JP2023162681A - Method for producing oil and fat composition - Google Patents

Method for producing oil and fat composition Download PDF

Info

Publication number
JP2023162681A
JP2023162681A JP2022073202A JP2022073202A JP2023162681A JP 2023162681 A JP2023162681 A JP 2023162681A JP 2022073202 A JP2022073202 A JP 2022073202A JP 2022073202 A JP2022073202 A JP 2022073202A JP 2023162681 A JP2023162681 A JP 2023162681A
Authority
JP
Japan
Prior art keywords
oil
fat composition
activated carbon
mcpd
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022073202A
Other languages
Japanese (ja)
Inventor
美幸 泉井
Miyuki Izui
誓哉 東倉
Seiya Higashikura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yushi Corp
Original Assignee
Taiyo Yushi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yushi Corp filed Critical Taiyo Yushi Corp
Priority to JP2022073202A priority Critical patent/JP2023162681A/en
Publication of JP2023162681A publication Critical patent/JP2023162681A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dairy Products (AREA)
  • Edible Oils And Fats (AREA)
  • Fats And Perfumes (AREA)

Abstract

To provide an oil and fat composition that has sufficiently low levels of 3-MCPD and glycidol and also reduced vitamin K, and is used in formulated milk for childcare, and a method for producing the same.SOLUTION: A method for producing an oil and fat composition includes a decolorization step. The decoloration step is performed using activated carbon that has not undergone hydrochloric acid treatment.SELECTED DRAWING: None

Description

本発明は油脂組成物の製造方法、特に育児用調製乳に用いられる油脂組成物の製造方法に関する。 The present invention relates to a method for producing an oil and fat composition, particularly a method for producing an oil and fat composition used in infant formula.

食用油脂に含まれる3-MCPD(3-モノクロロプロパン-1,2-ジオール)の脂肪酸エステルが体内で代謝されて生じる3-MCPDには、発がん性や毒性が疑われている。また、高濃度にDAG(ジアシルグリセロール)を含む油脂にはグリシドール脂肪酸エステルが含まれていることが報告されており、グリシドール脂肪酸エステルが体内で代謝されて生じるグリシドールも同様に発がん性や毒性が懸念されている。従って、食用油脂、特に育児用調製乳に用いられる油脂組成物から3-MCPD、グリシドール及びそれらの脂肪酸エステルを低減することが望まれている。
ビタミンKは脂溶性ビタミンの1つであり、血液凝固や骨の形成に関する作用を有していることが知られている。ビタミンKは腸内細菌により腸内でも合成され、また食品からも摂取が可能である。ビタミンKが不足すると、血液凝固能の低下がおこるため、鼻血や胃腸からの出血といった症状が現われる。新生児では、腸内細菌が未発達であり、また母乳中のビタミンKの含有量が少ないため、ビタミンK欠乏性出血症を起こしやすいことが知られている。そこで新生児には出生直後にビタミンK投与が実施されており、また育児用調製乳においてはビタミンK製剤添加等によりビタミンK含有量の調整が行われている。
また、乳児用調製乳では、乳児用調製乳たる表示の許可基準(消費者庁)、リノール酸、α-リノレン酸の含有量が定められており、その基準を満たすために食用油脂としては大豆油や菜種油を使用する必要がある。
大豆油や菜種油にはビタミンKも多く含まれている。しかし、原料の産地や収穫等によりビタミンK含有量は大きく変動する。そのため、乳児用調製乳に必要なリノール酸、α-リノレン酸を一定量含有するように大豆油、菜種油を配合すると、ビタミンKを一定の範囲に管理することは困難である。
油脂中のビタミンKを除去する方法としては、例えば、油脂の脱色工程において、活性白土:活性炭=4:1にて処理を実施するとビタミンKが減少することが記載されている(非特許文献1)。
また、エステル交換の原料として大豆油、菜種油のうち少なくとも一つの油脂を含むエステル交換油を用いることにより、ビタミンKの含有量を低下させた調製粉乳用油脂を製造する方法が報告されている(特許文献1)。
3-MCPD, which is produced when the fatty acid ester of 3-MCPD (3-monochloropropane-1,2-diol) contained in edible oils and fats is metabolized in the body, is suspected of being carcinogenic and toxic. In addition, it has been reported that oils and fats that contain high concentrations of DAG (diacylglycerol) contain glycidol fatty acid esters, and there are concerns that glycidol, which is produced when glycidol fatty acid esters are metabolized in the body, is also carcinogenic and toxic. has been done. Therefore, it is desired to reduce 3-MCPD, glycidol, and their fatty acid esters from edible oils and fats, particularly from oil and fat compositions used in infant formula.
Vitamin K is one of the fat-soluble vitamins and is known to have effects related to blood coagulation and bone formation. Vitamin K is synthesized in the intestine by intestinal bacteria, and can also be ingested from food. A lack of vitamin K causes a decline in blood coagulation, leading to symptoms such as nosebleeds and gastrointestinal bleeding. It is known that newborn infants are susceptible to vitamin K deficiency hemorrhage because their intestinal bacteria are underdeveloped and their breast milk contains little vitamin K. Therefore, vitamin K is administered to newborn infants immediately after birth, and the vitamin K content of formula milk for infants is adjusted by adding vitamin K preparations.
In addition, for infant formula, there are standards for permission to label infant formula (Consumer Affairs Agency) as well as the content of linoleic acid and α-linolenic acid, and in order to meet these standards, large quantities of edible fats and oils are required. You need to use bean oil or rapeseed oil.
Soybean oil and rapeseed oil also contain a lot of vitamin K. However, the vitamin K content varies greatly depending on the origin and harvest of the raw material. Therefore, when soybean oil and rapeseed oil are blended to contain a certain amount of linoleic acid and α-linolenic acid necessary for infant formula, it is difficult to control vitamin K within a certain range.
As a method for removing vitamin K from fats and oils, for example, it is described that in the decolorization process of fats and oils, vitamin K is reduced when a treatment is performed using activated clay:activated carbon = 4:1 (Non-Patent Document 1). ).
Additionally, a method has been reported for producing a fat for formula milk powder with a reduced content of vitamin K by using transesterified oil containing at least one of soybean oil and rapeseed oil as a raw material for transesterification ( Patent Document 1).

特開2020-162444号公報JP2020-162444A

日本油化学会誌 第48巻 第11号(1999) 1271-1274Journal of Japan Oil Chemists' Society Vol. 48, No. 11 (1999) 1271-1274

本発明の課題は、育児用調製乳に用いられる油脂組成物であって、3-MCPD及びグリシドールの濃度が十分に低く、かつビタミンKが低減された油脂組成物及びその製造方法を提供することである。 An object of the present invention is to provide an oil and fat composition used for infant formula, which has sufficiently low concentrations of 3-MCPD and glycidol and reduced vitamin K, and a method for producing the same. It is.

本発明者らは、油脂組成物の脱色工程において、ビタミンKを低減させるため、活性炭を用いて処理した場合に、処理中に3-MCPDが増えてしまうこと、さらにこの現象が特定の活性炭を用いた場合に生じることを見いだした。すなわち、活性炭の中でも塩酸処理がなされている活性炭を使用すると精製過程で3-MCPD濃度が上昇してしまうことを見出し、本発明を完成させたものである。 The present inventors discovered that when activated carbon is used to reduce vitamin K in the decolorization process of oil and fat compositions, 3-MCPD increases during the treatment, and that this phenomenon also occurs when certain activated carbons are used. We found that this occurs when using That is, the present invention was completed based on the discovery that when activated carbon that has been treated with hydrochloric acid among activated carbons is used, the 3-MCPD concentration increases during the purification process.

本発明の実施態様は以下のとおりであってもよい。
〔1〕脱色工程を含む油脂組成物の製造方法であって、前記脱色工程が塩酸処理されていない活性炭を用いて行なわれることを特徴とする、上記製造方法。
〔2〕前記油脂組成物が、育児用調製乳用油脂組成物である、前記〔1〕記載の製造方法。
〔3〕塩酸処理されていない前記活性炭を、前記脱色工程に用いる油脂組成物質量100質量部に対し、0.01~10質量部の範囲で用いる、前記〔1〕または〔2〕記載の製造方法。
〔4〕塩酸処理されていない前記活性炭が、ガス賦活活性炭及び薬品賦活活性炭からなる群より選択され、塩酸処理されていない前記活性炭の塩素濃度(遊離残留塩素および結合塩素の合計)が200μg/g以下である前記〔1〕~〔3〕のいずれか1に記載の製造方法。
〔5〕前記脱色工程前の油脂組成物100g中のビタミンKの含有量に対し、前記脱色工程後の油脂組成物100g中のビタミンKの含有量が、10μg以上減少する、前記〔1〕~〔4〕のいずれか1に記載の製造方法。
〔6〕前記脱色工程に続き、脱臭工程を行なう、前記〔1〕~〔5〕のいずれか1に記載の製造方法。
〔7〕脱臭工程後の油脂組成物の3-MCPD濃度が、0.42ppm以下である、前記〔6〕記載の製造方法。
〔8〕脱臭工程後の油脂組成物のグリシドール濃度が、0.17ppm以下である、前記〔6〕または〔7〕記載の製造方法。
〔9〕3-MCPD濃度が0.42ppm以下、グリシドール濃度が0.17ppm以下、ビタミンK濃度が20~100μg/100gである、育児用調製乳用油脂組成物。
Embodiments of the invention may be as follows.
[1] A method for producing an oil or fat composition including a decoloring step, wherein the decoloring step is carried out using activated carbon that has not been treated with hydrochloric acid.
[2] The production method according to [1] above, wherein the oil and fat composition is an oil and fat composition for infant formula.
[3] The production according to [1] or [2] above, wherein the activated carbon that has not been treated with hydrochloric acid is used in an amount of 0.01 to 10 parts by mass based on 100 parts by mass of the fat composition used in the decolorizing step. Method.
[4] The activated carbon that has not been treated with hydrochloric acid is selected from the group consisting of gas-activated activated carbon and chemically activated activated carbon, and the activated carbon that has not been treated with hydrochloric acid has a chlorine concentration (total of free residual chlorine and combined chlorine) of 200 μg/g. The manufacturing method according to any one of the following [1] to [3].
[5] The content of vitamin K in 100 g of the fat composition after the bleaching step is reduced by 10 μg or more compared to the content of vitamin K in 100 g of the fat composition before the bleaching step, [1] to The manufacturing method according to any one of [4].
[6] The production method according to any one of [1] to [5] above, wherein a deodorizing step is performed following the decoloring step.
[7] The production method according to [6] above, wherein the 3-MCPD concentration of the oil and fat composition after the deodorizing step is 0.42 ppm or less.
[8] The production method according to [6] or [7] above, wherein the glycidol concentration of the oil and fat composition after the deodorizing step is 0.17 ppm or less.
[9] An oil and fat composition for infant formula, which has a 3-MCPD concentration of 0.42 ppm or less, a glycidol concentration of 0.17 ppm or less, and a vitamin K concentration of 20 to 100 μg/100 g.

本発明の方法により、油脂組成物中のビタミンK含有量を低減することができ、その一方で、安全性の観点から摂取を低減したい3-MCPD及びグリシドール及びそれらの脂肪酸エステル濃度が十分に低下した油脂組成物の製造方法を提供することができる。前記方法は特に、育児用調製乳用油脂組成物の製造方法として適しており、ビタミンK含有量の調整がされ、安全性の観点から摂取を低減したい3-MCPD及びグリシドール及びそれらの脂肪酸エステル濃度が十分に低下した、育児用調製乳用油脂組成物を製造することが可能である。 By the method of the present invention, it is possible to reduce the vitamin K content in the oil and fat composition, and at the same time, the concentrations of 3-MCPD, glycidol, and their fatty acid esters, whose intake should be reduced from a safety perspective, are sufficiently reduced. It is possible to provide a method for producing an oil and fat composition. The above method is particularly suitable as a method for producing an oil and fat composition for infant formula, and the vitamin K content is adjusted, and the concentration of 3-MCPD, glycidol, and their fatty acid esters whose intake is desired to be reduced from a safety standpoint. It is possible to produce an oil and fat composition for infant formula in which the

<油脂組成物の製造方法>
本発明の油脂組成物の製造方法は、脱色工程を含み、前記脱色工程が塩酸処理されていない活性炭を用いて行なわれることを特徴とする方法である。
より具体的には、油脂組成物を任意に混合する工程を経た油脂組成物を、塩酸処理されていない活性炭を用いて脱色処理に付す。脱色工程後、脱臭処理を行なってもよい。前記油脂組成物は脱酸処理された油脂組成物であってもよい。
<Method for producing oil and fat composition>
The method for producing an oil or fat composition of the present invention is characterized in that it includes a decoloring step, and the decoloring step is carried out using activated carbon that has not been treated with hydrochloric acid.
More specifically, the oil and fat composition that has gone through the process of arbitrarily mixing the oil and fat compositions is subjected to a decoloring treatment using activated carbon that has not been treated with hydrochloric acid. After the decolorization step, a deodorization treatment may be performed. The oil and fat composition may be a deacidified oil and fat composition.

<脱色工程>
本発明の方法における油脂組成物の脱色工程は、塩酸処理されていない活性炭を用いることが必要である。塩酸処理されている活性炭を用いると、脱色工程後に3-MCPD及びそれらの脂肪酸エステル濃度が増加してしまうためである。
<Bleaching process>
In the decolorizing step of the oil and fat composition in the method of the present invention, it is necessary to use activated carbon that has not been treated with hydrochloric acid. This is because if activated carbon treated with hydrochloric acid is used, the concentration of 3-MCPD and its fatty acid esters will increase after the decolorization step.

活性炭の製造方法は、ガス賦活法と薬品賦活法に大別される。賦活(処理)とは、原料となる炭素材料の内部にnmオーダーの微細孔を生成する反応や操作を言い、当該処理により、微細孔の生成により内部表面積が増大し、炭素材料に吸着能力を付与することができる(安部郁夫、「活性炭の製造方法」、炭素、No.225、373-381頁(2006))。
ガス賦活法とは、各種炭素原料、好ましくは有機性原料を炭化して得られた炭化物を、賦活ガスを用いて処理する方法であり、賦活ガスとして工業的には水蒸気や二酸化炭素が用いられている。水蒸気賦活された水蒸気賦活活性炭がより好ましい。ガス賦活された活性炭は、市販品を用いてもよく、また、公知の方法(例えば、安部郁夫、「活性炭の製造方法」、炭素、No.225、373-381頁(2006))により賦活された活性炭を用いてもよい。
薬品賦活法とは賦活剤に塩化亜鉛やリン酸などの薬品を使用する方法である。通常、炭化と賦活が同時に進行させるため、出発原料は炭化物ではなく木質原料である。例えば、濃厚な塩化亜鉛水溶液を鋸屑に含浸し、不活性ガス雰囲気中で550~750℃で焼成すると薬品賦活された活性炭を製造することができる。薬品賦活法には、水酸化カリウムや水酸化ナトリウムなどを用いたアルカリ賦活法もある。
Methods for producing activated carbon are broadly divided into gas activation methods and chemical activation methods. Activation (treatment) refers to a reaction or operation that generates nanometer-sized micropores inside a carbon material that is a raw material. Through this treatment, the internal surface area increases due to the generation of micropores, which increases the adsorption capacity of the carbon material. (Ikuo Abe, “Method for producing activated carbon,” Carbon, No. 225, pp. 373-381 (2006)).
The gas activation method is a method in which a carbide obtained by carbonizing various carbon raw materials, preferably organic raw materials, is treated using an activation gas.Steam and carbon dioxide are industrially used as the activation gas. ing. More preferred is steam-activated activated carbon. The gas-activated activated carbon may be a commercially available product, or it may be activated by a known method (for example, Ikuo Abe, "Manufacturing method of activated carbon", Carbon, No. 225, pp. 373-381 (2006)). Activated carbon may also be used.
The chemical activation method is a method that uses chemicals such as zinc chloride and phosphoric acid as an activator. Since carbonization and activation usually proceed at the same time, the starting material is a woody material rather than a charred material. For example, chemically activated activated carbon can be produced by impregnating sawdust with a concentrated zinc chloride aqueous solution and firing it at 550 to 750°C in an inert gas atmosphere. The chemical activation method also includes an alkali activation method using potassium hydroxide, sodium hydroxide, etc.

ガス賦活法あるいは薬品賦活法による活性炭の製造においては、賦活処理後に、水あるいは希塩酸等を用いて洗浄を行ない、その後乾燥して篩い分けを行なうプロセスが知られている(安部郁夫、「活性炭の製造方法」、炭素、No.225、373-381頁(2006))。塩酸を用いる処理は、賦活後の活性炭がアルカリ性を示すため、このpH調整のために行なわれるとされている。
本発明の「塩酸処理されていない活性炭」とは、活性炭の製造方法の賦活工程後において塩酸を用いた処理をされていない活性炭を意味する。より好ましくは、本発明の「塩酸処理されていない活性炭」は、ガス賦活法あるいは薬品賦活法で製造されたものであって、賦活工程後の洗浄処理が行なわれていないもの、あるいは洗浄処理において希塩酸あるいは塩酸を用いていないものが挙げられる。さらに、その他の工程においても塩酸を使用していない活性炭がより好ましい。好ましくは、「塩酸処理されていない活性炭」は、活性炭中の塩素濃度が200μg/g以下、より好ましくは500μg/g以下、さらに好ましくは1000μg/g以下である。
本発明の活性炭の製造は、原料の炭化処理後、任意に破砕・整粒を行ない、これを賦活後、任意に洗浄と乾燥を経て、ふるい分けや粉砕などを含む方法により行なわれる。
In the production of activated carbon by gas activation method or chemical activation method, a process is known in which after activation treatment, washing is performed using water or diluted hydrochloric acid, etc., followed by drying and sieving (Ikuo Abe, ``Activated Carbon "Manufacturing Method", Carbon, No. 225, pp. 373-381 (2006)). The treatment using hydrochloric acid is said to be carried out to adjust the pH since activated carbon exhibits alkalinity after activation.
The term "activated carbon that has not been treated with hydrochloric acid" in the present invention refers to activated carbon that has not been treated with hydrochloric acid after the activation step in the method for producing activated carbon. More preferably, the "activated carbon that has not been treated with hydrochloric acid" of the present invention is one that is produced by a gas activation method or a chemical activation method, and is not subjected to a cleaning treatment after the activation process, or is one that is not subjected to a cleaning treatment after the activation process. Examples include dilute hydrochloric acid or those that do not use hydrochloric acid. Furthermore, activated carbon that does not use hydrochloric acid in other steps is also more preferred. Preferably, the "activated carbon not treated with hydrochloric acid" has a chlorine concentration of 200 μg/g or less, more preferably 500 μg/g or less, and even more preferably 1000 μg/g or less.
The activated carbon of the present invention is produced by a method including carbonizing raw materials, optionally crushing and sizing, activating the raw materials, optionally washing and drying, and then sieving and crushing.

本発明の「塩酸処理されていない活性炭」を用いる油脂組成物の脱色工程は、例えば、バッチ式で行ない、その後濾過等を行なってもよく、あるいはカラム等に活性炭を充填して油脂組成物と接触させる方法で行なってもよい。効率よく、短時間で脱色処理を行うために、90~120℃程度の温度に加熱してもよい。また減圧下(一般に6.7kPa以下)で混合攪拌を行うことが好適であり、処理量などによって異なるが、10~60分、一般に30分間程度、混合攪拌を行えばよい。 The step of decolorizing an oil and fat composition using the "activated carbon that has not been treated with hydrochloric acid" of the present invention may be carried out, for example, in a batch manner, followed by filtration, or by filling a column etc. with activated carbon and discoloring the oil and fat composition. It may also be carried out by a method of contact. In order to perform the decolorization process efficiently and in a short time, it may be heated to a temperature of about 90 to 120°C. Further, it is preferable to perform the mixing and stirring under reduced pressure (generally 6.7 kPa or less), and the mixing and stirring may be performed for 10 to 60 minutes, generally about 30 minutes, although it varies depending on the processing amount and the like.

塩酸処理されていない活性炭の使用量は、脱色工程に用いる油脂組成物質量100質量部に対し、0.01~10質量部の範囲であることが好ましい。かかる範囲において、ビタミンK含有量を大きく低減することができ、その一方で、3-MCPDを増加させることがないからである。より好ましくは0.05~5.0質量部であり、さらに好ましくは0.1~3.0質量部である。 The amount of activated carbon that has not been treated with hydrochloric acid is preferably in the range of 0.01 to 10 parts by mass based on 100 parts by mass of the fat composition used in the decolorizing step. This is because within this range, the vitamin K content can be significantly reduced, while 3-MCPD is not increased. The amount is more preferably 0.05 to 5.0 parts by weight, and even more preferably 0.1 to 3.0 parts by weight.

上記脱色工程を行なったとき、脱色工程前の油脂組成物100g中のビタミンKの含有量に対する、脱色工程後の油脂組成物100g中のビタミンKの含有量は、10μg以上減少していることが好ましい。すなわち、脱色工程前の油脂組成物中のビタミンKの含有量に対する、脱色工程により減少するビタミンKの油脂組成物100gあたりの量は、好ましくは10μg以上であり、さらに好ましくは20μg以上であり、より好ましくは30μg以上であり、よりさらに好ましくは50μg以上である。脱色工程により減少するビタミンKの、油脂組成物100gあたりの量の上限は特に限定されるものではないが、例えば200μg、150μgあるいは100μg程度である。 When the above bleaching step is performed, the content of vitamin K in 100 g of the fat composition after the bleaching step is reduced by 10 μg or more compared to the content of vitamin K in 100 g of the fat composition before the bleaching step. preferable. That is, the amount of vitamin K per 100 g of the oil and fat composition reduced by the decolorization step with respect to the content of vitamin K in the oil and fat composition before the decolorization step is preferably 10 μg or more, more preferably 20 μg or more, More preferably it is 30 μg or more, even more preferably 50 μg or more. The upper limit of the amount of vitamin K reduced by the decolorization process per 100 g of the oil and fat composition is not particularly limited, but is, for example, about 200 μg, 150 μg, or 100 μg.

塩酸処理されていない活性炭を用いる脱色工程においては、活性炭に加えて白土をさらに用いてもよい。白土を用いる場合には、活性炭と白土とを予め混合しておき、油脂組成物と接触させてもよく、あるいは活性炭と白土を順に油脂組成物と接触させてもよい。
白土の種類としては、活性白土、酸性白土が挙げられる。
白土の量としては、脱色工程に用いる油脂組成物質量100質量部に対し、0.01~10質量部であることが好ましく、0.05~7.0質量部であることがより好ましく、0.1~5.0質量部であることがさらに好ましく、1.0~3.0質量部であることがよりさらに好ましい。
活性炭と白土の使用量の質量比は、例えば、1:0~20であってもよく、1:0.01~15.0であってもよい。1:0.1~10.0程度が好ましい。
効率よく、短時間で脱色処理を行うために、90~120℃程度の温度に加熱し且つ減圧下(一般に6.7kPa以下)で混合攪拌を行うことが好適であり、処理量などによって異なるが、一般に30分間程度、混合攪拌を行えばよい。
In the decolorization step using activated carbon that has not been treated with hydrochloric acid, clay may be further used in addition to activated carbon. When using white clay, activated carbon and white clay may be mixed in advance and brought into contact with the fat composition, or activated carbon and white clay may be brought into contact with the fat composition in this order.
Types of clay include activated clay and acid clay.
The amount of clay is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 7.0 parts by mass, and The amount is more preferably .1 to 5.0 parts by weight, and even more preferably 1.0 to 3.0 parts by weight.
The mass ratio of activated carbon to white clay used may be, for example, 1:0 to 20, or 1:0.01 to 15.0. 1: preferably about 0.1 to 10.0.
In order to perform the decolorization process efficiently and in a short time, it is preferable to heat the mixture to a temperature of about 90 to 120°C and mix and stir under reduced pressure (generally 6.7 kPa or less). Generally, mixing and stirring may be performed for about 30 minutes.

<脱臭工程>
上述の脱色工程の後、脱臭工程を行なってもよい。脱臭工程は、温度条件(180~230℃)以外に特に制限はなく、食用油脂の脱臭に通常用いられている減圧水蒸気蒸留脱臭法でよい。
本発明においては、通常の油脂精製時の温度よりは低温、即ち好ましくは180℃以上230℃以下、より好ましくは200℃以上220℃以下、さらに好ましくは210℃以上220℃以下で脱臭工程を行なう。脱臭温度は、180℃未満であれば更にグリシドールを低減できるが、油脂の風味を考慮すると180℃未満で脱臭を行うと十分に有臭成分を除去できず、商品性がなくなるので180℃未満にするのは好ましくない。
一方、脱臭温度が230℃を超えると、グリシドールが増加するので好ましくない。特に、260℃以上にするとこれらの成分が著しく増加するので極めて好ましくない。
<Deodorizing process>
After the above-mentioned decolorization step, a deodorization step may be performed. The deodorizing step is not particularly limited except for the temperature conditions (180 to 230° C.), and a vacuum steam distillation deodorizing method commonly used for deodorizing edible fats and oils may be used.
In the present invention, the deodorizing step is carried out at a lower temperature than the normal temperature during refining fats and oils, that is, preferably at 180°C or more and 230°C or less, more preferably 200°C or more and 220°C or less, and even more preferably 210°C or more and 220°C or less. . Glycidol can be further reduced if the deodorizing temperature is less than 180°C, but considering the flavor of the oil or fat, if deodorizing is performed at less than 180°C, odor components cannot be removed sufficiently and the product will lose its marketability, so the deodorizing temperature should be less than 180°C. It is not desirable to do so.
On the other hand, if the deodorizing temperature exceeds 230°C, glycidol will increase, which is not preferable. In particular, if the temperature is 260°C or higher, these components will increase significantly, which is extremely undesirable.

上記の製造方法により得られる本発明の油脂組成物は、脱臭処理工程の後においても3-MCPD及びグリシドール及びそれらの脂肪酸エステル濃度が低い。脱色及び脱臭処理後の3-MCPD濃度が好ましくは0.42ppm以下であり、さらに好ましくは0.35ppm以下である。脱色及び脱臭処理後のグリシドール濃度が好ましくは0.17ppm以下であり、さらに好ましくは0.10ppm以下である。
脱臭工程後の上記油脂組成物のビタミンKの濃度は、好ましくは20~100μg/100gであり、さらに好ましくは30~95μg/100gであり、より好ましくは30~91μg/100gであり、よりさらに好ましくは35~75μg/100gであり、なお好ましくは35~50μg/100gである。また、70~95μg/100g程度であることも好ましい。
なお、油脂組成物中には、3-MCPD及びグリシドールはそれぞれ3-MCPD脂肪酸エステル及びグリシドール脂肪酸エステルの形態で存在しているが、本明細書では、これらを3-MCPD及びグリシドールとして測定した値を用いて、油脂組成物中の「3-MCPD濃度」、「グリシドール濃度」と表現している。
The oil and fat composition of the present invention obtained by the above production method has low concentrations of 3-MCPD, glycidol, and their fatty acid esters even after the deodorizing treatment step. The 3-MCPD concentration after decolorization and deodorization treatment is preferably 0.42 ppm or less, more preferably 0.35 ppm or less. The glycidol concentration after decolorization and deodorization treatment is preferably 0.17 ppm or less, more preferably 0.10 ppm or less.
The concentration of vitamin K in the oil and fat composition after the deodorizing step is preferably 20 to 100 μg/100g, more preferably 30 to 95 μg/100g, more preferably 30 to 91 μg/100g, and even more preferably is 35 to 75 μg/100g, more preferably 35 to 50 μg/100g. Further, it is also preferable that the amount is about 70 to 95 μg/100g.
Note that 3-MCPD and glycidol exist in the oil and fat compositions in the form of 3-MCPD fatty acid ester and glycidol fatty acid ester, respectively, but in this specification, the values measured as 3-MCPD and glycidol are are used to express "3-MCPD concentration" and "glycidol concentration" in the oil and fat composition.

<育児用調製乳に用いられる油脂組成物>
本発明の油脂組成物は育児用調製乳に特に適して用いられるものである。
育児用調製乳とは、母乳の代替品として用いられる粉乳または液体ミルクであり、出来る限り母乳の成分に近似させることが多い。ヒトの乳汁の主な成分としては、蛋白質、脂肪、糖質などがあり、脂肪には、乳児の発育に必要なリノール酸、α-リノレン酸、アラキドン酸、ドコサヘキサエン酸等の必須脂肪酸が一定量含まれている。
消費者庁では、乳児用調製乳たる表示の許可基準において、100kcal当たりの組成として、脂質が4.4~6.0g、リノール酸が0.3~1.4gであり、α-リノレン酸が0.05g以上であることを示している。本発明における「育児用調製乳に用いられる油脂組成物」とは、このような栄養基準を満たすための油脂組成物を意味している。
<Oil and fat composition used in infant formula>
The oil and fat composition of the present invention is particularly suitable for use in infant formula.
Infant formula is powdered or liquid milk used as a substitute for breast milk, and is often made to mimic the composition of breast milk as closely as possible. The main components of human milk are proteins, fats, and carbohydrates, and the fats contain a certain amount of essential fatty acids such as linoleic acid, α-linolenic acid, arachidonic acid, and docosahexaenoic acid, which are necessary for infant growth. include.
According to the Consumer Affairs Agency, the permissible standards for labeling infant formula include 4.4 to 6.0 g of fat, 0.3 to 1.4 g of linoleic acid, and 0.3 to 1.4 g of α-linolenic acid per 100 kcal. It shows that it is 0.05g or more. The term "oil and fat composition used for infant formula" in the present invention means an oil and fat composition that satisfies such nutritional standards.

本発明の油脂組成物の原料油脂としては、製造された油脂組成物が上述した特性を満たすように選択して用いることができる。特に、リノール酸及びα-リノレン酸を上述の許可基準において含むように様々な油脂を組み合わせて用いることが好ましい。
例えば、パーム油、パームオレイン、パームダブルオレイン、パームステアリン、パームミッドフラクション等のパーム油の分別油、パーム核油、パーム核オレイン、パーム核ステアリン等のパーム核油の分別油、ヤシ油等のラウリン系油脂、大豆油、菜種油、コーン油、ヒマワリ油、サフラワー油、エゴマ油、アマニ油、ハイオレイックヒマワリ油、ハイオレイック菜種油、ハイオレイックサフラワー油、綿実油、米糠油、ゴマ油、オリーブ油、落花生油等の液体油脂を例とする植物油や、魚油、牛脂、豚脂等の動物油等が挙げられ、又、これら油脂の分別油も使用することができる。
本発明の油脂組成物の原料油脂は、例えば、パーム油あるいはその分別油を20~80質量部(好ましくは30~70質量部)、ラウリン系油脂を20~80質量部(好ましくは25~65質量部)、その他の油脂、好ましくは液体油脂、を0~45質量部(好ましくは10~35質量部)を含む。
The raw material oil for the oil and fat composition of the present invention can be selected and used so that the produced oil and fat composition satisfies the above-mentioned characteristics. In particular, it is preferable to use a combination of various fats and oils such that linoleic acid and α-linolenic acid meet the above-mentioned permission criteria.
For example, fractionated palm oil such as palm oil, palm olein, palm double olein, palm stearin, palm mid-fraction, fractionated palm kernel oil such as palm kernel oil, palm kernel olein, palm kernel stearin, coconut oil, etc. Lauric oil, soybean oil, rapeseed oil, corn oil, sunflower oil, safflower oil, perilla oil, linseed oil, high oleic sunflower oil, high oleic rapeseed oil, high oleic safflower oil, cottonseed oil, rice bran oil, sesame oil, olive oil, Examples include vegetable oils such as liquid fats and oils such as peanut oil, animal oils such as fish oil, beef tallow, pork fat, etc., and fractionated oils of these fats and oils can also be used.
The raw material fats and oils for the oil and fat composition of the present invention include, for example, 20 to 80 parts by mass (preferably 30 to 70 parts by mass) of palm oil or its fractionated oil, and 20 to 80 parts by mass (preferably 25 to 65 parts by mass) of lauric fats and oils. 0 to 45 parts by mass (preferably 10 to 35 parts by mass) of other fats and oils, preferably liquid fats and oils.

本発明の油脂組成物を製造するための原料油脂としては、脱酸処理されたパーム油およびその分別油から選択されてもよい。
脱酸処理では後述するようにアルカリ水溶液を使用することが通常であるが、アルカリ脱酸では、酸価の高いパーム油やラウリン酸を多く含むヤシ油、パーム核油は、多量の石けんが生成し、油も石けんと共にアルカリフーツとして除去されてしまうので、収量が低下するという問題があるため、蒸留法による精製などを用いることが多く、これらの油脂は通常脱酸処理がなされていない。
The raw material oil for producing the oil and fat composition of the present invention may be selected from deacidified palm oil and its fractionated oil.
Deacidification treatment usually uses an alkaline aqueous solution as described below, but in alkaline deacidification treatment, palm oil with a high acid value, coconut oil and palm kernel oil containing a lot of lauric acid produce a large amount of soap. However, since the oil is removed along with the soap as alkaline fats, there is a problem that the yield is reduced, so purification by distillation is often used, and these fats and oils are usually not deoxidized.

本明細書において原料油脂に関して「脱酸処理されたパーム油」という場合には、少なくとも脱酸処理されていればよく、脱酸処理を行った後、公知の方法により脱色処理および/または脱臭処理が更になされていてもよい。好ましくは脱酸処理後、脱色処理及び脱臭処理を行った油脂である。本明細書では、原料油脂における脱酸処理後の脱色処理及び脱臭処理を、後の工程で行なわれる本発明の活性炭存在下で行なわれる脱色処理及びその後に行なわれてもよい脱臭処理と区別するために、前者を「第1脱色処理」及び「第1脱臭処理」と呼び、後者を「第2脱色処理」及び「第2脱臭処理」と呼ぶ場合がある。 In this specification, when referring to "deacidified palm oil" with respect to raw material fats and oils, it is sufficient that the oil has been at least deacidified, and after deacidification, decolorization and/or deodorization treatment is performed by a known method. may also be performed. Preferably, it is an oil or fat that has been subjected to deoxidation treatment, decolorization treatment, and deodorization treatment. In this specification, the decolorization treatment and deodorization treatment after the deacidification treatment of the raw material fats and oils are distinguished from the decolorization treatment performed in the presence of activated carbon of the present invention performed in a later step and the deodorization treatment that may be performed thereafter. Therefore, the former may be referred to as "first decolorization treatment" and "first deodorization treatment", and the latter may be referred to as "second decolorization treatment" and "second deodorization treatment".

「脱酸処理」は、当該技術分野において公知の方法により行なうことができ、例えば、粗油を水酸化ナトリウム水溶液等のアルカリ水溶液により処理することにより行なうことができる。より具体的には、例えば約5%~30%程度の濃度のアルカリ水溶液を添加して処理してもよい。アルカリ添加量は、混入している遊離脂肪酸の量などによって適宜決定することができる。アルカリ水溶液で処理する時間は、アルカリ濃度や処理温度にもよるが10~30分程度である。アルカリ水溶液で処理する温度は60~80℃程度で行うことができるが、出来る限り低い温度で行うことが好ましい。例えば、70~75℃で20分程度撹拌することができる。あるいは80~90℃程度の高温で行い、処理時間を短縮してもよい。 The "deacidification treatment" can be performed by a method known in the art, for example, by treating the crude oil with an aqueous alkaline solution such as an aqueous sodium hydroxide solution. More specifically, the treatment may be performed by adding an alkaline aqueous solution having a concentration of about 5% to 30%, for example. The amount of alkali added can be appropriately determined depending on the amount of free fatty acids mixed. The time required for treatment with an alkaline aqueous solution is approximately 10 to 30 minutes, depending on the alkali concentration and treatment temperature. The temperature for treatment with the alkaline aqueous solution can be about 60 to 80°C, but it is preferable to carry out the treatment at a temperature as low as possible. For example, stirring can be performed at 70 to 75°C for about 20 minutes. Alternatively, the treatment time may be shortened by performing the treatment at a high temperature of about 80 to 90°C.

本発明の他の態様では、本発明の油脂組成物は、脱酸処理されたパーム油およびその分別油から選択される油脂及び任意に含まれる一または複数の他の油脂の混合物からなる混合油脂から製造され、これらの混合油脂または各々の油脂として、脱色処理及び脱臭処理される。脱臭処理は180℃以上230℃以下で行なうことが好ましい。 In another aspect of the present invention, the oil and fat composition of the present invention comprises a mixture of an oil and fat selected from deacidified palm oil and its fractionated oil, and one or more other optionally included fats and oils. These oils and fats are produced as a mixture of these oils and fats, or each oil and fat is subjected to decolorization and deodorization treatments. The deodorizing treatment is preferably carried out at a temperature of 180°C or higher and 230°C or lower.

<育児用調製乳>
本発明の育児用調製乳は、上述した本発明の油脂組成物を含み、その他、育児用調製乳に含まれる任意の成分を含む。
任意の成分としては、例えば、たんぱく源、炭水化物源、ビタミン、ミネラル及びその他滋養要素等が挙げられる。
本発明の油脂組成物は、育児用調製乳中に、例えば10~30質量%含有させることができるがこれに限定されるものではない。
<Childcare formula>
The infant formula of the present invention contains the above-mentioned oil and fat composition of the present invention, and also contains any other components contained in infant formula.
Optional ingredients include, for example, protein sources, carbohydrate sources, vitamins, minerals, and other nutritional elements.
The oil and fat composition of the present invention can be contained, for example, in an amount of 10 to 30% by mass in infant formula, but is not limited thereto.

(実施例1)
脱酸パームオレイン45質量部、パーム核オレイン35質量部、及び大豆油25質量部を混合し、油脂100質量部に水蒸気賦活活性炭(活性炭A(塩酸処理無(塩素濃度130μg/g))、活性炭B(塩酸処理有(塩素濃度1600μg/g))(塩素濃度は後述するイオンクロマトグラフ法にて測定した)を0.4質量部及び活性白土(商品名:ガレオンアースV2(水澤化学工業社製))を1.0質量部添加し、常圧下で、100℃、60分間、撹拌しながら脱色処理を行った。活性炭と活性白土は、ろ紙(商品名:東洋ろ紙No.2、アドバンテック製)及びろ過助剤(商品名:シリカ#600H、中央シリカ株式会社製)を用いて減圧ろ過により取り除き脱色油を得た。この脱色油15kgを210℃、75分、真空度0.4kPa以下、吹込み水蒸気量3.0%(対油重量%)の条件で脱臭処理を行い冷却時に25ppmのクエン酸を添加し、脱臭油を得た。
(Example 1)
45 parts by mass of deoxidized palm olein, 35 parts by mass of palm kernel olein, and 25 parts by mass of soybean oil were mixed, and 100 parts by mass of oil and fat were mixed with steam-activated activated carbon (activated carbon A (no hydrochloric acid treatment (chlorine concentration 130 μg/g)) and activated carbon. 0.4 parts by mass of B (treated with hydrochloric acid (chlorine concentration 1600 μg/g)) (chlorine concentration was measured by the ion chromatography method described below) and activated clay (trade name: Galleon Earth V2 (manufactured by Mizusawa Chemical Industry Co., Ltd.) )) was added and decolorized under normal pressure at 100°C for 60 minutes with stirring.Activated carbon and activated clay were filter paper (trade name: Toyo Roshi No. 2, manufactured by Advantech). and a filter aid (trade name: Silica #600H, manufactured by Chuo Silica Co., Ltd.) to obtain a decolorized oil. 15 kg of this decolorized oil was blown at 210°C for 75 minutes under a vacuum of 0.4 kPa or less. Deodorization treatment was carried out under the condition that the amount of water vapor incorporated was 3.0% (wt% of oil), and 25 ppm of citric acid was added during cooling to obtain deodorized oil.

(実施例2、3)
表1の記載に従った組成の油脂を表1に記載した点を変えた他は実施例1と同様の条件で脱色、脱臭を行って、各油脂組成物を製造した。
(Examples 2 and 3)
Each fat and oil composition was produced by decoloring and deodorizing the fat and oil having the composition according to the description in Table 1 under the same conditions as in Example 1, except for changing the points listed in Table 1.

(比較例1、2)
表1の記載に従った組成の油脂を表1に記載した点を変えた他は実施例1と同様の条件で脱色、脱臭を行って、各油脂組成物を製造した。
(Comparative Examples 1 and 2)
Each fat and oil composition was produced by decoloring and deodorizing the fat and oil having the composition according to the description in Table 1 under the same conditions as in Example 1, except for changing the points listed in Table 1.

実施例及び比較例で得られた各油脂について、ビタミンK濃度、3-MCPD濃度及びグリシドール濃度を後述する分析方法で測定した。分析結果を表1に示す。 For each fat and oil obtained in Examples and Comparative Examples, the vitamin K concentration, 3-MCPD concentration, and glycidol concentration were measured using the analysis method described below. The analysis results are shown in Table 1.

(ビタミンKの分析法)
「食品表示基準について(別添:栄養表示関係『ビタミンK (1)高速液体クロマトグラフ法』」および森 光昭「日本における食品のビタミン分析法」に従い測定した。
1.標準試薬
1)フィロキノン標準品(異性体混合物)(和光純薬製、99%)イソオクタンにて溶解
フィロキノン標準原液(約100ppm)
2)メナキノン-7標準品(和光純薬製、98%)エタノールにて溶解
メナキノン-7標準原液(約100ppm)
2. 標準溶液 フィロキノン標準原液およびメナキノン-7標準原液を合わせてそれぞれ10,40,400ng/mLとなるように2-プロパノールにて希釈
(Vitamin K analysis method)
Measurements were made in accordance with "Food Labeling Standards (Attachment: Nutrition labeling-related 'Vitamin K (1) High Performance Liquid Chromatography Method'") and Mitsuaki Mori's "Vitamin Analysis Method for Foods in Japan."
1. Standard reagent 1) Phylloquinone standard product (isomer mixture) (Wako Pure Chemical Industries, Ltd., 99%) Dissolved in isooctane Phylloquinone standard stock solution (approximately 100 ppm)
2) Menaquinone-7 standard product (Wako Pure Chemical, 98%) Dissolved in ethanol Menaquinone-7 standard stock solution (approximately 100 ppm)
2. Standard solution Dilute phylloquinone standard stock solution and menaquinone-7 standard stock solution with 2-propanol to a combined total of 10, 40, and 400 ng/mL, respectively.

3. 試薬
1) 2,2,4-トリメチルペンタン(イソオクタン)(和光、HPLC用)
2)エタノール(和光純薬製、HPLC用)
3)2-プロパノール(和光純薬製、LC/MS用)
4)メタノール(和光純薬製、HPLC用)
3. Reagent 1) 2,2,4-trimethylpentane (isooctane) (Wako, for HPLC)
2) Ethanol (manufactured by Wako Pure Chemical Industries, for HPLC)
3) 2-propanol (manufactured by Wako Pure Chemical Industries, for LC/MS)
4) Methanol (manufactured by Wako Pure Chemical Industries, for HPLC)

5.分析方法
1)油脂1.0g(±0.02g)を10mLのメスフラスコに採取し2-プロパノールにてメスアップを行う。
2)溶解した油脂1.0mLをフィルターろ過した後HPLCにて測定を行った。
5. Analysis method 1) Collect 1.0 g (±0.02 g) of fat and oil into a 10 mL volumetric flask and make up the volume with 2-propanol.
2) After filtering 1.0 mL of the dissolved oil and fat, measurement was performed using HPLC.

5.装置・分析条件
装置:HPLC(島津製作所製)
カラム:L-colums ODS 内径4.6mm×250mm(一般財団法人化学物質評価研究機構製)
還元カラム:白金カラム RC-10 内径4.0mm×15mm(大阪ソーダ製)
カートリッジ式ガードカラム:L-column ODS Cat.No.652050(一般財団法人化学物質評価研究機構製)
注入量:20μL
カラム温度:40℃
流量:1.0mL/min
測定波長:励起240nm、蛍光430nm移動相:メタノール:エタノール(7:3,v/v)
5. Equipment/Analysis conditions Equipment: HPLC (manufactured by Shimadzu Corporation)
Column: L-columns ODS inner diameter 4.6mm x 250mm (manufactured by the Chemical Evaluation and Research Organization)
Reduction column: Platinum column RC-10 inner diameter 4.0mm x 15mm (manufactured by Osaka Soda)
Cartridge type guard column: L-column ODS Cat.No.652050 (manufactured by the Chemical Evaluation and Research Organization)
Injection volume: 20μL
Column temperature: 40℃
Flow rate: 1.0mL/min
Measurement wavelength: excitation 240 nm, fluorescence 430 nm Mobile phase: methanol:ethanol (7:3, v/v)

(3-MCPD等の分析法)
「DFG Standard Methods Section C-Fats C-IV 18(10)」に従って測定した。
1.標準溶液
下記標準原液及び溶液は全て溶媒としてトルエンを用いた。
1)3-MCPD-1,2-パルミトイルエステル(和光純薬製、≧98%)
3-MCPD-1,2-パルミトイルエステル標準原液(約1000ppm)
3-MCPD-1,2-パルミトイルエステル標準溶液(約40ppm)
2)d5-3-MCPD-1,2-パルミトイルエステル(和光純薬製、≧98%)
*サロゲートとして使用
d5-3-MCPD-1,2-パルミトイルエステル標準原液(約1000ppm)
d5-3-MCPD-1,2-パルミトイルエステル標準溶液(約40ppm)
3)グリシジルステアレート(TCI製、96%≧)
グリシジルステアレート標準原液(約1000ppm)
グリシジルステアレート標準溶液(約40ppm)
(3-Analysis methods such as MCPD)
It was measured according to "DFG Standard Methods Section C-Fats C-IV 18 (10)".
1. Standard solution The following standard stock solutions and solutions all used toluene as a solvent.
1) 3-MCPD-1,2-palmitoyl ester (manufactured by Wako Pure Chemical Industries, ≧98%)
3-MCPD-1,2-palmitoyl ester standard stock solution (approximately 1000 ppm)
3-MCPD-1,2-palmitoyl ester standard solution (approximately 40 ppm)
2) d5-3-MCPD-1,2-palmitoyl ester (manufactured by Wako Pure Chemical Industries, ≧98%)
*Used as a surrogate d5-3-MCPD-1,2-palmitoyl ester standard stock solution (approximately 1000 ppm)
d5-3-MCPD-1,2-palmitoyl ester standard solution (approximately 40 ppm)
3) Glycidyl stearate (manufactured by TCI, 96%≧)
Glycidyl stearate standard stock solution (approximately 1000ppm)
Glycidyl stearate standard solution (approximately 40 ppm)

2.試薬
1)超純水
2)トルエン(関東化学製、残農用、5000倍濃縮)
3)t-ブチルメチルエーテル(t-BME) (関東化学製、残農用、5000倍濃縮)
4)メタノール(関東化学製、残農用、5000倍濃縮)
5)ヘキサン(関東化学製、残農用、5000倍濃縮)
6)酢酸エチル(関東化学製、残農用、5000倍濃縮)
7)ジエチルエーテル(関東化学製、残農用、5000倍濃縮)
8)イソオクタン
9)ナトリウムメトキシド
10)ナトリウムメトキシド-メタノール溶液(25g/L):0.25gをメタノールで10mLに定溶〈*用事調製(水分により分解しやすいので長期保存は不可)〉
11)塩化ナトリウム(関東化学製、特級)
12)塩化ナトリウム溶液(NaCl 200g/L溶液):塩化ナトリウム 50gを超純水で溶解し250mLとする
13)臭化ナトリウム(関東化学製、特級)
14)臭化ナトリウム水溶液(NaBr 600g/L溶液)
15)硫酸(25%、6N):硫酸(96%、36N)を6倍に希釈
ex)超純水50mLに硫酸(96%、36N)を10mL加えた後60mLに定容
16)酸性塩化ナトリウム水溶液(200g/L):塩化ナトリウム水溶液1Lに硫酸(25%)35mLを加える
ex)塩化ナトリウム水溶液20mL+硫酸(25%)700μL
17)酸性臭化ナトリウム水溶液(塩化物を含まない食塩水):臭化ナトリウム水溶液(600g/L)1Lに硫酸(25%)35mLを加える
ex)臭化ナトリウム水溶液20mL+硫酸(25%)700μL
18)フェニルボロン酸(PBA,フェニルほう酸)
19)誘導体化試薬:フェニルボロン酸をジエチルエーテルに溶解し、沈殿のある飽和状態〈*用事調製
2. Reagent 1) Ultrapure water 2) Toluene (manufactured by Kanto Kagaku, for agricultural residue use, 5000 times concentrated)
3) t-Butyl methyl ether (t-BME) (manufactured by Kanto Chemical, for agricultural residue use, 5000 times concentrated)
4) Methanol (manufactured by Kanto Chemical, for agricultural residue use, 5000 times concentrated)
5) Hexane (manufactured by Kanto Chemical, for agricultural residue use, 5000 times concentrated)
6) Ethyl acetate (manufactured by Kanto Chemical, for agricultural residue use, 5000 times concentrated)
7) Diethyl ether (manufactured by Kanto Chemical, for agricultural residue use, 5000 times concentrated)
8) Isooctane 9) Sodium methoxide 10) Sodium methoxide-methanol solution (25 g/L): Dissolve 0.25 g in 10 mL with methanol (* Prepared for use (cannot be stored for long periods as it easily decomposes with moisture))
11) Sodium chloride (manufactured by Kanto Chemical, special grade)
12) Sodium chloride solution (NaCl 200g/L solution): Dissolve 50g of sodium chloride in ultrapure water to make 250mL 13) Sodium bromide (manufactured by Kanto Kagaku, special grade)
14) Sodium bromide aqueous solution (NaBr 600g/L solution)
15) Sulfuric acid (25%, 6N): Dilute sulfuric acid (96%, 36N) 6 times ex) Add 10 mL of sulfuric acid (96%, 36 N) to 50 mL of ultrapure water, then adjust the volume to 60 mL 16) Acidic sodium chloride Aqueous solution (200 g/L): Add 35 mL of sulfuric acid (25%) to 1 L of sodium chloride aqueous solution ex) 20 mL of sodium chloride aqueous solution + 700 μL of sulfuric acid (25%)
17) Acidic sodium bromide aqueous solution (chloride-free saline solution): Add 35 mL of sulfuric acid (25%) to 1 L of sodium bromide aqueous solution (600 g/L) ex) 20 mL of sodium bromide aqueous solution + 700 μL of sulfuric acid (25%)
18) Phenylboronic acid (PBA, phenylboronic acid)
19) Derivatization reagent: Dissolve phenylboronic acid in diethyl ether and bring it to a saturated state with precipitation.

3.器具
1)パスツールピペット
2)メスシリンダー 25mL、50mL、100mL
3)メスフラスコ 5mL、10mL
4)ピペットマン P-5000、P-1000、P-200
5)スクリューバイアル(ガラス製、1.5mL容)
6)シリンジ
7)フィルター(疎水性)
3. Equipment 1) Pasteur pipette 2) Graduated cylinder 25mL, 50mL, 100mL
3) Volumetric flask 5mL, 10mL
4) Pipetman P-5000, P-1000, P-200
5) Screw vial (glass, 1.5mL capacity)
6) Syringe 7) Filter (hydrophobic)

4.分析方法
1)試料100mg(±0.5mg)を1.5mLスクリューバイアルに採取した。
2)サロゲートとしてd5-3-MCPD-1,2-パルミトイルエステル標準溶液(約50ppm)を100μL、t-ブチルメチルエーテルを100μL添加し攪拌した。
※コンタミ確認のため、3-MCPD等が検出しない試料(ex.エクストラバージンオリーブ油)を分析した。また、スパイク試料にはサロゲートとともに3-MCPD-1,2-パルミトイルエステル標準溶液(約40ppm)を100μL添加し回収率を確認した。
3)ナトリウムメトキシド-メタノール溶液を200μL加え、攪拌した後、常温で3.5~5.5分反応させた。
4)(A)3)の反応を止めるため、酸性塩化ナトリウム水溶液を600μLを加えた(分析[A])。この後、下記5)~8)を行った。
(B)3)の反応を止めるため、酸性臭化ナトリウム水溶液を600μL加えた(分析[B])。この後、下記5)~8)を行った。
5)ヘキサン600μLを加え攪拌した後、5分以上静置し、ヘキサン層を除去する。再びへキサン600μLを加え、同操作を繰り返した。
6)ジエチルエーテル/酢酸エチル(6:4)混液を600μL加え、攪拌した後、硫酸ナトリウム(無水)入りのバイアルに溶媒層を回収した。同操作を更に2回繰り返した。
7)PBA溶液を100μL添加し誘導体化した後、窒素ガスを吹き付け乾固させた。
8)イソオクタン1mLで再溶解し、フィルターろ過した後、GC/MSにて測定を行った。
4. Analysis method 1) 100 mg (±0.5 mg) of the sample was collected into a 1.5 mL screw vial.
2) As a surrogate, 100 μL of d5-3-MCPD-1,2-palmitoyl ester standard solution (about 50 ppm) and 100 μL of t-butyl methyl ether were added and stirred.
*To confirm contamination, samples in which 3-MCPD etc. were not detected (ex. extra virgin olive oil) were analyzed. In addition, 100 μL of 3-MCPD-1,2-palmitoyl ester standard solution (approximately 40 ppm) was added to the spike sample together with the surrogate to check the recovery rate.
3) 200 μL of sodium methoxide-methanol solution was added, stirred, and reacted at room temperature for 3.5 to 5.5 minutes.
4) To stop the reaction in (A) 3), 600 μL of an acidic sodium chloride aqueous solution was added (Analysis [A]). After this, the following steps 5) to 8) were performed.
(B) To stop the reaction in 3), 600 μL of an acidic sodium bromide aqueous solution was added (Analysis [B]). After this, the following steps 5) to 8) were performed.
5) After adding 600 μL of hexane and stirring, let stand for 5 minutes or more and remove the hexane layer. 600 μL of hexane was added again and the same operation was repeated.
6) After adding 600 μL of diethyl ether/ethyl acetate (6:4) mixture and stirring, the solvent layer was collected in a vial containing sodium sulfate (anhydrous). The same operation was repeated two more times.
7) After adding 100 μL of PBA solution and derivatizing it, nitrogen gas was blown to dry it.
8) After redissolving with 1 mL of isooctane and filtering, measurement was performed using GC/MS.

5.装置・分析条件
装置:GC/MS(Agilent製5975C/7890A)
カラム:DB-17MS,内径0.25mm×30m,膜厚 0.25μm
注入量:2μL
注入口温度:240℃
スプリットレス時間:1.5分
スプリット流量:20mL/min
キャリアガス:ヘリウム,1.2mL/min,定流量
オーブン温度:85℃(0.5min)→6℃/min→150℃→12℃/min→180℃→25℃/min→280℃(7min)
イオン化:EI(positive)
測定イオン:3-MCPD m/z=147(定量用)、146・196・198(確認用)
3-MCPD-d5 m/z=150(サロゲート)、149・201・203(確認用)
イオン源温度:250℃
四重極:150℃
5. Equipment/Analysis conditions Equipment: GC/MS (Agilent 5975C/7890A)
Column: DB-17MS, inner diameter 0.25mm x 30m, film thickness 0.25μm
Injection volume: 2μL
Inlet temperature: 240℃
Splitless time: 1.5 minutes Split flow rate: 20mL/min
Carrier gas: helium, 1.2 mL/min, constant flow Oven temperature: 85°C (0.5min) → 6°C/min → 150°C → 12°C/min → 180°C → 25°C/min → 280°C (7 min)
Ionization: EI (positive)
Measurement ion: 3-MCPD m/z = 147 (for quantification), 146, 196, 198 (for confirmation)
3-MCPD-d5 m/z=150 (surrogate), 149/201/203 (for confirmation)
Ion source temperature: 250℃
Quadrupole: 150℃

6.定量方法
[内部標準法]
サロゲートとして添加したd5-3-MCPD-1,2-パルミトイルエステルをd5-3-MCPD濃度に換算し、3-MCPDの面積値をサロゲートの面積値で割った面積比にサロゲート濃度を乗じて3-MCPD濃度を算出した。
定量値=サロゲート濃度×3-MCPD面積値/サロゲート面積値
上記で得られた定量値を試料採取量で除して、試料中濃度を求めた。
3-MCPD濃度[ppm]=定量値[μg/L]/試料採取量[mg]
※分析[A]では3-MCPD-FS濃度(3-MCPD脂肪酸エステルとグリシドール脂肪酸エステルから遊離した3-MCPD当量)を測定でき、分析[B]では3-MCPD濃度(3-MCPD脂肪酸エステルから遊離した3-MCPD当量)のみを測定できる。
分析[A]・分析[B]それぞれの測定結果を用いて、3-MCPD-FS濃度より3-MCPD濃度を減じ、グリシドール変換係数を乗じてグリシドール濃度を算出した。
グリシドール濃度[ppm]=(3-MCPD-FS濃度[A] - 3-MCPD濃度[B])×グリシドール変換係数t
6. Quantification method
[Internal standard method]
The d5-3-MCPD-1,2-palmitoyl ester added as a surrogate is converted to the d5-3-MCPD concentration, and the area ratio obtained by dividing the area value of 3-MCPD by the area value of the surrogate is multiplied by the surrogate concentration. - MCPD concentration was calculated.
Quantitative value = Surrogate concentration x 3 - MCPD area value / Surrogate area value
The concentration in the sample was determined by dividing the quantitative value obtained above by the amount of sample collected.
3-MCPD concentration [ppm] = quantitative value [μg/L] / sample collection amount [mg]
*In analysis [A], 3-MCPD-FS concentration (3-MCPD equivalent released from 3-MCPD fatty acid ester and glycidol fatty acid ester) can be measured, and in analysis [B], 3-MCPD concentration (from 3-MCPD fatty acid ester) can be measured. Only the free 3-MCPD equivalents) can be measured.
Using the measurement results of Analysis [A] and Analysis [B], the 3-MCPD concentration was subtracted from the 3-MCPD-FS concentration, and the glycidol concentration was calculated by multiplying by the glycidol conversion coefficient.
Glycidol concentration [ppm] = (3-MCPD-FS concentration [A] - 3-MCPD concentration [B]) x glycidol conversion coefficient t

〈グリシドール変換係数の算出〉
グリシドールから3-MCPDへの変換係数は塩化物存在下、分析[A]で検量線を作成して算出される。コンタミしていない油脂試料にグリシドール(グリシドールエステルとして)を複数濃度添加し、分析[A]に従って処理した。結果として得られる検量線y=mx+nの傾きの逆数はグリシドール変換係数tと等しい。
グリシドール変換係数t=1/m
<Calculation of glycidol conversion coefficient>
The conversion coefficient from glycidol to 3-MCPD is calculated by creating a calibration curve in analysis [A] in the presence of chloride. Multiple concentrations of glycidol (as glycidol ester) were added to uncontaminated fat and oil samples and processed according to analysis [A]. The reciprocal of the slope of the resulting calibration curve y=mx+n is equal to the glycidol conversion factor t.
Glycidol conversion coefficient t=1/m

(塩素濃度の測定方法)
標準試薬:塩化物イオン標準液1000mg/L(JCSS化学分析用)(関東化学)
(Method for measuring chlorine concentration)
Standard reagent: Chloride ion standard solution 1000mg/L (for JCSS chemical analysis) (Kanto Chemical)

1)活性炭を酸素気流中で1350℃の燃焼炉にて燃焼し、その際に発生した塩素ガスを吸収液である水酸化ナトリウム溶液に吸収させた。
2)吸収した水酸化ナトリウム溶液を水で定容した後、下記装置を用いてイオンクロマトグラフ法にて塩化物イオンを分離した。
1) Activated carbon was burned in a combustion furnace at 1350° C. in an oxygen stream, and the chlorine gas generated at that time was absorbed into a sodium hydroxide solution as an absorption liquid.
2) After the absorbed sodium hydroxide solution was brought to a fixed volume with water, chloride ions were separated by ion chromatography using the following apparatus.

装置
燃焼炉:吉田製作所 製 1091-II
イオンクロマトグラフ: Thermo Scientific Dionex Integrion
カラム:Dionex Ion Pac AS20 (0.4mm×250mm)
ガードカラム:Dionex Ion Pac AG20(0.4mm×50mm)
Equipment combustion furnace: Yoshida Seisakusho 1091-II
Ion chromatograph: Thermo Scientific Dionex Integrion
Column: Dionex Ion Pac AS20 (0.4mm x 250mm)
Guard column: Dionex Ion Pac AG20 (0.4mm x 50mm)

(結果)
実施例1~3の油脂はいずれもビタミンKの濃度が、脱色工程前と比べて10μg/100g以上の割合で減少しており、さらに、3-MCPD及びグリシドール濃度は十分に低い値となった。
これに対し、比較例1の方法では、ビタミンKの減少量は高かったが、3-MCPDの濃度が原料と比べて大きく上昇してしまった。
(result)
In all of the fats and oils of Examples 1 to 3, the concentration of vitamin K decreased by 10 μg/100 g or more compared to before the decolorization process, and the concentrations of 3-MCPD and glycidol were sufficiently low. .
On the other hand, in the method of Comparative Example 1, although the amount of vitamin K decreased was high, the concentration of 3-MCPD increased significantly compared to the raw material.

Figure 2023162681000001
Figure 2023162681000001

Claims (9)

脱色工程を含む油脂組成物の製造方法であって、前記脱色工程が塩酸処理されていない活性炭を用いて行なわれることを特徴とする、上記製造方法。 A method for producing an oil or fat composition including a decoloring step, wherein the decoloring step is carried out using activated carbon that has not been treated with hydrochloric acid. 前記油脂組成物が、育児用調製乳用油脂組成物である、請求項1記載の製造方法。 The manufacturing method according to claim 1, wherein the oil and fat composition is an oil and fat composition for infant formula. 塩酸処理されていない前記活性炭を、前記脱色工程に用いる油脂組成物質量100質量部に対し、0.01~10質量部の範囲で用いる、請求項1記載の製造方法。 The manufacturing method according to claim 1, wherein the activated carbon that has not been treated with hydrochloric acid is used in an amount of 0.01 to 10 parts by mass based on 100 parts by mass of the fat composition used in the decolorizing step. 塩酸処理されていない前記活性炭が、ガス賦活活性炭、及び薬品賦活活性炭からなる群より選択され、塩酸処理されていない前記活性炭中の塩素濃度が200μg/g以下である、請求項1記載の製造方法。 The manufacturing method according to claim 1, wherein the activated carbon that has not been treated with hydrochloric acid is selected from the group consisting of gas-activated activated carbon and chemically activated activated carbon, and the chlorine concentration in the activated carbon that has not been treated with hydrochloric acid is 200 μg/g or less. . 前記脱色工程前の油脂組成物100g中のビタミンKの含有量に対し、前記脱色工程後の油脂組成物100g中のビタミンKの含有量が、10μg以上減少する、請求項1~4のいずれか1項記載の製造方法。 Any one of claims 1 to 4, wherein the content of vitamin K in 100 g of the fat composition after the bleaching step is reduced by 10 μg or more with respect to the content of vitamin K in 100 g of the fat composition before the bleaching step. The manufacturing method according to item 1. 前記脱色工程に続き、脱臭工程を行なう、請求項1記載の製造方法。 The manufacturing method according to claim 1, wherein the decoloring step is followed by a deodorizing step. 脱臭工程後の油脂組成物の3-MCPD濃度が、0.42ppm以下である、請求項6記載の製造方法。 7. The production method according to claim 6, wherein the 3-MCPD concentration of the oil and fat composition after the deodorizing step is 0.42 ppm or less. 脱臭工程後の油脂組成物のグリシドール濃度が、0.17ppm以下である、請求項6記載の製造方法。 7. The manufacturing method according to claim 6, wherein the glycidol concentration of the oil and fat composition after the deodorizing step is 0.17 ppm or less. 3-MCPD濃度が0.42ppm以下、グリシドール濃度が0.17ppm以下、ビタミンK濃度が20~100μg/100gである、育児用調製乳用油脂組成物。 3-An oil and fat composition for infant formula milk, which has a MCPD concentration of 0.42 ppm or less, a glycidol concentration of 0.17 ppm or less, and a vitamin K concentration of 20 to 100 μg/100 g.
JP2022073202A 2022-04-27 2022-04-27 Method for producing oil and fat composition Pending JP2023162681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022073202A JP2023162681A (en) 2022-04-27 2022-04-27 Method for producing oil and fat composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022073202A JP2023162681A (en) 2022-04-27 2022-04-27 Method for producing oil and fat composition

Publications (1)

Publication Number Publication Date
JP2023162681A true JP2023162681A (en) 2023-11-09

Family

ID=88651076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022073202A Pending JP2023162681A (en) 2022-04-27 2022-04-27 Method for producing oil and fat composition

Country Status (1)

Country Link
JP (1) JP2023162681A (en)

Similar Documents

Publication Publication Date Title
JP5973530B2 (en) Glyceride composition and method for producing the glyceride composition
TWI572290B (en) Grease composition
EP2721131B1 (en) Method for manufacturing refined fats and oils
JP5717351B2 (en) Method for producing refined fats and oils
JP5216942B1 (en) Purified glyceride composition and method for producing the purified glyceride composition
EP2456847A1 (en) A deodorized edible oil or fat with low levels of bound mcpd and process of making by carboxymethyl cellulose and/or resin purification
JP5717352B2 (en) Method for producing refined fats and oils
JP2020122151A (en) Fat composition for use in infant formula
TW201408767A (en) Method for manufacturing refined oil or fat
JP2021120465A (en) Method for producing refined fat/oil
WO2015146248A1 (en) Production method for purified palm oil and fat
JP7294861B2 (en) Fats and oils manufacturing method
JP6219147B2 (en) Method for producing refined fish oil
JP2023162681A (en) Method for producing oil and fat composition
JP2014000012A (en) Manufacturing method of edible oil
JP6817313B2 (en) Oil and fat composition for use in formula milk powder for childcare
EP3030086B1 (en) Fat or oil composition
JP2021010361A (en) Method for producing heating/cooking oil/fat composition, and heating/cooking oil/fat composition
WO2015115584A1 (en) Fat or oil composition
JP2015067692A (en) Method for producing refined fat
JP2020162577A (en) Method for producing oil/fat composition for heat cooking, and oil/fat composition for heat cooking