JP2023171427A - carbon dioxide reduction catalyst - Google Patents

carbon dioxide reduction catalyst Download PDF

Info

Publication number
JP2023171427A
JP2023171427A JP2023165250A JP2023165250A JP2023171427A JP 2023171427 A JP2023171427 A JP 2023171427A JP 2023165250 A JP2023165250 A JP 2023165250A JP 2023165250 A JP2023165250 A JP 2023165250A JP 2023171427 A JP2023171427 A JP 2023171427A
Authority
JP
Japan
Prior art keywords
carbon dioxide
catalyst
dioxide reduction
reduction catalyst
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023165250A
Other languages
Japanese (ja)
Inventor
修身 山本
Osami Yamamoto
英明 隅
Hideaki Sumi
範立 椿
Noritatsu Tsubaki
培培 張
Peipei Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2023165250A priority Critical patent/JP2023171427A/en
Publication of JP2023171427A publication Critical patent/JP2023171427A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

To provide a carbon dioxide reduction catalyst that can form a hydrocarbon having 5 or more carbon atoms with high efficiency even at a high flow rate.SOLUTION: A carbon dioxide reduction catalyst hydrogenates carbon dioxide to reduce carbon dioxide, producing a hydrocarbon. The carbon dioxide reduction catalyst comprises Fe and Ga as catalyst metals. In the catalyst metals, the Ga content is 10-30 mass%. Preferably, the Ga content should be 20-30 mass%. Preferably, the catalyst metals comprise an Fe-Ga complex oxide composed of Fe and Ga.SELECTED DRAWING: Figure 1

Description

本発明は、二酸化炭素還元触媒に関する。 The present invention relates to a carbon dioxide reduction catalyst.

従来、二酸化炭素を水素化反応させて燃料を生成する技術が知られている。例えば、二酸化炭素と水素の混合ガスからメタノールを合成する触媒として、Cu、Zn及びアルミナからなる触媒が提案されている(特許文献1参照)。 BACKGROUND ART Conventionally, a technique is known in which fuel is generated by subjecting carbon dioxide to a hydrogenation reaction. For example, a catalyst made of Cu, Zn, and alumina has been proposed as a catalyst for synthesizing methanol from a mixed gas of carbon dioxide and hydrogen (see Patent Document 1).

ところで、二酸化炭素を水素化反応させて得られる燃料として、液体燃料として使用可能な、炭素数が例えば5以上の炭化水素を生成できることが求められる。このような技術として、FT(フィッシャー・トロプシュ:Fischer-Tropsch)合成反応におけるFe触媒に対しカリウムを助触媒として用いることで、高度に分岐したC5以上の生成物を調製する方法が提案されている(特許文献2参照)。 By the way, as a fuel obtained by subjecting carbon dioxide to a hydrogenation reaction, it is required to be able to generate a hydrocarbon having, for example, 5 or more carbon atoms, which can be used as a liquid fuel. As such a technique, a method has been proposed to prepare highly branched C5 or higher products by using potassium as a cocatalyst for Fe catalyst in FT (Fischer-Tropsch) synthesis reaction. (See Patent Document 2).

特公昭45-16682号公報Special Publication No. 45-16682 特表2005-537340号公報Special Publication No. 2005-537340

特許文献2に開示された技術において助触媒として用いられるカリウムは、FT合成反応において二酸化炭素を捕捉する機能を有すると考えられる。しかし、助触媒としてのカリウムは、生成される炭化水素の炭素数の増大には直接寄与しないものと考えられる。このため、例えば内燃機関の排ガス等の高流速下で、炭素数が例えば5以上の炭化水素を高収率で生成することは不可能だった。 Potassium used as a promoter in the technique disclosed in Patent Document 2 is considered to have a function of capturing carbon dioxide in the FT synthesis reaction. However, it is thought that potassium as a promoter does not directly contribute to increasing the number of carbon atoms in the produced hydrocarbons. For this reason, it has been impossible to produce hydrocarbons having a carbon number of, for example, 5 or more at a high yield under a high flow rate of, for example, exhaust gas from an internal combustion engine.

本発明は、上記課題に鑑みてなされたものであり、高流速下においても炭素数が5以上の炭化水素を高効率で生成可能な二酸化炭素還元触媒を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a carbon dioxide reduction catalyst that can generate hydrocarbons having 5 or more carbon atoms with high efficiency even at high flow rates.

(1) 本発明は、二酸化炭素を水素化反応させて二酸化炭素を還元し炭化水素を生成する二酸化炭素還元触媒であって、触媒金属として、Fe及びGaを含み、前記触媒金属中に前記Gaは10~30質量%含まれる、二酸化炭素還元触媒に関する。 (1) The present invention relates to a carbon dioxide reduction catalyst that performs a hydrogenation reaction on carbon dioxide to reduce carbon dioxide and generate hydrocarbons, which contains Fe and Ga as catalytic metals, and wherein the catalytic metal contains Fe and Ga. relates to a carbon dioxide reduction catalyst containing 10 to 30% by mass.

(2) 前記触媒金属中に前記Gaは20~30質量%含まれる、(1)に記載の二酸化炭素還元触媒。 (2) The carbon dioxide reduction catalyst according to (1), wherein the catalytic metal contains 20 to 30% by mass of Ga.

(3) 前記触媒金属は、前記Fe及び前記Gaにより形成されるFe-Ga複合酸化物を含む、(1)又は(2)に記載の二酸化炭素還元触媒。 (3) The carbon dioxide reduction catalyst according to (1) or (2), wherein the catalyst metal includes a Fe-Ga composite oxide formed by the Fe and the Ga.

(4) 前記触媒金属として更にNaを含む、(1)~(3)のいずれかに記載の二酸化炭素還元触媒。 (4) The carbon dioxide reduction catalyst according to any one of (1) to (3), further containing Na as the catalyst metal.

(5) また、本発明は、(1)~(4)のいずれかに記載の二酸化炭素還元触媒の製造方法であって、前記Feの硝酸塩と前記Gaの硝酸塩とを所定量蒸留水に溶解させた水溶液から、共沈法により沈殿物を抽出する共沈工程を有する、二酸化炭素還元触媒の製造方法に関する。 (5) The present invention also provides a method for producing a carbon dioxide reduction catalyst according to any one of (1) to (4), wherein the Fe nitrate and the Ga nitrate are dissolved in a predetermined amount of distilled water. The present invention relates to a method for producing a carbon dioxide reduction catalyst, which includes a coprecipitation step of extracting a precipitate from an aqueous solution using a coprecipitation method.

(6) 前記共沈工程の次に、前記沈殿物にNaを含む水溶液を滴下して所定期間乾燥させ、得られた粉末を所定の温度で焼成する含浸工程を有する、(5)に記載の二酸化炭素還元触媒の製造方法。 (6) Next to the coprecipitation step, there is an impregnation step of dropping an aqueous solution containing Na onto the precipitate, drying it for a predetermined period, and firing the obtained powder at a predetermined temperature. Method for producing carbon dioxide reduction catalyst.

(7) 前記共沈工程において、前記水溶液に対しNaCO水溶液を滴下することで沈殿溶液を得る、(5)又は(6)に記載の二酸化炭素還元触媒の製造方法。 (7) The method for producing a carbon dioxide reduction catalyst according to (5) or (6), wherein in the coprecipitation step, a precipitation solution is obtained by dropping an aqueous NaCO 3 solution into the aqueous solution.

本発明によれば、高流速下においても炭素数が5以上の炭化水素を高効率で生成可能な二酸化炭素還元触媒を提供できる。 According to the present invention, it is possible to provide a carbon dioxide reduction catalyst that can generate hydrocarbons having 5 or more carbon atoms with high efficiency even at high flow rates.

実施例及び比較例に係るCO変換率を示すグラフである。It is a graph which shows the CO2 conversion rate based on an Example and a comparative example. 実施例及び比較例に係る炭化水素選択率を示すグラフである。It is a graph showing hydrocarbon selectivity according to Examples and Comparative Examples. 実施例及び比較例に係るC5+生成率を示すグラフである。2 is a graph showing C 5+ production rates according to Examples and Comparative Examples. CO変換率とGa含有量との関係を示すグラフである。It is a graph showing the relationship between CO 2 conversion rate and Ga content. 5+選択率とGa含有量との関係を示すグラフである。It is a graph showing the relationship between C 5+ selectivity and Ga content. 5+生成率とGa含有量との関係を示すグラフである。It is a graph showing the relationship between C 5+ production rate and Ga content. 触媒金属粒子径とGa含有量との関係を示すグラフである。It is a graph showing the relationship between catalyst metal particle diameter and Ga content. CO変換率とNa含有量との関係を示すグラフである。It is a graph which shows the relationship between CO2 conversion rate and Na content. 5+選択率とNa含有量との関係を示すグラフである。It is a graph showing the relationship between C 5+ selectivity and Na content. 5+生成率とNa含有量との関係を示すグラフである。It is a graph showing the relationship between C 5+ production rate and Na content.

以下、本発明の一実施形態について説明する。本実施形態に係る二酸化炭素還元触媒は、二酸化炭素を水素化反応させて二酸化炭素を還元するとともに炭化水素を生成することが可能な触媒である。特に、本実施形態に係る二酸化炭素還元触媒は、従来の触媒と比較して、炭素数が5以上の炭化水素の生成割合や生成率が高い。二酸化炭素の供給源としては特に限定されないが、本実施形態に係る二酸化炭素還元触媒は、内燃機関の排ガス等、高流速で二酸化炭素が供給される供給源に対しても、好ましく炭素数が5以上の炭化水素を生成できる。 An embodiment of the present invention will be described below. The carbon dioxide reduction catalyst according to the present embodiment is a catalyst capable of hydrogenating carbon dioxide to reduce carbon dioxide and generate hydrocarbons. In particular, the carbon dioxide reduction catalyst according to the present embodiment has a higher production rate and production rate of hydrocarbons having 5 or more carbon atoms than conventional catalysts. Although the supply source of carbon dioxide is not particularly limited, the carbon dioxide reduction catalyst according to the present embodiment is preferably used for sources where carbon dioxide is supplied at a high flow rate, such as exhaust gas of an internal combustion engine. It is possible to produce more than 1,000 hydrocarbons.

<二酸化炭素還元触媒>
本実施形態に係る二酸化炭素還元触媒(以下、単に「触媒」と記載する場合がある)は、触媒金属として、Fe(鉄)と、Ga(ガリウム)と、を含む。また、Na(ナトリウム)を含むことが好ましい。本実施形態に係る触媒を用いた二酸化炭素還元反応は、H(水素)とCO(二酸化炭素)の混合ガスを原料とし、COがCO(一酸化炭素)に還元される逆シフト反応と、COが炭化水素へと転換されるFT合成反応と、を一段で行うことにより炭化水素を生成する反応である。本実施形態に係る触媒は、上記逆シフト反応と、FT合成反応との両方に寄与する。本実施形態に係る触媒を用いた二酸化炭素還元反応は、従来のFT合成反応と比較して、例えば空間速度SV(Space Velocity)=50,000h-1程度の高流速下においても、炭素数が5以上の炭化水素を高効率に生成できる。
<Carbon dioxide reduction catalyst>
The carbon dioxide reduction catalyst (hereinafter sometimes simply referred to as "catalyst") according to the present embodiment includes Fe (iron) and Ga (gallium) as catalyst metals. Moreover, it is preferable that Na (sodium) is included. The carbon dioxide reduction reaction using the catalyst according to the present embodiment is a reverse shift reaction in which CO 2 is reduced to CO (carbon monoxide) using a mixed gas of H 2 (hydrogen) and CO 2 (carbon dioxide) as a raw material. This is a reaction in which hydrocarbons are produced by performing the following steps in one step: and an FT synthesis reaction in which CO is converted into hydrocarbons. The catalyst according to this embodiment contributes to both the reverse shift reaction and the FT synthesis reaction. Compared to the conventional FT synthesis reaction, the carbon dioxide reduction reaction using the catalyst according to the present embodiment reduces the number of carbon atoms even at a high flow rate of, for example, Space Velocity SV = 50,000 h -1 . 5 or more hydrocarbons can be produced with high efficiency.

本実施形態に係る触媒金属に含有されるFeは、酸化物、炭酸化合物、硝酸化合物、硫酸化合物等の化合物であってもよく、酸化物であることが好ましい。これらの化合物は2種以上含有されてもよい。また、Feは、Fe及びGaにより形成されるFe-Ga複合酸化物として触媒金属に含有されることがより好ましい。Fe-Ga複合酸化物は、鉄酸化物等の化合物と比較して、微粒子化されるため、Fe触媒の反応サイトが増大することで、FT合成反応の反応時間、即ち生成される炭化水素の炭素鎖が成長する時間を確保できる。従って、高流速下においても炭素数が5以上の炭化水素の収率を向上させることができる。 Fe contained in the catalyst metal according to the present embodiment may be a compound such as an oxide, a carbonate compound, a nitric acid compound, or a sulfuric acid compound, and is preferably an oxide. Two or more kinds of these compounds may be contained. Further, it is more preferable that Fe is contained in the catalyst metal as a Fe--Ga composite oxide formed by Fe and Ga. Compared to compounds such as iron oxides, Fe-Ga composite oxides are made into fine particles, so the number of reaction sites for the Fe catalyst increases, which reduces the reaction time of the FT synthesis reaction, that is, the amount of hydrocarbons produced. This allows time for the carbon chain to grow. Therefore, even at high flow rates, the yield of hydrocarbons having 5 or more carbon atoms can be improved.

本実施形態に係る触媒金属に含有されるGaは、Feと同様に、酸化物、炭酸化合物、硝酸化合物、硫酸化合物等の化合物であってもよく、酸化物であることが好ましい。これらの化合物は2種以上含有されてもよい。Gaは、Fe及びGaにより形成されるFe-Ga複合酸化物として触媒金属に含有されることがより好ましい。 Like Fe, Ga contained in the catalyst metal according to this embodiment may be a compound such as an oxide, a carbonate compound, a nitric acid compound, or a sulfuric acid compound, and is preferably an oxide. Two or more types of these compounds may be contained. More preferably, Ga is contained in the catalyst metal as a Fe--Ga composite oxide formed by Fe and Ga.

本実施形態に係る触媒金属中におけるGaの含有量は、金属原子換算で10~30質量%である。上記Gaの含有量は、20~30質量%であることが好ましい。Gaの含有量が10質量%未満である場合、触媒金属の微粒子化が十分ではない場合がある。Gaの含有量が30質量%を超える場合、GaがFeの反応サイトを被覆することで、触媒活性が低下する場合がある。 The content of Ga in the catalyst metal according to this embodiment is 10 to 30% by mass in terms of metal atoms. The content of Ga is preferably 20 to 30% by mass. When the Ga content is less than 10% by mass, the catalytic metal may not be sufficiently made into fine particles. When the Ga content exceeds 30% by mass, the catalytic activity may decrease due to Ga covering Fe reaction sites.

本実施形態に係る触媒金属は、更にNaを含むことが好ましい。Naは、Fe及びGaを含む触媒金属において助触媒として機能し、COをNaCOとして捕捉することで、H及びCOからCOが生成する逆シフト反応を進行させ、CO変換率を向上させることができる。Naは、Fe-Ga複合酸化物とは別に、酸化物等の形態でFe-Ga複合酸化物の表面上に存在することが好ましい。なお、触媒金属は、Naに代えて、又はNaと共に、Li、K、Rb、Cs等のアルカリ金属を含有していてもよい。 It is preferable that the catalyst metal according to this embodiment further contains Na. Na functions as a co-catalyst in catalytic metals including Fe and Ga, and by capturing CO2 as Na2CO3 , advances the reverse shift reaction in which CO is produced from H2 and CO2 , resulting in CO2 conversion. rate can be improved. Separate from the Fe-Ga composite oxide, Na is preferably present on the surface of the Fe-Ga composite oxide in the form of an oxide or the like. Note that the catalytic metal may contain an alkali metal such as Li, K, Rb, or Cs instead of or together with Na.

本実施形態に係る触媒金属中におけるNaの含有量は、0.5~1.5質量%であることが好ましく、1.0質量%であることがより好ましい。Naの含有量が0.5質量%未満である場合、炭素数が5以上の炭化水素の十分な生成効率が得られない。Naの含有量が1.5質量%を超える場合、NaがFeの反応サイトを被覆することで触媒活性が低下する。 The content of Na in the catalyst metal according to this embodiment is preferably 0.5 to 1.5% by mass, more preferably 1.0% by mass. When the Na content is less than 0.5% by mass, sufficient production efficiency of hydrocarbons having 5 or more carbon atoms cannot be obtained. When the Na content exceeds 1.5% by mass, the catalyst activity decreases because Na covers Fe reaction sites.

本実施形態に係る二酸化炭素還元触媒は、例えば、触媒金属の粉体であってもよいし、触媒金属を加圧成型することで形成されるペレット状の成型体であってもよい。また、シリカ等の公知の触媒担体に触媒金属が担持されたものであってもよい。本実施形態に係る二酸化炭素還元触媒は、上記以外に、触媒製造工程等で混入する不可避的不純物を含んでもよいが、できるだけ不純物を含まないことが好ましい。 The carbon dioxide reduction catalyst according to the present embodiment may be, for example, a catalytic metal powder, or a pellet-shaped molded body formed by pressure molding a catalytic metal. Alternatively, a catalyst metal may be supported on a known catalyst carrier such as silica. In addition to the above, the carbon dioxide reduction catalyst according to the present embodiment may contain unavoidable impurities mixed in during the catalyst manufacturing process, etc., but it is preferable to contain as few impurities as possible.

<二酸化炭素還元触媒の製造方法>
本実施形態に係る二酸化炭素還元触媒の製造方法は、共沈工程を有する。また、共沈工程の次に、含侵工程を有することが好ましい。
<Method for producing carbon dioxide reduction catalyst>
The method for producing a carbon dioxide reduction catalyst according to this embodiment includes a coprecipitation step. Moreover, it is preferable to have an impregnation process next to the coprecipitation process.

(共沈工程)
共沈工程は、Feの硝酸塩とGaの硝酸塩とを所定量蒸留水に溶解させた水溶液から、共沈法により触媒前駆体である沈殿物を抽出する工程である。共沈工程により、Fe-Ga複合酸化物が形成される。共沈工程において、FeとGaを含む上記水溶液に対し、NaCO水溶液を滴下することで、沈殿溶液が得られる。その後、沈殿溶液からろ過・洗浄等によって沈殿物を分離し、乾燥させることで、触媒前駆体である沈殿物(Fe-Ga複合酸化物)が得られる。
(co-precipitation process)
The coprecipitation process is a process of extracting a precipitate, which is a catalyst precursor, by a coprecipitation method from an aqueous solution in which predetermined amounts of Fe nitrate and Ga nitrate are dissolved in distilled water. A Fe--Ga composite oxide is formed by the coprecipitation process. In the coprecipitation step, a precipitation solution is obtained by dropping an aqueous Na 2 CO 3 solution into the aqueous solution containing Fe and Ga. Thereafter, the precipitate is separated from the precipitate solution by filtration, washing, etc., and dried to obtain a precipitate (Fe--Ga composite oxide) that is a catalyst precursor.

(含侵工程)
含侵工程は、共沈工程により得られた沈殿物にNaを含む水溶液を滴下して所定時間乾燥させ、得られた粉末を所定の温度で焼成する工程である。含侵工程により、Fe-Ga複合酸化物の表面付近にNa化合物を偏在させることができる。Naを含む水溶液としては、例えば、NaNO水溶液が挙げられる。NaNO水溶液は、超音波加振の下、滴下することができる。これにより、Fe-Ga複合酸化物の表面付近にNa化合物を均一に偏在させることができる。焼成温度は、例えば550℃、焼成時間は4時間とすることができる。
(impregnation process)
The impregnation step is a step in which an aqueous solution containing Na is dropped onto the precipitate obtained in the coprecipitation step, dried for a predetermined period of time, and the resulting powder is fired at a predetermined temperature. The impregnation step allows the Na compound to be unevenly distributed near the surface of the Fe--Ga composite oxide. An example of the aqueous solution containing Na is an aqueous NaNO 3 solution. The NaNO 3 aqueous solution can be dropped under ultrasonic vibration. Thereby, the Na compound can be uniformly distributed near the surface of the Fe--Ga composite oxide. The firing temperature can be, for example, 550° C. and the firing time can be 4 hours.

本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良は本発明に含まれる。 The present invention is not limited to the above-described embodiments, and the present invention includes modifications and improvements within the scope that can achieve the purpose of the present invention.

次に、本発明の実施例について説明するが、本発明はこの実施例に限定されるものではない。 Next, examples of the present invention will be described, but the present invention is not limited to these examples.

[実施例1]
表1に示す触媒金属1としてのFeの硝酸塩(Fe(NO・9HO)と、同じく触媒金属2としてのGaの硝酸塩(Ga(NO・6HOとを、金属原子換算でFe:Gaの質量比が8:2となるように秤量し、蒸留水に溶解させた。次いで、上記水溶液を撹拌しながら、1.0M NaNO水溶液を2ml/min滴下し、pH8.5に固定することで、FeとGaを沈殿物として含む沈殿溶液を得た。次いで、沈殿溶液を室温下、24時間エージングさせた後、ろ過、洗浄を繰り返すことで沈殿物を分離した。分離した沈殿物を60℃×12時間乾燥させることで、Fe-Ga触媒前駆体を得た。
[Example 1]
Fe nitrate (Fe( NO 3 ) 3.9H 2 O) as catalyst metal 1 shown in Table 1 and Ga nitrate (Ga(NO 3 ) 3.6H 2 O) as catalyst metal 2 shown in Table 1 were It was weighed so that the mass ratio of Fe:Ga was 8:2 in terms of atoms, and dissolved in distilled water.Next, while stirring the above aqueous solution, a 1.0M NaNO 3 aqueous solution was added dropwise at 2 ml/min to adjust the pH to 8. .5, a precipitation solution containing Fe and Ga as precipitates was obtained.Then, the precipitation solution was aged at room temperature for 24 hours, and the precipitates were separated by repeating filtration and washing. The separated precipitate was dried at 60°C for 12 hours to obtain a Fe-Ga catalyst precursor.

上記Fe-Ga触媒前駆体に対し、NaNO水溶液を92kHz超音波加振の下、Na含有量が1.0質量%となるように滴下した。次いで、5000Paの真空下で1時間乾燥させ、更に常圧下で60℃×12時間乾燥させ、粉末を得た。得られた粉末を550℃×4時間焼成することで、実施例1に係る触媒を得た。 An aqueous NaNO 3 solution was added dropwise to the Fe--Ga catalyst precursor under 92 kHz ultrasonic vibration so that the Na content was 1.0% by mass. Next, it was dried under a vacuum of 5000 Pa for 1 hour, and further dried at 60° C. for 12 hours under normal pressure to obtain a powder. The catalyst according to Example 1 was obtained by calcining the obtained powder at 550° C. for 4 hours.

[実施例2~3、比較例1~9]
触媒金属1(Fe)、及び触媒金属2の種類及び量を、それぞれ表1に示すものとしたこと以外は、実施例1と同様として、実施例2~3、及び比較例1~9に係る触媒を得た。比較例1は触媒金属2を用いず、Feの硝酸塩のみを用いた。なお、表1に触媒金属1と触媒金属2の質量部を示しているが、各実施例及び比較例に係る触媒金属には、表1に示す触媒金属1と触媒金属2以外に1.0質量%のNaが含有される。
[Examples 2-3, Comparative Examples 1-9]
Examples 2 to 3 and Comparative Examples 1 to 9 were carried out in the same manner as in Example 1, except that the types and amounts of catalyst metal 1 (Fe) and catalyst metal 2 were as shown in Table 1. I got a catalyst. In Comparative Example 1, catalyst metal 2 was not used, and only Fe nitrate was used. Table 1 shows the parts by mass of catalyst metal 1 and catalyst metal 2, but in addition to catalyst metal 1 and catalyst metal 2 shown in Table 1, the catalyst metals according to each example and comparative example contained 1.0 Mass% of Na is contained.

Figure 2023171427000002
Figure 2023171427000002

[評価]
実施例1~3、及び比較例1~9の二酸化炭素還元触媒について、以下の方法で二酸化炭素還元反応を行った。装置は、固定床流通式の反応装置を使用し、反応ガスはCO 2.8NL/h、H 8.4NL/h(CO/H=1/3)とした。各実施例及び比較例に係る二酸化炭素触媒は0.4~0.8mm角のペレット状としたものを0.25g用いた。上記ペレットを、反応管(内径6mm)に5cmの長さで充填して用いた。W/F(触媒重量/ガス流量)は0.5g・h/mol、空間速度SV(Space Velocity)=50,000h-1とした。反応条件は温度380℃、圧力3MPa、反応時間4時間とした。触媒反応後のガス成分を、オンラインでのガスクロマトグラフィー(Shimadzu,GC-2014AT、検出器:熱伝導度検出器(TCD))及び水素炎イオン化検出器(FID)(Shimadzu,GC-2014AF)により定性・定量分析した。また触媒反応後の液体成分もオフラインでのガスクロマトグラフィー(Shimadzu,GC-2014AF、検出器:水素炎イオン化検出器(FID))により定性・定量分析した。
[evaluation]
Carbon dioxide reduction reactions were carried out using the carbon dioxide reduction catalysts of Examples 1 to 3 and Comparative Examples 1 to 9 in the following manner. A fixed bed flow reactor was used as the apparatus, and the reaction gases were CO 2 2.8 NL/h and H 2 8.4 NL/h (CO 2 /H 2 =1/3). The carbon dioxide catalyst used in each of the Examples and Comparative Examples was 0.25 g of pellets of 0.4 to 0.8 mm square. The above pellets were used by filling a reaction tube (inner diameter 6 mm) with a length of 5 cm. W/F (catalyst weight/gas flow rate) was 0.5 g·h/mol, and space velocity SV (Space Velocity) was 50,000 h −1 . The reaction conditions were a temperature of 380°C, a pressure of 3 MPa, and a reaction time of 4 hours. The gas components after the catalytic reaction were analyzed by online gas chromatography (Shimadzu, GC-2014AT, detector: thermal conductivity detector (TCD)) and flame ionization detector (FID) (Shimadzu, GC-2014AF). Qualitative and quantitative analysis was performed. The liquid components after the catalytic reaction were also qualitatively and quantitatively analyzed by off-line gas chromatography (Shimadzu, GC-2014AF, detector: flame ionization detector (FID)).

(CO変換率)
上記二酸化炭素還元反応によるCOの変換率を、以下の式(1)により求めた。結果を図1に示す。
CO変換率(%)=((反応前のCO濃度)-(反応後のCO濃度))/(反応前のCO濃度)×100 …(1)
( CO2 conversion rate)
The conversion rate of CO 2 due to the carbon dioxide reduction reaction was determined using the following equation (1). The results are shown in Figure 1.
CO 2 conversion rate (%) = ((CO 2 concentration before reaction) - (CO 2 concentration after reaction)) / (CO 2 concentration before reaction) × 100 ... (1)

(炭化水素選択率)
上記二酸化炭素還元反応により生成された炭化水素(CO、CH、C2-4、C5+)の選択率を、以下の式(2)により求めた。なおC2-4は、炭素数2~4の炭化水素を示し、C5+は、炭素数5以上の炭化水素を示す。結果を図2に示す。
炭化水素選択率(%)=(炭化水素濃度)/(((反応前のCO濃度)-(反応後のCO濃度))×100 …(2)
(Hydrocarbon selectivity)
The selectivity of hydrocarbons (CO, CH 4 , C 2-4 , C 5+ ) produced by the carbon dioxide reduction reaction was determined using the following equation (2). Note that C 2-4 represents a hydrocarbon having 2 to 4 carbon atoms, and C 5+ represents a hydrocarbon having 5 or more carbon atoms. The results are shown in Figure 2.
Hydrocarbon selectivity (%) = (hydrocarbon concentration) / (((CO 2 concentration before reaction) - (CO 2 concentration after reaction)) × 100 ... (2)

(C5+生成率)
上記二酸化炭素還元反応により生成されたC5+(炭素数5以上の炭化水素)の生成率を、以下の式(3)により求めた。結果を図3に示す。
5+生成率(%)=CO変換率×C5+選択率/100 …(3)
(C5 + generation rate)
The production rate of C 5+ (hydrocarbon having 5 or more carbon atoms) produced by the carbon dioxide reduction reaction was determined using the following equation (3). The results are shown in Figure 3.
C 5 + production rate (%) = CO 2 conversion rate x C 5 + selectivity / 100...(3)

(Ga含有量とCO変換率との関係)
次に、表1に示すように触媒金属中のFeとGaとの質量割合を変化させた実施例1~3及び、Ga含有量をそれぞれ40質量%、50質量、60質量%(Fe含有量約60質量%、約50質量%、約40質量%)とした触媒と、Gaを含有しない比較例1の触媒を用いた二酸化炭素還元反応における、Ga含有量とCO変換率との関係を調べた。結果を図4に示す。図4の縦軸は上記式(1)により求められるCO変換率(%)を示し、図4の横軸はGa含有量(質量%)を示す。なお、各触媒には、Naが1.0質量%含有されるが、Ga含有量としては触媒金属中のFeとGaとの合計に対するGaの質量割合を近似値として用いることができる(以下同様)。
(Relationship between Ga content and CO 2 conversion rate)
Next, Examples 1 to 3 in which the mass ratio of Fe and Ga in the catalyst metal was changed as shown in Table 1, and the Ga content was 40 mass%, 50 mass%, and 60 mass%, respectively (Fe content The relationship between the Ga content and the CO 2 conversion rate in the carbon dioxide reduction reaction using a catalyst containing (approximately 60 mass %, approximately 50 mass %, approximately 40 mass %) and the catalyst of Comparative Example 1 that does not contain Ga. Examined. The results are shown in Figure 4. The vertical axis of FIG. 4 shows the CO 2 conversion rate (%) determined by the above formula (1), and the horizontal axis of FIG. 4 shows the Ga content (mass %). Each catalyst contains 1.0% by mass of Na, but the mass ratio of Ga to the total of Fe and Ga in the catalyst metal can be used as an approximate value for the Ga content (hereinafter, the same applies). ).

(Ga含有量とC5+選択率との関係)
次に、図4と同様に実施例1~3等及び比較例1の触媒を用いた二酸化炭素還元反応における、Ga含有量とC5+選択率との関係を調べた。結果を図5に示す。図5の縦軸は上記式(2)により求められるC5+選択率(%)を示し、図5の横軸はGa含有量(質量%)を示す。
(Relationship between Ga content and C5 + selectivity)
Next, as in FIG. 4, the relationship between Ga content and C 5+ selectivity in the carbon dioxide reduction reaction using the catalysts of Examples 1 to 3 and Comparative Example 1 was investigated. The results are shown in Figure 5. The vertical axis of FIG. 5 shows the C 5+ selectivity (%) determined by the above formula (2), and the horizontal axis of FIG. 5 shows the Ga content (mass %).

(Ga含有量とC5+生成率との関係)
次に、図4と同様に実施例1~3等及び比較例1の触媒を用いた二酸化炭素還元反応における、Ga含有量とC5+生成率との関係を調べた。結果を図6に示す。図6の縦軸は上記式(3)により求められるC5+生成率(%)を示し、図5の横軸はGa含有量(質量%)を示す。
(Relationship between Ga content and C5 + production rate)
Next, as in FIG. 4, the relationship between Ga content and C 5+ production rate in the carbon dioxide reduction reaction using the catalysts of Examples 1 to 3 and Comparative Example 1 was investigated. The results are shown in FIG. The vertical axis of FIG. 6 shows the C 5+ production rate (%) determined by the above formula (3), and the horizontal axis of FIG. 5 shows the Ga content (mass %).

(Ga含有量と触媒金属粒子径との関係)
次に、図4と同様に実施例1~3等及び比較例1の触媒のGa含有量と触媒金属粒子径(nm)との関係を調べた。結果を図7に示す。図7の縦軸は触媒金属粒子径(nm)を示し、図7の横軸はGa含有量(質量%)を示す。触媒金属粒子径(nm)は、X線回折強度測定装置を用い、X線源をCuKα線、出力を40kV、50mAとして、2θ=35.6°付近で得られるピークに対して、以下の式(4)に示すシェラーの式を用いて算出した。なお式(4)におけるKはシェラー定数を、λはX線波長(nm)を、βはピークの半値幅を、θは回折角度をそれぞれ示す。
粒子径(nm)=K=K×λ/(β×cosθ) …(4)
(Relationship between Ga content and catalyst metal particle size)
Next, similarly to FIG. 4, the relationship between the Ga content and the catalyst metal particle diameter (nm) of the catalysts of Examples 1 to 3 and Comparative Example 1 was investigated. The results are shown in FIG. The vertical axis in FIG. 7 shows the catalyst metal particle diameter (nm), and the horizontal axis in FIG. 7 shows the Ga content (mass %). The catalyst metal particle diameter (nm) is calculated using the following formula using an X-ray diffraction intensity measuring device, using the CuKα ray source as the X-ray source, and the output as 40 kV and 50 mA, for the peak obtained around 2θ = 35.6°. Calculated using Scherrer's equation shown in (4). In equation (4), K represents the Scherrer constant, λ represents the X-ray wavelength (nm), β represents the half-width of the peak, and θ represents the diffraction angle.
Particle diameter (nm)=K=K×λ/(β×cosθ)…(4)

(Na含有量とCO変換率、C5+選択率、C5+生成率との関係)
次に、触媒金属中のGa含有量を30質量%とした触媒において、Na含有量を0質量%、0.5質量%、1.0質量%、1.5質量%、2.0質量%とし、残りの触媒金属中の成分をFeとした触媒をそれぞれ調製し、図4~図6と同様の条件で、CO変換率、C5+選択率、C5+生成率をそれぞれ測定及び算出して、Na含有量との関係を調べた。結果をそれぞれ図8~図10に示す。
(Relationship between Na content and CO 2 conversion rate, C 5+ selectivity, and C 5+ production rate)
Next, in the catalyst where the Ga content in the catalyst metal is 30% by mass, the Na content is 0% by mass, 0.5% by mass, 1.0% by mass, 1.5% by mass, and 2.0% by mass. Then, catalysts were prepared with Fe as the component in the remaining catalytic metal, and the CO 2 conversion rate, C 5+ selectivity, and C 5+ production rate were measured and calculated under the same conditions as in Figures 4 to 6. The relationship with Na content was investigated. The results are shown in FIGS. 8 to 10, respectively.

[考察]
図1~図3から、実施例1の触媒は、従来の触媒金属としてFeのみを用いた触媒や、触媒金属としてGaの代わりに他の金属元素を用いた各比較例に係る触媒と比較して、炭素数5以上の炭化水素の選択率及び生成率が高く、かつCO変換率も比較的高い結果が明らかであった。
[Consideration]
From FIGS. 1 to 3, the catalyst of Example 1 was compared with the conventional catalyst using only Fe as the catalytic metal and the catalyst of each comparative example using other metal elements instead of Ga as the catalytic metal. As a result, it was clear that the selectivity and production rate of hydrocarbons having 5 or more carbon atoms were high, and the CO 2 conversion rate was also relatively high.

また、図4~図6から、触媒金属としてのGaの含有量は、10~30質量%の範囲が好ましく、20~30質量%の範囲がより好ましい結果が明らかであった。Ga添加量を増加させると、C5+を生成する触媒活性は向上するが、Ga含有量が30質量%を超える場合、GaがFeの反応サイトを被覆することで、結果的に触媒活性が低下しているものと考えられる。 Furthermore, from FIGS. 4 to 6, it was clear that the content of Ga as a catalytic metal is preferably in the range of 10 to 30% by mass, and more preferably in the range of 20 to 30% by mass. Increasing the amount of Ga added improves the catalytic activity that generates C 5+ , but when the Ga content exceeds 30% by mass, Ga covers Fe reaction sites, resulting in a decrease in catalytic activity. It is thought that this is the case.

また、図7から、Gaの含有量が10~30質量%の範囲内である場合、触媒金属が微粒子化されている結果が明らかであった。図4~図6の結果と併せて考察すると、触媒金属にGaを添加することによるC5+生成率等の触媒活性の向上は、触媒金属が微粒子化されていることによるものと推察される。 Further, from FIG. 7, it was clear that when the Ga content was within the range of 10 to 30% by mass, the catalyst metal was made into fine particles. When considered in conjunction with the results of FIGS. 4 to 6, it is inferred that the improvement in catalytic activity such as C 5+ production rate by adding Ga to the catalyst metal is due to the fine particles of the catalyst metal.

また、図8~図10から、触媒金属としてのGaの含有量が、10~30質量%の範囲内である場合において、触媒金属としてのNaの含有量は、0.5~1.5質量%の範囲が好ましく、1.0質量%の範囲がより好ましい結果が明らかであった。Na含有量を増やすほど、C5+生成活性は向上するが、Na含有量が1.0質量%を超える場合、NaがFe触媒の反応サイトを被覆するため、触媒活性が低下するものと考えられる。 Furthermore, from FIGS. 8 to 10, when the content of Ga as a catalytic metal is within the range of 10 to 30% by mass, the content of Na as a catalytic metal is 0.5 to 1.5% by mass. It was clear that a range of 1.0% by mass was preferable, and a range of 1.0% by mass was more preferable. As the Na content increases, the C 5+ production activity improves, but when the Na content exceeds 1.0% by mass, it is thought that the catalytic activity decreases because Na covers the reaction sites of the Fe catalyst. .

Claims (7)

二酸化炭素を水素化反応させて二酸化炭素を還元し炭化水素を生成する二酸化炭素還元触媒であって、
触媒金属として、Fe及びGaを含み、
前記触媒金属中に前記Gaは10~30質量%含まれる、二酸化炭素還元触媒。
A carbon dioxide reduction catalyst that performs a hydrogenation reaction on carbon dioxide to reduce carbon dioxide and generate hydrocarbons,
Contains Fe and Ga as catalyst metals,
A carbon dioxide reduction catalyst, wherein the catalytic metal contains 10 to 30% by mass of Ga.
前記触媒金属中に前記Gaは20~30質量%含まれる、請求項1に記載の二酸化炭素還元触媒。 The carbon dioxide reduction catalyst according to claim 1, wherein the catalytic metal contains 20 to 30% by mass of Ga. 前記触媒金属は、前記Fe及び前記Gaにより形成されるFe-Ga複合酸化物を含む、請求項1又は2に記載の二酸化炭素還元触媒。 The carbon dioxide reduction catalyst according to claim 1 or 2, wherein the catalyst metal includes a Fe-Ga composite oxide formed by the Fe and the Ga. 前記触媒金属として更にNaを含む、請求項1~3のいずれかに記載の二酸化炭素還元触媒。 The carbon dioxide reduction catalyst according to any one of claims 1 to 3, further comprising Na as the catalytic metal. 請求項1~4のいずれかに記載の二酸化炭素還元触媒の製造方法であって、
前記Feの硝酸塩と前記Gaの硝酸塩とを所定量蒸留水に溶解させた水溶液から、共沈法により沈殿物を抽出する共沈工程を有する、二酸化炭素還元触媒の製造方法。
A method for producing a carbon dioxide reduction catalyst according to any one of claims 1 to 4, comprising:
A method for producing a carbon dioxide reduction catalyst, comprising a coprecipitation step of extracting a precipitate by a coprecipitation method from an aqueous solution in which a predetermined amount of the Fe nitrate and the Ga nitrate are dissolved in distilled water.
前記共沈工程の次に、前記沈殿物にNaを含む水溶液を滴下して所定期間乾燥させ、得られた粉末を所定の温度で焼成する含浸工程を有する、請求項5に記載の二酸化炭素還元触媒の製造方法。 The carbon dioxide reduction according to claim 5, further comprising an impregnating step of dropping an aqueous solution containing Na onto the precipitate, drying it for a predetermined period of time, and firing the obtained powder at a predetermined temperature, after the coprecipitation step. Catalyst manufacturing method. 前記共沈工程において、前記水溶液に対しNaCO水溶液を滴下することで沈殿溶液を得る、請求項5又は6に記載の二酸化炭素還元触媒の製造方法。 The method for producing a carbon dioxide reduction catalyst according to claim 5 or 6, wherein in the coprecipitation step, a precipitation solution is obtained by dropping an aqueous NaCO 3 solution into the aqueous solution.
JP2023165250A 2021-07-16 2023-09-27 carbon dioxide reduction catalyst Pending JP2023171427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023165250A JP2023171427A (en) 2021-07-16 2023-09-27 carbon dioxide reduction catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021117832A JP7361072B2 (en) 2021-07-16 2021-07-16 carbon dioxide reduction catalyst
JP2023165250A JP2023171427A (en) 2021-07-16 2023-09-27 carbon dioxide reduction catalyst

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021117832A Division JP7361072B2 (en) 2021-07-16 2021-07-16 carbon dioxide reduction catalyst

Publications (1)

Publication Number Publication Date
JP2023171427A true JP2023171427A (en) 2023-12-01

Family

ID=85128934

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021117832A Active JP7361072B2 (en) 2021-07-16 2021-07-16 carbon dioxide reduction catalyst
JP2023165250A Pending JP2023171427A (en) 2021-07-16 2023-09-27 carbon dioxide reduction catalyst

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2021117832A Active JP7361072B2 (en) 2021-07-16 2021-07-16 carbon dioxide reduction catalyst

Country Status (1)

Country Link
JP (2) JP7361072B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL177015C (en) * 1976-12-16 1985-07-16 Shell Int Research IMPROVED METHOD FOR PREPARING AN AROMATIC HYDROCARBON MIX.
JP3757248B2 (en) * 1996-09-09 2006-03-22 独立行政法人産業技術総合研究所 Composite ultrafine particles useful as catalysts for methanol synthesis and reforming, and methods for producing the same
JP3808961B2 (en) * 1996-12-29 2006-08-16 独立行政法人産業技術総合研究所 Catalyst for catalytic reduction and removal of nitrogen oxides
JP3020144B2 (en) * 1997-01-13 2000-03-15 工業技術院長 Catalyst for producing isobutane from carbon dioxide and method for producing isobutane
EA027722B1 (en) * 2011-10-21 2017-08-31 Игтл Текнолоджи Лтд. Methods of preparation and forming supported active metal catalysts and precursors

Also Published As

Publication number Publication date
JP7361072B2 (en) 2023-10-13
JP2023013551A (en) 2023-01-26

Similar Documents

Publication Publication Date Title
Medina et al. Catalytic consequences of Ga promotion on Cu for CO 2 hydrogenation to methanol
US5254520A (en) Catalyst for the synthesis of methanol
Tada et al. Methanol synthesis via CO 2 hydrogenation over CuO–ZrO 2 prepared by two-nozzle flame spray pyrolysis
JP3010314B2 (en) Hydrocarbon preparation method
JP4747339B2 (en) Iron-based catalyst for Fischer-Tropsch synthesis reaction, method for producing the same, and method for producing hydrocarbons using the same
US20170056861A1 (en) Catalyst and a process for catalytic conversion of carbon dioxide-containing gas and hydrogen streams to hydrocarbons
Song et al. Effect of lanthanum group promoters on Cu/(mixture of ZnO and Zn-Al-spinnel-oxides) catalyst for methanol synthesis by hydrogenation of CO and CO2 mixtures
WU et al. Selective oxidation of methanol to methyl formate over bimetallic Au-Pd nanoparticles supported on SiO2
US20220111354A1 (en) Catalyst and process of preparing the same
Song et al. Sorbitol-derived carbon overlayers encapsulated Cu nanoparticles on SiO2: Stable and efficient for the continuous hydrogenation of ethylene carbonate
Pampararo et al. Acetaldehyde production by ethanol dehydrogenation over Cu-ZnAl2O4: Effect of catalyst synthetic strategies on performances
EP3593900A1 (en) Copper-iron-based catalytic composition for the conversion of syngas to higher alcohols and process using such catalyst composition
Kusama et al. Alcohol synthesis by catalytic hydrogenation of CO2 over Rh–Co/SiO2
JP7361072B2 (en) carbon dioxide reduction catalyst
WO2012134492A1 (en) Catalysts for the conversion of synthesis gas to alcohols
Liu et al. Methanol Synthesis by COx Hydrogenation over Cu/ZnO/Al2O3 Catalyst via Hydrotalcite-Like Precursors: the Role of CO in the Reactant Mixture
Wang et al. PdFe Alloy-Fe5C2 interfaces for efficient CO2 hydrogenation to higher alcohols
US20230311099A1 (en) Carbon dioxide reduction catalyst
JP2764114B2 (en) Method for producing methanol
CN114602449A (en) ZnZrO2Surface solid solution catalyst and preparation method and application thereof
CN114797903B (en) Catalyst for preparing low-carbon alcohol from synthesis gas and preparation method and application thereof
SA519402398B1 (en) Start-up procedure for a fischer-tropsch process
JP7481738B2 (en) Platinum-supported molybdenum oxide catalyst and method for producing carbon monoxide and methanol using said catalyst
WO2023277188A1 (en) Catalyst for liquefied petroleum gas synthesis and method for producing liquefied petroleum gas
JP7328549B2 (en) Ammonia dehydrogenation reaction catalyst, method for producing ammonia dehydrogenation reaction catalyst, and method for producing hydrogen using ammonia dehydrogenation reaction catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230927

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20231020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231023