JP2023161654A - トルクセンサ - Google Patents

トルクセンサ Download PDF

Info

Publication number
JP2023161654A
JP2023161654A JP2022072114A JP2022072114A JP2023161654A JP 2023161654 A JP2023161654 A JP 2023161654A JP 2022072114 A JP2022072114 A JP 2022072114A JP 2022072114 A JP2022072114 A JP 2022072114A JP 2023161654 A JP2023161654 A JP 2023161654A
Authority
JP
Japan
Prior art keywords
shaft
magnetic flux
inner shaft
magnetic field
torque sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022072114A
Other languages
English (en)
Inventor
敬 長野
Takashi Nagano
和也 内田
Kazuya Uchida
良夫 齋藤
Yoshio Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2022072114A priority Critical patent/JP2023161654A/ja
Publication of JP2023161654A publication Critical patent/JP2023161654A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

【課題】シャフトを大型化せずに感度良くトルクを検出可能なトルクセンサを提供する。【解決手段】外側シャフト5と、内側シャフト6とを含み、外側シャフト5の内側に内側シャフト6が同心円状に配置された回転シャフト2と、回転シャフト2に対して磁界を印加する磁界印加部3と、回転シャフト2と磁界印加部3との間に流れる磁束の回転シャフト2に加わるトルクに応じた変化を検出する磁束検出部4とを備え、外側シャフト5と内側シャフト6とは、飽和磁束密度が異なる材料により構成されている。【選択図】図2

Description

本開示は、トルクセンサに関する。
例えば、電気自動車や電動バイク、電動アシスト自転車をはじめとするモビリティー産業市場の需要は年々増加傾向にある。特に、その出力を左右する部品であるトルクセンサの需要もモビリティー需要と共に増加傾向にある。
トルクセンサの検出方式としては、歪みゲージ等にて測定した歪みを非接触で伝達するものや、磁歪効果を用いて、回転するシャフトに対して非接触での検出を可能にする手法が広く知られている(例えば、下記特許文献1,2を参照。)。
特に、磁歪を用いる方式のトルクセンサにおいては、シャフトの表面にめっきを行うなど、検出感度を保ちつつ、大型化を抑制する方式が広く望まれている。加えて、水や砂利等の外界からの影響を受けにくい構造がより好ましい。
特開2007-139614号公報 特開平4-22831号公報
ところで、トーションシャフトの外部に加工を施す磁歪型トルクセンサにおいては、高い検出感度が見込める一方で、センサ本体が大型化し易く、水や砂利等、外界の影響を受け易いといった課題が存在する。このため、トルクセンサの実装にあたり、センサ本体の耐食性や密封性に加え、周辺機構がサイズ的な制約を受けるなど、搭載性が著しく損なわれることがある。
また、上記特許文献1,2に記載の技術では、シャフトの外面に磁歪機構が設けられており、外界の影響を直接的に被ることになる。また、シャフトの外部に磁歪機構が設けられることからシャフトが大型化してしまう。
本開示に係る技術は、このような従来の事情に鑑みて提案されたものであり、シャフトを大型化せずに感度良くトルクを検出可能なトルクセンサを提供することを目的とする。
本開示の一態様に係るトルクセンサは、外側シャフトと、前記外側シャフトの内側に同心円状に配置された内側シャフトとを含む回転シャフトと、前記回転シャフトに対して磁界を印加する磁界印加部と、前記回転シャフトと前記磁界印加部との間に流れる磁束の前記回転シャフトに加わるトルクに応じた変化を検出する磁束検出部とを備え、前記外側シャフトと前記内側シャフトとは、飽和磁束密度が異なる材料により構成されている。
本開示の一態様に係るトルクセンサは、回転シャフトを構成する外側シャフトの内側に固定可能な内側シャフトと、少なくとも前記内側シャフトに対して磁界を印加可能に配置される磁界印加部と、少なくとも前記内側シャフトと、前記磁界印加部との間に流れる磁束の変化を検出可能な磁束検出部と、を備え、前記外側シャフトと前記内側シャフトとは、飽和磁束密度が異なる材料により構成され、前記磁束検出部は、前記内側シャフトが前記外側シャフトに固定された状態において、前記外側シャフトに加えられた回転方向のトルクに応じて変化する、前記内側シャフトと前記磁界印加部との間に流れる磁束の変化を検出可能である。
以上のように、本開示に係る技術によれば、シャフトを大型化せずに感度良くトルクを検出可能なトルクセンサを提供することが可能である。
本開示に係る技術の第1の実施形態に係るトルクセンサの構成を示す斜視図である。 図1に示すトルクセンサの構成を示す断面図である。 本開示に係る技術の第2の実施形態に係るトルクセンサの構成を示す斜視図である。 図3に示すトルクセンサの構成を示す断面図である。 図1及び図3に示すトルクセンサにおいて、回転シャフトの内側シャフトが凹凸構造を有する場合を示し、(A)はその断面図、(B)はその平面図である。 図1に示すトルクセンサを用いて、回転シャフトに加わるトルクを変更しながら、磁束密度を測定した結果を示すグラフである。 図1に示すトルクセンサと図3に示すトルクセンサとの磁路磁束密度をコンピュータシミュレーションにより求めた結果を示すグラフである。 外側シャフトと内側シャフトとの材質を変更した場合の磁路磁束密度をコンピュータシミュレーションにより求めた結果を示すグラフである。 内側シャフトの凹凸構造の有無による測定角度に応じた磁束密度をコンピュータシミュレーションにより求めた結果を示すグラフである。 内側シャフトの凹凸構造におけるヘリカル角を変更しながら、内側シャフトに加わる応力をコンピュータシミュレーションにより求めた結果を示すグラフである。
以下、本開示に係る技術の実施の形態について、図面を参照して詳細に説明する。
なお、以下の説明で用いる図面においては、各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがあり、各構成要素の寸法比率などが実際と同じであるとは限らないものとする。また、以下の説明において例示される材料等は一例であって、本開示に係る技術はそれらに必ずしも限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
(第1の実施形態)
先ず、本開示に係る技術の第1の実施形態として、例えば図1及び図2に示すトルクセンサ1Aについて説明する。
なお、図1は、トルクセンサ1Aの構成を示す斜視図である。図2は、トルクセンサ1Aの構成を示す断面図である。
本実施形態のトルクセンサ1Aは、図1及び図2に示すように、回転シャフト2と、回転シャフト2に対して磁界を印加する磁界印加部3と、回転シャフト2と磁界印加部3との間に流れる磁束を検出する磁束検出部4とを備えている。
回転シャフト2は、中空円筒状の外側シャフト5と内側シャフト6とを含み、外側シャフト5の内側に内側シャフト6が同心円状に配置された構造(二重シャフト構造)を有している。内側シャフト6は、回転シャフト2に加わるトルクに応じて磁歪を発生させる磁歪機構を構成しており、回転シャフト2を構成する外側シャフト5の内側に固定可能となっている。
したがって、本実施形態のトルクセンサ1Aは、トルクの検出対象となる回転シャフト2(外側シャフト5)に対して、磁歪機構となる内側シャフト6を取り付ける構成としてもよい。
磁界印加部3は、内側シャフト6に対して磁界を印加可能なように、外側シャフト5(回転シャフト2)の外周面と対向して配置されている。磁束検出部4は、内側シャフト6と磁界印加部3との間に流れる磁束の変化を検出可能なように、磁界印加部3と外側シャフト5(回転シャフト2)の外周面との間に配置されている。
本実施形態では、回転シャフト2の軸線方向の中央部に位置して、磁界印加部3及び磁束検出部4が回転シャフト2とは非接触な状態で、回転シャフト2の外側に配置されている。なお、磁界印加部3及び磁束検出部4の配置については、上述した回転シャフト2の軸線方向の中央部に限らず、回転シャフト2の軸線方向の一端側など、任意の位置に配置することが可能である。
磁界印加部3には、磁界を発生させるものであればよく、例えばフェライト磁石やネオジウム磁石などの永久磁石や、コイルに電流を流すことにより磁界を発生させる電磁石などを用いることができる。なお、本実施形態では、磁界印加部3として、フェライト磁石を用いている。
磁束検出部4には、磁束の変化を検出するものであればよく、例えばホールセンサやMRセンサ、コイルなどの磁気センサを用いることができる。なお、本実施形態では、磁束検出部4として、ホールセンサ等を内蔵したガウスメータを用いている。
以上のような構成を有する本実施形態のトルクセンサ1Aでは、回転シャフト2にトルクが加わると、磁歪効果により回転シャフト2と磁界印加部3との間に流れる磁束が変化し、この磁束の変化を磁束検出部4が検出する。本実施形態のトルクセンサ1Bでは、このような回転シャフト2に加わるトルクに応じた磁束の変化を検出することで、回転シャフト2に加わるトルクを非接触で検出することが可能となっている。
(第2の実施形態)
次に、本開示に係る技術の第2の実施形態として、例えば図3及び図4に示すトルクセンサ1Bについて説明する。
なお、図3は、トルクセンサ1Bの構成を示す斜視図である。図4は、トルクセンサ1Bの構成を示す断面図である。また、以下の説明では、上記トルクセンサ1Aと同等の部位については、説明を省略すると共に、図面において同じ符号を付すものとする。
本実施形態のトルクセンサ1Bは、図3及び図4に示すように、回転シャフト2と、回転シャフト2に対して磁界を印加する磁界印加部3と、回転シャフト2と磁界印加部3との間に流れる磁束を検出する磁束検出部4とを備えている。
回転シャフト2は、中空円筒状の外側シャフト5と内側シャフト6とを含み、外側シャフト5の内側に内側シャフト6が同心円状に配置された構造(二重シャフト構造)を有している。内側シャフト6は、回転シャフト2に加わるトルクに応じて磁歪を発生させる磁歪機構を構成しており、回転シャフト2を構成する外側シャフト5の内側に固定可能となっている。
したがって、本実施形態のトルクセンサ1Aは、トルクの検出対象となる回転シャフト2(外側シャフト5)に対して、磁歪機構となる内側シャフト6を取り付ける構成としてもよい。
磁界印加部3は、内側シャフト6に対して磁界を印加可能なように、内側シャフト6(回転シャフト2)の内周面と対向して配置されている。磁束検出部4は、内側シャフト6と磁界印加部3との間に流れる磁束の変化を検出可能なように、磁界印加部3と内側シャフト6(回転シャフト2)の内周面との間に配置されている。
本実施形態では、回転シャフト2の軸線方向の中央部に位置して、支持機構7により片持ち支持された磁界印加部3及び磁束検出部4が回転シャフト2とは非接触な状態で、回転シャフト2の内側に配置されている。
支持機構7は、磁界印加部3及び磁束検出部4が取り付けられた状態で、回転シャフト2の一端側から回転シャフト2の内側に挿入されるロッド部7aと、回転シャフト2の一端側に対向してロッド部7aを片持ち支持するフレーム部7bとを有している。
なお、支持機構7については、上述した構成に限らず、回転シャフト2とは非接触な状態で磁界印加部3及び磁束検出部4を回転シャフト2の内側に配置する構成であればよい。
また、磁界印加部3及び磁束検出部4の配置については、上述した回転シャフト2の軸線方向の中央部に限らず、回転シャフト2の軸線方向の一端側など、任意の位置に配置することが可能である。
以上のような構成を有する本実施形態のトルクセンサ1Bでは、回転シャフト2にトルクが加わると、磁歪効果により回転シャフト2と磁界印加部3との間に流れる磁束が変化し、この磁束の変化を磁束検出部4が検出する。本実施形態のトルクセンサ1Bでは、このような回転シャフト2に加わるトルクに応じた磁束の変化を検出することで、回転シャフト2に加わるトルクを非接触で検出することが可能となっている。
ところで、本実施形態のトルクセンサ1A,1Bでは、上述した回転シャフト2を構成する外側シャフト5と内側シャフト6とが、互いに飽和磁束密度の異なる材料により構成されている。本実施形態のトルクセンサ1A,1Bでは、外側シャフト5の飽和磁束密度よりも内側シャフト6の飽和磁束密度が大きくなっている。
具体的に、外側シャフト5の飽和磁束密度は、0.1Tよりも小さいことが好ましい。外側シャフト5には、このような飽和磁束密度を満たす材料として非磁性材料を用いることが好ましい。非磁性材料としては、例えば、アルミニウム等の非磁性金属材料やプラスチック等の樹脂材料などを用いることができる。
一方、内側シャフト6の飽和磁束密度は、0.3Tよりも大きいことが好ましい。内側シャフト6には、このような飽和磁束密度を満たす材料として軟磁性材料を用いることが好ましい。軟磁性材料としては、例えば、アモルファス材料などを用いることができる。
本実施形態のトルクセンサ1A,1Bにおいて、回転シャフト2を構成する内側シャフト6は、図5(A),(B)に示すように、凸部8と凹部又は孔部9とが周方向に交互に並んだ凹凸構造10を有することが好ましい。
このうち、凹部9は、内側シャフト6の外周側又は内周側を内側シャフト6の径方向に凹ませることにより形成されている。一方、孔部9は、内側シャフト6を径方向に貫通することにより形成されている。凸部8は、内側シャフト6の凹部又は孔部9の間に形成されている。
凹凸構造10は、回転シャフト2の軸線方向に磁界印加部3及び磁束検出部4と重なる範囲で凸部8と凹部又は孔部9とが一定の幅で延在し、内側シャフト6の軸線に対して25°~55°の角度(以下、「ヘリカル角度」という。)で凸部8と凹部又は孔部9とが螺旋状に捻れた形状(ヘリカル形状)を有している。
また、凸部8と凹部9とが周方向に交互に並んだ凹凸構造10の場合、内側シャフト6の外周側又は内周側において、凸部8と凹部9との間が周方向に連結された構成となる。この場合、トルクセンサ1Aでは、内側シャフト6の内周側において、凸部8と凹部9との間が周方向に連結された凹凸構造10であることが好ましい。一方、トルクセンサ1Bでは、内側シャフト6の外周側において、凸部8と凹部9との間が周方向に連結された凹凸構造10であることが好ましい。
以上のように、本実施形態のトルクセンサ1A,1Bでは、上述した回転シャフト2を、相対的に飽和磁束密度が小さい材料(非磁性材料)からなる外側シャフト5の内側に、相対的に飽和磁束密度が大きい材料(軟磁性材料)からなる内側シャフト6を配置した二重シャフト構造とし、この回転シャフト2の外側又は内側に磁界印加部3及び磁束検出部4を配置した構成となっている。
この構成の場合、回転シャフト2にトルクが加わることで磁歪を発生させる内側シャフト6が外界の影響を直接受けることがない。また、回転シャフト2と磁界印加部3との間に流れる磁束を、外側シャフト5よりも飽和磁束密度が大きい内側シャフト6へと通し易くすることが可能である。
また、本実施形態のトルクセンサ1A,1Bでは、内側シャフト6の近傍に磁界印加部3及び磁束検出部4を配置できるため、回転シャフト2に加わるトルクに応じた磁束の変化を高感度で検出することが可能であり、このトルクセンサ1A,1Bの小型化を図ることも可能である。
また、本実施形態のトルクセンサ1A,1Bでは、回転シャフト2を外側シャフト5の内側に内側シャフト6を配置した二重シャフト構造とすることで、この回転シャフト2の剛性を高めることが可能である。
また、本実施形態のトルクセンサ1A,1Bでは、上述した凸部8と凹部又は孔部9とが周方向に交互に並んだ凹凸構造10を有する内側シャフト6を用いた場合、凸部8に磁束が集中し、凸部8と凹部又は孔部9との間で磁束密度の変化を大きくし、磁気的な干渉を低減することで、検出感度を高めることが可能である。また、このような凹凸構造10を有する内側シャフト6を用いた場合、トルクセンサ1A,1Bに角度センサとしての機能を持たせることも可能である。
さらに、内側シャフト6の軸線に対して25°~55°の角度で凸部8と凹部又は孔部9とが螺旋状に捻れたヘリカル形状を有することで、回転シャフト2に加わるにトルクに応じた磁束の変化を大きくし、検出感度を高めることが可能である。
以上のようにして、本実施形態のトルクセンサ1A,1Bでは、シャフトを大型化せずに感度良くトルクを検出することが可能である。
以下、実施例により本開示に係る技術の効果をより明らかなものとする。なお、本開示に係る技術は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。
(第1の実施例)
第1の実施例では、上記トルクセンサ1Aを用いて、回転シャフト2に加えるトルク[Nm]を変更しながら、回転シャフト2と磁界印加部3との間に流れる磁束密度[mT]の変化を磁束検出部4により測定した。その結果を図6に示す。
なお、第1の実施例では、外側シャフト5の材料としてアルミニウムを用い、内側シャフト6の材料としてSUS430を用いている。また、外側シャフト5及び内側シャフト6の各部の寸法は、下記表1に示すとおりである。また、回転シャフト2と磁界印加部3との間の距離は6mmとし、磁束検出部4は、回転シャフト2の外周面と接触した状態とした。
Figure 2023161654000002
図6に示すように、上記トルクセンサ1Aを用いることで、回転シャフト2に加わるトルクに応じて磁束密度が線形に変化することわかる。したがって、上記トルクセンサ1Aでは、回転シャフト2に加わるトルクと、このトルクに応じた磁束密度の大きさとを予め測定しておく。これにより、上記トルクセンサ1Aを用いて、実際に回転シャフト2に加わるトルクに応じた磁束密度の変化から、回転シャフト2に加わるトルクの値を求めることが可能である。
(第2の実施例)
第2の実施例では、下記表2に示す条件のトルクセンサ1Aと、下記表3に示す条件のトルクセンサ1Bとを用いて、トルクの無負荷時に、回転シャフト2と磁界印加部3との間の磁束検出部4に流れる磁束密度(以下、「磁路磁束密度」という。)をコンピュータシミュレーションにより求めた。その結果を図7に示す。
Figure 2023161654000003
Figure 2023161654000004
図7に示すように、上記トルクセンサ1A及び上記トルクセンサ1Bは、何れも回転シャフト2と磁界印加部3との間に流れる磁束密度を磁束検出部4により検出可能であることがわかる。
(第3の実施例)
第3の実施例では、下記表4に示す条件のトルクセンサ1Aを用いて、外側シャフト5と内側シャフト6との飽和磁束密度を変更した場合の磁路磁束密度をコンピュータシミュレーションにより求めた。その結果を下記表5に示す。
Figure 2023161654000005
なお、第3の実施例では、回転シャフト2と磁界印加部3との間の距離は6mmとし、磁束検出部4と回転シャフト2の外周面との間の距離を0.5mmとした。
Figure 2023161654000006
表5に示すように、磁路磁束密度のボーダーラインを0.0303[T]に設定した場合、外側シャフト5の飽和磁束密度は、0.1Tよりも小さいことが好ましく、内側シャフト6の飽和磁束密度は、0.3Tよりも大きいことが好ましいことがわかる。
(第4の実施例)
第4の実施例では、下記表6に示す条件のトルクセンサ1Aを用いて、外側シャフト5と内側シャフト6との材質を変更した場合の磁路磁束密度をコンピュータシミュレーションにより求めた。その結果を下記表7及び図8に示す。
Figure 2023161654000007
Figure 2023161654000008
表7及び図8に示すように、外側シャフト5には飽和磁束密度が0.1Tよりも小さい材質のもの(非磁性材料)を用い、内側シャフト6には飽和磁束密度が0.3Tよりも大きい材質のもの(軟磁性材料)を用いることが好ましいことがわかる。
(第5の実施例)
第5の実施例では、下記表8に示す条件のトルクセンサ1Aを用いて、(a)凸部8と凹部9とが周方向に交互に並んだ凹凸構造10を有する内側シャフト6と、(b)凸部8と孔部9とが周方向に交互に並んだ凹凸構造10を有する内側シャフト6と、(c)凹凸構造10の無い内側シャフト6とについて、周方向の測定角度[deg]に応じた磁束密度[T]をコンピュータシミュレーションにより求めた。その結果を図9に示す。
Figure 2023161654000009
図9に示すように、(a),(b)の凸部8と凹部9又は孔部9とが周方向に交互に並んだ凹凸構造10を有する内側シャフト6を用いた場合、(c)の凹凸構造10の無い内側シャフト6を用いた場合よりも、凸部8に磁束が集中し、凸部8と凹部又は孔部9との間で磁束密度の変化を大きくし、磁気的な干渉を低減することで、検出感度を高めることが可能である。また、このような凹凸構造10を有する内側シャフト6を用いた場合、トルクセンサ1A,1Bに角度センサとしての機能を持たせることも可能である。
(第6の実施例)
第6の実施例では、下記表9に示す条件のトルクセンサ1Aを用いて、凸部8と孔部9とが周方向に交互に並んだ凹凸構造10を有する内側シャフト6について、内側シャフト6の軸線に対するヘリカル角度[°]を変更した場合の内側シャフト6に加わる応力[MPa]をコンピュータシミュレーションにより求めた。その結果を図10に示す。
Figure 2023161654000010
なお、応力については、内側シャフト6に10Nmのトルクを加え、孔部9の各間に位置する凸部8に加わる応力の平均値を求めた。
図10に示すように、ヘリカル角度が25°~55°となる範囲で、内側シャフト6に加わる応力が大きくなることがわかる。したがって、ヘリカル角度を25°~55°とすることで、回転シャフト2に加わるにトルクに応じた磁束の変化を大きくし、検出感度を高めることが可能である。
1A,1B…トルクセンサ 2…回転シャフト 3…磁界印加部 4…磁束検出部 5…外側シャフト 6…内側シャフト 7…支持機構 8…凸部 9…凹部又は孔部

Claims (9)

  1. 外側シャフトと、内側シャフトとを含み、前記外側シャフトの内側に前記内側シャフトが同心円状に配置された回転シャフトと、
    前記回転シャフトに対して磁界を印加する磁界印加部と、
    前記回転シャフトと前記磁界印加部との間に流れる磁束の前記回転シャフトに加わるトルクに応じた変化を検出する磁束検出部とを備え、
    前記外側シャフトと前記内側シャフトとは、飽和磁束密度が異なる材料により構成されているトルクセンサ。
  2. 前記外側シャフトの飽和磁束密度よりも前記内側シャフトの飽和磁束密度が大きい請求項1に記載のトルクセンサ。
  3. 前記外側シャフトの飽和磁束密度が0.1Tよりも小さく、前記内側シャフトの飽和磁束密度が0.3Tよりも大きい請求項2に記載のトルクセンサ。
  4. 前記外側シャフトが非磁性材料からなり、前記内側シャフトが軟磁性材料からなる請求項3に記載のトルクセンサ。
  5. 前記内側シャフトは、凸部と凹部又は孔部とが周方向に交互に並んだ凹凸構造を有する請求項1~4の何れか一項に記載のトルクセンサ。
  6. 前記凹凸構造は、前記内側シャフトの軸線に対して25°~55°の角度で前記凸部と前記凹部又は孔部とが螺旋状に捻れた形状を有する請求項5に記載のトルクセンサ。
  7. 前記磁界印加部が前記外側シャフトの外周面と対向して配置され、
    前記磁束検出部が前記磁界印加部と前記外側シャフトの外周面との間に配置されている請求項1~4の何れか一項に記載のトルクセンサ。
  8. 前記磁界印加部が前記内側シャフトの内周面と対向して配置され、
    前記磁束検出部が前記磁界印加部と前記内側シャフトの内周面との間に配置されている請求項1~4の何れか一項に記載のトルクセンサ。
  9. 回転シャフトを構成する外側シャフトの内側に固定可能な内側シャフトと、
    少なくとも前記内側シャフトに対して磁界を印加可能に配置される磁界印加部と、
    少なくとも前記内側シャフトと、前記磁界印加部との間に流れる磁束の変化を検出可能な磁束検出部と、を備え、
    前記外側シャフトと前記内側シャフトとは、飽和磁束密度が異なる材料により構成され、
    前記磁束検出部は、前記内側シャフトが前記外側シャフトに固定された状態において、前記外側シャフトに加えられた回転方向のトルクに応じて変化する、前記内側シャフトと前記磁界印加部との間に流れる磁束の変化を検出可能な、
    トルクセンサ。
JP2022072114A 2022-04-26 2022-04-26 トルクセンサ Pending JP2023161654A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022072114A JP2023161654A (ja) 2022-04-26 2022-04-26 トルクセンサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022072114A JP2023161654A (ja) 2022-04-26 2022-04-26 トルクセンサ

Publications (1)

Publication Number Publication Date
JP2023161654A true JP2023161654A (ja) 2023-11-08

Family

ID=88650693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022072114A Pending JP2023161654A (ja) 2022-04-26 2022-04-26 トルクセンサ

Country Status (1)

Country Link
JP (1) JP2023161654A (ja)

Similar Documents

Publication Publication Date Title
JP5079816B2 (ja) 好ましくは擬似正弦的に変化する磁石外形を有する磁気式位置センサ
JP5428026B2 (ja) 周囲磁場除去を有する磁気弾性トルクセンサ
US6581480B1 (en) Magnetising arrangements for torque/force sensor
KR101516033B1 (ko) 외부장에 감응하지 않는 각도 또는 선형 자기 위치 센서
JP5231365B2 (ja) 回転角度検出センサ
US20170003182A1 (en) Systems and methods for measuring torque on rotating shaft
CN105675026B (zh) 在磁阻传感器中磁化的软切换
US8087305B2 (en) System including a magnet and first and second concentrators
JP2007086018A (ja) 磁歪式トルクセンサ
JP2004020527A (ja) トルクセンサ
US20120262162A1 (en) Bidirectional Magnetic Position Sensor Having Field Rotation
WO2008075620A1 (ja) 回転角度検出装置
JP4947250B2 (ja) 角度検出装置
JP2008180518A (ja) トルクセンサ
US20140232378A1 (en) Sensor arrangement
JP2023161654A (ja) トルクセンサ
US20050160834A1 (en) Assembly for measuring movement of and a torque applied to a shaft
JP2019056680A (ja) トルク検出装置
US7219562B2 (en) Angle sensor
JP4305271B2 (ja) 磁歪式トルクセンサ
JP3513052B2 (ja) トルク検出装置
JPS5946526A (ja) 電磁ストレスセンサ
JP2008203176A (ja) トルクセンサ及びこれを使用した電動パワーステアリング装置
JPS6141936A (ja) トルクセンサ
JP4852056B2 (ja) トルク検出装置