JP2023160452A - Method for melting highly clean nitrogen-containing steel and nitrogen-containing steel produced by the melting method - Google Patents

Method for melting highly clean nitrogen-containing steel and nitrogen-containing steel produced by the melting method Download PDF

Info

Publication number
JP2023160452A
JP2023160452A JP2022070841A JP2022070841A JP2023160452A JP 2023160452 A JP2023160452 A JP 2023160452A JP 2022070841 A JP2022070841 A JP 2022070841A JP 2022070841 A JP2022070841 A JP 2022070841A JP 2023160452 A JP2023160452 A JP 2023160452A
Authority
JP
Japan
Prior art keywords
nitrogen concentration
molten steel
treatment
nitrogen
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022070841A
Other languages
Japanese (ja)
Inventor
翔太 田中
Shota Tanaka
博之 斧田
Hiroyuki Onoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2022070841A priority Critical patent/JP2023160452A/en
Publication of JP2023160452A publication Critical patent/JP2023160452A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

To provide a method for melting a highly clean nitrogen-containing steel capable of accurately adjusting the nitrogen concentration in a nitrogen-containing steel within a predetermined target range by changing RH treatment conditions in accordance with the nitrogen concentration in the steel during a RH treatment, and improving the cleanliness of the steel.SOLUTION: In melting a nitrogen-containing steel containing 0.03 mass% or more of [C] and having a target nitrogen concentration of 70 ppm to 150 ppm, the relationship 1 between the change of the nitrogen concentration in molten steel during a RH treatment and the treatment condition is obtained. The relation 2 between the difference between the nitrogen concentration in molten steel estimated from the relationship 1 and the nitrogen concentration in molten steel in operation results and the treatment time is obtained. The target nitrogen concentration and its range are set, the nitrogen concentration in molten steel is confirmed, the treatment condition is set using the relationship 1, the relationship between the remaining treatment time tr at the time of treatment and the time tm outside the range of the target nitrogen concentration is confirmed using the relationship 2, the treatment is carried out under the treatment condition. The nitrogen concentration in the molten steel is confirmed in the time Tm outside the range of the target nitrogen concentration when tr≥tm, the treatment is continued when tr<tm, and the treatment is repeated until the nitrogen concentration in molten steel satisfies the target nitrogen concentration.SELECTED DRAWING: Figure 1

Description

本発明は、RH処理において、目標の窒素濃度に制御して清浄度を要する窒素含有鋼を溶製する技術に関する。 The present invention relates to a technology for melting nitrogen-containing steel that requires cleanliness by controlling the nitrogen concentration to a target level in RH treatment.

一般に、転炉、電気炉などの製鋼炉で脱炭処理された溶鋼は、二次精錬工程へ搬送され、その二次精錬工程にて溶鋼の真空脱ガス処理などの処理が行われている。RH処理(真空脱ガス処理)では、主に、溶鋼の成分調整や溶鋼の脱ガス処理が行われているが、それに加えて溶鋼中の窒素濃度の調整が行われる場合がある。真空脱ガス処理において、溶鋼中窒素濃度を制御して窒素含有鋼を溶製する技術としては、例えば、特許文献1~4などに開示されているものがある。 Generally, molten steel that has been decarburized in a steelmaking furnace such as a converter or an electric furnace is transported to a secondary refining process, where the molten steel is subjected to treatments such as vacuum degassing. In the RH treatment (vacuum degassing treatment), the composition of molten steel is mainly adjusted and the molten steel is degassed, but in addition, the nitrogen concentration in the molten steel may be adjusted. Techniques for producing nitrogen-containing steel by controlling the nitrogen concentration in molten steel in vacuum degassing are disclosed, for example, in Patent Documents 1 to 4.

特許文献1は、真空脱ガス処理において、介在物の低減、脱水素を促進しながら窒素の濃度を精度よく調整することことを目的としている。
具体的には、[C]≧0.03質量%以上の鋼を真空脱ガス処理にて製造するに際し、前半処理では圧力を300Pa以下にすると共に、アルゴンガス単独或いはアルゴンガスと窒素ガスとの混合ガスを吹き込んで溶鋼を15分以上還流しつつ窒素を除く成分を調整することとし、アルゴンガスの流量を5L/(min・ton)以上とし、溶鋼に吹き込むガスの流量の上限値を20L/(min・ton)以下とし、後半処理では、圧力を300Pa以下に維持すると共に、窒素ガス単独或いは混合ガスで溶鋼を還流することとし、窒素ガスの流量は、前半処理でサンプリングした溶鋼中の窒素濃度の分析値に基づいて決定することが開示されている。
Patent Document 1 aims to precisely adjust the concentration of nitrogen while reducing inclusions and promoting dehydrogenation in vacuum degassing treatment.
Specifically, when manufacturing steel with [C] ≥ 0.03 mass% or more by vacuum degassing treatment, the pressure is set to 300 Pa or less in the first half of the treatment, and argon gas alone or a mixture of argon gas and nitrogen gas is used. The molten steel will be refluxed for at least 15 minutes by blowing in argon gas to adjust the components other than nitrogen.The flow rate of argon gas will be set to 5L/(min・ton) or more, and the upper limit of the flow rate of the gas injected into the molten steel will be set to 20L/(min. In the second half of the treatment, the pressure will be maintained at 300Pa or less, and the molten steel will be refluxed with nitrogen gas alone or with a mixture of gases. It is disclosed that the determination is based on an analytical value.

特許文献2は、溶鋼中窒素濃度の調整方法において、真空脱ガス装置における溶鋼中の窒素濃度を、従来より精度良く調整可能にすることを目的としている。
具体的には、真空脱ガス装置内に保持した溶鋼に窒素ガスを吹き込むと同時に、該溶鋼の平衡窒素濃度を達成する窒素分圧に該装置内を減圧して、溶鋼中窒素濃度を目標値に調整するに際して、前記調整の途上で、溶鋼の窒素濃度を迅速に測定し、該測定値をその時点での増加又は減少予定値と比較し、偏差を解消させるように、前記装置内の圧力を変更することが開示されている。
In a method for adjusting the nitrogen concentration in molten steel, Patent Document 2 aims to make it possible to adjust the nitrogen concentration in molten steel in a vacuum degassing device with higher accuracy than before.
Specifically, nitrogen gas is blown into the molten steel held in a vacuum degassing device, and at the same time, the pressure inside the device is reduced to a nitrogen partial pressure that achieves the equilibrium nitrogen concentration of the molten steel, thereby bringing the nitrogen concentration in the molten steel to the target value. During the adjustment, the nitrogen concentration in the molten steel is quickly measured, the measured value is compared with the expected increase or decrease value at that point, and the pressure in the device is adjusted so as to eliminate the deviation. It is disclosed that changes may be made.

特許文献3は、軸受材料とその製造方法において、鋼中酸素濃度が重量割合で10ppmという超清浄鋼を使った軸受材料の転動疲労寿命や圧砕強度を格段に向上させることができ、転がり軸受などの寿命を向上させることを目的としている。
具体的には、転炉、電気炉または取鍋精錬装置において、C濃度0.5mass%以上および/またはAl濃度0.005mass%以上の溶鋼中に窒素ガスを吹き込んで、溶鋼中の窒素濃度を120ppm以上に上昇させた後、RH式真空脱ガス装置において、30分以上ArまたはAr+窒素を吹込み、次いで脱窒素、脱酸素処理を行い、その後、溶鋼を連続鋳造し、得られた鋳片を熱間圧延する際、1200℃以上での均熱時間を15時間以下の加熱を行うことを特徴とする軸受材料の製造方法を提案することが開示されている。
Patent Document 3 describes a bearing material and its manufacturing method that can significantly improve the rolling fatigue life and crushing strength of a bearing material using ultra-clean steel with an oxygen concentration of 10 ppm by weight, and is capable of significantly improving rolling bearing fatigue life and crushing strength. The aim is to improve the lifespan of
Specifically, in a converter, electric furnace, or ladle refining device, nitrogen gas is blown into molten steel with a C concentration of 0.5 mass% or more and/or an Al concentration of 0.005 mass% or more to raise the nitrogen concentration in the molten steel to 120 ppm or more. After raising the temperature to 100%, Ar or Ar+Nitrogen is blown into the RH type vacuum degassing equipment for 30 minutes or more, followed by denitrification and deoxidation treatment.Then, the molten steel is continuously cast, and the resulting slab is heated. It is disclosed that a method for manufacturing a bearing material is proposed, which is characterized in that during rolling, the soaking time is 15 hours or less at 1200° C. or higher.

特許文献4は、溶鋼の真空脱ガス処理方法において、最適脱酸後時間で処理することにより、溶鋼溶精段階で脱酸生成物量を極小化することができ、脱酸生成物を起因とする介在物発生量を限りなく少なくした清浄鋼を製造することを目的としている。
具体的には、真空脱ガス処理の溶鋼中に合金元素を添加して成分調整を行い、その後介在物の浮上時間を確保することにより、清浄鋼を製造するに際して溶鋼中介在物量及び窒素、珪素、スラグ中の酸化物量を測定して、一次脱酸生成物の浮上量及び二次酸化生成物の生成量を定量化し、これに基いて溶鋼中の介在物量を(一次脱酸生成物浮上残量)+(二次酸化生成物)で求め、これと目標とする許容上限量と比較し、その差に応じて脱酸剤投入後の溶鋼攪拌・揺動処理時間を決定し処理することが開示されている。
Patent Document 4 discloses that in a vacuum degassing treatment method for molten steel, the amount of deoxidation products can be minimized at the molten steel melting stage by performing the treatment at an optimal post-deoxidation time, and the amount of deoxidation products can be attributed to the deoxidation products. The aim is to produce clean steel with minimal inclusions.
Specifically, alloying elements are added to molten steel during vacuum degassing treatment to adjust the composition, and then by ensuring the floating time of inclusions, the amount of inclusions and nitrogen and silicon content in molten steel can be reduced when manufacturing clean steel. , the amount of oxides in the slag is measured, the floating amount of primary deoxidation products and the amount of secondary oxidation products generated are quantified, and based on this, the amount of inclusions in molten steel (the amount of floating residue of primary deoxidation products) is determined. amount) + (secondary oxidation product), compare this with the target allowable upper limit amount, and determine the molten steel stirring/swinging treatment time after adding the deoxidizer according to the difference. Disclosed.

特開2013-224461号公報JP2013-224461A 特開2000-034513号公報Japanese Patent Application Publication No. 2000-034513 特開2005-272953号公報Japanese Patent Application Publication No. 2005-272953 特開平4-045220号公報Japanese Unexamined Patent Publication No. 4-045220

ところで、特許文献1は、前半の処理工程において、単独でアルゴンガスを吹き込む、或いは、アルゴンガスと窒素ガスとの混合ガスを吹き込んでいる。しかしながら、本発明は鋼中窒素濃度を所定範囲内に調整することを対象としている。そのため、同文献の技術では、所定の[N]範囲まで[N]を上昇させにくい可能性がある。
特許文献2は、例えば、[N]を150ppmに適用させた場合、真空槽内の圧力を大きく上昇させる必要がある。その場合、溶鋼の環流量が大きく低下してしまう虞や、真空槽内へ溶鋼が上昇せず環流できない虞がある。つまり、RH処理が不可能となる。
By the way, in Patent Document 1, in the first half of the treatment process, argon gas is blown alone or a mixed gas of argon gas and nitrogen gas is blown. However, the present invention is directed to adjusting the nitrogen concentration in steel within a predetermined range. Therefore, with the technique of the same document, it may be difficult to increase [N] to a predetermined [N] range.
In Patent Document 2, for example, when applying [N] to 150 ppm, it is necessary to significantly increase the pressure within the vacuum chamber. In that case, there is a possibility that the amount of molten steel that is returned to the molten steel will be greatly reduced, or that the molten steel will not rise into the vacuum chamber and cannot be recirculated. In other words, RH processing becomes impossible.

特許文献3は、窒素ガス吹き込みの目的が清浄化であるが、溶鋼中の窒素濃度を120ppm以上に上昇させるだけであり、[N] の制御に関する開示や示唆が無く、[N]の制御を行う(鋼中窒素濃度を所定の範囲内にする)ことが非常に困難である。
特許文献4は、[N]を測定した後に清浄化のための処理時間を決定するのみであり、[N]の制御に関する開示や示唆が無く、[N]の制御を行うことが非常に困難である。
In Patent Document 3, the purpose of nitrogen gas blowing is cleaning, but it only increases the nitrogen concentration in molten steel to 120 ppm or more, and there is no disclosure or suggestion regarding the control of [N]. (keeping the nitrogen concentration in steel within a predetermined range) is extremely difficult.
Patent Document 4 only determines the processing time for cleaning after measuring [N], and there is no disclosure or suggestion regarding the control of [N], making it extremely difficult to control [N]. It is.

つまり、RH処理において、清浄度を要する窒素含有鋼の溶製するに際しては、鋼材の硬さ、靭性、強度などを満たすために、鋼中窒素濃度や清浄度を調整する必要がある。
そこで、本発明は、上記問題点に鑑み、高清浄窒素含有鋼を溶製するに際して、RH処理中の鋼中窒素濃度に応じてRH処理条件を変更することで、窒素含有鋼の鋼中窒素濃度を目標の所定範囲内に精度良く調整することができるとともに、鋼材の清浄度を向上させることができる高清浄窒素含有鋼の溶製方法、および、その溶製方法で製造された窒素含有鋼を提供することを目的とする。
That is, in the RH treatment, when producing nitrogen-containing steel that requires cleanliness, it is necessary to adjust the nitrogen concentration and cleanliness in the steel in order to satisfy the hardness, toughness, strength, etc. of the steel material.
Therefore, in view of the above-mentioned problems, the present invention aims to improve the nitrogen content of nitrogen-containing steel by changing the RH treatment conditions according to the nitrogen concentration in the steel during RH treatment when producing highly clean nitrogen-containing steel. A method for manufacturing highly clean nitrogen-containing steel that can accurately adjust the concentration within a target predetermined range and improve the cleanliness of steel materials, and a nitrogen-containing steel manufactured by the method. The purpose is to provide

上記の目的を達成するため、本発明においては以下の技術的手段を講じた。
本発明にかかる高清浄窒素含有鋼の溶製方法は、[C]を0.03質量%以上含有し且つ、目標の窒素濃度が70ppm~150ppmである窒素含有鋼を溶製するに際し、RH真空脱ガス工程において、以下の(a1)~(b7)に示す手順で溶製することを特徴とする。
(a1)
処理装置内の溶鋼に対してRH処理中の溶鋼中窒素濃度の変化と、RH処理条件との関係(1)を求める。
(a2)
関係(1)から推定される前記溶鋼中窒素濃度と操業実績の溶鋼中窒素濃度との差を算出し、当該差分とRH処理時間との関係(2)を求める。
(b1)
溶鋼中の目標窒素濃度と、当該目標窒素濃度の範囲を設定する。
(b2)
RH処理中にて任意のタイミングで、溶鋼中窒素濃度を確認する。
(b3)
前記(a1)で求めた関係(1)を用いて、RH処理条件を設定する。
(b4)
前記(a2)で求めた関係(2)を用いて、前記(b3)で設定したRH処理条件に基づいてRH処理を実施した際における、残りのRH処理時間trと、溶鋼中窒素濃度が前記(b1)で設定した目標窒素濃度の範囲を外れるまでの時間tmとの関係を確認し、前記(b3)のRH処理条件で処理する。
(b5)
tr≧tmとなる場合、溶鋼中窒素濃度が前記(b1)で設定した目標窒素濃度の範囲を外れる時間Tmのタイミングで溶鋼中窒素濃度を確認する。
(b6)
tr<tmとなる場合、前記(b3)のRH処理条件で処理を続行する。
(b7)
溶鋼中窒素濃度が前記(b1)で設定した目標窒素濃度を満足するまで、前記(b3)~(b6)の手順を1回以上実施する。
In order to achieve the above object, the following technical measures were taken in the present invention.
The method for producing highly clean nitrogen-containing steel according to the present invention includes RH vacuum degassing when producing nitrogen-containing steel containing 0.03% by mass or more of [C] and a target nitrogen concentration of 70 ppm to 150 ppm. The process is characterized in that it is produced in accordance with the steps shown in (a1) to (b7) below.
(a1)
The relationship (1) between the change in the nitrogen concentration in the molten steel during the RH treatment and the RH treatment conditions is determined for the molten steel in the treatment equipment.
(a2)
The difference between the nitrogen concentration in the molten steel estimated from the relationship (1) and the nitrogen concentration in the molten steel in the actual operation is calculated, and the relationship (2) between the difference and the RH treatment time is determined.
(b1)
A target nitrogen concentration in molten steel and a range of the target nitrogen concentration are set.
(b2)
Check the nitrogen concentration in the molten steel at any time during the RH treatment.
(b3)
The RH processing conditions are set using the relationship (1) obtained in (a1) above.
(b4)
Using the relationship (2) obtained in (a2) above, the remaining RH treatment time tr and the nitrogen concentration in molten steel when carrying out the RH treatment based on the RH treatment conditions set in (b3) above are calculated as follows. The relationship with the time tm until the target nitrogen concentration falls outside the range set in (b1) is confirmed, and processing is performed under the RH processing conditions of (b3) above.
(b5)
When tr≧tm, the nitrogen concentration in the molten steel is checked at the time Tm when the nitrogen concentration in the molten steel deviates from the target nitrogen concentration range set in (b1) above.
(b6)
If tr<tm, the process is continued under the RH process condition of (b3) above.
(b7)
The steps (b3) to (b6) are carried out one or more times until the nitrogen concentration in the molten steel satisfies the target nitrogen concentration set in (b1) above.

好ましくは、[C]を0.03質量%以上含有し且つ、目標の窒素濃度が70ppm~150ppmである高清浄窒素含有鋼を溶製するに際し、RH真空脱ガス工程において、さらに以下の(c1)~(d4)に示す手順で溶製するとよい。
(c1)
前記溶鋼中窒素濃度の変化量Δ[N]と、前記溶鋼の清浄度の関係(3)を求める。
(d1)
RH処理工程をI期:清浄化区間、II期:[N]調整区間に分ける。
(d2)
前記I期と、前記II期の処理時間を設定する。
(d3)
前記(c1)で求めた関係(3)を用いて、前記I期で必要なΔ[N]を設定し、前記I期での溶鋼中の目標窒素濃度と、当該目標窒素濃度の範囲を設定する。
(d4)
前記I期と、前記II期それぞれにおいて、前記(b1)~(b7)に示した手順で前記溶鋼に対してRH処理を行う。
Preferably, when producing highly clean nitrogen-containing steel containing 0.03% by mass or more of [C] and a target nitrogen concentration of 70 ppm to 150 ppm, the following (c1) to It is best to melt it using the procedure shown in (d4).
(c1)
The relationship (3) between the amount of change Δ[N] in the nitrogen concentration in the molten steel and the cleanliness of the molten steel is determined.
(d1)
The RH treatment process is divided into stage I: cleaning section and stage II: [N] adjustment section.
(d2)
Processing times for the I period and the II period are set.
(d3)
Using the relationship (3) obtained in (c1) above, set the necessary Δ[N] in the I period, and set the target nitrogen concentration in the molten steel in the I period and the range of the target nitrogen concentration. do.
(d4)
In each of the I period and the II period, the RH treatment is performed on the molten steel according to the steps shown in (b1) to (b7) above.

本発明にかかる窒素含有鋼は、上記の高清浄窒素含有鋼の溶製方法の手順に従って製造されることを特徴とする。 The nitrogen-containing steel according to the present invention is characterized in that it is manufactured according to the procedure of the above-described method for producing highly clean nitrogen-containing steel.

本発明によれば、高清浄窒素含有鋼を溶製するに際して、RH処理中の鋼中窒素濃度に応じてRH処理条件を変更することで、窒素含有鋼の鋼中窒素濃度を目標の所定範囲内に精度良く調整することができるとともに、鋼材の清浄度を向上させることができる。 According to the present invention, when producing highly clean nitrogen-containing steel, by changing the RH treatment conditions according to the nitrogen concentration in the steel during RH treatment, the nitrogen concentration in the nitrogen-containing steel is reduced to a target predetermined range. The cleanliness of the steel material can be improved.

RH式真空脱ガス処理装置の概略を模式的に示した図である。1 is a diagram schematically showing an outline of an RH type vacuum degassing processing apparatus. 関係(2)の導出に用いたデータをまとめた図である。FIG. 3 is a diagram summarizing data used to derive relationship (2). 関係(3)の導出に用いたデータをまとめた図である。FIG. 3 is a diagram summarizing data used for deriving relationship (3). 溶鋼中の予測窒素濃度の推移を示した図である。FIG. 3 is a diagram showing the transition of predicted nitrogen concentration in molten steel. 溶鋼中の予測窒素濃度の推移を示した図である。FIG. 3 is a diagram showing the transition of predicted nitrogen concentration in molten steel. 溶鋼中の予測窒素濃度の推移を示した図である。FIG. 3 is a diagram showing the transition of predicted nitrogen concentration in molten steel. 溶鋼中の予測窒素濃度の推移を示した図である。FIG. 3 is a diagram showing the transition of predicted nitrogen concentration in molten steel. 本発明による溶鋼中窒素濃度の制御精度を示した図である。FIG. 3 is a diagram showing the control accuracy of nitrogen concentration in molten steel according to the present invention. 本発明の高清浄窒素含有鋼の溶製方法のフローチャート図である。FIG. 2 is a flowchart of a method for producing highly clean nitrogen-containing steel of the present invention. 本発明の高清浄窒素含有鋼の溶製方法のフローチャート図である。FIG. 2 is a flowchart of a method for producing highly clean nitrogen-containing steel of the present invention.

以下、本発明にかかる高清浄窒素含有鋼の溶製方法、および、その溶製方法で製造された窒素含有鋼の実施形態を、図を参照して説明する。
なお、以下に説明する実施形態は、本発明を具体化した一例であって、その具体例をもって本発明の構成を限定するものではない。
本発明にかかる高清浄窒素含有鋼の溶製方法、および、その溶製方法で製造された窒素含有鋼は、RH工程の開始までに鋼中窒素濃度を高めておき、RH工程にて脱窒させたときに生成される窒素気泡によって、溶鋼2中の介在物を浮上させて分離することで、清浄化を促進する。さらに、RH処理途中の窒素分析値に応じてRH処理条件を変更することで、目標の窒素濃度への制御、および、清浄化時の脱窒量の制御を両立させる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a method for manufacturing highly clean nitrogen-containing steel according to the present invention and a nitrogen-containing steel manufactured by the method will be described with reference to the drawings.
Note that the embodiment described below is an example of embodying the present invention, and the configuration of the present invention is not limited to the specific example.
The method for producing highly clean nitrogen-containing steel according to the present invention and the nitrogen-containing steel produced by the method include increasing the nitrogen concentration in the steel before the start of the RH process, and denitrifying it in the RH process. By the nitrogen bubbles generated when the molten steel is heated, inclusions in the molten steel 2 are floated and separated, thereby promoting cleaning. Furthermore, by changing the RH processing conditions according to the nitrogen analysis value during the RH processing, it is possible to control both the target nitrogen concentration and the amount of denitrification during cleaning.

具体的に、本発明は、[C]を0.03質量%以上含有し且つ、目標の窒素濃度が70ppm~150ppmである窒素含有鋼を溶製するに際して実施する技術である。
一方で、[C]<0.03質量%の鋼をRH処理して製造する場合は、処理中に溶鋼2が脱炭しながらCOガスを発生させるので、脱窒もされてしまう。そのため、本発明にかかる鋼中窒
素濃度を制御する技術を適用させることができない。したがって、[C]<0.03質量%の鋼は本発明の対象から除外する。
Specifically, the present invention is a technology implemented when melting nitrogen-containing steel containing 0.03% by mass or more of [C] and having a target nitrogen concentration of 70 ppm to 150 ppm.
On the other hand, when steel with [C]<0.03% by mass is produced by RH treatment, the molten steel 2 generates CO gas while being decarburized during the treatment, so that it is also denitrified. Therefore, the technique of controlling the nitrogen concentration in steel according to the present invention cannot be applied. Therefore, steel with [C]<0.03% by mass is excluded from the scope of the present invention.

ところで、溶鋼中窒素濃度は、鋼種毎に要求される硬さ、靱性、強度などに応じて、目標とする窒素濃度の範囲が予め定められており、この目標の範囲に収める必要がある。なお、溶製後の成分濃度が規格から外れた場合は、廃却となる。
また、RH処理(真空脱ガス処理)では、主に溶鋼2の成分調整や脱ガス処理が行われているが、これに加えて溶鋼2中の窒素濃度の調整が行われる場合がある。
By the way, a target nitrogen concentration range for the nitrogen concentration in molten steel is determined in advance according to the hardness, toughness, strength, etc. required for each type of steel, and it is necessary to keep the nitrogen concentration within this target range. In addition, if the component concentration after melting does not meet the specifications, it will be discarded.
Further, in the RH treatment (vacuum degassing treatment), the composition adjustment and degassing treatment of the molten steel 2 are mainly performed, but in addition to this, the nitrogen concentration in the molten steel 2 may be adjusted.

図1に、RH式真空脱ガス処理装置1(一般的なRH真空脱ガス工程)の概略を模式的に示す。
図1に示すように、RH式真空脱ガス処理装置1は、溶鋼2が装入される取鍋3と、真空状態となって溶鋼2内の脱ガスを行う真空槽4と、を有している。真空槽4の下部(底部)には、取鍋3内の溶鋼2に浸漬させる二本の浸漬管5が設けられている。この浸漬管5の一方側には、真空槽4へ向かう溶鋼2に対して、ガスを吹き込むガス吹込管6が設けられている。また、真空槽4の上部には、外部と連通し、当該真空槽4内のガスを外部へ排気する排気口7が設けられている。
FIG. 1 schematically shows an outline of an RH type vacuum degassing treatment apparatus 1 (general RH vacuum degassing process).
As shown in FIG. 1, the RH type vacuum degassing apparatus 1 includes a ladle 3 into which molten steel 2 is charged, and a vacuum chamber 4 in which the molten steel 2 is degassed in a vacuum state. ing. Two immersion pipes 5 are provided at the lower part (bottom) of the vacuum tank 4 to be immersed in the molten steel 2 in the ladle 3. A gas blowing tube 6 is provided on one side of the immersion tube 5 for blowing gas into the molten steel 2 heading toward the vacuum tank 4. Furthermore, an exhaust port 7 is provided at the top of the vacuum chamber 4 to communicate with the outside and to exhaust the gas in the vacuum chamber 4 to the outside.

真空脱ガス処理を行うにあたっては、まず、浸漬管5を取鍋3内の溶鋼2に浸漬させる。そして、ガス吹込管6からアルゴンガスや窒素ガスなどのガスを吹き込むと共に、排気口7から真空槽4内のガスを外部へ排気して、真空槽4内を略真空状態にしておき、溶鋼2を真空槽4と取鍋3との間で循環させる。このとき、溶鋼2の成分を調整するために、合金等を溶鋼2に供給する。このようにして、RH真空脱ガス処理が実施される。なお、RH式真空脱ガス処理装置1は、溶鋼2への撹拌力が大きく、溶鋼2中の介在物の凝集浮上分離効果が大きいため、清浄鋼の溶製に用いられることが多い。 In performing the vacuum degassing treatment, first, the immersion tube 5 is immersed in the molten steel 2 in the ladle 3. Then, a gas such as argon gas or nitrogen gas is blown into the gas blowing pipe 6, and the gas inside the vacuum chamber 4 is exhausted to the outside through the exhaust port 7 to keep the inside of the vacuum chamber 4 in a substantially vacuum state. is circulated between the vacuum chamber 4 and the ladle 3. At this time, an alloy or the like is supplied to the molten steel 2 in order to adjust the components of the molten steel 2. In this way, the RH vacuum degassing process is performed. Note that the RH type vacuum degassing treatment apparatus 1 has a large stirring force on the molten steel 2 and has a large agglomeration flotation effect on inclusions in the molten steel 2, so it is often used for melting clean steel.

本発明の高清浄窒素含有鋼の溶製方法は、RH真空脱ガス工程において、以下の(a1)~(b7)に示す手順で溶製する。
(a1)
処理装置1内の溶鋼2に対してRH処理中の溶鋼中窒素濃度の変化と、RH処理条件との関係(1)を求める。
In the method for producing highly clean nitrogen-containing steel of the present invention, steel is produced by the following steps (a1) to (b7) in the RH vacuum degassing step.
(a1)
The relationship (1) between the change in the nitrogen concentration in the molten steel during the RH treatment and the RH treatment conditions for the molten steel 2 in the processing apparatus 1 is determined.

ただし、溶鋼中窒素濃度を推定する「関係(1)」の求め方については、後述の実施例にて詳説する。
RH処理中の溶鋼中窒素濃度([N])は、RH処理条件(吹き込みガスの種類やガス流量、真空度)や溶鋼成分によって、[N]挙動、すなわち加[N]速度や脱[N]速度などが異なってくる。
However, how to obtain the "relationship (1)" for estimating the nitrogen concentration in molten steel will be explained in detail in Examples below.
The nitrogen concentration ([N]) in molten steel during RH treatment depends on the RH processing conditions (type of blown gas, gas flow rate, degree of vacuum) and molten steel composition, and changes in [N] behavior, that is, acceleration [N] rate and de[N] ]The speed etc. will be different.

窒素ガスの流量が多く且つ、真空槽4内の圧力が高いほど、見かけの平衡[N]は高くなる。一方で、窒素ガスの流量が少なく且つ、真空槽4内の圧力が低いほど、見かけの平衡[N]濃度は低くなる。また、溶鋼成分によっても、平衡[N]濃度や加[N]速度・脱[N]速度などが変化する。
以上のように、[N]挙動に及ぼす因子については多数あるので、[N]制御するためには、[N]挙動を精度良く推定することが重要となる。
(a2)
上記の(a1)で求めた関係(1)から推定される溶鋼中窒素濃度と、操業実績の溶鋼中窒素濃度との差(偏差)を算出し、当該差分とRH処理時間との関係(2)を求める。
The higher the flow rate of nitrogen gas and the higher the pressure inside the vacuum chamber 4, the higher the apparent equilibrium [N] becomes. On the other hand, the smaller the flow rate of nitrogen gas and the lower the pressure inside the vacuum chamber 4, the lower the apparent equilibrium [N] concentration becomes. In addition, the equilibrium [N] concentration, the [N] addition rate, the [N] removal rate, etc. change depending on the molten steel composition.
As described above, there are many factors that affect [N] behavior, so in order to control [N], it is important to accurately estimate [N] behavior.
(a2)
Calculate the difference (deviation) between the nitrogen concentration in molten steel estimated from the relationship (1) obtained in (a1) above and the nitrogen concentration in molten steel in the actual operation, and then calculate the relationship between the difference and the RH treatment time (2 ).

ただし、RH処理時間における溶鋼中窒素濃度のばらつきを示す「関係(2)」の求め方については、後述の実施例にて詳説する。
実操業において、例えば、RH処理装置1の真空槽4内の到達真空度や浸漬管からのエアリーク量などからくる処理のばらつきにより、窒素挙動が異なるので、推定した[N]値と操業実績の[N]値との間にズレが生じることがある。
However, how to obtain "Relationship (2)" indicating the variation in the nitrogen concentration in molten steel during the RH treatment time will be explained in detail in Examples below.
In actual operation, nitrogen behavior differs due to variations in processing caused by, for example, the ultimate vacuum in the vacuum chamber 4 of the RH treatment device 1 and the amount of air leakage from the immersion tube. There may be a discrepancy between the [N] value and the [N] value.

そこで、通常のRH処理の操業範囲内における[N]挙動のばらつきを、事前に把握しておく。すなわち、推定した[N]値と操業実績の[N]値との差(偏差)にかかる、RH処理を開始してからの時間依存性を、RH処理条件毎、溶鋼成分毎に定量化しておく。
(b1)
溶鋼2中の目標窒素濃度と、当該目標窒素濃度の範囲を設定する。
Therefore, the variation in [N] behavior within the operating range of normal RH processing should be understood in advance. In other words, the time dependence of the difference (deviation) between the estimated [N] value and the operational performance [N] value after the start of the RH treatment is quantified for each RH treatment condition and for each molten steel composition. put.
(b1)
A target nitrogen concentration in the molten steel 2 and a range of the target nitrogen concentration are set.

例えば、[N]規格などから溶鋼2中の目標窒素濃度と、その目標窒素濃度の範囲を設定する。
(b2)
RH処理中にて任意のタイミングで、溶鋼中窒素濃度を確認する。
例えば、取鍋3中の溶鋼2を、当業者常法通りでサンプリングする。処理の初期段階では、合金添加や酸素昇熱などにより処理条件が決まることから、それらの作業が終了して、[N]制御を開始するタイミングでサンプリングする。
(b3)
上記の(a1)で求めた関係(1)を用いて、RH処理条件を設定する。
For example, the target nitrogen concentration in the molten steel 2 and the range of the target nitrogen concentration are set based on the [N] standard.
(b2)
Check the nitrogen concentration in the molten steel at any time during the RH treatment.
For example, the molten steel 2 in the ladle 3 is sampled in a manner common to those skilled in the art. At the initial stage of processing, processing conditions are determined by alloy addition, oxygen heating, etc., so sampling is performed at the timing when these operations are completed and [N] control is started.
(b3)
The RH processing conditions are set using the relationship (1) obtained in (a1) above.

例えば、目標[N]やその目標[N]の範囲に収まるように、RH処理条件を設定する。
(b4)
上記の(a2)で求めた関係(2)を用いて、(b3)で設定したRH処理条件に基づいてRH処理を実施した際における、残りのRH処理時間trと、溶鋼中窒素濃度が(b1)で設定した制御目標の窒素濃度範囲を外れるまでの時間tmとの関係を確認し、(b3)のRH処理条件で処理する。
For example, the RH processing conditions are set to fall within the target [N] and the range of the target [N].
(b4)
Using the relationship (2) obtained in (a2) above, the remaining RH treatment time tr and the nitrogen concentration in molten steel when RH treatment is performed based on the RH treatment conditions set in (b3) are ( Check the relationship with the time tm until the nitrogen concentration falls outside the control target nitrogen concentration range set in b1), and perform processing under the RH processing conditions of (b3).

例えば、関係(1),(2)から求めた「溶鋼中窒素濃度のばらつきの時間推移」から、[N]が目標の窒素濃度範囲を外れるタイミング(詳細は後述する)を決定する。このタイミングでサンプリングするために、[N]推定値が制御目標の[N]範囲を外れるまでの時間をtmとし、残りの処理時間trとの関係を確認する。
(b5)
tr≧tmとなる場合、溶鋼中窒素濃度が(b1)で設定した目標窒素濃度の範囲を外れる時間Tmのタイミングで溶鋼中窒素濃度を確認する。
For example, the timing at which [N] deviates from the target nitrogen concentration range (details will be described later) is determined from the "time course of variation in nitrogen concentration in molten steel" obtained from relationships (1) and (2). In order to sample at this timing, let tm be the time until the [N] estimated value leaves the [N] range of the control target, and check the relationship with the remaining processing time tr.
(b5)
If tr≧tm, check the nitrogen concentration in the molten steel at the time Tm when the nitrogen concentration in the molten steel falls outside the range of the target nitrogen concentration set in (b1).

tr≧tm、すなわち[N]が目標窒素濃度の範囲を外れる場合、その目標となる[N]の範囲を外れる時間Tmのタイミングで、溶鋼2をサンプリングする。
(b6)
一方、tr<tmとなる場合、上記の(b3)で設定したRH処理条件で処理を続行する。
tr<tm、すなわち[N]が目標範囲内になる場合、処理終了まで、RH処理を続行する。
(b7)
溶鋼中窒素濃度が(b1)で設定した目標窒素濃度を満足するまで、(b3)~(b6)の手順を1回以上実施する。
When tr≧tm, that is, when [N] is outside the range of the target nitrogen concentration, the molten steel 2 is sampled at the timing of time Tm when [N] is outside the range of the target nitrogen concentration.
(b6)
On the other hand, if tr<tm, the process continues under the RH process conditions set in (b3) above.
If tr<tm, that is, [N] is within the target range, the RH process is continued until the process is completed.
(b7)
Perform steps (b3) to (b6) one or more times until the nitrogen concentration in the molten steel satisfies the target nitrogen concentration set in (b1).

つまり、(b3)~(b6)を繰り返し、必要となればその都度、RH処理条件を修正することによって、確実に[N]を目標の窒素濃度の範囲内に制御することができる。
さらに、[C]を0.03質量%以上含有し且つ、目標の窒素濃度が70ppm~150ppmである高清浄窒素含有鋼を溶製するに際し、RH真空脱ガス工程において、以下の(c1)~(d4)に示す手順で溶製するとよい。
That is, by repeating (b3) to (b6) and modifying the RH treatment conditions each time if necessary, [N] can be reliably controlled within the target nitrogen concentration range.
Furthermore, when producing highly clean nitrogen-containing steel containing 0.03% by mass or more of [C] and a target nitrogen concentration of 70ppm to 150ppm, the following (c1) to (d4) are applied in the RH vacuum degassing process. ).

なお、溶鋼2中の介在物の存在は、疲労寿命の低下などを招くため、介在物は極力少ない方がよい。
(c1)
溶鋼中窒素濃度の変化量Δ[N]と、溶鋼2の清浄度の関係(3)を求める。
ただし、脱[N]量と介在物の減少度合いを示す「関係(3)」の求め方については、後述の実施例にて詳説する。
Note that the presence of inclusions in the molten steel 2 causes a decrease in fatigue life, so it is better to have as few inclusions as possible.
(c1)
The relationship (3) between the amount of change in nitrogen concentration in molten steel Δ[N] and the cleanliness of molten steel 2 is determined.
However, how to obtain "Relationship (3)" indicating the amount of [N] removed and the degree of reduction of inclusions will be explained in detail in the Examples described later.

RH処理装置1の真空槽4内における溶鋼2の表面付近では、脱[N]時に窒素ガスの気泡が生成される。この生成した気泡は、介在物を捕捉して介在物を浮上させて分離を促進するため、溶鋼2の清浄度が向上する。
例えば、脱[N]量(Δ[N])が大きいほど、生成する窒素ガスの気泡数が増加したり、気泡径が大きくなるので、介在物を補足しやすくなるため、清浄化効果も大きくなる。
Near the surface of the molten steel 2 in the vacuum chamber 4 of the RH treatment device 1, nitrogen gas bubbles are generated during de[N]. The generated bubbles trap inclusions and float the inclusions to promote separation, thereby improving the cleanliness of the molten steel 2.
For example, the larger the amount of [N] removed (Δ[N]), the larger the number of bubbles of nitrogen gas generated and the larger the bubble diameter, which makes it easier to capture inclusions and the greater the cleaning effect. Become.

なお、清浄度の指標としては、介在物の個数、T.O濃度などが挙げられるが、清浄度に関する指標であれば、特に限定はしない。
(d1)
RH処理工程をI期:清浄化区間、II期:[N]調整区間に分ける。
本発明は、目標[N]を変化させながらRH処理を実施するため、RH工程を二区間に分割して、それぞれの区間ごとにRH処理条件を決定することが好ましい。
Indicators of cleanliness include the number of inclusions, TO concentration, etc., but are not particularly limited as long as they are indicators related to cleanliness.
(d1)
The RH treatment process is divided into stage I: cleaning section and stage II: [N] adjustment section.
In the present invention, since the RH process is performed while changing the target [N], it is preferable to divide the RH process into two sections and determine the RH process conditions for each section.

まず、I期では、(c1)で求めた関係(3)に基づく脱[N]量が得られるようにRH処理をし、清浄化処理を実施する。次に、II期では、処理後[N]を目標[N]又は目標[N]範囲内に制御することができるように、RH処理を実施する。
(d2)
I期と、II期の処理時間を設定する。
First, in the I period, the RH process is performed so that the amount of [N] removed based on the relationship (3) obtained in (c1) is obtained, and the cleaning process is performed. Next, in the II period, RH processing is performed so that the post-processing [N] can be controlled to the target [N] or within the target [N] range.
(d2)
Set the processing time for period I and period II.

RHの処理時間については、前工程(転炉や二次精錬など)と、後工程(二次精錬や連続鋳造など)により決定される。なお、RHの処理時間を延長する場合は、後工程の開始時間を遅らせる必要がある。例えば、連続鋳造工程では、鋳造速度を落とすなどの対応が必要となる。対応をとっても追随しない場合は、連々切れ(連続鋳造が中断すること)となり、生産性や歩留の低下を招いてしまう可能性がある。 The RH processing time is determined by the front process (converter, secondary refining, etc.) and the post process (secondary refining, continuous casting, etc.). Note that when extending the RH treatment time, it is necessary to delay the start time of the post-process. For example, in a continuous casting process, it is necessary to take measures such as slowing down the casting speed. If the countermeasures are not followed, it may result in continuous breakage (interruption of continuous casting), resulting in a decrease in productivity and yield.

すなわち、決められた時間でRH処理を終了させ且つ、I期とII期のそれぞれの役割を実施することができるように、I期とII期の処理時間をそれぞれ設定する必要がある。
処理時間を設定する方法としては、例えば、関係(1)から処理時間を設定しておく方法、過去の実績から処理時間を設定する方法などが考えられるが、どのような設定方法を採用しても構わない。
(d3)
上記の(c1)で求めた関係(3)を用いて、I期で必要なΔ[N]を設定し、I期での溶鋼中の目標窒素濃度(目標[N])と、当該目標窒素濃度の範囲を設定する。
That is, it is necessary to set the processing times for the I period and the II period so that the RH process can be completed at a predetermined time and the roles of the I period and II period can be performed.
Possible methods for setting the processing time include, for example, setting the processing time based on relationship (1), or setting the processing time based on past results, but which setting method should be used? I don't mind.
(d3)
Using the relationship (3) obtained in (c1) above, set the necessary Δ[N] in the I period, and calculate the target nitrogen concentration in the molten steel in the I period (target [N]) and the target nitrogen concentration in the I period. Set the concentration range.

I期における目標[N]を設定するために、Δ[N](脱[N]量)を設定しておく。そのΔ[N]を達成するため、I期の目標[N]と目標[N]範囲を設定する。
I期の目標[N]および目標[N]範囲を設定する方法としては、例えば、RH処理中に分析した溶鋼中[N]から設定する方法、過去実績から設定する方法などが考えられるが、どのような設定方法を採用しても構わない。
(d4)
I期と、II期それぞれにおいて、(b1)~(b7)に示した手順で溶鋼2に対してRH処理を行う。
In order to set the target [N] in the I period, Δ[N] (the amount of [N] removed) is set. In order to achieve that Δ[N], set the target [N] and target [N] range for the I period.
Possible methods for setting the target [N] and target [N] range for period I include, for example, setting it from [N] in molten steel analyzed during RH treatment, or setting it from past results. Any setting method may be used.
(d4)
In each of the I stage and II stage, RH treatment is performed on the molten steel 2 according to the procedures shown in (b1) to (b7).

つまり、I期とII期それぞれの目標[N]になるように、(b1)~(b7)に示した手順で[N]制御する。
[実施例]
以下に、本発明の高清浄窒素含有鋼の溶製方法に従って実施した実施例及び、本発明と比較するために実施した比較例について、説明する。
In other words, [N] control is performed according to the procedures shown in (b1) to (b7) so that the target [N] for each of the I period and the II period is achieved.
[Example]
Examples carried out in accordance with the method for producing highly clean nitrogen-containing steel of the present invention and comparative examples carried out for comparison with the present invention will be described below.

本実施例における実施条件については、以下の通りである。
表1に、本実施例における実施条件について示す。
The implementation conditions in this example are as follows.
Table 1 shows the implementation conditions in this example.

Figure 2023160452000002
Figure 2023160452000002

まず、関係(1)の導出について、詳説する。
本実施例においては、特許第5836187号公報に開示されている窒素濃度計算モデルを、関係(1)として使用した。
以下に、窒素濃度計算モデルの詳細を示す。なお、関係(1)については、下記に例示する窒素濃度計算モデルに限定しない。例えば、他のモデルや実績値から導いた関係を用いても構わない。
<窒素濃度計算モデル>
RH処理における溶鋼中窒素濃度は、取鍋3~真空槽4内の物質収支から算出でき、真空槽4内における溶鋼中窒素濃度の変化を示す[1]式と、取鍋3内における溶鋼中窒素濃度の変化を示す[2]式で表される。
First, the derivation of relation (1) will be explained in detail.
In this example, the nitrogen concentration calculation model disclosed in Japanese Patent No. 5,836,187 was used as the relationship (1).
The details of the nitrogen concentration calculation model are shown below. Note that the relationship (1) is not limited to the nitrogen concentration calculation model illustrated below. For example, relationships derived from other models or actual values may be used.
<Nitrogen concentration calculation model>
The nitrogen concentration in the molten steel in the RH treatment can be calculated from the mass balance in the ladle 3 to the vacuum chamber 4, and is calculated using the equation [1] that shows the change in the nitrogen concentration in the molten steel in the vacuum chamber 4 and the concentration in the molten steel in the ladle 3. It is expressed by equation [2] which shows the change in nitrogen concentration.

Figure 2023160452000003
Figure 2023160452000003

Figure 2023160452000004
Figure 2023160452000004

ここで、
[N]L:取鍋3内の[N]濃度(mass%)
[N]V:真空槽4内の[N]濃度(mass%)
VL:取鍋内溶鋼量(m3)
VV:真空槽内溶鋼量(=3m3)
t:時間(min)
RS:溶鋼2の浴表面における脱[N]速度(%/min)
RAr:環流Arガス気泡界面における脱[N]速度(%/min)
RN2:環流N2ガス気泡界面における加[N]あるいは脱[N]速度(%/min)
Rleak:漬漬管5からの大気侵入による吸[N]速度(%/min)
である。
here,
[N] L : [N] concentration in ladle 3 (mass%)
[N] V : [N] concentration in vacuum chamber 4 (mass%)
V L : Volume of molten steel in ladle (m 3 )
V V : Volume of molten steel in vacuum chamber (=3m 3 )
t: Time (min)
R S : [N] removal rate (%/min) at the bath surface of molten steel 2
R Ar : De[N] rate at the reflux Ar gas bubble interface (%/min)
R N2 : Addition [N] or de[N] rate at the reflux N2 gas bubble interface (%/min)
R leak : absorption [N] rate (%/min) due to atmospheric intrusion from submerged tube 5
It is.

なお、溶鋼2の環流量Q(m3/min)については、参考文献:「桑原ら:鉄と鋼, 73(1987) S176」に記載されている[3]式を用いて算出する。 Note that the recirculation flow rate Q (m 3 /min) of the molten steel 2 is calculated using the formula [3] described in the reference document: "Kuwabara et al.: Tetsu-to-Hagane, 73 (1987) S176".

Figure 2023160452000005
Figure 2023160452000005

ここで、
Qg:吹込みガス流量(NL/min)
D:浸漬管5の径(m)
P0:環流ガス吹込位置の圧力(atm)
PV:真空槽4内の圧力(atm)
ρFe:溶鋼密度(=7ton/m3)
である。
here,
Q g : Blowing gas flow rate (NL/min)
D: Diameter of immersion tube 5 (m)
P 0 : Pressure at the reflux gas injection position (atm)
P V : Pressure inside vacuum chamber 4 (atm)
ρ Fe : Molten steel density (=7ton/m 3 )
It is.

RSは、溶鋼2側のNの物質移動と、溶鋼2の浴表面でのNの化学反応の混合律速と仮定すると、RSは以下の[4]式のように表される。 Assuming that R S is a rate-determining mixture of the mass transfer of N on the molten steel 2 side and the chemical reaction of N on the bath surface of the molten steel 2, R S is expressed as the following equation [4].

Figure 2023160452000006
Figure 2023160452000006

ここで、
AS:溶鋼2の浴表面における反応界面積(m2)
[N]i,S:溶鋼の浴表面での[N]濃度(%)
[N]e,S:真空槽4内の雰囲気と平衡する[N]濃度(%)
km:溶鋼2中におけるNの物質移動係数(m/min)
kr:Nの化学反応速度定数(m/(min/%))
であり、[4]式から[N]i,Sを消去して整理すると、RSは[5]式のように表される。
here,
A S : Reaction interface area on the bath surface of molten steel 2 (m 2 )
[N] i,S : [N] concentration (%) at the bath surface of molten steel
[N] e,S : [N] concentration (%) in equilibrium with the atmosphere inside the vacuum chamber 4
k m : Mass transfer coefficient of N in molten steel 2 (m/min)
k r :N chemical reaction rate constant (m/(min/%))
When [N] i,S is deleted from the formula [4] and rearranged, R S is expressed as the formula [5].

Figure 2023160452000007
Figure 2023160452000007

RArも同様に、溶鋼2側のNの物質移動と、Arガス気泡界面でのNの化学反応の混合律速と仮定すると、RArは以下の[6]式のように表される。 Similarly, R Ar is expressed as the following equation [6], assuming that the mass transfer of N on the molten steel 2 side and the chemical reaction of N at the Ar gas bubble interface are rate-determining mixtures.

Figure 2023160452000008
Figure 2023160452000008

ここで、
AAr:Ar気泡表面における反応界面積(m2)
[N]e,Ar:Ar気泡界面において平衡する[N]濃度(%)
である。
RN2も同様に表すことができるが、気泡内のN2分圧は、N2吹込位置から真空槽4内の溶鋼2の浴表面に向かうにしたがって小さくなるため、加[N]あるいは脱[N]の速度が異なる。このことより、N2吹込位置付近では加[N]となり、溶鋼2の浴表面付近では脱[N]となる。
here,
A Ar : Reaction interfacial area on Ar bubble surface (m 2 )
[N] e,Ar : [N] concentration (%) in equilibrium at the Ar bubble interface
It is.
R N2 can be expressed in the same way, but the N 2 partial pressure inside the bubble decreases from the N 2 injection position toward the bath surface of the molten steel 2 in the vacuum chamber 4. N] have different speeds. Therefore, near the N 2 injection position, [N] is added, and near the bath surface of the molten steel 2, [N] is removed.

そこで、吹込位置での加[N]速度と溶鋼2の浴表面での脱[N]速度の差を、N2気泡全界面における加[N]、あるいは脱[N]速度と考える([7]式)。 Therefore, the difference between the acceleration [N] rate at the blowing position and the de-[N] rate at the bath surface of molten steel 2 is considered to be the acceleration [N] or de-[N] rate at the entire N2 bubble interface ([7 ]formula).

Figure 2023160452000009
Figure 2023160452000009

ここで、
AN2:N2気泡表面における反応界面積(m2)
[N]e,O,N2:吹込位置にあるN2気泡界面において平衡する[N]濃度(%)
[N]e,S,N2:溶鋼2の浴表面にあるN2気泡界面において平衡する[N]濃度(%)
である。
here,
A N2 : Reaction interfacial area on the surface of N2 bubbles (m 2 )
[N] e,O,N2 : [N] concentration (%) equilibrated at the N2 bubble interface at the injection position
[N] e,S,N2 : [N] concentration (%) in equilibrium at the N2 bubble interface on the bath surface of molten steel 2
It is.

また、[N]e,Sについては、[8]式より求める。 Furthermore, [N] e,S is obtained from equation [8].

Figure 2023160452000010
Figure 2023160452000010

ここで、
PN2,S:溶鋼2の浴表面でのN2分圧(atm)
fN:Nの活量係数
T:溶鋼温度(K)
R:気体定数
である。
here,
P N2,S : N2 partial pressure at the bath surface of molten steel 2 (atm)
f N :Activity coefficient of N
T: Molten steel temperature (K)
R: Gas constant.

なお、PN2,Sについては、真空槽4内の真空度PVと同じであり、PN2,S=PVとする。
[N]e,Ar:Ar気泡界面において平衡する[N]濃度(%)も、同様に[9]式より求めるが、Ar気泡内の窒素分圧PN2,Arは0となるので、結果として、[N]e,Ar=0である。
Note that P N2,S is the same as the degree of vacuum PV in the vacuum chamber 4, and P N2,S =P V.
[N] e,Ar : The [N] concentration (%) that equilibrates at the Ar bubble interface is also found from equation [9], but since the nitrogen partial pressure P N2,Ar in the Ar bubble is 0, the result is As, [N] e,Ar =0.

Figure 2023160452000011
Figure 2023160452000011

[N]e,O,N2については、[10]式より求める。なお、[10]式中のP0,N2は、溶鋼2の浴表面から吹込位置までの溶鋼2の静圧が真空槽内4の圧力に加わると考え、[12]式より求める。
また、[N]e,S,N2については、[11]式より求める。なお、PS,N2は、真空槽4内の圧力と同じとし、PS,N2=PVとする。
[N] e, O, and N2 are obtained from formula [10]. Note that P 0,N2 in the formula [10] is calculated from the formula [12], considering that the static pressure of the molten steel 2 from the bath surface to the injection position is added to the pressure in the vacuum chamber 4.
Moreover, [N] e, S, N2 is obtained from equation [11]. Note that P S,N2 is the same as the pressure inside the vacuum chamber 4, and P S,N2 =P V.

Figure 2023160452000012
Figure 2023160452000012

Figure 2023160452000013
Figure 2023160452000013

Figure 2023160452000014
Figure 2023160452000014

ここで、
l:溶鋼2の浴表面から吹込位置までの距離(m)
g:重力加速度(=9.8m/sec2)
である。
また、[8]式~[12]式中に示される、窒素の活量係数fNについては、[13]式より求める。
here,
l: Distance from the bath surface of molten steel 2 to the injection position (m)
g: Gravitational acceleration (=9.8m/sec 2 )
It is.
Further, the nitrogen activity coefficient f N shown in equations [8] to [12] is determined from equation [13].

Figure 2023160452000015
Figure 2023160452000015

eN jは、Nの成分jに対する相互作用助係数であり、表2の値(参考文献:「日本学術振興会製鋼第19委員会, 製鋼反応の推奨平衡値, 1984年」)を用いた。なお、[%j]は、成分jの濃度(mass%)である。
表2に、N、O、Sの成分jに対する相互作用助係数を示す。
e N j is the interaction coefficient for component j of N, and the values in Table 2 (Reference: "Japan Society for the Promotion of Science, 19th Committee on Steelmaking, Recommended Equilibrium Values for Steelmaking Reactions, 1984") were used. . Note that [%j] is the concentration (mass%) of component j.
Table 2 shows the interaction coefficients for component j of N, O, and S.

Figure 2023160452000016
Figure 2023160452000016

kr:[N]の化学反応速度定数(m/(min/%))については、参考文献:「原島ら:鉄と鋼, 73(1987)1559」に記載の式[14]より求める。 The chemical reaction rate constant (m/(min/%)) of k r :[N] is determined from the formula [14] described in the reference document: "Harashima et al.: Tetsu to Hagane, 73 (1987) 1559".

Figure 2023160452000017
Figure 2023160452000017

fOは、Oの活量係数であり、[13]式と同様に、[15]式より求める。また、fSは、Sの活量係数であり、[13]式と同様に、[16]式より求める。 f O is the activity coefficient of O, and is obtained from equation [15] in the same way as equation [13]. Further, f S is the activity coefficient of S, and is obtained from equation [16] in the same way as equation [13].

Figure 2023160452000018
Figure 2023160452000018

Figure 2023160452000019
Figure 2023160452000019

eN j,eS jについては、それぞれOおよびSの成分jに対する相互作用助係数で、表2の値を用いた。
また、AAr,AN2については、それぞれ、QgAr,QgN2の2/3乗に比例するとし、[17]式、[18]式より求めた。なお、αArN2は、それぞれの比例定数である。
For e N j and e S j , the values in Table 2 were used as interaction coefficients for component j of O and S, respectively.
Furthermore, A Ar and A N2 were determined from equations [17] and [18], assuming that they are proportional to the 2/3 power of Q gAr and Q gN2 , respectively. Note that α Ar and α N2 are respective proportionality constants.

Figure 2023160452000020
Figure 2023160452000020

Figure 2023160452000021
Figure 2023160452000021

ここで、
QgAr:吹込みArガス流量(Nm3/min)
QgN2:吹込みN2ガス流量(Nm3/min)
である。
漬漬管5からの大気侵入による吸[N]速度Rleak(%/min) については、[19]式より求めた。また、Qleakについては、浸漬管5の内径やフランジ構造などが異なるが、参考文献:「加藤ら:鉄と鋼, 83(1997)18」にて導出されている0.17Nm3/minを用いた。なお、MN2は、Nの分子量(=28)である。
here,
Q gAr : Ar gas flow rate (Nm 3 /min)
Q gN2 : Injection N2 gas flow rate (Nm 3 /min)
It is.
The [N] absorption rate R leak (%/min) due to air entering from the submerged tube 5 was determined from equation [19]. Regarding Q leak , although the inner diameter and flange structure of the immersion pipe 5 are different, we used 0.17Nm 3 /min derived in the reference document: "Kato et al.: Tetsu to Hagane, 83 (1997) 18". there was. Note that M N2 is the molecular weight of N (=28).

Figure 2023160452000022
Figure 2023160452000022

以上述べた算出過程の中で、未知の値はkmSArN2である。Nは溶鋼中で速やかに移動し、物質移動律速とならないと考え、kmは大きな値である10000に固定した。αSArN2は、最小二乗法を用いて、真空度、酸素昇熱有無、ガス種別に、RH処理における溶鋼中[N]の時間変化を実測した値と、計算値が最も近くなるように求めた。これらの値を求めるにあたっては、表3の値を使用した。 In the calculation process described above, the unknown values are km , α S , α Ar , and α N2 . Considering that N moves quickly in molten steel and is not rate-limiting for mass transfer, km was fixed at a large value of 10,000. α S , α Ar , α N2 are calculated using the least squares method, and the calculated values are based on the degree of vacuum, presence or absence of oxygen heating, and gas type. I asked him to come closer. In determining these values, the values in Table 3 were used.

表3に、使用したパラメータ値を示す。 Table 3 shows the parameter values used.

Figure 2023160452000023
Figure 2023160452000023

次に、関係(2)の導出について、詳説する。
図2に、関係(2)の導出に用いたデータをまとめたグラフを示す。
一定のRH処理条件の下でRH処理を行い、任意のタイミングで溶鋼中窒素濃度を分析した。また、同じタイミングの溶鋼中窒素濃度を関係(1)から算出した。
図2に示すように、関係(1)の推定[N]値と操業実績[N]値との差(偏差)と、RH処理時間の関係を求めた。
Next, the derivation of relation (2) will be explained in detail.
FIG. 2 shows a graph summarizing the data used to derive relationship (2).
The RH treatment was performed under constant RH treatment conditions, and the nitrogen concentration in the molten steel was analyzed at arbitrary timing. Further, the nitrogen concentration in molten steel at the same timing was calculated from relationship (1).
As shown in FIG. 2, the relationship between the difference (deviation) between the estimated [N] value and the actual operation [N] value in relationship (1) and the RH processing time was determined.

ここでさらに、原点を通り、傾きが最大となるように各処理時間での最大値にて近似直線(本実施例では、11分、17分、19分の最大値で近似直線を算出した。)を引くと、0.93ppm/minで偏差(ばらつき)が拡大する関係(2)が得られた。
なお、関係(2)について、図2は一例であり、これに限定しない。
さらに、関係(3)の導出について、詳説する。
Here, an approximate straight line passing through the origin and using the maximum value of each processing time so that the slope becomes the maximum (in this example, an approximate straight line was calculated using the maximum value of 11 minutes, 17 minutes, and 19 minutes). ), relationship (2) was obtained in which the deviation (dispersion) increases at 0.93 ppm/min.
Note that regarding relationship (2), FIG. 2 is an example, and the relationship is not limited to this.
Furthermore, the derivation of relation (3) will be explained in detail.

図3に、関係(3)の導出に用いたデータをまとめたグラフを示す。
図3に示すように、溶鋼中窒素濃度の変化量Δ[N](ppm)と、介在物個数減少速度定数(/min)から関係(3)を求めた。ただし、Δ[N]については、処理前の溶鋼中窒素濃度と、RH処理10分における溶鋼中窒素濃度との差とした。
介在物個数については、RH処理中に取鍋3内から溶鋼2のサンプルを採取し、そのサンプルの検鏡面において、FE-EPMAにて1cmあたりの5μm以上の酸化物系介在物個数を評価した。
FIG. 3 shows a graph summarizing the data used to derive relationship (3).
As shown in FIG. 3, relationship (3) was determined from the amount of change Δ[N] (ppm) in the nitrogen concentration in molten steel and the inclusion number reduction rate constant (/min). However, Δ[N] was the difference between the nitrogen concentration in the molten steel before treatment and the nitrogen concentration in the molten steel after 10 minutes of RH treatment.
Regarding the number of inclusions, a sample of molten steel 2 was taken from inside the ladle 3 during the RH treatment, and the number of oxide-based inclusions of 5 μm or more per 1 cm 2 was evaluated using FE-EPMA on the microscopic surface of the sample. did.

また、介在物個数低減速度定数k(/min)については、RH処理時間をt(min)とし、処理前の介在物個数をx0(個/cm2)とし、処理時間t(min)での介在物個数をxt(個/cm2)として、
RH10分におけるkを以下の式で算出した。
k=-1/t×ln(xt/x0)
このように、Δ[N]=-28ppm以下で、介在物個数減少速度定数kが大きくなる関係(3)が得られた。
In addition, regarding the inclusion number reduction rate constant k (/min), the RH treatment time is t (min), the number of inclusions before treatment is x 0 (pieces/cm 2 ), and the treatment time is t (min). The number of inclusions is x t (pieces/cm 2 ),
k at RH 10 minutes was calculated using the following formula.
k=-1/t×ln(x t /x 0 )
In this way, relationship (3) was obtained in which the inclusion number reduction rate constant k becomes large when Δ[N]=-28 ppm or less.

なお、関係(3)について、図3は一例であり、これに限定しない。
[C]を0.03質量%以上含有し且つ、目標の窒素濃度が70ppm~150ppmである窒素含有鋼を溶製するに際し、RH真空脱ガス工程において、以下の(a1)~(b7)に示す手順で溶製するにあたり、本実施例においては、[C]を0.20質量%含有し且つ、目標[N]が100ppmの窒素含有鋼を溶製した。また、実施する工程については、転炉~RH処理~連続鋳造工程とし、本実施例はRH処理を実施した。
(a1)
処理装置1内の溶鋼に対してRH処理中の溶鋼中窒素濃度の変化と、RH処理条件の関係(1)を求める。
Note that regarding relationship (3), FIG. 3 is an example, and the relationship is not limited to this.
When producing nitrogen-containing steel containing 0.03% by mass or more of [C] and a target nitrogen concentration of 70ppm to 150ppm, the following steps (a1) to (b7) are performed in the RH vacuum degassing process. In this example, a nitrogen-containing steel containing 0.20% by mass of [C] and a target [N] of 100 ppm was produced. Further, the steps to be carried out are as follows: converter - RH treatment - continuous casting process, and in this example, RH treatment was carried out.
(a1)
The relationship (1) between the change in the nitrogen concentration in the molten steel during the RH treatment and the RH treatment conditions for the molten steel in the processing apparatus 1 is determined.

関係(1)を求め方については、前述した通りである。
(a2)
関係(1)から推定される溶鋼中窒素濃度と操業実績の溶鋼中窒素濃度との差(偏差)を算出し、当該差分とRH処理時間との関係(2)を求める。
関係(2)を求め方については、前述した通りである。
(b1)
溶鋼中の目標窒素濃度と、当該目標窒素濃度の範囲を設定する。
The method for determining relationship (1) is as described above.
(a2)
The difference (deviation) between the nitrogen concentration in molten steel estimated from relationship (1) and the nitrogen concentration in molten steel in the actual operation is calculated, and the relationship (2) between the difference and the RH treatment time is determined.
The method for determining relationship (2) is as described above.
(b1)
A target nitrogen concentration in molten steel and a range of the target nitrogen concentration are set.

目標[N]については、100ppmと設定した。また、目標[N]範囲については、規格範囲である80~130ppmと設定した。
(b2)
RH処理中にて任意のタイミングで、溶鋼中窒素濃度を確認する。
窒素ガス流量:6NL/min/ton、真空度:30Torrで、RH処理を開始した。また、合金添加と酸素昇熱を実施した後、処理15分で溶鋼中[N]を分析した。その結果、溶鋼中[N]は、126ppmであった。
(b3)
上記の(a1)で求めた関係(1)を用いて、RH処理条件を設定する。
The target [N] was set at 100ppm. Additionally, the target [N] range was set at 80 to 130 ppm, which is the standard range.
(b2)
Check the nitrogen concentration in the molten steel at any time during the RH treatment.
The RH treatment was started at a nitrogen gas flow rate of 6 NL/min/ton and a vacuum degree of 30 Torr. Furthermore, after alloy addition and oxygen heating, [N] in the molten steel was analyzed 15 minutes after treatment. As a result, [N] in the molten steel was 126 ppm.
(b3)
The RH processing conditions are set using the relationship (1) obtained in (a1) above.

本実施例では、関係(1)を用いて、目標[N]範囲に[N]推移が収まるように、窒素ガス流量を12NL/min/ton、真空度を0.5Torrと設定した。なお、トラブル等による脱[N]時間延長を考慮して、目標[N]=100ppmに対して、高めの110ppmを目標とした。
(b4)
上記の(a2)で求めた関係(2)を用いて、(b3)で設定したRH処理条件に基づいてRH処理を実施した際における、残りのRH処理時間trと、溶鋼中窒素濃度が(b1)で設定した目標窒素濃度の範囲を外れるまでの時間tmとの関係を確認し、(b3)のRH処理条件で処理する。
In this example, using relationship (1), the nitrogen gas flow rate was set to 12 NL/min/ton and the degree of vacuum was set to 0.5 Torr so that the [N] transition fell within the target [N] range. In addition, considering the extension of the [N] removal time due to troubles, etc., the target was set at 110 ppm, which is higher than the target [N] = 100 ppm.
(b4)
Using the relationship (2) obtained in (a2) above, the remaining RH treatment time tr and the nitrogen concentration in molten steel when RH treatment is performed based on the RH treatment conditions set in (b3) are ( Check the relationship with the time tm until the target nitrogen concentration falls out of the range set in b1), and perform processing under the RH processing conditions of (b3).

図4に、溶鋼2中の予測窒素濃度の推移を示す。
図4に示すように、本実施例では、残り処理時間trは24minであり、目標[N]範囲を外れるまでの時間tmは関係(2)より19minであった。なお、窒素ガス流量:12NL/min/ton、真空度:0.5TorrでRH処理を実施した。
(b5)
tr≧tmの場合、溶鋼中窒素濃度が(b1)で設定した目標窒素濃度の範囲を外れる時間Tmのタイミングで、溶鋼中窒素濃度を確認する。
FIG. 4 shows the predicted change in nitrogen concentration in the molten steel 2.
As shown in FIG. 4, in this example, the remaining processing time tr was 24 min, and the time tm until the target [N] range was exceeded was 19 min from relationship (2). Note that the RH treatment was performed at a nitrogen gas flow rate of 12 NL/min/ton and a vacuum degree of 0.5 Torr.
(b5)
If tr≧tm, check the nitrogen concentration in the molten steel at the time Tm when the nitrogen concentration in the molten steel falls outside the range of the target nitrogen concentration set in (b1).

図4に示すように、今回は、tr(=24min)≧tm(=19min)であるため、目標[N]範囲を外れる時間Tm=34minのタイミングで、溶鋼中[N]を分析した。その結果、溶鋼中[N]は、122ppmであった。
(b7)
溶鋼中窒素濃度が(b1)で設定した目標窒素濃度を満足するまで、(b3)~(b6)の手順を1回以上実施する。
As shown in FIG. 4, this time, since tr(=24min)≧tm(=19min), the [N] in the molten steel was analyzed at the time Tm=34min when it was out of the target [N] range. As a result, [N] in the molten steel was 122 ppm.
(b7)
Perform steps (b3) to (b6) one or more times until the nitrogen concentration in the molten steel satisfies the target nitrogen concentration set in (b1).

本実施例では、RH処理時間が残っているため、2回目の(b3)~(b6)の手順を実施した。
<2回目の(b3)>
関係(1)を用いて、目標[N]範囲に[N]推移が収まるように、アルゴンガス流量を6NL/min/ton、真空度を0.5Torrと設定した。
In this example, since RH processing time remained, steps (b3) to (b6) were performed for the second time.
<Second (b3)>
Using relationship (1), the argon gas flow rate was set to 6 NL/min/ton and the degree of vacuum was set to 0.5 Torr so that the [N] transition was within the target [N] range.

なお、アルゴンガス流量が6NL/min/ton未満になると環流不良となる場合があり、窒素ガス流量を下げることができないため、目標[N]=100ppmに対して、処理終了時の予測[N]=105ppmを目標とした。
<2回目の(b4)>
図5に、溶鋼2中の予測窒素濃度の推移を示す。
Note that if the argon gas flow rate is less than 6NL/min/ton, poor circulation may occur, and the nitrogen gas flow rate cannot be lowered. The target was =105ppm.
<Second (b4)>
FIG. 5 shows the predicted change in nitrogen concentration in the molten steel 2.

図5に示すように、本実施例では、残り処理時間trは5minであり、目標[N]範囲を外れるまでの時間tmは関係(2)より10minであった。なお、アルゴンガス流量:6NL/min/ton、真空度:0.5Torrで、RH処理を実施した。
<2回目の(b6)>
図5に示すように、2回目では、tr(=5min)<tm(=10min)であったため、(b3)のRH処理条件で処理を続行し、処理終了時間=39minでRH処理を終了した。なお、処理後に溶鋼中[N]を分析したところ、99ppmであり、目標[N]=100ppmとの差は1ppmであった。
As shown in FIG. 5, in this example, the remaining processing time tr was 5 min, and the time tm until the target [N] range was exceeded was 10 min from relationship (2). Note that the RH treatment was performed at an argon gas flow rate of 6 NL/min/ton and a degree of vacuum of 0.5 Torr.
<Second (b6)>
As shown in Figure 5, in the second time, tr(=5min)<tm(=10min), so the process was continued under the RH process condition of (b3), and the RH process was completed at a process end time of 39min. . In addition, when [N] in the molten steel was analyzed after the treatment, it was found to be 99 ppm, and the difference from the target [N] = 100 ppm was 1 ppm.

さらに、[C]を0.03質量%以上含有し且つ、目標の窒素濃度が70ppm~150ppmである高清浄窒素含有鋼を溶製するに際し、RH真空脱ガス工程において、以下の(c1)~(d4)に示す手順で溶製するにあたり、本実施例においては、[C]を0.40質量%含有し且つ、目標[N]が110ppmの高清浄窒素含有鋼を溶製した。また、工程については、転炉~LF処理~RH処理~連続鋳造工程とし、本実施例はRH処理を実施した。
(c1)
溶鋼中窒素濃度の変化量Δ[N]と、溶鋼2の清浄度の関係(3)を求める。
Furthermore, when producing highly clean nitrogen-containing steel containing 0.03% by mass or more of [C] and a target nitrogen concentration of 70ppm to 150ppm, the following (c1) to (d4) are applied in the RH vacuum degassing process. ) In this example, a highly clean nitrogen-containing steel containing 0.40% by mass of [C] and a target [N] of 110 ppm was produced. Further, the steps were as follows: converter - LF treatment - RH treatment - continuous casting process, and in this example, RH treatment was performed.
(c1)
The relationship (3) between the amount of change in nitrogen concentration in molten steel Δ[N] and the cleanliness of molten steel 2 is determined.

関係(3)を求め方については、前述した通りである。
(d1)
RH処理工程をI期:清浄化区間、II期:[N]調整区間に分ける。
(d2)
I期と、II期の処理時間を設定する。
The method for determining relationship (3) is as described above.
(d1)
The RH treatment process is divided into stage I: cleaning section and stage II: [N] adjustment section.
(d2)
Set the processing time for period I and period II.

なお、窒素を調整する時間が10minあれば、低[N]領域から目標[N]まで十分に加[N]できることが過去の実績から確認されている。また、鋼の清浄度を向上させるためには、清浄化の時間についてはできる限り長めに取るほうが好ましい。
連続鋳造の開始時間を調整した結果から、RH処理時間として41min確保することができた。これにより、I期を31min、II期を10minと設定した。
(d3)
上記の(c1)で求めた関係(3)を用いて、I期で必要なΔ[N]を設定し、I期での溶鋼中の目標窒素濃度と、当該目標窒素濃度の範囲を設定する。
It has been confirmed from past results that if it takes 10 minutes to adjust the nitrogen, it is possible to sufficiently add [N] from the low [N] range to the target [N]. Further, in order to improve the cleanliness of the steel, it is preferable to take as long a time as possible for cleaning.
As a result of adjusting the start time of continuous casting, it was possible to secure an RH treatment time of 41 min. As a result, the I period was set to 31 min, and the II period was set to 10 min.
(d3)
Using the relationship (3) obtained in (c1) above, set the necessary Δ[N] in the I period, and set the target nitrogen concentration in molten steel in the I period and the range of the target nitrogen concentration. .

本実施例では、関係(3)を用いて、Δ[N]を-28ppmに設定した。
なお、目標窒素濃度、および、目標窒素濃度の範囲については、以下に示すI期の(b1),(b2)に記載する通り、処理中の溶鋼中[N]から設定した。
(d4)
I期と、II期それぞれにおいて、(b1)~(b7)に示した手順で溶鋼2に対してRH処理を行う。
In this example, Δ[N] was set to -28 ppm using relationship (3).
Note that the target nitrogen concentration and the range of the target nitrogen concentration were set from [N] in the molten steel during treatment, as described in (b1) and (b2) of period I shown below.
(d4)
In each of the I stage and II stage, RH treatment is performed on the molten steel 2 according to the procedures shown in (b1) to (b7).

I期については、以下の通りである。
<I期の(b1),(b2)>
窒素ガス流量:12NL/min/ton、真空度:30Torrで、RH処理を開始した。また、合金添加を実施した後、処理12分で溶鋼中[N]を分析した。その結果、溶鋼中[N]は、136ppmであった。
Regarding stage I, the details are as follows.
<(b1),(b2) of stage I>
The RH treatment was started at a nitrogen gas flow rate of 12 NL/min/ton and a vacuum degree of 30 Torr. In addition, [N] in the molten steel was analyzed 12 minutes after the alloy addition. As a result, [N] in the molten steel was 136 ppm.

また、目標[N]の上限までのΔ[N]が-28ppm以下を満たすように、I期の目標[N]は80ppm、目標[N]範囲は規格幅が40ppmであることから、60~100ppmと設定した。
<I期の(b3)>
関係(1)を用いて、I期終了時点でI期の目標[N]=80ppmとなるように、窒素ガス流量を12NL/min/ton、真空度を0.5Torrと設定した。
<I期の(b4)>
図6に、溶鋼2中の予測窒素濃度の推移を示す。
In addition, in order to ensure that the Δ[N] to the upper limit of the target [N] satisfies -28 ppm or less, the target [N] of the I period is 80 ppm, and the standard range of the target [N] range is 60 to 40 ppm. It was set at 100ppm.
<I stage (b3)>
Using relationship (1), the nitrogen gas flow rate was set to 12 NL/min/ton and the degree of vacuum was set to 0.5 Torr so that the target [N] of the I period was 80 ppm at the end of the I period.
<I stage (b4)>
FIG. 6 shows the predicted change in nitrogen concentration in the molten steel 2.

図6に示すように、I期では、残り処理時間trは19minであり、目標[N]範囲を外れるまでの時間tmは関係(2)より19minであった。なお、窒素ガス流量:12NL/min/ton、真空度:0.5Torrで、RH処理を実施した。
<I期の(b5)>
図6に示すように、このI期では、tr(=19min)≧tr(=19min)であったため、目標[N]範囲を外れる時間Tm=31minのタイミングで、溶鋼中[N]を分析した。その結果、溶鋼中[N]は、79ppmであった。
<I期の(b7)>
残りの処理時間がなくなり且つ、目標[N]80ppmに対して実績が79ppmであったため、I期を終了した。なお、I期においては、(b3)~(b6)の手順を1回実施した。
As shown in FIG. 6, in the I period, the remaining processing time tr was 19 min, and the time tm until it was out of the target [N] range was 19 min from relationship (2). Note that the RH treatment was performed at a nitrogen gas flow rate of 12 NL/min/ton and a vacuum degree of 0.5 Torr.
<I stage (b5)>
As shown in Figure 6, in this I period, tr(=19min)≧tr(=19min), so the [N] in the molten steel was analyzed at the time Tm=31min when it was out of the target [N] range. . As a result, [N] in the molten steel was 79 ppm.
<I stage (b7)>
Since there was no remaining processing time and the actual result was 79 ppm against the target [N] of 80 ppm, the I period was ended. In addition, in stage I, steps (b3) to (b6) were performed once.

II期については、以下の通りである。
<II期の(b1)>
II期の目標[N]については、110ppmと設定した。また、目標[N]範囲については、規格範囲の90~130ppmと設定した。
<II期の(b2)>
I期の終了時に溶鋼中[N]分析した。その結果、溶鋼中[N]は、79ppmであった。なお、このことは、I期(b5)に記載している。
<II期の(b3)>
関係(1)を用いて、目標[N]範囲に[N]推移が収まるように、窒素ガス流量を6NL/min/tonと設定し、真空度を30Torrと設定した。
Regarding stage II, the details are as follows.
<Stage II (b1)>
The target [N] for period II was set at 110ppm. Additionally, the target [N] range was set at the standard range of 90 to 130 ppm.
<Stage II (b2)>
[N] in the molten steel was analyzed at the end of the I period. As a result, [N] in the molten steel was 79 ppm. Note that this is stated in Stage I (b5).
<Stage II (b3)>
Using relationship (1), the nitrogen gas flow rate was set to 6NL/min/ton and the degree of vacuum was set to 30 Torr so that the [N] transition was within the target [N] range.

なお、窒素ガス流量が6NL/min/ton未満になると環流不良となる場合があり、窒素ガス流量を下げることができないため、目標[N]=110ppmに対して、II期終了時の予測[N] =120ppmを目標とした。
<II期の(b4)>
図7に、溶鋼2中の予測窒素濃度の推移を示す。
Note that if the nitrogen gas flow rate is less than 6NL/min/ton, poor circulation may occur and the nitrogen gas flow rate cannot be lowered, so the predicted [N ]=120ppm was targeted.
<(b4) of stage II>
FIG. 7 shows the predicted change in nitrogen concentration in the molten steel 2.

図7に示すように、II期では、残り処理時間trは10minであり、目標[N]範囲を外れるまでの時間tmは関係(2)より10minであった。窒素ガス流量を6NL/min/ton、真空度を30Torrで処理を実施した。
<II期の(b5)>
このII期では、tr(=10min)≧tr(=10min)であったため、目標[N]範囲を外れる時間Tm=41minのタイミングで、溶鋼中[N]を分析した。その結果、溶鋼中[N]は、109ppmであった。
<II期の(b7)>
残りの処理時間がなくなり且つ、目標[N]110ppmに対して実績が109ppmであったため、II期を終了した。すなわち、RH処理を終了した。ただし、II期において、(b3)~(b6)の手順を1回実施した。
As shown in FIG. 7, in the II period, the remaining processing time tr was 10 min, and the time tm until the target [N] range was exceeded was 10 min from relationship (2). The treatment was carried out at a nitrogen gas flow rate of 6NL/min/ton and a vacuum degree of 30Torr.
<Stage II (b5)>
In this II period, since tr(=10min)≧tr(=10min), the [N] in the molten steel was analyzed at the time Tm=41min when it was out of the target [N] range. As a result, [N] in the molten steel was 109 ppm.
<(b7) of stage II>
Since there was no remaining processing time and the actual result was 109 ppm against the target [N] of 110 ppm, period II was ended. That is, the RH process has ended. However, in stage II, steps (b3) to (b6) were performed once.

なおここで、RH処理後の溶鋼中の酸化物系介在物個数を評価したところ、1.1個/cm2であった。
本発明の効果について述べる。
処理後の溶鋼中窒素濃度に関しては以下の通りである。
溶鋼中窒素濃度は、鋼種毎に要求される硬さ、靱性、強度などに応じて、目標とする窒素濃度の制御範囲が予め定められており、この窒素濃度の範囲に収める必要がある。
Here, when the number of oxide inclusions in the molten steel after the RH treatment was evaluated, it was found to be 1.1 inclusions/cm 2 .
The effects of the present invention will be described.
The nitrogen concentration in the molten steel after treatment is as follows.
Regarding the nitrogen concentration in molten steel, a target nitrogen concentration control range is determined in advance according to the hardness, toughness, strength, etc. required for each type of steel, and it is necessary to keep the nitrogen concentration within this range.

図8に、本発明による溶鋼2中窒素濃度の制御精度、すなわち本発明を適用させたときの改善効果を示す。
図8に示すように、本発明によって、目標の溶鋼中窒素濃度と、RH処理後の溶鋼中窒
素濃度の差のばらつきσは、17.0ppmから10.6ppmまで低減した。また、溶鋼中窒素濃度が目標の溶鋼中窒素濃度の範囲(±25ppm)から外れる確率(脱線率)は、14.1%から1.8%まで改善した。
FIG. 8 shows the control accuracy of the nitrogen concentration in the molten steel 2 according to the present invention, that is, the improvement effect when the present invention is applied.
As shown in FIG. 8, according to the present invention, the variation σ of the difference between the target nitrogen concentration in molten steel and the nitrogen concentration in molten steel after RH treatment was reduced from 17.0 ppm to 10.6 ppm. Additionally, the probability that the nitrogen concentration in molten steel would deviate from the target nitrogen concentration range (±25 ppm) (derailment rate) improved from 14.1% to 1.8%.

RH処理後における介在物の個数に関しては以下の通りである。
介在物は、鋼材を加工したときに生じる割れや破断、疲労破壊などの起点となるため、介在物については極力低減させた方がよい。
例えば、特開平11-001749号公報には、対象とする介在物は異なるが、概ね20個/cm2を超えると、曲げ疲労強度および転動疲労強度が低下することが開示されている。また例えば、特許第4718359号公報には、同様に対象とする介在物は異なるが、20個/cm2を超えると、伸線加工性が低下することが開示されている。
The number of inclusions after the RH treatment is as follows.
Since inclusions serve as starting points for cracks, fractures, fatigue failures, etc. that occur when steel materials are processed, it is better to reduce inclusions as much as possible.
For example, Japanese Patent Application Laid-Open No. 11-001749 discloses that although the target inclusions are different, when the number of inclusions exceeds approximately 20 inclusions/cm 2 , bending fatigue strength and rolling fatigue strength decrease. For example, Japanese Patent No. 4718359 discloses that wire drawability deteriorates when the number of inclusions exceeds 20 inclusions/cm 2 , although the target inclusions are different.

このことを踏まえると、本発明においては、RH処理後における介在物の個数は、0.9~12.2個/cm2の間となっており、上記した特性が低下しない高清浄度であった。
最後に、本発明の高清浄窒素含有鋼の溶製方法をまとめると以下のようになる。
図9に、本発明の高清浄窒素含有鋼の溶製方法のフローチャートを示す。
本発明の高清浄窒素含有鋼の溶製方法は、[C]を0.03質量%以上含有し且つ、目標の窒素濃度が70ppm~150ppmである窒素含有鋼を溶製するに際し、RH真空脱ガス工程において、以下の(a1)~(b7)に示す手順で溶製する。
(a1)
処理装置1内の溶鋼2に対してRH処理中の溶鋼中窒素濃度の変化と、RH処理条件との関係(1)を求める。
(a2)
関係(1)から推定される溶鋼中窒素濃度と操業実績の溶鋼中窒素濃度との差を算出し、当該差分とRH処理時間との関係(2)を求める。
(b1)
溶鋼2中の目標窒素濃度と、当該目標窒素濃度の範囲を設定する。
(b2)
RH処理中にて任意のタイミングで、溶鋼中窒素濃度を確認する。
(b3)
上記の(a1)で求めた関係(1)を用いて、RH処理条件を設定する。
(b4)
上記の(a2)で求めた関係(2)を用いて、(b3)で設定したRH処理条件に基づいてRH処理を実施した際における、残りのRH処理時間trと、溶鋼中窒素濃度が(b1)で設定した目標窒素濃度の範囲を外れるまでの時間tmとの関係を確認し、(b3)のRH処理条件で処理する。
(b5)
tr≧tmとなる場合、溶鋼中窒素濃度が(b1)で設定した目標窒素濃度の範囲を外れる時間Tmのタイミングで溶鋼中窒素濃度を確認する。
(b6)
tr<tmとなる場合、(b3)のRH処理条件で処理を続行する。
(b7)
溶鋼中窒素濃度が(b1)で設定した目標窒素濃度を満足するまで、(b3)~(b6)の手順を1回以上実施する。
Taking this into consideration, in the present invention, the number of inclusions after the RH treatment was between 0.9 and 12.2 inclusions/cm 2 , indicating a high degree of cleanliness without degrading the above-mentioned properties.
Finally, the method for producing highly clean nitrogen-containing steel of the present invention is summarized as follows.
FIG. 9 shows a flowchart of the method for producing highly clean nitrogen-containing steel of the present invention.
The method for producing highly clean nitrogen-containing steel of the present invention includes an RH vacuum degassing process when producing nitrogen-containing steel containing 0.03% by mass or more of [C] and a target nitrogen concentration of 70 ppm to 150 ppm. In this step, the solution is prepared using the steps shown in (a1) to (b7) below.
(a1)
The relationship (1) between the change in the nitrogen concentration in the molten steel during the RH treatment and the RH treatment conditions for the molten steel 2 in the processing apparatus 1 is determined.
(a2)
The difference between the nitrogen concentration in molten steel estimated from relationship (1) and the nitrogen concentration in molten steel in the actual operation is calculated, and the relationship (2) between the difference and the RH treatment time is determined.
(b1)
A target nitrogen concentration in the molten steel 2 and a range of the target nitrogen concentration are set.
(b2)
Check the nitrogen concentration in the molten steel at any time during the RH treatment.
(b3)
The RH processing conditions are set using the relationship (1) obtained in (a1) above.
(b4)
Using the relationship (2) obtained in (a2) above, the remaining RH treatment time tr and the nitrogen concentration in molten steel when RH treatment is performed based on the RH treatment conditions set in (b3) are calculated as ( Check the relationship with the time tm until the target nitrogen concentration falls out of the range set in b1), and perform processing under the RH processing conditions of (b3).
(b5)
If tr≧tm, check the nitrogen concentration in the molten steel at the time Tm when the nitrogen concentration in the molten steel is out of the range of the target nitrogen concentration set in (b1).
(b6)
If tr<tm, the process is continued under the RH process condition (b3).
(b7)
Perform steps (b3) to (b6) one or more times until the nitrogen concentration in the molten steel satisfies the target nitrogen concentration set in (b1).

図10に、本発明の高清浄窒素含有鋼の溶製方法のフローチャートを示す。
さらに、本発明の高清浄窒素含有鋼の溶製方法は、[C]を0.03質量%以上含有し、且つ、目標の窒素濃度が70ppm~150ppmである高清浄窒素含有鋼を溶製するに際し、RH真空脱ガス工程において、上記に加えてさらに以下の(c1)~(d4)に示す手順で溶製するとよい。(c1)
溶鋼中窒素濃度の変化量Δ[N]と、溶鋼2の清浄度の関係(3)を求める。
(d1)
RH処理工程をI期:清浄化区間、II期:[N]調整区間に分ける。
(d2)
I期と、II期の処理時間を設定する。
(d3)
上記の(c1)で求めた関係(3)を用いて、I期で必要なΔ[N]を設定し、I期での溶鋼2中の目標窒素濃度と、当該目標窒素濃度の範囲を設定する。
(d4)
I期と、II期それぞれにおいて、(b1)~(b7)に示した手順で溶鋼に対してRH処理を行う。
FIG. 10 shows a flowchart of the method for producing highly clean nitrogen-containing steel of the present invention.
Furthermore, the method for producing highly clean nitrogen-containing steel of the present invention includes the following steps: In the RH vacuum degassing step, in addition to the above, it is preferable to carry out melt preparation by the following procedures (c1) to (d4). (c1)
The relationship (3) between the amount of change in nitrogen concentration in molten steel Δ[N] and the cleanliness of molten steel 2 is determined.
(d1)
The RH treatment process is divided into stage I: cleaning section and stage II: [N] adjustment section.
(d2)
Set the processing time for period I and period II.
(d3)
Using the relationship (3) obtained in (c1) above, set the necessary Δ[N] in the I period, and set the target nitrogen concentration in molten steel 2 in the I period and the range of the target nitrogen concentration. do.
(d4)
In each of Stage I and Stage II, RH treatment is performed on the molten steel according to the procedures shown in (b1) to (b7).

本発明の窒素含有鋼は、上記した高清浄窒素含有鋼の溶製方法の手順に従って製造されるとよい。
本発明の高清浄窒素含有鋼の溶製方法によれば、高清浄窒素含有鋼を溶製するに際して、RH処理中の鋼中窒素濃度に応じてRH処理条件を変更することで、窒素含有鋼の鋼中窒素濃度を目標の所定範囲内に精度良く調整することができるとともに、鋼材の清浄度を向上させることができる。
The nitrogen-containing steel of the present invention is preferably manufactured according to the procedure of the above-described method for producing highly clean nitrogen-containing steel.
According to the method for producing highly clean nitrogen-containing steel of the present invention, when producing highly clean nitrogen-containing steel, by changing the RH treatment conditions according to the nitrogen concentration in the steel during the RH treatment, nitrogen-containing steel It is possible to precisely adjust the nitrogen concentration in the steel within a target predetermined range, and to improve the cleanliness of the steel material.

なお、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。
特に、今回開示された実施形態において、明示されていない事項、例えば、運転条件や操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な値を採用している。
It should be noted that the embodiments disclosed herein are illustrative in all respects and should not be considered restrictive.
In particular, in the embodiments disclosed herein, matters not explicitly stated, such as operating conditions, operating conditions, various parameters, dimensions, weights, volumes of components, etc., do not deviate from the scope of those skilled in the art. Rather, values that can be easily assumed by a person skilled in the art are used.

1 RH式真空脱ガス処理装置(RH処理装置)
2 溶鋼
3 取鍋
4 真空槽
5 浸漬管
6 ガス吹込管
7 排気口
1 RH type vacuum degassing equipment (RH processing equipment)
2 Molten steel 3 Ladle 4 Vacuum tank 5 Immersion pipe 6 Gas blowing pipe 7 Exhaust port

Claims (3)

[C]を0.03質量%以上含有し且つ、目標の窒素濃度が70ppm~150ppmである窒素含有鋼を溶製するに際し、RH真空脱ガス工程において、以下の(a1)~(b7)に示す手順で溶製することを特徴とする高清浄窒素含有鋼の溶製方法。
(a1)
処理装置内の溶鋼に対してRH処理中の溶鋼中窒素濃度の変化と、RH処理条件との関係(1)を求める。
(a2)
関係(1)から推定される前記溶鋼中窒素濃度と操業実績の溶鋼中窒素濃度との差を算出し、当該差分とRH処理時間との関係(2)を求める。
(b1)
溶鋼中の目標窒素濃度と、当該目標窒素濃度の範囲を設定する。
(b2)
RH処理中にて任意のタイミングで、溶鋼中窒素濃度を確認する。
(b3)
前記(a1)で求めた関係(1)を用いて、RH処理条件を設定する。
(b4)
前記(a2)で求めた関係(2)を用いて、前記(b3)で設定したRH処理条件に基づいてRH処理を実施した際における、残りのRH処理時間trと、溶鋼中窒素濃度が前記(b1)で設定した目標窒素濃度の範囲を外れるまでの時間tmとの関係を確認し、前記(b3)のRH処理条件で処理する。
(b5)
tr≧tmとなる場合、溶鋼中窒素濃度が前記(b1)で設定した目標窒素濃度の範囲を外れる時間Tmのタイミングで溶鋼中窒素濃度を確認する。
(b6)
tr<tmとなる場合、前記(b3)のRH処理条件で処理を続行する。
(b7)
溶鋼中窒素濃度が前記(b1)で設定した目標窒素濃度を満足するまで、前記(b3)~(b6)の手順を1回以上実施する。
When producing nitrogen-containing steel containing 0.03% by mass or more of [C] and a target nitrogen concentration of 70ppm to 150ppm, the following steps (a1) to (b7) are performed in the RH vacuum degassing process. A method for producing high-purity nitrogen-containing steel, which is characterized in that it is produced by melting.
(a1)
The relationship (1) between the change in the nitrogen concentration in the molten steel during the RH treatment and the RH treatment conditions is determined for the molten steel in the treatment equipment.
(a2)
The difference between the nitrogen concentration in the molten steel estimated from the relationship (1) and the nitrogen concentration in the molten steel in the actual operation is calculated, and the relationship (2) between the difference and the RH treatment time is determined.
(b1)
A target nitrogen concentration in molten steel and a range of the target nitrogen concentration are set.
(b2)
Check the nitrogen concentration in the molten steel at any time during the RH treatment.
(b3)
The RH processing conditions are set using the relationship (1) obtained in (a1) above.
(b4)
Using the relationship (2) obtained in (a2) above, the remaining RH treatment time tr and the nitrogen concentration in molten steel when carrying out the RH treatment based on the RH treatment conditions set in (b3) above are calculated as follows. The relationship with the time tm until the target nitrogen concentration falls outside the range set in (b1) is confirmed, and processing is performed under the RH processing conditions of (b3) above.
(b5)
When tr≧tm, the nitrogen concentration in the molten steel is checked at the time Tm when the nitrogen concentration in the molten steel deviates from the target nitrogen concentration range set in (b1) above.
(b6)
If tr<tm, the process is continued under the RH process condition of (b3) above.
(b7)
The steps (b3) to (b6) are carried out one or more times until the nitrogen concentration in the molten steel satisfies the target nitrogen concentration set in (b1) above.
[C]を0.03質量%以上含有し且つ、目標の窒素濃度が70ppm~150ppmである高清浄窒素含有鋼を溶製するに際し、RH真空脱ガス工程において、さらに以下の(c1)~(d4)に示す手順で溶製することを特徴とする請求項1に記載の高清浄窒素含有鋼の溶製方法。
(c1)
前記溶鋼中窒素濃度の変化量Δ[N]と、前記溶鋼の清浄度の関係(3)を求める。
(d1)
RH処理工程をI期:清浄化区間、II期:[N]調整区間に分ける。
(d2)
前記I期と、前記II期の処理時間を設定する。
(d3)
前記(c1)で求めた関係(3)を用いて、前記I期で必要なΔ[N]を設定し、前記I期での溶鋼中の目標窒素濃度と、当該目標窒素濃度の範囲を設定する。
(d4)
前記I期と、前記II期それぞれにおいて、前記(b1)~(b7)に示した手順で前記溶鋼に対してRH処理を行う。
When producing highly clean nitrogen-containing steel containing 0.03% by mass or more of [C] and a target nitrogen concentration of 70ppm to 150ppm, the following (c1) to (d4) are additionally required in the RH vacuum degassing process. The method for producing highly clean nitrogen-containing steel according to claim 1, characterized in that the steel is produced by the procedure shown in the following.
(c1)
The relationship (3) between the amount of change Δ[N] in the nitrogen concentration in the molten steel and the cleanliness of the molten steel is determined.
(d1)
The RH treatment process is divided into stage I: cleaning section and stage II: [N] adjustment section.
(d2)
Processing times for the I period and the II period are set.
(d3)
Using the relationship (3) obtained in (c1) above, set the necessary Δ[N] in the I period, and set the target nitrogen concentration in the molten steel in the I period and the range of the target nitrogen concentration. do.
(d4)
In each of the I period and the II period, the RH treatment is performed on the molten steel according to the steps shown in (b1) to (b7) above.
請求項1又は2に記載された高清浄窒素含有鋼の溶製方法の手順に従って製造されることを特徴とする窒素含有鋼。 Nitrogen-containing steel, characterized in that it is manufactured according to the procedure of the method for producing highly clean nitrogen-containing steel according to claim 1 or 2.
JP2022070841A 2022-04-22 2022-04-22 Method for melting highly clean nitrogen-containing steel and nitrogen-containing steel produced by the melting method Pending JP2023160452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022070841A JP2023160452A (en) 2022-04-22 2022-04-22 Method for melting highly clean nitrogen-containing steel and nitrogen-containing steel produced by the melting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022070841A JP2023160452A (en) 2022-04-22 2022-04-22 Method for melting highly clean nitrogen-containing steel and nitrogen-containing steel produced by the melting method

Publications (1)

Publication Number Publication Date
JP2023160452A true JP2023160452A (en) 2023-11-02

Family

ID=88516310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022070841A Pending JP2023160452A (en) 2022-04-22 2022-04-22 Method for melting highly clean nitrogen-containing steel and nitrogen-containing steel produced by the melting method

Country Status (1)

Country Link
JP (1) JP2023160452A (en)

Similar Documents

Publication Publication Date Title
JP5904237B2 (en) Melting method of high nitrogen steel
JP6838419B2 (en) Melting method of high nitrogen and low oxygen steel
JP5836187B2 (en) Vacuum degassing method
JP5428447B2 (en) Method for refining molten steel in RH vacuum degassing equipment
JP5087840B2 (en) Decarburization end point judgment method in vacuum degassing equipment
JP2023160452A (en) Method for melting highly clean nitrogen-containing steel and nitrogen-containing steel produced by the melting method
JP5200380B2 (en) Desulfurization method for molten steel
JP3893770B2 (en) Melting method of high clean ultra low carbon steel
JP3915386B2 (en) Manufacturing method of clean steel
US20170175212A1 (en) Argon oxygen decarburization refining method for molten austenitic stainless steel
EP3940088A1 (en) Method of manufacturing titanium-containing ultra-low-carbon steel
US4154602A (en) Method of denitriding a high chromium molten steel with a minimum chromium loss
KR101388065B1 (en) Improvement method for rh decarburizing efficiency on manufacturing of ultralow carbon steel
JP4582826B2 (en) Manufacturing method of clean steel with RH degassing equipment
JP4811018B2 (en) Deoxidation method for molten steel
JPH11279631A (en) Method for refining molten stainless steel
CN115747623B (en) Method for improving surface quality of large-section low-carbon high-sulfur free-cutting steel casting blank
CN111139337B (en) Method for stably controlling oxidability of ultra-low carbon steel top slag
CN115637306B (en) Control method for B-type inclusion in high-carbon chromium bearing steel
EP4095269A1 (en) Method for conducting decarburization refining of molten steel under reduced pressure
JP2001158911A (en) Method for decarburizing molten steel under vacuum
JP4404025B2 (en) Melting method of low nitrogen steel
JPH11293329A (en) Production of extra-low carbon silicon-killed steel excellent in cleaning property
JP5239147B2 (en) Method of melting high cleanliness steel
JP3747653B2 (en) Method for producing clean steel in RH vacuum degassing apparatus