、前記電池モジュール群に含まれる電池モジュールの平均温度の目標値との差が大きいほど、前記コンプレッサの出力値βが大きい、
    車両制御方法。
  14. 請求項8から請求項13のいずれか1項に記載の車両制御方法であって、
    前記冷却液回路の前記冷却液を加熱するヒータが、前記冷却液回路に配置されており、
    前記ヒータが前記冷却液回路の前記冷却液を加熱する際に、前記冷媒層から前記冷媒回路へと前記冷媒を回収するように、前記コンプレッサを制御する、
    車両制御方法。
JP2023158822A 2020-03-31 2023-09-22 車両および車両制御方法 Pending JP2023174689A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023158822A JP2023174689A (ja) 2020-03-31 2023-09-22 車両および車両制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020064390A JP7365620B2 (ja) 2020-03-31 2020-03-31 車両および温度調整システム
JP2023158822A JP2023174689A (ja) 2020-03-31 2023-09-22 車両および車両制御方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020064390A Division JP7365620B2 (ja) 2020-03-27 2020-03-31 車両および温度調整システム

Publications (1)

Publication Number Publication Date
JP2023174689A true JP2023174689A (ja) 2023-12-08

Family

ID=78002288

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020064390A Active JP7365620B2 (ja) 2020-03-27 2020-03-31 車両および温度調整システム
JP2023158822A Pending JP2023174689A (ja) 2020-03-31 2023-09-22 車両および車両制御方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020064390A Active JP7365620B2 (ja) 2020-03-27 2020-03-31 車両および温度調整システム

Country Status (1)

Country Link
JP (2) JP7365620B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230032949A1 (en) * 2021-08-02 2023-02-02 Dana Automotive Systems Group, Llc Systems and methods for an electrified vehicle
CN115742867A (zh) * 2022-12-13 2023-03-07 蔚来汽车科技(安徽)有限公司 控制车辆冷却液液位的方法、装置、车辆和存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014235897A (ja) 2013-06-03 2014-12-15 日産自動車株式会社 バッテリ温調制御装置
JP6724888B2 (ja) 2017-03-16 2020-07-15 株式会社デンソー 機器温調装置
KR102274518B1 (ko) 2017-09-29 2021-07-06 주식회사 엘지에너지솔루션 전지 셀 표면 냉각을 위한 불균일 유로를 구비한 쿨링 자켓 및 이를 포함하는 배터리 모듈
CN109599626B (zh) 2017-09-30 2021-01-19 比亚迪股份有限公司 车辆的温度调节方法和温度调节系统
JP6836209B2 (ja) 2018-01-10 2021-02-24 株式会社デンソー 車両用冷却システム
JP7138299B2 (ja) 2018-01-15 2022-09-16 パナソニックIpマネジメント株式会社 電池モジュール用の冷却装置および電池システム
CN111033877B (zh) 2018-02-06 2023-06-30 松下知识产权经营株式会社 冷却装置及电池调温系统
JP2020017358A (ja) 2018-07-23 2020-01-30 パナソニックIpマネジメント株式会社 冷却装置、電池温調システム及び車両

Also Published As

Publication number Publication date
JP7365620B2 (ja) 2023-10-20
JP2021160566A (ja) 2021-10-11

Similar Documents

Publication Publication Date Title
JP2023174689A (ja) 車両および車両制御方法
WO2021192569A1 (ja) 車両、熱交換プレートおよび電池パック
JP5403766B2 (ja) 車両冷却システム
JP6879122B2 (ja) 電池温調装置
US20190363411A1 (en) Device temperature regulator
JP5868988B2 (ja) ドライブトレインおよび車両乗員室の熱調整デバイス
EP1439972B1 (en) Vehicular cooling system using air conditioner refrigerant
US9561704B2 (en) Vehicular thermal management system including selective heat transfer medium circulation
US9649908B2 (en) Temperature regulation device
WO2012144148A1 (ja) 電池温度調整装置
US20120304674A1 (en) Climate control system for a vehicle and method for controlling temperature
WO2018168276A1 (ja) 機器温調装置
JP2002352867A (ja) 電気自動車のバッテリ温度制御装置
WO2017017867A1 (ja) 冷却装置
KR20200130114A (ko) 차량 객실 가열 회로 및 배터리 가열 회로를 구비한 차량용 열 펌프 장치
WO2018066206A1 (ja) 機器温調装置
JP2022018443A (ja) 車両
JP7065332B2 (ja) 車両および温度調整システム
JP2021163638A (ja) 車両、熱交換プレートおよび電池パック
JP7065331B2 (ja) 車両および温度調整システム
JP5730237B2 (ja) 統合冷却システム
JP2020167131A (ja) 車両および電池温度調整装置
CN211075608U (zh) 车辆的热管理系统和具有其的车辆
CN211075609U (zh) 车辆的热管理系统和具有其的车辆
WO2024106247A1 (ja) 冷却システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230922

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20240308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240604