JP2023164522A - Excimer lamp, ultraviolet irradiation device and ozone generator - Google Patents

Excimer lamp, ultraviolet irradiation device and ozone generator Download PDF

Info

Publication number
JP2023164522A
JP2023164522A JP2023144840A JP2023144840A JP2023164522A JP 2023164522 A JP2023164522 A JP 2023164522A JP 2023144840 A JP2023144840 A JP 2023144840A JP 2023144840 A JP2023144840 A JP 2023144840A JP 2023164522 A JP2023164522 A JP 2023164522A
Authority
JP
Japan
Prior art keywords
discharge
discharge vessel
electrodes
pair
excimer lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023144840A
Other languages
Japanese (ja)
Inventor
剛 小林
Takeshi Kobayashi
正人 今井
Masato Imai
和泉 芹澤
Izumi Serizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orc Manufacturing Co Ltd
Original Assignee
Orc Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=63922333&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2023164522(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Orc Manufacturing Co Ltd filed Critical Orc Manufacturing Co Ltd
Priority to JP2023144840A priority Critical patent/JP2023164522A/en
Publication of JP2023164522A publication Critical patent/JP2023164522A/en
Pending legal-status Critical Current

Links

Images

Abstract

To prevent generation and outflow of high concentrations of ozone by localized ultraviolet irradiation and localized generation of ozone to prevent generation of unwanted ozone.SOLUTION: An excimer lamp 10 capable of radiating ultraviolet to produce ozone includes: a cylindrical discharge container (20) filled with discharge gas; and a pair of electrodes (30) and (40) extending in an axial direction along an outer peripheral surface of the discharge container and positioned opposite each other across a central part of the discharge container. By applying a high-frequency voltage to the pair of electrodes (30) and (40), an electrical discharge is generated in a space region near the axis between the pair of electrodes (30) and (40), and a dielectric barrier discharge is generated in a space region along the entire radial direction of the container covered by each electrode. An ultraviolet irradiance emitted from the space region between the pair of electrodes (30) and (40) to outside the discharge container is relatively low, and an ultraviolet irradiance emitted from the space region covered by each electrode to outside the discharge container is relatively high.SELECTED DRAWING: Figure 3

Description

本発明は、エキシマランプなどの放電ランプに関し、特に、人に対して安全に低濃度オゾンを生成可能なランプ構成に関する。 The present invention relates to a discharge lamp such as an excimer lamp, and particularly to a lamp configuration that can generate low concentration ozone safely for humans.

エキシマランプでは、放電容器の外表面などに電極対を配置し、放電容器内に希ガスなどを封入する、電極間に電圧を印加させることで誘電体バリア放電が生じ、放電容器からランプ外に向けて紫外線を放射する。紫外線照射によって生じるオゾンは、殺菌能力(酸化力)があるため、脱臭装置、除菌/殺菌装置などの光源としてエキシマランプを使用することができる。 In an excimer lamp, a pair of electrodes is placed on the outer surface of the discharge vessel, and a rare gas is sealed inside the discharge vessel. A dielectric barrier discharge is generated by applying a voltage between the electrodes, and the discharge is discharged from the discharge vessel to the outside of the lamp. emits ultraviolet light towards the target. Ozone produced by ultraviolet irradiation has sterilizing ability (oxidizing power), so excimer lamps can be used as light sources for deodorizing devices, sterilizing/sterilizing devices, and the like.

例えば、2つのエキシマランプを容器内に配置し、第1のエキシマランプから紫外線を照射してオゾンを生成させるとともに、第2のエキシマランプから異なる波長の紫外線を照射することで、活性酸素を生成する(特許文献1参照)。 For example, by placing two excimer lamps in a container, the first excimer lamp irradiates ultraviolet rays to generate ozone, and the second excimer lamp irradiates ultraviolet rays of different wavelengths to generate active oxygen. (See Patent Document 1).

特開2002-316041号公報Japanese Patent Application Publication No. 2002-316041

殺菌、脱臭などを行う場合、その対象物に対して効果のある範囲でオゾンを生成すればよい。したがって、対象物のサイズや構成によっては、エキシマランプを小型化するのが望ましい。しかしながら、従来のエキシマランプでは、必要以上に高濃度(多量)のオゾンが生成されるので、低濃度(少量)のオゾンを生成するためには複雑なランプ点滅制御回路を必要としている。そのため、装置故障により連続点灯状態や過電力点灯状態となったときには、高濃度のオゾンが流出するおそれがある。また、高濃度オゾンの流出を防ぐために、オゾンセンサを用いる等の安全対策が必要となり、装置が大型化して大きな消費電力を伴う。 When performing sterilization, deodorization, etc., it is sufficient to generate ozone within a range that is effective for the target object. Therefore, depending on the size and configuration of the object, it is desirable to downsize the excimer lamp. However, conventional excimer lamps generate ozone at a higher concentration (large amount) than necessary, so a complicated lamp blinking control circuit is required to generate ozone at a lower concentration (small amount). Therefore, when a continuous lighting state or an overpower lighting state occurs due to a device failure, there is a risk that high concentration ozone may flow out. Furthermore, in order to prevent the leakage of highly concentrated ozone, safety measures such as the use of an ozone sensor are required, which increases the size of the device and consumes a large amount of power.

したがって、余剰なオゾンを生成させないように紫外線を照射することが可能なエキシマランプなどの放電ランプが求められる。 Therefore, there is a need for a discharge lamp such as an excimer lamp that can irradiate ultraviolet rays without producing excess ozone.

本発明の一態様であるエキシマランプは、オゾンを生成する紫外線を放射可能なエキシマランプであって、放電ガスが封入された筒状の放電容器と、それぞれ、放電容器の外周面に沿って軸方向に延び、放電容器の中央部を挟んで対向配置される一対の電極とを備え、一対の電極に対して高周波電圧が印加されることによって、一対の電極間の軸付近の空間領域で放電が生じ、各電極で覆われる容器径方向全体の空間領域で放電が生じる誘電体バリア放電が生じ、一対の電極の間の空間領域から放電容器外部へ向けて放射される紫外線照度が相対的に低く、各電極で覆われる空間領域から放電容器外部へ向けて放射される紫外線照度が相対的に高くなる。 An excimer lamp that is an embodiment of the present invention is an excimer lamp that can emit ultraviolet rays that generate ozone, and includes a cylindrical discharge vessel filled with discharge gas and an axis extending along the outer circumferential surface of the discharge vessel. A pair of electrodes are arranged opposite each other across the center of the discharge vessel, and when a high frequency voltage is applied to the pair of electrodes, a discharge is generated in a spatial region near the axis between the pair of electrodes. occurs, and a dielectric barrier discharge occurs in which discharge occurs in the entire spatial region in the radial direction of the vessel covered by each electrode, and the relative intensity of ultraviolet rays emitted from the spatial region between the pair of electrodes toward the outside of the discharge vessel However, the intensity of ultraviolet rays emitted from the spatial region covered by each electrode to the outside of the discharge vessel becomes relatively high.

本発明の他の態様であるエキシマランプは、オゾンを生成する紫外線を放射可能なエキシマランプであって、放電ガスが封入された筒状の放電容器と、それぞれ、放電容器の外周面に沿って軸方向に延び、放電容器の中央部を挟んで対向配置される一対の電極とを備え、一対の電極に対して高周波電圧が印加されることによって、放電容器内で、一対の電極の間に跨った誘電体バリア放電であって、放電容器の軸方向に関して放電容器内の両端部側に放電が偏っている誘電体バリア放電が生じ、一対の電極の間の空間領域から放電容器外部へ向けて放射される紫外線照度が相対的に低く、各電極で覆われる空間領域から放電容器外部へ向けて放射される紫外線照度が相対的に高くなる。 An excimer lamp that is another aspect of the present invention is an excimer lamp that can emit ultraviolet rays that generate ozone, and includes a cylindrical discharge vessel filled with discharge gas, and a cylindrical discharge vessel filled with a discharge gas. A pair of electrodes extend in the axial direction and are arranged opposite to each other across the center of the discharge vessel, and when a high frequency voltage is applied to the pair of electrodes, a voltage is generated between the pair of electrodes within the discharge vessel. A dielectric barrier discharge that straddles the discharge vessel occurs, and the discharge is biased toward both ends of the discharge vessel in the axial direction of the discharge vessel, and is directed from the space between a pair of electrodes to the outside of the discharge vessel. The intensity of ultraviolet rays emitted from the discharge vessel is relatively low, and the intensity of ultraviolet rays emitted from the spatial region covered by each electrode to the outside of the discharge vessel is relatively high.

例えば、一対の電極が、それぞれ、放電容器の外周面と面接触する筒状電極で構成される。例えば、一対の電極が、放電容器の両端部付近において放電容器の外周面に沿って配置される。 For example, each of the pair of electrodes is a cylindrical electrode that makes surface contact with the outer peripheral surface of the discharge vessel. For example, a pair of electrodes are arranged along the outer peripheral surface of the discharge vessel near both ends of the discharge vessel.

本発明の他の態様であるエキシマランプは、オゾンを生成する紫外線を放射可能なエキシマランプであって、放電ガスが封入された筒状の放電容器と、それぞれ放電容器の外周面の軸方向に沿って延び、放電容器の中央部を挟んで対向配置される一対の電極とを備え、一対の電極に対して高周波電圧が印加されることによって、放電容器内において、放電容器内の中央部で径方向に相対的に細い空間領域での放電となり、放電容器内の一対の電極が放電容器の外周面と接触する部分で、径方向に相対的に太い空間領域での放電となる誘電体バリア放電が生じ、誘電体バリア放電では、前記放電容器の軸方向に関して前記放電容器内の両端部側に放電が偏っていて、一対の電極の間に跨って放電が生じる。放電容器内において局所的に生じた放電から放射された紫外線が、少なくとも一方の電極により遮られる。ここで、「局所的に生じた放電」とは、電極軸に関して、両端部側などに偏った放電を示す。 An excimer lamp which is another aspect of the present invention is an excimer lamp capable of emitting ultraviolet rays that generate ozone, and includes a cylindrical discharge vessel filled with discharge gas, and a cylindrical discharge vessel filled with a discharge gas, each extending in the axial direction of the outer peripheral surface of the discharge vessel. A pair of electrodes extend along the discharge vessel and are arranged opposite to each other across the center of the discharge vessel, and when a high frequency voltage is applied to the pair of electrodes, the A dielectric barrier that causes discharge to occur in a spatial area that is relatively narrow in the radial direction, and where a pair of electrodes in the discharge vessel make contact with the outer peripheral surface of the discharge vessel, and that causes discharge to occur in a spatial area that is relatively thick in the radial direction. A discharge occurs, and in a dielectric barrier discharge, the discharge is biased toward both ends within the discharge vessel with respect to the axial direction of the discharge vessel, and the discharge occurs across a pair of electrodes. Ultraviolet radiation emitted from a locally generated discharge within the discharge vessel is blocked by at least one electrode. Here, the term "locally generated discharge" refers to a discharge that is biased toward both ends with respect to the electrode axis.

本発明では、偏った放電による紫外線が電極によって遮光されるため、余剰のオゾン生成を抑えることができる。例えば、少なくとも一方の電極が、放電容器の軸方向もしくは径方向に関して偏って強い放電が生じる空間領域に対向する位置に配置されている。 In the present invention, since ultraviolet rays caused by biased discharge are blocked by the electrodes, generation of excess ozone can be suppressed. For example, at least one electrode is disposed at a position facing a spatial region where strong discharge occurs unevenly in the axial or radial direction of the discharge vessel.

例えば、放電容器の軸方向長さが10mm~30mmであり、放電容器の外径が3mm~10mmである。例えば、放電容器の肉厚が、0.2mm~4mmの範囲内である。 For example, the axial length of the discharge vessel is 10 mm to 30 mm, and the outer diameter of the discharge vessel is 3 mm to 10 mm. For example, the wall thickness of the discharge vessel is within the range of 0.2 mm to 4 mm.

本発明の他の態様である紫外線照射装置は、上記エキシマランプを備える。本発明の他の態様であるオゾン発生装置は、上記エキシマランプを備える。 An ultraviolet irradiation device according to another aspect of the present invention includes the excimer lamp described above. An ozone generator according to another aspect of the present invention includes the excimer lamp described above.

例えば、本発明の一態様であるエキシマランプは、オゾンを生成する紫外線を放射可能なエキシマランプであって、放電ガスが封入された筒状の放電容器と、それぞれ放電容器の中央部を挟んで軸方向に沿って対向配置される一対の電極であって、放電容器の両端部付近において放電容器の外周面に沿って配置される一対の電極とを備え、放電容器の軸方向長さが10mm~30mmであり、放電容器の外径が3mm~10mmであり、一対の電極が、それぞれ、放電容器の外周面と面接触する筒状電極で構成され、一対の電極に対して高周波電圧が印加されることによって、放電容器内において、一方の放電容器端部付近から他方の放電容器端部付近にまで渡って放電が生じる誘電体バリア放電であって、放電容器の軸方向に関して放電容器内の両端部側に放電が偏っている誘電体バリア放電が生じる。例えば、放電容器の肉厚が、0.2mm~4mmの範囲内である。本発明の他の態様である紫外線照射装置は、上記エキシマランプを備える。本発明の他の態様であるオゾン発生装置は、上記エキシマランプを備える。 For example, an excimer lamp that is one embodiment of the present invention is an excimer lamp that can emit ultraviolet rays that generate ozone, and includes a cylindrical discharge vessel filled with discharge gas, and a central part of the discharge vessel sandwiched between the excimer lamps. A pair of electrodes arranged opposite to each other along the axial direction, the pair of electrodes arranged along the outer peripheral surface of the discharge vessel near both ends of the discharge vessel, and the axial length of the discharge vessel is 10 mm. ~30mm, the outer diameter of the discharge vessel is 3mm~10mm, each pair of electrodes is composed of a cylindrical electrode that makes surface contact with the outer peripheral surface of the discharge vessel, and a high frequency voltage is applied to the pair of electrodes. This is a dielectric barrier discharge in which a discharge occurs in the discharge vessel from near one end of the discharge vessel to near the other end of the discharge vessel. A dielectric barrier discharge occurs in which the discharge is biased toward both ends. For example, the wall thickness of the discharge vessel is within the range of 0.2 mm to 4 mm. An ultraviolet irradiation device according to another aspect of the present invention includes the excimer lamp described above. An ozone generator according to another aspect of the present invention includes the excimer lamp described above.

本発明の他の態様である放電ランプは、放電ガスが封入された筒状の放電容器と、放電容器の外周面に沿って、それぞれ軸方向に延びる一対の電極とを備える。例えば、放電容器の外径は、3mm~10mmの範囲であり、放電容器の軸方向長さが、10mm~30mmの範囲であり、放電ガスが、0.1kPa~30kPaの範囲内に定められた希ガスで構成することが可能である。本発明の放電ランプでは、放電容器内において局所的に生じた放電から放射された紫外線が、少なくとも一方の電極により遮られる。ここで、「局所的に生じた放電」とは、電極軸に関して、両端部側などに偏った放電を示す。 A discharge lamp according to another aspect of the present invention includes a cylindrical discharge vessel filled with discharge gas, and a pair of electrodes each extending in the axial direction along the outer peripheral surface of the discharge vessel. For example, the outer diameter of the discharge vessel is in the range of 3 mm to 10 mm, the axial length of the discharge vessel is in the range of 10 mm to 30 mm, and the discharge gas is set in the range of 0.1 kPa to 30 kPa. It is possible to consist of a noble gas. In the discharge lamp of the present invention, ultraviolet rays emitted from a locally generated discharge within the discharge vessel are blocked by at least one electrode. Here, the term "locally generated discharge" refers to a discharge that is biased toward both ends with respect to the electrode axis.

例えば、本発明の一態様である放電ランプは、放電ガスが封入された筒状の放電容器と、放電容器の外周面に沿って、それぞれ軸方向に延びる一対の電極とを備える。例えば、放電容器の外径は、3mm~10mmの範囲であり、放電容器の軸方向長さが、10mm~30mmの範囲であり、放電ガスが、0.1kPa~30kPaの範囲内に定められた希ガスで構成することが可能である。 For example, a discharge lamp that is one embodiment of the present invention includes a cylindrical discharge vessel filled with discharge gas, and a pair of electrodes that extend in the axial direction along the outer peripheral surface of the discharge vessel. For example, the outer diameter of the discharge vessel is in the range of 3 mm to 10 mm, the axial length of the discharge vessel is in the range of 10 mm to 30 mm, and the discharge gas is set in the range of 0.1 kPa to 30 kPa. It is possible to consist of a noble gas.

本発明の放電ランプでは、放電容器内において局所的に生じた放電から放射された紫外線が、少なくとも一方の電極により遮られる。ここで、「局所的に生じた放電」とは、電極軸に関して、両端部側などに偏った放電を示す。 In the discharge lamp of the present invention, ultraviolet rays emitted from a locally generated discharge within the discharge vessel are blocked by at least one electrode. Here, the term "locally generated discharge" refers to a discharge that is biased toward both ends with respect to the electrode axis.

本発明では、偏った放電による紫外線が電極によって遮光されるため、余剰のオゾン生成を抑えることができる。例えば、少なくとも一方の電極が、放電容器の軸方向もしくは径方向に関して偏って強い放電が生じる空間領域に対向する位置に配置されている。 In the present invention, since ultraviolet rays caused by biased discharge are blocked by the electrodes, generation of excess ozone can be suppressed. For example, at least one electrode is disposed at a position facing a spatial region where strong discharge occurs unevenly in the axial or radial direction of the discharge vessel.

例えば一対の電極が、放電容器の軸方向に沿って対向配置され、それぞれ、放電容器と面接触する筒状電極で構成され、筒状電極の電極軸方向長さが2mm~15mmの範囲に定めることが可能である。 For example, a pair of electrodes are arranged opposite to each other along the axial direction of the discharge vessel, and are each composed of a cylindrical electrode that makes surface contact with the discharge vessel, and the length of the cylindrical electrode in the axial direction is set in a range of 2 mm to 15 mm. Is possible.

本発明の他の態様のおける放電ランプは、放電ガスが封入された放電容器内で放電容器の軸方向もしくは径方向に関して偏って生じた強い放電から放電容器の外部に向けて放射された紫外線の少なくとも一部を遮ることによって局所的にオゾンを生成する。 In a discharge lamp according to another aspect of the present invention, ultraviolet rays are emitted toward the outside of the discharge vessel from a strong discharge that occurs unevenly in the axial or radial direction of the discharge vessel in the discharge vessel filled with discharge gas. Producing ozone locally by at least partially blocking it.

本発明の他の態様におけるオゾン生成方法は、放電ガスが封入された筒状の放電容器の外周面に沿ってそれぞれ軸方向に延びる一対の電極を配置し、局所的にオゾンが生成されるように、一対の電極の間に高周波電圧を印加することによって放電容器内において生じた放電から放射された紫外線を少なくとも一方の電極により遮る。 In an ozone generation method according to another aspect of the present invention, a pair of electrodes each extending in the axial direction is arranged along the outer peripheral surface of a cylindrical discharge vessel filled with discharge gas, so that ozone is generated locally. First, by applying a high frequency voltage between the pair of electrodes, at least one of the electrodes blocks ultraviolet rays emitted from the discharge generated within the discharge vessel.

本発明によれば、不要なオゾンを生成させないように、局所的に紫外線を照射して、局所的にオゾンを生成することで、高濃度のオゾンが生成されて流出することを防ぐことができる。 According to the present invention, by locally irradiating ultraviolet rays to locally generate ozone so as not to generate unnecessary ozone, it is possible to prevent high concentration ozone from being generated and flowing out. .

本発明の実施形態である放電ランプの概略的側面図である。1 is a schematic side view of a discharge lamp that is an embodiment of the present invention. 放電ランプを端部側から見た概略的正面図である。FIG. 3 is a schematic front view of the discharge lamp seen from the end side. 図2のラインA-A’に沿った放電ランプの概略的断面図である。3 is a schematic cross-sectional view of the discharge lamp along line A-A' in FIG. 2; FIG.

以下では、図面を参照して本発明の実施形態について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施形態である放電ランプの概略的側面図である。図2は、放電ランプを端部側から見た概略的正面図である。 FIG. 1 is a schematic side view of a discharge lamp according to an embodiment of the present invention. FIG. 2 is a schematic front view of the discharge lamp seen from the end side.

放電ランプ10は、内部に放電空間Sを形成し、石英ガラスなどで成形される筒状の放電容器20を備える。放電容器20の両端部20T1、20T2側には、互いに極性の異なる一対の電極30、40が配置されている。放電ランプ10は、ここでは小型エキシマランプとして構成されており、放電容器の軸方向長さWは、10mm~30mmの範囲、放電容器20の外径Dは、3mm~10mmの範囲であり、一対の電極30、40の間の軸方向距離(電極間距離L)は、2mm~15mmの範囲にそれぞれ設定することが可能である。 The discharge lamp 10 has a discharge space S formed therein and includes a cylindrical discharge vessel 20 formed of quartz glass or the like. A pair of electrodes 30 and 40 having mutually different polarities are arranged on both ends 20T1 and 20T2 of the discharge vessel 20. The discharge lamp 10 is configured here as a small excimer lamp, the axial length W of the discharge vessel is in the range of 10 mm to 30 mm, the outer diameter D of the discharge vessel 20 is in the range of 3 mm to 10 mm, and a pair of The axial distance between the electrodes 30 and 40 (inter-electrode distance L) can be set in the range of 2 mm to 15 mm.

例えば、放電容器の軸方向長さWを20mm、放電容器20の外径Dを5.2mm、電極間距離Lを10mmに定めることができる。ただし、放電容器20の軸方向長さWは、一対の電極30、40の外側両端間の距離を表す。また、一対の電極30、40は同じ形状であり、例えば各電極の軸方向長さMを3mm~10mm未満の範囲(例えば5mm)に定めることができる。 For example, the axial length W of the discharge vessel may be set to 20 mm, the outer diameter D of the discharge vessel 20 may be set to 5.2 mm, and the distance L between the electrodes may be set to 10 mm. However, the axial length W of the discharge vessel 20 represents the distance between the outer ends of the pair of electrodes 30 and 40. Further, the pair of electrodes 30 and 40 have the same shape, and for example, the axial length M of each electrode can be set in a range of 3 mm to less than 10 mm (for example, 5 mm).

放電容器20の放電空間Sには、キセノンガス1Torr~225Torr(0.1kPa~30kPa、更に好ましくは7kPa~20kPa)が封入されている。一対の電極30、40には、直流電源部(図示せず)と接続される一対の導線(図示せず)が接続されており、一対の電極30、40間には高周波(1kHz~500kHz、更に好ましくは1kHz~100kHzの範囲であり、例えば60kHz)の高電圧(5kV~10kV)が印加される。放電容器20と電極30、40は、図示しない保持部材によってそれぞれ保持されている。 The discharge space S of the discharge vessel 20 is filled with xenon gas of 1 Torr to 225 Torr (0.1 kPa to 30 kPa, more preferably 7 kPa to 20 kPa). A pair of conductive wires (not shown) connected to a DC power source (not shown) are connected to the pair of electrodes 30 and 40, and high frequency (1kHz to 500kHz, More preferably, the range is 1 kHz to 100 kHz, for example, a high voltage (5 kV to 10 kV) of 60 kHz is applied. The discharge vessel 20 and the electrodes 30, 40 are each held by a holding member (not shown).

図2に示すように、一対の電極30、40は、放電容器20の外周面20Sに沿って周方向全体に渡り密接する筒状電極として構成されており、光を透過するような隙間が設けられていない曲面状の電極部材によって構成されている。一対の電極30、40は、放電容器の軸方向Xに沿って対向配置されており、軸方向Xに対して互いに異なる極性をもつ電極配置となっている。なお、図2では、放電容器20の肉厚部分を省略しているが、肉厚については、0.2mm~4mmの範囲(例えば1.5mm)に定めることができる。 As shown in FIG. 2, the pair of electrodes 30 and 40 are configured as cylindrical electrodes that are in close contact with each other in the entire circumferential direction along the outer peripheral surface 20S of the discharge vessel 20, and are provided with a gap that allows light to pass through. It is composed of an electrode member with a curved surface that is not curved. The pair of electrodes 30 and 40 are arranged opposite to each other along the axial direction X of the discharge vessel, and have electrodes arranged with mutually different polarities with respect to the axial direction X. Note that although the thick portion of the discharge vessel 20 is omitted in FIG. 2, the wall thickness can be set in the range of 0.2 mm to 4 mm (for example, 1.5 mm).

一対の電極30、40に対して高周波電圧を印加すると、放電容器20内において誘電体バリア放電が生じ、紫外線が放電容器20の外部へ向けて放射される。本実施形態では、一対の電極30、40が放電容器20の中央部を間に挟んで軸方向Xに沿って対向配置されていることによって、放電容器20内において局所的な放電が生じる。以下、これについて説明する。 When a high frequency voltage is applied to the pair of electrodes 30 and 40, a dielectric barrier discharge occurs within the discharge vessel 20, and ultraviolet rays are emitted toward the outside of the discharge vessel 20. In this embodiment, the pair of electrodes 30 and 40 are disposed opposite to each other along the axial direction X with the central portion of the discharge vessel 20 interposed therebetween, so that local discharge occurs within the discharge vessel 20. This will be explained below.

図3は、図2のラインA-A’に沿った放電ランプの概略的断面図である。 FIG. 3 is a schematic cross-sectional view of the discharge lamp along line A-A' in FIG.

図3に示すように、放電容器20の中央部付近においては、細い領域(放電容器の中心軸付近のみ)で微弱な放電CCが生じる。一方、一対の電極30、40で覆われている空間領域では、太い領域(放電容器の径方向全体)で強い放電CCが生じる。放電容器20内において、放電状態が電極30、40付近の空間領域と中央部付近の空間領域との間で相違して、放電が放電容器20の両端部側に偏っていることにより、局所的な放電が放電容器20内において生じる。 As shown in FIG. 3, near the center of the discharge vessel 20, a weak discharge CC occurs in a narrow region (only near the central axis of the discharge vessel). On the other hand, in the spatial region covered by the pair of electrodes 30 and 40, a strong discharge CC occurs in a thick region (the entire radial direction of the discharge vessel). In the discharge vessel 20, the discharge state is different between the spatial region near the electrodes 30 and 40 and the spatial region near the center, and the discharge is biased toward both ends of the discharge vessel 20, resulting in localized discharge. A discharge occurs within the discharge vessel 20.

一対の電極30、40に覆われていない放電容器20の中央部付近では、細い領域で微弱な放電が生じて、放射される紫外線の照度が低い。一方、放電容器20の両端部側では、太い領域で強い放電CCが生じて、放射される紫外線の照度は高いが、一対の電極30、40が放電容器の外周面20Sを覆う位置に対向配置されて、放電から放射される紫外線を遮る遮光部となるため、強い放電CCから放射された紫外線の一部が一対の電極30、40によって遮光される。電極以外の非導電性部材により紫外線を遮る遮光部として、放電容器の外周面を覆っても良い。 Near the center of the discharge vessel 20 that is not covered by the pair of electrodes 30 and 40, a weak discharge occurs in a narrow region, and the illuminance of the emitted ultraviolet rays is low. On the other hand, on both end sides of the discharge vessel 20, strong discharge CC occurs in the thick region, and the illuminance of the emitted ultraviolet rays is high. As a result, a portion of the ultraviolet rays emitted from the strong discharge CC is blocked by the pair of electrodes 30 and 40, thereby forming a light shielding portion that blocks ultraviolet rays emitted from the discharge. The outer peripheral surface of the discharge vessel may be covered with a non-conductive member other than the electrode as a light shielding part that blocks ultraviolet rays.

その結果、放電容器20の中央部付近から、局所的に紫外線が放電容器20外へ放射される。これにより、中央部付近においてのみオゾンが生成し、不要なオゾンが生成されず、局所的にオゾンが生成される。 As a result, ultraviolet rays are locally radiated to the outside of the discharge vessel 20 from near the center of the discharge vessel 20 . As a result, ozone is generated only near the center, unnecessary ozone is not generated, and ozone is generated locally.

このように本実施形態によれば、筒状の放電容器20を備えた放電ランプ10に対して、互いに極性の異なる一対の電極30、40が放電容器20の両端部20T1、20T2の外周面に沿って配置され、電圧を印加することにより、放電容器20内において局所的な放電が生じ、局所的にオゾンが生成される。その結果、放電ランプを最大電力で点灯させ続けたとしても、生成できるオゾンの最大濃度は制限されているので、高濃度のオゾンが生成されて流出することを防ぐことができる。よって、安全で信頼性の高い放電ランプを提供することができる。 As described above, according to the present embodiment, for the discharge lamp 10 equipped with the cylindrical discharge vessel 20, a pair of electrodes 30 and 40 having mutually different polarities are provided on the outer circumferential surface of both ends 20T1 and 20T2 of the discharge vessel 20. By applying a voltage, a local discharge occurs within the discharge vessel 20, and ozone is locally generated. As a result, even if the discharge lamp continues to be lit at maximum power, the maximum concentration of ozone that can be generated is limited, so that it is possible to prevent high concentration ozone from being generated and flowing out. Therefore, a safe and highly reliable discharge lamp can be provided.

10 放電ランプ
20 放電容器
30 電極
40 電極
10 discharge lamp 20 discharge vessel 30 electrode 40 electrode

Claims (9)

オゾンを生成する紫外線を放射可能なエキシマランプであって、
放電ガスが封入された筒状の放電容器と、
それぞれ、前記放電容器の外周面に沿って軸方向に延び、前記放電容器の中央部を挟んで対向配置される一対の電極とを備え、
前記一対の電極に対して高周波電圧が印加されることによって、前記一対の電極間の軸付近の空間領域で放電が生じ、各電極で覆われる容器径方向全体の空間領域で放電が生じる誘電体バリア放電が生じ、
前記一対の電極の間の空間領域から前記放電容器外部へ向けて放射される紫外線照度が相対的に低く、各電極で覆われる空間領域から前記放電容器外部へ向けて放射される紫外線照度が相対的に高くなることを特徴とするエキシマランプ。
An excimer lamp capable of emitting ultraviolet rays that generates ozone,
a cylindrical discharge container filled with discharge gas;
a pair of electrodes each extending in the axial direction along the outer peripheral surface of the discharge vessel and disposed opposite to each other with a center portion of the discharge vessel in between,
A dielectric material in which, when a high frequency voltage is applied to the pair of electrodes, a discharge occurs in a spatial region near an axis between the pair of electrodes, and a discharge occurs in a spatial region of the entire radial direction of the container covered by each electrode. Barrier discharge occurs,
The intensity of ultraviolet rays emitted from the spatial region between the pair of electrodes toward the outside of the discharge vessel is relatively low, and the intensity of ultraviolet rays radiated from the spatial region covered by each electrode toward the outside of the discharge vessel is relatively low. An excimer lamp that is characterized by its high height.
オゾンを生成する紫外線を放射可能なエキシマランプであって、
放電ガスが封入された筒状の放電容器と、
それぞれ、前記放電容器の外周面に沿って軸方向に延び、前記放電容器の中央部を挟んで対向配置される一対の電極とを備え、
前記一対の電極に対して高周波電圧が印加されることによって、前記放電容器内で、前記一対の電極の間に跨った誘電体バリア放電であって、前記放電容器の軸方向に関して前記放電容器内の両端部側に放電が偏っている誘電体バリア放電が生じ、
前記一対の電極の間の空間領域から前記放電容器外部へ向けて放射される紫外線照度が相対的に低く、各電極で覆われる空間領域から前記放電容器外部へ向けて放射される紫外線照度が相対的に高くなることを特徴とするエキシマランプ。
An excimer lamp capable of emitting ultraviolet rays that generates ozone,
a cylindrical discharge container filled with discharge gas;
a pair of electrodes each extending in the axial direction along the outer peripheral surface of the discharge vessel and disposed opposite to each other with a center portion of the discharge vessel in between,
By applying a high frequency voltage to the pair of electrodes, a dielectric barrier discharge straddles between the pair of electrodes within the discharge vessel, and a discharge within the discharge vessel with respect to the axial direction of the discharge vessel. A dielectric barrier discharge occurs in which the discharge is biased towards both ends of the
The intensity of ultraviolet rays emitted from the spatial region between the pair of electrodes toward the outside of the discharge vessel is relatively low, and the intensity of ultraviolet rays radiated from the spatial region covered by each electrode toward the outside of the discharge vessel is relatively low. An excimer lamp that is characterized by its high height.
前記一対の電極が、それぞれ、前記放電容器の外周面と面接触する筒状電極で構成されることを特徴とする請求項2に記載のエキシマランプ。 3. The excimer lamp according to claim 2, wherein each of the pair of electrodes is a cylindrical electrode that makes surface contact with the outer peripheral surface of the discharge vessel. 前記一対の電極が、前記放電容器の両端部付近において前記放電容器の外周面に沿って配置されることを特徴とする請求項2に記載のエキシマランプ。 The excimer lamp according to claim 2, wherein the pair of electrodes are arranged along the outer peripheral surface of the discharge vessel near both ends of the discharge vessel. オゾンを生成する紫外線を放射可能なエキシマランプであって、
放電ガスが封入された筒状の放電容器と、
それぞれ前記放電容器の外周面の軸方向に沿って延び、前記放電容器の中央部を挟んで対向配置される一対の電極とを備え、
前記一対の電極に対して高周波電圧が印加されることによって、前記放電容器内において、前記放電容器内の中央部で径方向に相対的に細い空間領域での放電となり、前記放電容器内の前記一対の電極が前記放電容器の外周面と接触する部分で、径方向に相対的に太い空間領域での放電となる誘電体バリア放電が生じ、
前記誘電体バリア放電では、前記放電容器の軸方向に関して前記放電容器内の両端部側に放電が偏っていて、前記一対の電極の間に跨って放電が生じることを特徴とするエキシマランプ。
An excimer lamp capable of emitting ultraviolet rays that generates ozone,
a cylindrical discharge container filled with discharge gas;
a pair of electrodes each extending along the axial direction of the outer circumferential surface of the discharge vessel and facing each other with a center portion of the discharge vessel in between;
By applying a high frequency voltage to the pair of electrodes, a discharge occurs in a relatively narrow spatial region in the radial direction at the center of the discharge vessel, and the A dielectric barrier discharge occurs in a relatively wide spatial region in the radial direction at a portion where the pair of electrodes contacts the outer circumferential surface of the discharge vessel,
An excimer lamp characterized in that, in the dielectric barrier discharge, the discharge is biased toward both ends within the discharge vessel with respect to the axial direction of the discharge vessel, and the discharge occurs across the pair of electrodes.
前記放電容器の軸方向長さが10mm~30mmであり、
前記放電容器の外径が3mm~10mmであることを特徴とする請求項5に記載のエキシマランプ。
The axial length of the discharge vessel is 10 mm to 30 mm,
The excimer lamp according to claim 5, wherein the discharge vessel has an outer diameter of 3 mm to 10 mm.
前記放電容器の肉厚が、0.2mm~4mmの範囲内であることを特徴とする請求項5に記載のエキシマランプ。 The excimer lamp according to claim 5, wherein the wall thickness of the discharge vessel is within a range of 0.2 mm to 4 mm. 請求項1乃至7のいずれかに記載のエキシマランプを備えたことを特徴とする紫外線照射装置。 An ultraviolet irradiation device comprising the excimer lamp according to any one of claims 1 to 7. 請求項1乃至7のいずれかに記載のエキシマランプを備えたことを特徴とするオゾン発生装置。 An ozone generator comprising the excimer lamp according to any one of claims 1 to 7.
JP2023144840A 2017-03-28 2023-09-06 Excimer lamp, ultraviolet irradiation device and ozone generator Pending JP2023164522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023144840A JP2023164522A (en) 2017-03-28 2023-09-06 Excimer lamp, ultraviolet irradiation device and ozone generator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017063805A JP6885765B2 (en) 2017-03-28 2017-03-28 Discharge lamp and ozone generation method
JP2021081080A JP7155481B2 (en) 2017-03-28 2021-05-12 Discharge lamp and ozone generation method
JP2022146006A JP7346687B2 (en) 2017-03-28 2022-09-14 Discharge lamp and ozone generation method
JP2023144840A JP2023164522A (en) 2017-03-28 2023-09-06 Excimer lamp, ultraviolet irradiation device and ozone generator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2022146006A Division JP7346687B2 (en) 2017-03-28 2022-09-14 Discharge lamp and ozone generation method

Publications (1)

Publication Number Publication Date
JP2023164522A true JP2023164522A (en) 2023-11-10

Family

ID=63922333

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2017063805A Active JP6885765B2 (en) 2017-03-28 2017-03-28 Discharge lamp and ozone generation method
JP2021081080A Active JP7155481B2 (en) 2017-03-28 2021-05-12 Discharge lamp and ozone generation method
JP2022146006A Active JP7346687B2 (en) 2017-03-28 2022-09-14 Discharge lamp and ozone generation method
JP2023144840A Pending JP2023164522A (en) 2017-03-28 2023-09-06 Excimer lamp, ultraviolet irradiation device and ozone generator

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2017063805A Active JP6885765B2 (en) 2017-03-28 2017-03-28 Discharge lamp and ozone generation method
JP2021081080A Active JP7155481B2 (en) 2017-03-28 2021-05-12 Discharge lamp and ozone generation method
JP2022146006A Active JP7346687B2 (en) 2017-03-28 2022-09-14 Discharge lamp and ozone generation method

Country Status (1)

Country Link
JP (4) JP6885765B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI825353B (en) * 2019-10-07 2023-12-11 日商牛尾電機股份有限公司 UV irradiation device
TW202123977A (en) * 2019-10-07 2021-07-01 日商牛尾電機股份有限公司 Ultraviolet ray radiation device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332216A (en) * 2000-03-14 2001-11-30 Toshiba Lighting & Technology Corp Discharge lamp, light irradiating apparatus, sterilization equipment, liquid processor and air cleaning apparatus
JP2003017005A (en) * 2001-06-27 2003-01-17 Harison Toshiba Lighting Corp Low-pressure discharge lamp
JP2003100482A (en) * 2001-07-16 2003-04-04 Harison Toshiba Lighting Corp Dielectric barrier discharge lamp lighting device
JP3702850B2 (en) * 2002-01-24 2005-10-05 ウシオ電機株式会社 Processing method using dielectric barrier discharge lamp
JP3645897B2 (en) * 2003-02-19 2005-05-11 Necライティング株式会社 External electrode type discharge lamp and manufacturing method thereof
US20050035711A1 (en) * 2003-05-27 2005-02-17 Abq Ultraviolet Pollution Solutions, Inc. Method and apparatus for a high efficiency ultraviolet radiation source
JP2006092800A (en) * 2004-09-21 2006-04-06 Harison Toshiba Lighting Corp Ultraviolet lamp and air cleaner
JP2006147387A (en) * 2004-11-22 2006-06-08 Harison Toshiba Lighting Corp Low-pressure discharge lamp
JP2006286447A (en) * 2005-04-01 2006-10-19 Matsushita Electric Ind Co Ltd External electrode type fluorescent lamp and backlight unit
JP4826446B2 (en) * 2006-11-27 2011-11-30 ウシオ電機株式会社 Light source device
JP2008218403A (en) * 2007-02-09 2008-09-18 Matsushita Electric Ind Co Ltd Discharge lamp, backlight unit, and liquid crystal display device
JP6537418B2 (en) 2015-09-14 2019-07-03 株式会社オーク製作所 UV irradiation device

Also Published As

Publication number Publication date
JP7346687B2 (en) 2023-09-19
JP2018166091A (en) 2018-10-25
JP6885765B2 (en) 2021-06-16
JP2022168265A (en) 2022-11-04
JP2021128939A (en) 2021-09-02
JP7155481B2 (en) 2022-10-19

Similar Documents

Publication Publication Date Title
JP7346687B2 (en) Discharge lamp and ozone generation method
JP2013536003A (en) Device for sterilizing a fluid by exposing the fluid to ultraviolet light
CN114832125A (en) Deactivation device and deactivation method
RU2592538C2 (en) Excimer laser light source
JP7145597B2 (en) Ozone generator and excimer lamp lighting method
US20230226235A1 (en) Active oxygen supply apparatus
JP2020011856A (en) Ozone generator and treatment system comprising ozone generator
JP6871038B2 (en) Discharge lamp, ozone generator and ozone generation method
KR20160018345A (en) Ultraviolet irradiation type water purifier
JP7053191B2 (en) Ozone generator and UV irradiation device
JP2022168265A5 (en)
JP6537418B2 (en) UV irradiation device
TWI451472B (en) Ultraviolet radiation device
JP2016146295A (en) Excimer lamp
JP6736027B2 (en) Excimer lamp for liquid processing
KR20220155090A (en) Light irradiation device
KR20190056838A (en) Ultraviolet rays sterilization lamp and ultraviolet rays sterilization module
KR20220155080A (en) Excimer lamp and light irradiation device having the same
JP6972657B2 (en) Optical processing equipment and its manufacturing method
JP5271762B2 (en) Discharge lamp
JP7291988B2 (en) Ozone generator and UV irradiation device
TWI825353B (en) UV irradiation device
JPH1012195A (en) Electrodeless lamp, electrodeless lamp lighting device, and ultraviolet ray irradiation device
KR20220160433A (en) External electrode excimer lamp and light irradiation device having the same
JP2023111949A (en) Ozone generator and ultraviolet ray irradiation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240423