JP2023174553A - Method for manufacturing sintered ore and sintering machine - Google Patents

Method for manufacturing sintered ore and sintering machine Download PDF

Info

Publication number
JP2023174553A
JP2023174553A JP2023077839A JP2023077839A JP2023174553A JP 2023174553 A JP2023174553 A JP 2023174553A JP 2023077839 A JP2023077839 A JP 2023077839A JP 2023077839 A JP2023077839 A JP 2023077839A JP 2023174553 A JP2023174553 A JP 2023174553A
Authority
JP
Japan
Prior art keywords
amount
layer
charging layer
pallet
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023077839A
Other languages
Japanese (ja)
Inventor
一洋 岩瀬
Kazuhiro Iwase
隆英 樋口
Takahide Higuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2023174553A publication Critical patent/JP2023174553A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a method for optimizing as needed progress of combustion of a carbonaceous material and melting of a sintering raw material, by measuring the progress of the combustion of the carbonaceous material and melting of the sintering raw material in an inserted layer, when manufacturing a sintered ore.SOLUTION: Provided is a method for producing sintered ore, in which sintering raw materials are charged into a circulating pallet 26 to form a charging layer, and an ignition furnace 20 is used to ignite an upper surface layer of the charging layer, air is sucked below the charged layer, a carbonaceous material contained in the sintering raw material is burnt to form a sintered cake, and then the sintered cake is discharged from the ore discharge section to produce sintered ore, wherein an amount of shrinkage or a shrinkage rate of the charge layer after ignition is measured, and one or more of a supply amount of gaseous fuel to the charge layer upper layer, a supply amount of liquid fuel supplied to the upper surface layer of the charging layer, an amount of blended carbonaceous material in the sintering raw material, a thickness of the charging layer, an amount of air sucked, and a moving speed of the pallet are adjusted so that the amount of shrinkage or the shrinkage rate of the charge layer falls within a predetermined range.SELECTED DRAWING: Figure 1

Description

本発明は、高炉用原料である焼結鉱の製造方法、及び、焼結鉱を製造する焼結機に関する。 The present invention relates to a method for producing sintered ore, which is a raw material for a blast furnace, and a sintering machine for producing sintered ore.

高炉用原料である焼結鉱は、一般に、鉄鉱石粉、製鉄所内回収粉、焼結鉱篩下粉などの鉄含有原料と、石灰石及びドロマイトなどの含CaO原料と、粉コークスや無煙炭などの炭材(固体燃料)とを焼結原料として、無端移動型焼結機であるドワイトロイド焼結機(以下、「焼結機」と記載する)を用いて製造される。 Sintered ore, which is a raw material for blast furnaces, is generally made up of iron-containing raw materials such as iron ore powder, recovered powder in steel works, and sintered ore unsieved powder, CaO-containing raw materials such as limestone and dolomite, and charcoal such as coke powder and anthracite. It is manufactured using a Dwight Lloyd sintering machine (hereinafter referred to as "sintering machine"), which is an endless moving sintering machine, using a solid fuel as a sintering raw material.

焼結原料は、焼結機の無端移動式のパレットに装入され、装入層が形成される。装入層の厚み(高さ)は400~800mm前後である。その後、装入層の上方に設置された点火炉により、この装入層中の炭材に点火される。パレットの下に設置されている風箱を介して空気を下方に吸引することにより、装入層中の炭材を順次燃焼させる。この燃焼は、パレットの移動に伴って次第に下層に且つ前方に進行する。このときに発生する燃焼熱によって、焼結原料が燃焼、溶融し、焼結ケーキが生成される。その後、得られた焼結ケーキは、排鉱部において破砕され、クーラーで冷却され、整粒されて成品焼結鉱となる。 The sintering raw material is charged into an endlessly movable pallet of the sintering machine to form a charging layer. The thickness (height) of the charging layer is approximately 400 to 800 mm. Thereafter, the coal material in this charging layer is ignited by an ignition furnace installed above the charging layer. By suctioning air downward through a wind box installed under the pallet, the carbonaceous material in the charging layer is sequentially combusted. This combustion gradually progresses to the lower layer and forward as the pallet moves. The combustion heat generated at this time burns and melts the sintering raw material, producing a sintered cake. Thereafter, the obtained sintered cake is crushed in an ore discharge section, cooled in a cooler, and sized to become a finished sintered ore.

上述した焼結機では、焼結鉱の強度及び歩留まり向上の観点から、装入層内における炭材の燃焼と焼結原料の溶融の進行状況とを把握して適正化することが重要であり、例えば、特許文献1には、装入層内の温度及び焼結速度の測定を目的とした、パレットの底面から突出し、温度測定部を2以上備える温度測定装置が開示されている。 In the above-mentioned sintering machine, from the viewpoint of improving the strength and yield of sintered ore, it is important to understand and optimize the combustion of carbonaceous material in the charging layer and the progress of melting of the sintering raw material. For example, Patent Document 1 discloses a temperature measuring device that protrudes from the bottom surface of a pallet and includes two or more temperature measuring sections for the purpose of measuring the temperature and sintering rate within the charging layer.

特開2010-243443号公報Japanese Patent Application Publication No. 2010-243443

しかしながら、上記従来技術には以下の問題がある。 However, the above conventional technology has the following problems.

即ち、特許文献1では、装入層内の温度を温度測定装置で測定しているが、例えば、装入層内に生じた局所的な空隙や装入層とパレットとの境界を通して空気が過剰に吸引されるなどの外乱因子により、炭材の燃焼及び焼結原料の溶融の進行状況に拘わらず、装入層内の温度は低下する。そのため、装入層内の温度は、必ずしも装入層内における炭材の燃焼及び焼結原料の溶融の進行状況のみを反映するものでは無く、炭材の燃焼及び焼結原料の溶融の進行の指標として用いるには誤差が大きいという課題があった。 That is, in Patent Document 1, the temperature inside the charging layer is measured using a temperature measuring device, but for example, if there is excessive air flowing through local voids created within the charging layer or through the boundary between the charging layer and the pallet. Due to disturbance factors such as suction by the sintered material, the temperature within the charging layer decreases regardless of the progress of combustion of the carbonaceous material and melting of the sintering raw material. Therefore, the temperature within the charging layer does not necessarily reflect only the progress of combustion of carbonaceous materials and melting of sintering materials within the charging layer, but rather the progress of combustion of carbonaceous materials and melting of sintering materials. There was a problem that the error was too large to use as an index.

本発明は、このような課題を鑑みてなされたものであり、その目的は、焼結鉱を製造する際に、装入層内における炭材の燃焼と焼結原料の溶融の進行状況とを精度良く測定し、必要に応じて、炭材の燃焼及び焼結原料の溶融の進行状況を適正化できる焼結鉱の製造方法及び焼結機を提供することである。 The present invention was made in view of these problems, and its purpose is to monitor the progress of combustion of carbonaceous material and melting of sintered raw materials in the charging layer when producing sintered ore. It is an object of the present invention to provide a method for manufacturing sintered ore and a sintering machine that can accurately measure the progress of combustion of carbonaceous materials and melting of sintering raw materials as necessary.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]循環移動するパレットに焼結原料を装入して装入層を形成させ、点火炉を用いて前記装入層の上表層を点火し、前記装入層の下方から空気を吸引して前記焼結原料に含まれる炭材を燃焼させて焼結ケーキとし、その後、前記焼結ケーキを排鉱部から排出して焼結鉱を製造する焼結鉱の製造方法であって、
点火後の装入層の収縮量を測定し、前記装入層の収縮量が所定の範囲内になるように、装入層上表層への気体燃料の供給量、装入層上表層への液体燃料の供給量、焼結原料の炭材配合量、前記装入層の厚み、前記空気の吸引量、前記パレットの移動速度のうちのいずれか1つまたは2つ以上を調整することを特徴とする、焼結鉱の製造方法。
[2]循環移動するパレットに焼結原料を装入して装入層を形成させ、点火炉を用いて前記装入層の上表層を点火し、前記装入層の下方から空気を吸引して前記焼結原料に含まれる炭材を燃焼させて焼結ケーキとし、その後、前記焼結ケーキを排鉱部から排出して焼結鉱を製造する焼結鉱の製造方法であって、
点火後の装入層の収縮速度を測定し、前記装入層の収縮速度が所定の範囲内になるように、装入層上表層への気体燃料の供給量、装入層上表層への液体燃料の供給量、焼結原料の炭材配合量、前記装入層の厚み、前記空気の吸引量、前記パレットの移動速度のうちのいずれか1つまたは2つ以上を調整することを特徴とする、焼結鉱の製造方法。
[3]前記測定を、パレットの幅方向において2つ以上の場所で測定し、装入層上表層への気体燃料の供給量、装入層上表層への液体燃料の供給量、焼結原料の炭材配合量、前記装入層の厚み、前記空気の吸引量のうちのいずれか1つまたは2つ以上を前記パレットの幅方向で調整することを特徴とする、上記[1]または上記[2]に記載の焼結鉱の製造方法。
[4]前記測定を、パレットの移動方向において2つ以上の場所で測定することを特徴とする、上記[3]に記載の焼結鉱の製造方法。
[5]前記測定は、前記装入層の上面の高さ位置を測定することを特徴とする、上記[4]に記載の焼結鉱の製造方法。
[6]前記測定は、前記装入層に接触せずに測定することを特徴とする、上記[5]に記載の焼結鉱の製造方法。
[7]循環移動するパレットと、前記パレットに焼結原料を装入して装入層を形成する給鉱部と、前記装入層の表層の炭材に点火する点火炉と、前記パレットの下方に設置された、前記装入層の下方から空気を吸引する風箱とを有し、前記焼結原料に含まれる炭材の燃焼熱によって焼結原料を焼結する焼結機であって、
点火後の前記装入層の収縮量を測定する位置測定装置を有し、前記装入層の収縮量が所定の範囲内になるように、装入層上表層への気体燃料の供給量、装入層上表層への液体燃料の供給量、焼結原料の炭材配合量、前記装入層の厚み、前記空気の吸引量、前記パレットの移動速度のうちのいずれか1つまたは2つ以上を調整する機能を有することを特徴とする、焼結機。
[8]循環移動するパレットと、前記パレットに焼結原料を装入して装入層を形成する給鉱部と、前記装入層の表層の炭材に点火する点火炉と、前記パレットの下方に設置された、前記装入層の下方から空気を吸引する風箱とを有し、前記焼結原料に含まれる炭材の燃焼熱によって焼結原料を焼結する焼結機であって、
点火後の前記装入層の収縮速度を測定する位置測定装置を有し、前記装入層の収縮速度が所定の範囲内になるように、装入層上表層への気体燃料の供給量、装入層上表層への液体燃料の供給量、焼結原料の炭材配合量、前記装入層の厚み、前記空気の吸引量、前記パレットの移動速度のうちのいずれか1つまたは2つ以上を調整する機能を有することを特徴とする、焼結機。
[9]前記位置測定装置は、パレットの幅方向において2つ以上の場所を測定し、装入層上表層への気体燃料の供給量、装入層上表層への液体燃料の供給量、焼結原料の炭材配合量、前記装入層の厚み、前記空気の吸引量のうちのいずれか1つまたは2つ以上を前記パレットの幅方向で調整する機能を有することを特徴とする、上記[7]または上記[8]に記載の焼結機。
[10]前記位置測定装置は、パレットの移動方向において2つ以上の場所を測定することを特徴とする、上記[9]に記載の焼結機。
[11]前記位置測定装置は、前記装入層の上面の高さ位置を測定することを特徴とする、上記[10]に記載の焼結機。
[12]前記位置測定装置は、前記装入層に接触せずに測定することを特徴とする、上記[11]に記載の焼結機。
The gist of the present invention for solving the above problems is as follows.
[1] Charge sintering raw materials into a circulating pallet to form a charge layer, ignite the upper surface layer of the charge layer using an ignition furnace, and suck air from below the charge layer. A method for producing sintered ore, comprising: burning the carbonaceous material contained in the sintering raw material to produce a sintered cake, and then discharging the sintered cake from an ore discharge section to produce sintered ore,
The amount of contraction of the charging layer after ignition is measured, and the amount of gaseous fuel supplied to the upper surface layer of the charging layer and the amount of gaseous fuel supplied to the upper surface layer of the charging layer are adjusted so that the amount of contraction of the charging layer is within a predetermined range. It is characterized by adjusting any one or more of the amount of liquid fuel supplied, the amount of carbon material mixed in the sintering raw material, the thickness of the charged layer, the amount of air suctioned, and the moving speed of the pallet. A method for producing sintered ore.
[2] Charge the sintering raw materials into a circulating pallet to form a charge layer, ignite the upper surface layer of the charge layer using an ignition furnace, and suck air from below the charge layer. A method for producing sintered ore, comprising: burning the carbonaceous material contained in the sintering raw material to produce a sintered cake, and then discharging the sintered cake from an ore discharge section to produce sintered ore,
The contraction speed of the charging layer after ignition is measured, and the amount of gaseous fuel supplied to the upper surface layer of the charging layer and the amount of gaseous fuel supplied to the upper surface layer of the charging layer are adjusted so that the contraction speed of the charging layer is within a predetermined range. It is characterized by adjusting any one or more of the amount of liquid fuel supplied, the amount of carbon material mixed in the sintering raw material, the thickness of the charged layer, the amount of air suctioned, and the moving speed of the pallet. A method for producing sintered ore.
[3] The above measurement is performed at two or more locations in the width direction of the pallet, and the amount of gaseous fuel supplied to the upper surface layer of the charging layer, the amount of liquid fuel supplied to the upper surface layer of the charging layer, and the sintering raw material are measured at two or more locations in the width direction of the pallet. [1] or the above, characterized in that any one or more of the blended amount of carbonaceous material, the thickness of the charging layer, and the suction amount of air are adjusted in the width direction of the pallet. The method for producing sintered ore according to [2].
[4] The method for producing sintered ore according to [3] above, wherein the measurement is performed at two or more locations in the direction of movement of the pallet.
[5] The method for producing sintered ore according to [4] above, wherein the measurement includes measuring the height position of the upper surface of the charging layer.
[6] The method for producing sintered ore according to [5] above, wherein the measurement is performed without contacting the charging layer.
[7] A pallet that circulates, an ore feeding section that charges sintering raw materials into the pallet to form a charging layer, an ignition furnace that ignites the carbon material in the surface layer of the charging layer, and a The sintering machine has a wind box installed below to suck air from below the charging layer, and sinters the sintering raw material using combustion heat of carbonaceous material contained in the sintering raw material. ,
a position measuring device that measures the amount of contraction of the charging layer after ignition, and supplying the amount of gaseous fuel to the upper surface layer of the charging layer so that the amount of contraction of the charging layer is within a predetermined range; Any one or two of the amount of liquid fuel supplied to the upper surface layer of the charging layer, the amount of carbon material mixed in the sintering raw material, the thickness of the charging layer, the amount of air sucked, and the moving speed of the pallet. A sintering machine characterized by having a function to adjust the above.
[8] A pallet that circulates, an ore feeding section that charges sintering raw materials into the pallet to form a charging layer, an ignition furnace that ignites the carbon material in the surface layer of the charging layer, and a The sintering machine has a wind box installed below to suck air from below the charging layer, and sinters the sintering raw material using combustion heat of carbonaceous material contained in the sintering raw material. ,
a position measuring device for measuring the contraction speed of the charging layer after ignition, and supplying the amount of gaseous fuel to the upper surface layer of the charging layer so that the contraction speed of the charging layer is within a predetermined range; Any one or two of the amount of liquid fuel supplied to the upper surface layer of the charging layer, the amount of carbon material blended in the sintering raw material, the thickness of the charging layer, the amount of air sucked, and the moving speed of the pallet. A sintering machine characterized by having a function to adjust the above.
[9] The position measuring device measures two or more locations in the width direction of the pallet, and measures the amount of gaseous fuel supplied to the upper surface layer of the charging layer, the amount of liquid fuel supplied to the upper surface layer of the charging layer, and the amount of liquid fuel supplied to the upper surface layer of the charging layer. The above-mentioned pallet is characterized by having a function of adjusting any one or more of the amount of carbon material in the coagulating material, the thickness of the charging layer, and the amount of air suctioned in the width direction of the pallet. [7] or the sintering machine according to [8] above.
[10] The sintering machine according to [9] above, wherein the position measuring device measures two or more locations in the moving direction of the pallet.
[11] The sintering machine according to [10] above, wherein the position measuring device measures the height position of the upper surface of the charging layer.
[12] The sintering machine according to [11] above, wherein the position measuring device measures without contacting the charged layer.

本発明によれば、焼結中の焼結原料装入層の収縮量または収縮速度を測定するので、装入層内における炭材の燃焼と焼結原料の溶融の進行状況とを精度良く測定することができ、必要に応じて炭材の燃焼及び焼結原料の溶融の進行状況を適正化することができる。 According to the present invention, since the shrinkage amount or shrinkage rate of the sintering raw material charging layer during sintering is measured, the combustion of carbonaceous material in the charging layer and the progress of melting of the sintering raw material can be accurately measured. The progress of combustion of the carbonaceous material and melting of the sintering raw material can be optimized as necessary.

本実施形態に係る焼結鉱の製造方法を実施する際に用いる焼結機の一例を示す側面模式図である。FIG. 2 is a schematic side view showing an example of a sintering machine used when carrying out the method for manufacturing sintered ore according to the present embodiment. 図1に示す焼結機の斜視模式図である。FIG. 2 is a schematic perspective view of the sintering machine shown in FIG. 1. FIG. 炭材の配合量を変化させて焼結中の装入層の収縮量を調査した結果を示す図である。It is a figure which shows the result of investigating the shrinkage amount of the charge layer during sintering by changing the blending amount of carbon material. 炭材の配合量を変化させることにより、装入層の収縮量を変化させて、焼結後の焼結鉱の歩留まり及びTI強度を調査した結果を示す図である。FIG. 2 is a diagram showing the results of investigating the yield and TI strength of sintered ore after sintering by changing the amount of shrinkage of the charge layer by changing the blending amount of carbonaceous material. 炭材の配合量を変化させて、焼結後の焼結鉱の歩留まり及びTI強度を調査した結果を示す図である。It is a figure which shows the result of investigating the yield and TI strength of sintered ore after sintering by changing the blending amount of carbon material. 炭材の少ない領域に天然ガスを0.4体積%添加して焼結中の装入層の収縮量を調査した結果を示す図である。It is a figure which shows the result of adding 0.4 volume% of natural gas to the area|region with little carbon material, and investigating the shrinkage amount of the charge layer during sintering.

以下、添付図面を参照して本発明の実施形態を説明する。図1は、本実施形態に係る焼結鉱の製造方法を実施する際に用いる焼結機10の一例を示す側面模式図である。また、図2は、図1に示す焼結機10の斜視模式図である。 Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a schematic side view showing an example of a sintering machine 10 used when carrying out the method for manufacturing sintered ore according to the present embodiment. Further, FIG. 2 is a schematic perspective view of the sintering machine 10 shown in FIG. 1.

鉄鉱石粉、製鉄所内回収粉、焼結鉱篩下粉などの鉄含有原料と、石灰石及びドロマイトなどの含CaO原料と、粉コークスや無煙炭などの炭材(固体燃料)とを含む焼結原料は、焼結機10の給鉱部40に設けられたサージホッパー12からロールフィーダー14で切り出されて、循環移動する無端移動式のパレット26に装入され、パレット26の内部に焼結原料の装入層が形成される。このとき、装入層の厚み(高さ)は、サージホッパー12の下部にパレット26の幅方向に沿って複数設置された分割ゲート16の開度を調整することによって制御される。本実施形態において、分割ゲート16は、例えば、図2に示すように8つに分割されており、それぞれの分割ゲート16には、パレット26の幅方向の位置の順に対応付けてゲート番号(1~8)が割り振られている。 Sintered raw materials include iron-containing raw materials such as iron ore powder, recovered powder in steel works, and sintered ore unsieved powder, CaO-containing raw materials such as limestone and dolomite, and carbonaceous materials (solid fuels) such as coke powder and anthracite. The ore is cut out by the roll feeder 14 from the surge hopper 12 provided in the feed section 40 of the sintering machine 10, and charged into an endlessly movable pallet 26 that circulates. An inlay is formed. At this time, the thickness (height) of the charged layer is controlled by adjusting the opening degree of a plurality of dividing gates 16 installed at the bottom of the surge hopper 12 along the width direction of the pallet 26. In this embodiment, the divided gate 16 is divided into eight parts, for example, as shown in FIG. 2, and each divided gate 16 is associated with a gate number (1 ~8) have been allocated.

パレット26に形成された装入層は、パレット26とともに焼結機10の下流側に向かって移動する。分割ゲート16の下流側にはレベル計18が設けられている。レベル計18は、分割ゲート16の分割数と同数の8個設けられ、それぞれの分割ゲート16の下流側に1つ設けられている。それぞれのレベル計18には、分割ゲート番号と同じ番号が割り振られており、それぞれのレベル計18は、同じ番号が割り振られている分割ゲート16の装入層の厚みをそれぞれ測定する。本実施形態では、レベル計18として超音波レベル計を用いている。 The charge layer formed on the pallet 26 moves toward the downstream side of the sintering machine 10 together with the pallet 26. A level meter 18 is provided downstream of the dividing gate 16. Eight level meters 18 are provided, the same number as the number of divisions of the division gates 16, and one level meter 18 is provided on the downstream side of each division gate 16. Each level meter 18 is assigned the same number as the division gate number, and each level meter 18 measures the thickness of the charged layer of the division gate 16 assigned the same number. In this embodiment, an ultrasonic level meter is used as the level meter 18.

それぞれのレベル計18は、装入層の厚みを計測し、測定した厚みデータを制御装置32に出力する。制御装置32は、入力された厚みデータに基づいて、装入層の厚みが、パレット26の幅方向で同等になるように、または、指定された厚みになるように、それぞれの分割ゲート16の開度を制御する。 Each level meter 18 measures the thickness of the charged layer and outputs the measured thickness data to the control device 32. Based on the input thickness data, the control device 32 adjusts the thickness of each dividing gate 16 so that the thickness of the charged layer is equal in the width direction of the pallet 26 or has a specified thickness. Control opening degree.

給鉱部40の下流側に設置された点火炉20によって、装入層の上表層が点火される。さらに、ブロワー24によって空気が吸引され、パレット26の下方に機長方向に複数設けられた風箱22を通じて装入層内の空気が下方に吸引されるとともに、上方から装入層内に空気が導入され、焼結原料に含まれる炭材が燃焼する。ブロワー24の回転速度を調整することで、吸引される空気量を調整できるように構成されている。 The upper surface layer of the charging layer is ignited by the ignition furnace 20 installed downstream of the ore feeding section 40. Furthermore, air is sucked by the blower 24, and air in the charging layer is sucked downward through the wind boxes 22 provided in plurality in the longitudinal direction below the pallet 26, and air is introduced into the charging layer from above. The carbonaceous material contained in the sintering raw material is burned. By adjusting the rotational speed of the blower 24, the amount of air sucked can be adjusted.

炭材の燃焼による燃焼熱によって焼き固められた焼結原料は、焼結鉱の塊である焼結ケーキとなる。焼結ケーキは、排鉱部42から排出される。排鉱部42から排出される焼結ケーキは、パレット26から落下する直前にパレット26の幅方向に亀裂が生じて破断する。 The sintered raw material is sintered and solidified by the combustion heat generated by burning the carbonaceous material, and becomes a sintered cake, which is a lump of sintered ore. The sintered cake is discharged from the ore discharge section 42. The sintered cake discharged from the ore discharge section 42 cracks in the width direction of the pallet 26 and breaks immediately before falling from the pallet 26.

その後、焼結ケーキは、排鉱部42から落下し、破砕され、クーラー(図示せず)で冷却されて、整粒され、例えば、粒径5.0mm超えの塊成物からなる成品焼結鉱となる。 Thereafter, the sintered cake falls from the ore discharge section 42, is crushed, cooled in a cooler (not shown), and sized to form a sintered product consisting of agglomerates with a particle size of more than 5.0 mm. It becomes a mine.

制御装置32は、格納部34と制御部36とを有する。制御装置32は、例えば、ワークステーションやパソコンなどの汎用コンピュータである。格納部34は、例えば、更新記録可能なフラッシュメモリ、内蔵あるいはデータ通信端子で接続されたハードディスク、メモリーカードなどの情報記録媒体及びその読み書き装置である。格納部34には、本実施形態に係る焼結鉱の製造方法の実施に必要なプログラムや、当該プログラム実行中に使用するデータなどが予め格納されている。制御部36は、例えば、CPUなどであって、格納部34に格納されたプログラムやデータを用いて焼結機10の動作を制御する。 The control device 32 includes a storage section 34 and a control section 36. The control device 32 is, for example, a general-purpose computer such as a workstation or a personal computer. The storage unit 34 is, for example, an information recording medium such as an update-recordable flash memory, a built-in hard disk or a hard disk connected via a data communication terminal, a memory card, and a read/write device thereof. The storage unit 34 stores in advance a program necessary for implementing the method for manufacturing sintered ore according to the present embodiment, data used during execution of the program, and the like. The control unit 36 is, for example, a CPU, and controls the operation of the sintering machine 10 using programs and data stored in the storage unit 34.

本実施形態に係る焼結機10には、パレット26の装入層の上表層に、天然ガスなどの気体燃料や重油などの液体燃料を上方から供給するための噴射ノズル(図示せず)が、パレット26の幅方向の複数箇所及びパレット26の移動方向の複数箇所に設置されている。また、複数の噴射ノズルのうちで、選択した特定の噴射ノズルのみ、気体燃料や液体燃料を噴射できる機能を有している。 The sintering machine 10 according to the present embodiment includes an injection nozzle (not shown) for supplying gaseous fuel such as natural gas or liquid fuel such as heavy oil from above to the upper surface layer of the charging layer of the pallet 26. , are installed at multiple locations in the width direction of the pallet 26 and at multiple locations in the moving direction of the pallet 26. Moreover, only a selected specific injection nozzle among the plurality of injection nozzles has a function of injecting gaseous fuel or liquid fuel.

点火後の装入層では炭材の燃焼による焼結原料の温度上昇及び溶融が、装入層上面から下面に向かって進行していく。この焼結の過程で装入層が収縮することが知られている。収縮は全方向で進行するが、装入層の自重の影響で、収縮のほとんどは装入層上面の高さの低下として観察される。 In the charging layer after ignition, the temperature rise and melting of the sintering raw material due to combustion of the carbonaceous material progresses from the upper surface to the lower surface of the charging layer. It is known that the charging layer shrinks during this sintering process. Although the shrinkage progresses in all directions, most of the shrinkage is observed as a decrease in the height of the top surface of the charge layer due to the influence of the charge layer's own weight.

本発明者らは、焼結条件を変化させて装入層上面の高さ位置を測定して収縮挙動を観察し、以下の知見を得た。 The present inventors measured the height position of the top surface of the charged layer while changing the sintering conditions, observed the shrinkage behavior, and obtained the following knowledge.

(1)焼結による装入層の収縮率は、炭材の配合量に応じて増加し、焼結反応が過不足なく進行する適正な炭材配合量(4.0~4.4質量%)では10~20%に達する。適正な炭材配合量近傍で炭材の配合量を1質量%増加したときの装入層の収縮率の増加は、7%以上であり、炭材の配合率の7倍以上変化した。このことから、装入層の収縮に対しては、炭材自体の焼失による体積減少の寄与は少なく、焼結層が溶融して空隙が充填されることが大きく寄与しており、装入層の収縮は焼結の進行を的確に反映していると考えられる。 (1) The shrinkage rate of the charged layer due to sintering increases depending on the amount of carbon material blended, and the amount of carbon material blended is appropriate (4.0 to 4.4 mass%) at which the sintering reaction proceeds in just the right amount. ) reaches 10-20%. When the blended amount of carbonaceous material was increased by 1% by mass in the vicinity of the appropriate blended amount of carbonaceous material, the increase in the shrinkage rate of the charged layer was 7% or more, which was a change of more than 7 times the blended ratio of carbonaceous material. From this, it can be seen that the contribution of volume reduction due to burning of the carbon material itself to the shrinkage of the charging layer is small, and that the sintered layer melts and fills the voids, which makes a large contribution. It is thought that the shrinkage accurately reflects the progress of sintering.

また、分割ゲートの開度調整のみで変動させ得る装入密度には限界があり、さらに装入密度と収縮率の相関は弱い。つまり、分割ゲートの開度調整で装入層の収縮率を目標範囲に制御するのは困難である。一方、上記記載や、後述する図3に示すように、原料中の炭材配合量と装入層の収縮率との間には強い相関があり、かつ収縮量の変動幅も大きい。このため、成品焼結鉱の歩留およびTI強度を推定、制御するためのパラメータとして、炭材配合量は好適といえる。炭材の配合量の調整は、炭材配合量を予め所定値に調整した焼結原料をサージホッパー12に装入し、当該焼結原料をパレット26に装入することによって行われる。 Furthermore, there is a limit to the charging density that can be varied only by adjusting the opening of the dividing gate, and furthermore, the correlation between charging density and shrinkage rate is weak. In other words, it is difficult to control the shrinkage rate of the charged layer within the target range by adjusting the opening degree of the dividing gate. On the other hand, as described above and shown in FIG. 3, which will be described later, there is a strong correlation between the blended amount of carbonaceous material in the raw material and the shrinkage rate of the charged layer, and the variation range of the shrinkage amount is also large. Therefore, the amount of carbonaceous material blended is suitable as a parameter for estimating and controlling the yield and TI strength of finished sintered ore. Adjustment of the amount of carbon material blended is performed by charging the sintering raw material whose blending amount of carbon material has been adjusted to a predetermined value into the surge hopper 12, and charging the sintering raw material into the pallet 26.

(2)炭材の配合量が適正値よりも少ないと、装入層の点火から収縮開始までの時間が長くなることがわかった。但し、収縮開始後の収縮速度の差は、炭材配合量の影響が少なく、微小であった。 (2) It was found that when the amount of carbon material blended is less than the appropriate value, the time from ignition of the charging layer to the start of shrinkage becomes longer. However, the difference in shrinkage speed after the start of shrinkage was little affected by the amount of carbon material blended.

図3に、装入層の初期高さを600mmとし、炭材の配合量を3.2~5.0質量%の範囲で変化させて焼結中の収縮量を調査した結果を示す。炭材の配合量が3.2質量%の場合には、収縮停滞期(点火から収縮開始までの時間)が約19分であるのに対し、炭材の配合量が5.0質量%の場合には、収縮停滞期は約4分であった。炭材の配合量が適正値の4.2質量%の場合は、収縮停滞期は約7分であった。また、図3から、収縮開始後の収縮速度の差は微小であることがわかった。 FIG. 3 shows the results of investigating the amount of shrinkage during sintering when the initial height of the charged layer was 600 mm and the amount of carbon material blended was varied in the range of 3.2 to 5.0% by mass. When the blending amount of carbonaceous material is 3.2% by mass, the contraction stagnation period (time from ignition to the start of contraction) is about 19 minutes, whereas when the blending amount of carbonaceous material is 5.0% by mass, In this case, the systolic plateau was approximately 4 minutes. When the amount of carbon material blended was the appropriate value of 4.2% by mass, the contraction stagnation period was about 7 minutes. Moreover, from FIG. 3, it was found that the difference in contraction speed after the start of contraction was minute.

(3)焼結中の装入層の収縮量と、焼結後の焼結鉱の歩留まり及びTI強度とには良好な相関があった。 (3) There was a good correlation between the amount of shrinkage of the charged layer during sintering and the yield and TI strength of sintered ore after sintering.

図4に、装入層の初期高さを600mmとし、炭材の配合量を変化させることにより、装入層の収縮量を変化させて、焼結後の焼結鉱の歩留まり及びTI強度を調査した結果を示す。図4に示すように、焼結中の装入層の収縮量と、焼結後の焼結鉱の歩留まり及びTI強度とには良好な相関が認められた。ここで、TI強度とは、JIS M 8712:2022に規定される回転強度指数である。 Figure 4 shows that the initial height of the charging layer is 600 mm and the amount of shrinkage of the charging layer is changed by changing the blending amount of carbonaceous material, and the yield and TI strength of the sintered ore after sintering are changed. The results of the investigation are shown below. As shown in FIG. 4, a good correlation was observed between the amount of shrinkage of the charge layer during sintering and the yield and TI strength of sintered ore after sintering. Here, the TI strength is a rotational strength index defined in JIS M 8712:2022.

(4)図5に、装入層の初期高さを600mmとし、炭材の配合量を変化させて、焼結後の焼結鉱の歩留まり及びTI強度を調査した結果を示す。図5に示すように、焼結原料への炭材配合率と、焼結後の焼結鉱の歩留まり及びTI強度との間には明確な相関が認められた。このため、焼結中の装入層の収縮量が小さくなって、焼結後の焼結鉱の歩留まり及びTI強度が小さくなることが予測される場合には、焼結原料への炭材配合率を多くすればよいことがわかった。図5は、図4の横軸の収縮量を炭材配合量に代えたグラフである。 (4) FIG. 5 shows the results of investigating the yield and TI strength of sintered ore after sintering, with the initial height of the charging layer set to 600 mm and the blended amount of carbonaceous material varied. As shown in FIG. 5, a clear correlation was observed between the blending ratio of carbonaceous material in the sintering raw material and the yield and TI strength of the sintered ore after sintering. Therefore, if it is predicted that the amount of shrinkage of the charging layer during sintering will be small and the yield and TI strength of the sintered ore after sintering will be small, it is necessary to It turns out that it is better to increase the rate. FIG. 5 is a graph in which the amount of shrinkage on the horizontal axis in FIG. 4 is replaced with the blended amount of carbon material.

(5)炭材の配合量が適正値よりも少なく、装入層の収縮量が小さい場合でも、天然ガスなどの気体燃料や重油などの液体燃料を装入層上方から供給して、焼結反応の進行を促進させることで、装入層の収縮量は増加することがわかった。このため、焼結中の装入層の収縮率が小さくなって、焼結後の焼結鉱の歩留まり及びTI強度が小さくなることが予測される場合には、天然ガスなどの気体燃料や重油などの液体燃料を装入層の上方から添加する、または、添加量を増加すればよいことがわかった。 (5) Even if the blended amount of carbonaceous material is less than the appropriate value and the amount of shrinkage of the charging layer is small, gaseous fuel such as natural gas or liquid fuel such as heavy oil is supplied from above the charging layer to perform sintering. It was found that the amount of shrinkage of the charged layer was increased by accelerating the progress of the reaction. For this reason, if the shrinkage rate of the charge layer during sintering is expected to decrease and the yield and TI strength of the sintered ore after sintering are expected to decrease, use gaseous fuel such as natural gas or heavy oil. It has been found that it is sufficient to add liquid fuel such as from above the charging layer or to increase the amount added.

図6は、装入層の幅が800mmで、装入層の初期高さを400mmとし、炭材の配合量を変化させて、炭材の少ない領域に天然ガスを0.4体積%添加して焼結中の装入層の収縮量を調査した結果を示す図である。天然ガスを添加することで、熱不足が解消されて装入層の収縮量が確保できることがわかった。 In Figure 6, the width of the charging layer is 800 mm, the initial height of the charging layer is 400 mm, and the blended amount of carbon material is changed to add 0.4% by volume of natural gas to an area with less carbon material. FIG. 3 is a diagram showing the results of investigating the amount of shrinkage of the charged layer during sintering. It was found that by adding natural gas, the heat deficiency was resolved and the amount of shrinkage of the charging layer could be secured.

上記知見に基づき、本実施形態に係る焼結機10では、焼結中の装入層の収縮量及び収縮速度を測定するための位置測定装置28が設けられている。位置測定装置28は、点火炉20の下流側に設けられており、位置測定装置28は、点火炉20から出た装入層の上表層の位置を測定し、測定した高さ位置データを制御装置32に出力する。 Based on the above findings, the sintering machine 10 according to the present embodiment is provided with a position measuring device 28 for measuring the shrinkage amount and shrinkage speed of the charging layer during sintering. The position measuring device 28 is provided on the downstream side of the ignition furnace 20, and the position measuring device 28 measures the position of the upper surface layer of the charging layer coming out of the ignition furnace 20, and controls the measured height position data. Output to device 32.

<位置測定装置28の測定機構>
位置測定装置28の測定対象は、装入層の外表面であるので、1200℃以上に達する装入層の内部よりも低温である。そのため、位置測定装置28として、接触式の重錘やアーム付きローラーを用いて装入層の上面の高さ位置を測定することも可能である。但し、耐久性の観点からは、位置測定装置28は、超音波距離計のような非接触式であることが好ましい。
<Measurement mechanism of position measuring device 28>
Since the object to be measured by the position measuring device 28 is the outer surface of the charging layer, the temperature is lower than the inside of the charging layer, which reaches 1200° C. or higher. Therefore, it is also possible to measure the height position of the upper surface of the charged layer using a contact type weight or a roller with an arm as the position measuring device 28. However, from the viewpoint of durability, the position measuring device 28 is preferably of a non-contact type such as an ultrasonic distance meter.

測定視野及び測定深度の広さ、位置解像度の高さ、測定点数の多さ、測定速度の速さの観点からは、位置測定装置28は、レーザースキャナのような非接触光学式であることがさらに好ましい。レーザースキャナとしては、例えば、Leica社製3Dスキャナー ScanStation Pシリーズが挙げられるが、レーザーを反射するガルバノミラーの微小な動作によって高速スキャンを実現しているものが多く、装入層の直上に設置して鉛直下向きの測定をしようとすると、測定の精度や速度が低下するなどの制約が発生する場合が有る(制約が発生しない機種も有るが、高速高精度の機種ほど制約が大きい傾向が有る)。 From the viewpoints of wide measurement field of view and measurement depth, high position resolution, large number of measurement points, and high measurement speed, the position measurement device 28 is preferably a non-contact optical type such as a laser scanner. More preferred. An example of a laser scanner is the 3D scanner ScanStation P series manufactured by Leica, but many of them achieve high-speed scanning through minute movements of galvano mirrors that reflect the laser, and are installed directly above the charging layer. If you try to measure vertically downward, there may be restrictions such as a decrease in measurement accuracy or speed (there are some models that do not have this restriction, but the higher the speed and accuracy of the model, the more restrictions tend to occur) .

そのような場合には、装入層の直上では無く、斜め上方に設置して斜め下向きに測定すればよい。俯角(下方に在る物体への視線が水平と成す角)が小さいほど、前記の測定の精度や速度が低下するなどの制約が少なくなるが、装入層の上面へのレーザーの入射角が小さいと、装入層の上面の凹凸により測定位置に死角ができたり、高さの測定精度が低下したりするので、俯角は15度以上とすることが好ましい。 In such a case, it is sufficient to install it diagonally above the charged layer, not directly above it, and measure diagonally downward. The smaller the angle of depression (the angle formed by the line of sight to the object below with the horizontal), the fewer limitations such as the reduction in measurement accuracy and speed described above will occur, but the angle of incidence of the laser on the top surface of the charging layer will be smaller. If it is too small, the unevenness of the upper surface of the charged layer may create a blind spot at the measurement position or reduce the accuracy of height measurement, so it is preferable that the depression angle is 15 degrees or more.

焼結機10の長さ方向(パレット26の移動方向)の広い範囲で測定する場合に、位置測定装置28から遠い場所に対しては俯角が不足することがある。そのような場合には位置測定装置28を複数設置すればよい。 When measuring over a wide range in the length direction of the sintering machine 10 (the direction of movement of the pallet 26), the depression angle may be insufficient for a location far from the position measuring device 28. In such a case, a plurality of position measuring devices 28 may be installed.

<位置測定装置28の測定対象位置>
位置測定装置28の測定は、焼結反応にともなう装入層の収縮を把握することが目的であるので、焼結反応が開始する点火炉20よりも下流側で測定する必要がある。なかでも、焼結反応が進行し終えたと見做される排鉱部42またはその上流側の近傍(例えば、排鉱部42から2m以内)で測定すれば、焼結後の焼結ケーキの焼結の進行度を把握することができる。
<Measurement target position of position measuring device 28>
The purpose of the measurement by the position measuring device 28 is to understand the shrinkage of the charging layer due to the sintering reaction, so it is necessary to perform the measurement downstream of the ignition furnace 20 where the sintering reaction starts. In particular, if the measurement is performed near the ore discharge section 42 where the sintering reaction is considered to have completed or its upstream side (for example, within 2 m from the ore discharge section 42), the sintered cake after sintering can be measured. You can understand the progress of the knot.

排鉱部42またはその上流側の近傍よりもさらに上流側(例えば、点火炉20から排鉱部42までの行程の10~90%の範囲内)で測定し、つまり、パレット26の移動方向の2つ以上の場所で測定することで、その前またはその後の測定値と比較すれば、焼結後の焼結ケーキの焼結の進行度だけでなく、焼結の途中における焼結の進行速度も把握することができる。焼結の進行速度を把握することは、焼結の進行が速すぎて、カルシウムフェライト相の生成が阻害されたり、強度が低下したりすることを抑制するための情報として有効である。 The measurement is performed further upstream than the ore discharge section 42 or its upstream vicinity (for example, within a range of 10 to 90% of the distance from the ignition furnace 20 to the ore discharge section 42), that is, in the direction of movement of the pallet 26. By measuring at two or more locations and comparing with previous or subsequent measurements, it is possible to determine not only the degree of sintering of the sintered cake after sintering, but also the rate of sintering progress during sintering. can also be understood. Understanding the progress rate of sintering is effective as information for preventing the progress of sintering from progressing too quickly, inhibiting the formation of a calcium ferrite phase or reducing strength.

また、排鉱部42またはその上流側の近傍よりもさらに上流側で測定することにより、排鉱部42またはその上流側の近傍で測定した場合よりも焼結の進行度の高低をより早く把握することができるので、操業アクションをより早く執って焼結反応の進行を適正化することができる。 In addition, by measuring further upstream than the ore discharge section 42 or the vicinity of the upstream side thereof, the degree of sintering progress can be grasped more quickly than when measuring at the ore discharge section 42 or the vicinity of the upstream side thereof. Therefore, operational actions can be taken sooner to optimize the progress of the sintering reaction.

さらに、位置測定装置28の測定をパレット26の移動方向と水平に直交する幅方向で2点以上とすれば、パレット26の幅方向で焼結の進行度に差が生じた場合でも、パレット26の幅方向に調整可能な、例えば、装入層上表層への気体燃料や液体燃料の供給量などを調整することにより、焼結の進行度を適正化することができる。 Furthermore, if the position measuring device 28 measures at two or more points in the width direction that is horizontally orthogonal to the moving direction of the pallet 26, even if there is a difference in the progress of sintering in the width direction of the pallet 26, the pallet 26 For example, the degree of progress of sintering can be optimized by adjusting the amount of gaseous fuel or liquid fuel supplied to the upper surface layer of the charging layer.

<位置測定装置28の測定頻度>
位置測定装置28の測定頻度は、例えば、原料配合の変更時のように焼結反応の進行に変化が予測されるようなタイミングに限った低い頻度の測定でも効果があるが、焼結原料が焼結機の全長を通過する所用時間(例えば、20分)以内の間隔、さらに望ましくは2分以内の事実上の連続測定とみなせる間隔とすることにより、予期せぬ焼結原料の成分や粒度の変化などに対応できる。
<Measurement frequency of position measuring device 28>
Regarding the measurement frequency of the position measuring device 28, it is effective even if the measurement frequency is limited to timing when a change in the progress of the sintering reaction is expected, such as when changing the raw material composition, for example, but if the sintering raw material By setting the interval within the time required to pass the entire length of the sintering machine (for example, 20 minutes), and more preferably within 2 minutes, which can be considered as continuous measurement, unexpected compositions and particle sizes of the sintering raw material can be avoided. can respond to changes in

制御部36は、位置測定装置28から装入層上面の高さ位置データを取得すると、装入層上面の降下量から装入層の収縮量及び装入層の収縮速度を算出する。装入層の収縮量または収縮速度が適正でない場合には、装入層上表層への気体燃料の供給量、装入層上表層への液体燃料の供給量、焼結原料の炭材配合量、焼結原料の装入層の厚み、ブロワー24による空気の吸引量、パレット26の移動速度のうちのいずれか1つまたは2つ以上を調整して、装入層の収縮量または収縮速度を所定の範囲内に制御する。 When the control unit 36 acquires the height position data of the top surface of the charging layer from the position measuring device 28, it calculates the amount of shrinkage of the charging layer and the shrinkage speed of the charging layer from the amount of descent of the top surface of the charging layer. If the amount or speed of contraction of the charging layer is not appropriate, the amount of gaseous fuel supplied to the upper surface layer of the charging layer, the amount of liquid fuel supplied to the upper surface layer of the charging layer, and the amount of carbon material mixed in the sintering raw material. , the thickness of the charging layer of sintering raw materials, the amount of air sucked by the blower 24, and the moving speed of the pallet 26 to adjust the amount or speed of contraction of the charging layer. Control within a predetermined range.

点火前の装入層の厚さは、分割ゲート16の開度から計算することができ、また、レベル計18による測定データを用いることもできる。さらに、位置測定装置28として、測定視野が広く、多数の測定点を高速に測定できるレーザースキャナのような非接触光学式の機器を用いれば、点火後の装入層の厚さと点火前の装入層の厚さの双方を同一の位置測定装置で測定することもできる。 The thickness of the charging layer before ignition can be calculated from the opening degree of the dividing gate 16, and also measurement data from the level meter 18 can be used. Furthermore, if a non-contact optical device such as a laser scanner, which has a wide measurement field of view and can measure a large number of measurement points at high speed, is used as the position measuring device 28, it is possible to measure the thickness of the charged layer after ignition and the load before ignition. It is also possible to measure both inlay thicknesses with the same position measuring device.

また、位置測定装置28としてレーザースキャナのような非接触光学式の機器を用いた場合は、高さ位置データを取得した上表層をパレット26の幅方向に2以上に分割し、当該分割した領域における平均高さ位置を算出することもできる。例えば、上表層をパレット26の幅方向に2つに分割する場合においては、幅方向の中央を境界として、手前側の領域における平均高さと、奥側の領域の平均高さを算出する。 In addition, when a non-contact optical device such as a laser scanner is used as the position measuring device 28, the upper surface layer from which height position data has been acquired is divided into two or more parts in the width direction of the pallet 26, and the divided area is It is also possible to calculate the average height position at . For example, when the upper surface layer is divided into two in the width direction of the pallet 26, the average height in the near side area and the average height in the back side area are calculated using the center in the width direction as the boundary.

以上説明したように、本発明によれば、焼結中の焼結原料装入層の収縮量または収縮速度を測定するので、装入層内における炭材の燃焼と焼結原料の溶融の進行状況とを精度良く測定することができ、必要に応じて炭材の燃焼及び焼結原料の溶融の進行状況を適正化することができる。 As explained above, according to the present invention, since the amount or shrinkage rate of the sintering raw material charge layer is measured during sintering, the progress of combustion of carbonaceous material and melting of the sintering raw material in the charge layer is measured. The situation can be measured with high precision, and the progress of combustion of carbonaceous materials and melting of sintering raw materials can be optimized as necessary.

[実施例1]
以下、図1、図2に示した焼結機10と同じ装置を用いて、焼結鉱を製造した実施例を説明する。本実施例では、パレット26の幅方向に2つに分割した領域(領域1、領域2)で、焼結原料の装入層の収縮量に応じて、天然ガス添加量の調整を実施した(本発明例1)。本発明例1の結果と、天然ガスを添加しない比較例1の結果とを表1に示す。
[Example 1]
Hereinafter, an example in which sintered ore was manufactured using the same device as the sintering machine 10 shown in FIGS. 1 and 2 will be described. In this example, the amount of natural gas added was adjusted in accordance with the amount of shrinkage of the charging layer of the sintering raw material in two areas (area 1 and area 2) divided in the width direction of the pallet 26 ( Invention example 1). Table 1 shows the results of Inventive Example 1 and the results of Comparative Example 1 in which natural gas was not added.

Figure 2023174553000002
Figure 2023174553000002

このように、焼結機の幅方向に分割された領域ごとに、天然ガス添加量を調整して焼結原料装入層の収縮量の偏差を小さくすることにより、焼結歩留まりと製品TI強度とを改善できることが確認された。 In this way, by adjusting the amount of natural gas added in each area divided in the width direction of the sintering machine to reduce the deviation in the amount of shrinkage of the sintering raw material charge layer, the sintering yield and product TI strength can be improved. It was confirmed that this can be improved.

[実施例2]
図1、図2に示した焼結機10と同じ装置を用いて、焼結鉱を製造した実施例を説明する。本実施例では、パレット26の幅方向に4つに分割した領域(領域1、領域2、領域3、領域4)で、焼結原料の装入層の収縮量に応じて、装入層厚みの調整を実施した(本発明例2)。本発明例2の結果と、装入層厚みの調整を実施しない比較例2の結果とを表2に示す。
[Example 2]
An example in which sintered ore was manufactured using the same device as the sintering machine 10 shown in FIGS. 1 and 2 will be described. In this embodiment, the thickness of the charging layer of the sintering raw material is determined in four regions (region 1, region 2, region 3, and region 4) divided into four areas in the width direction of the pallet 26, depending on the amount of shrinkage of the charging layer of the sintering raw material. (Example 2 of the present invention). Table 2 shows the results of Inventive Example 2 and the results of Comparative Example 2 in which the charging layer thickness was not adjusted.

Figure 2023174553000003
Figure 2023174553000003

このように、焼結機の幅方向に分割された領域ごとに、装入層厚みを調整して焼結原料装入層の収縮量の偏差を小さくすることにより、焼結歩留まりと製品TI強度とを改善できることが確認された。 In this way, by adjusting the charging layer thickness for each area divided in the width direction of the sintering machine and reducing the deviation in the shrinkage amount of the sintering raw material charging layer, the sintering yield and product TI strength can be improved. It was confirmed that this can be improved.

10 焼結機
12 サージホッパー
14 ロールフィーダー
16 分割ゲート
18 レベル計
20 点火炉
22 風箱
24 ブロワー
26 パレット
28 位置測定装置
32 制御装置
34 格納部
36 制御部
40 給鉱部
42 排鉱部
10 Sintering machine 12 Surge hopper 14 Roll feeder 16 Dividing gate 18 Level meter 20 Ignition furnace 22 Wind box 24 Blower 26 Pallet 28 Position measuring device 32 Control device 34 Storage section 36 Control section 40 Ore feeding section 42 Ore discharge section

Claims (12)

循環移動するパレットに焼結原料を装入して装入層を形成させ、点火炉を用いて前記装入層の上表層を点火し、前記装入層の下方から空気を吸引して前記焼結原料に含まれる炭材を燃焼させて焼結ケーキとし、その後、前記焼結ケーキを排鉱部から排出して焼結鉱を製造する焼結鉱の製造方法であって、
点火後の装入層の収縮量を測定し、前記装入層の収縮量が所定の範囲内になるように、装入層上表層への気体燃料の供給量、装入層上表層への液体燃料の供給量、焼結原料の炭材配合量、前記装入層の厚み、前記空気の吸引量、前記パレットの移動速度のうちのいずれか1つまたは2つ以上を調整することを特徴とする、焼結鉱の製造方法。
Sintering raw materials are charged into a circulating pallet to form a charging layer, the upper surface layer of the charging layer is ignited using an ignition furnace, and air is sucked from below the charging layer to cause the sintering. A method for producing sintered ore, comprising: burning carbonaceous material contained in the sintering raw material to produce a sintered cake, and then discharging the sintered cake from an ore discharge section to produce sintered ore,
The amount of contraction of the charging layer after ignition is measured, and the amount of gaseous fuel supplied to the upper surface layer of the charging layer and the amount of gaseous fuel supplied to the upper surface layer of the charging layer are adjusted so that the amount of contraction of the charging layer is within a predetermined range. It is characterized by adjusting any one or more of the amount of liquid fuel supplied, the amount of carbon material mixed in the sintering raw material, the thickness of the charged layer, the amount of air suctioned, and the moving speed of the pallet. A method for producing sintered ore.
循環移動するパレットに焼結原料を装入して装入層を形成させ、点火炉を用いて前記装入層の上表層を点火し、前記装入層の下方から空気を吸引して前記焼結原料に含まれる炭材を燃焼させて焼結ケーキとし、その後、前記焼結ケーキを排鉱部から排出して焼結鉱を製造する焼結鉱の製造方法であって、
点火後の装入層の収縮速度を測定し、前記装入層の収縮速度が所定の範囲内になるように、装入層上表層への気体燃料の供給量、装入層上表層への液体燃料の供給量、焼結原料の炭材配合量、前記装入層の厚み、前記空気の吸引量、前記パレットの移動速度のうちのいずれか1つまたは2つ以上を調整することを特徴とする、焼結鉱の製造方法。
Sintering raw materials are charged into a circulating pallet to form a charging layer, the upper surface layer of the charging layer is ignited using an ignition furnace, and air is sucked from below the charging layer to cause the sintering. A method for producing sintered ore, comprising: burning carbonaceous material contained in the sintering raw material to produce a sintered cake, and then discharging the sintered cake from an ore discharge section to produce sintered ore,
The contraction speed of the charging layer after ignition is measured, and the amount of gaseous fuel supplied to the upper surface layer of the charging layer and the amount of gaseous fuel supplied to the upper surface layer of the charging layer are adjusted so that the contraction speed of the charging layer is within a predetermined range. It is characterized by adjusting any one or more of the amount of liquid fuel supplied, the amount of carbon material mixed in the sintering raw material, the thickness of the charged layer, the amount of air suctioned, and the moving speed of the pallet. A method for producing sintered ore.
前記測定を、パレットの幅方向において2つ以上の場所で測定し、装入層上表層への気体燃料の供給量、装入層上表層への液体燃料の供給量、焼結原料の炭材配合量、前記装入層の厚み、前記空気の吸引量のうちのいずれか1つまたは2つ以上を前記パレットの幅方向で調整することを特徴とする、請求項1または請求項2に記載の焼結鉱の製造方法。 The above measurement is performed at two or more locations in the width direction of the pallet, and the amount of gaseous fuel supplied to the upper surface layer of the charging layer, the amount of liquid fuel supplied to the upper surface layer of the charging layer, and the carbon material of the sintering raw material are measured. According to claim 1 or 2, any one or more of the blending amount, the thickness of the charging layer, and the suction amount of the air are adjusted in the width direction of the pallet. A method for producing sintered ore. 前記測定を、パレットの移動方向において2つ以上の場所で測定することを特徴とする、請求項3に記載の焼結鉱の製造方法。 4. The method for producing sintered ore according to claim 3, wherein the measurement is performed at two or more locations in the direction of movement of the pallet. 前記測定は、前記装入層の上面の高さ位置を測定することを特徴とする、請求項4に記載の焼結鉱の製造方法。 5. The method for producing sintered ore according to claim 4, wherein the measurement includes measuring the height position of the upper surface of the charging layer. 前記測定は、前記装入層に接触せずに測定することを特徴とする、請求項5に記載の焼結鉱の製造方法。 The method for producing sintered ore according to claim 5, wherein the measurement is performed without contacting the charging layer. 循環移動するパレットと、前記パレットに焼結原料を装入して装入層を形成する給鉱部と、前記装入層の表層の炭材に点火する点火炉と、前記パレットの下方に設置された、前記装入層の下方から空気を吸引する風箱とを有し、前記焼結原料に含まれる炭材の燃焼熱によって焼結原料を焼結する焼結機であって、
点火後の前記装入層の収縮量を測定する位置測定装置を有し、前記装入層の収縮量が所定の範囲内になるように、装入層上表層への気体燃料の供給量、装入層上表層への液体燃料の供給量、焼結原料の炭材配合量、前記装入層の厚み、前記空気の吸引量、前記パレットの移動速度のうちのいずれか1つまたは2つ以上を調整する機能を有することを特徴とする、焼結機。
A pallet that circulates, an ore feeding section that charges sintering raw materials into the pallet to form a charging layer, an ignition furnace that ignites the carbon material on the surface of the charging layer, and is installed below the pallet. A sintering machine that has a wind box that sucks air from below the charging layer, and sinters the sintering raw material using the combustion heat of carbonaceous material contained in the sintering raw material,
a position measuring device that measures the amount of contraction of the charging layer after ignition, and supplying the amount of gaseous fuel to the upper surface layer of the charging layer so that the amount of contraction of the charging layer is within a predetermined range; Any one or two of the amount of liquid fuel supplied to the upper surface layer of the charging layer, the amount of carbon material mixed in the sintering raw material, the thickness of the charging layer, the amount of air sucked, and the moving speed of the pallet. A sintering machine characterized by having a function to adjust the above.
循環移動するパレットと、前記パレットに焼結原料を装入して装入層を形成する給鉱部と、前記装入層の表層の炭材に点火する点火炉と、前記パレットの下方に設置された、前記装入層の下方から空気を吸引する風箱とを有し、前記焼結原料に含まれる炭材の燃焼熱によって焼結原料を焼結する焼結機であって、
点火後の前記装入層の収縮速度を測定する位置測定装置を有し、前記装入層の収縮速度が所定の範囲内になるように、装入層上表層への気体燃料の供給量、装入層上表層への液体燃料の供給量、焼結原料の炭材配合量、前記装入層の厚み、前記空気の吸引量、前記パレットの移動速度のうちのいずれか1つまたは2つ以上を調整する機能を有することを特徴とする、焼結機。
A pallet that circulates, an ore feeding section that charges sintering raw materials into the pallet to form a charging layer, an ignition furnace that ignites the carbon material on the surface of the charging layer, and is installed below the pallet. A sintering machine that has a wind box that sucks air from below the charging layer, and sinters the sintering raw material using the combustion heat of carbonaceous material contained in the sintering raw material,
a position measuring device for measuring the contraction speed of the charging layer after ignition, and supplying the amount of gaseous fuel to the upper surface layer of the charging layer so that the contraction speed of the charging layer is within a predetermined range; Any one or two of the amount of liquid fuel supplied to the upper surface layer of the charging layer, the amount of carbon material mixed in the sintering raw material, the thickness of the charging layer, the amount of air sucked, and the moving speed of the pallet. A sintering machine characterized by having a function to adjust the above.
前記位置測定装置は、パレットの幅方向において2つ以上の場所を測定し、装入層上表層への気体燃料の供給量、装入層上表層への液体燃料の供給量、焼結原料の炭材配合量、前記装入層の厚み、前記空気の吸引量のうちのいずれか1つまたは2つ以上を前記パレットの幅方向で調整する機能を有することを特徴とする、請求項7または請求項8に記載の焼結機。 The position measuring device measures two or more locations in the width direction of the pallet, and measures the amount of gaseous fuel supplied to the upper surface layer of the charging layer, the amount of liquid fuel supplied to the upper surface layer of the charging layer, and the amount of sintered raw material. Claim 7 or 7, characterized in that it has a function of adjusting any one or more of the amount of carbon material blended, the thickness of the charged layer, and the amount of air sucked in the width direction of the pallet. A sintering machine according to claim 8. 前記位置測定装置は、パレットの移動方向において2つ以上の場所を測定することを特徴とする、請求項9に記載の焼結機。 The sintering machine according to claim 9, characterized in that the position measuring device measures two or more locations in the direction of movement of the pallet. 前記位置測定装置は、前記装入層の上面の高さ位置を測定することを特徴とする、請求項10に記載の焼結機。 The sintering machine according to claim 10, wherein the position measuring device measures the height position of the upper surface of the charged layer. 前記位置測定装置は、前記装入層に接触せずに測定することを特徴とする、請求項11に記載の焼結機。 The sintering machine according to claim 11, characterized in that the position measuring device measures without contacting the charging layer.
JP2023077839A 2022-05-27 2023-05-10 Method for manufacturing sintered ore and sintering machine Pending JP2023174553A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022086591 2022-05-27
JP2022086591 2022-05-27

Publications (1)

Publication Number Publication Date
JP2023174553A true JP2023174553A (en) 2023-12-07

Family

ID=89030299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023077839A Pending JP2023174553A (en) 2022-05-27 2023-05-10 Method for manufacturing sintered ore and sintering machine

Country Status (1)

Country Link
JP (1) JP2023174553A (en)

Similar Documents

Publication Publication Date Title
KR101074893B1 (en) Process for producing sintered ore
JP5298634B2 (en) Quality control method for sintered ore
KR101475130B1 (en) Method for producing sintered ore
JP2023174553A (en) Method for manufacturing sintered ore and sintering machine
JP2008291362A (en) Operation analysis program for period of blowing diluted gaseous fuel into sintering machine, and analysis control apparatus for period of blowing diluted gaseous fuel into sintering machine
JP2013129895A (en) Sintering machine and method of supplying gas fuel
JP2024029278A (en) Sintered ore manufacturing method and sintering machine
JP5633121B2 (en) Method for producing sintered ore
JP7099433B2 (en) Sintered ore manufacturing method
JP5521468B2 (en) Sintering raw material charging state detection device, sintering machine using the same, and method for producing sintered ore
JP7342911B2 (en) Method for manufacturing sintered ore
JP5640876B2 (en) Method for monitoring sinter quality fluctuation in sinter production and method for producing sinter using the monitoring method
JP6384438B2 (en) Method for producing sintered ore
KR100668699B1 (en) Device feeding raw materials for sinter ore
JP2021167454A (en) Blast furnace operation method, charging method controller, charging method control program
JP6866856B2 (en) Sintered ore manufacturing method and blast furnace operation method
JP5892316B2 (en) Sintering machine and gaseous fuel supply method
JPH0814007B2 (en) Agglomerated ore manufacturing method
JP2013129894A (en) Sintering machine and method of supplying gas fuel
KR20040051145A (en) A Method for Controlling the Supply of Sinter Cake for Furnace
JP2021080504A (en) Manufacturing method of sintered ore
JP2024000617A (en) Method for manufacturing sintered ore and apparatus for manufacturing sintered ore
JP2022182574A (en) Manufacturing method of sintered ore
JP2018168416A (en) Blast furnace operation method
JP2022182572A (en) Manufacturing method of sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231222