JP2023158013A - Ni-Zn-Cu-BASED FERRITE POWDER, SINTERED COMPACT, FERRITE SHEET - Google Patents

Ni-Zn-Cu-BASED FERRITE POWDER, SINTERED COMPACT, FERRITE SHEET Download PDF

Info

Publication number
JP2023158013A
JP2023158013A JP2023136607A JP2023136607A JP2023158013A JP 2023158013 A JP2023158013 A JP 2023158013A JP 2023136607 A JP2023136607 A JP 2023136607A JP 2023136607 A JP2023136607 A JP 2023136607A JP 2023158013 A JP2023158013 A JP 2023158013A
Authority
JP
Japan
Prior art keywords
ferrite
mol
ferrite powder
sintered
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023136607A
Other languages
Japanese (ja)
Inventor
吏志 野村
Satoshi Nomura
靖士 西尾
Yasushi Nishio
愛仁 中務
Manato NAKATSUKASA
洋司 岡野
Yoji Okano
泰彦 藤井
Yasuhiko Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Publication of JP2023158013A publication Critical patent/JP2023158013A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
    • H01F1/375Flexible bodies
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)
  • Compounds Of Iron (AREA)
  • Powder Metallurgy (AREA)

Abstract

To provide a Ni-Zn-Cu-based ferrite powder capable of being sintered even at a low temperature of 860°C, for example.SOLUTION: A Ni-Zn-Cu-based ferrite powder comprises 45-49 mol% of Fe2O3, 5-25 mol% of NiO, 15-40 mol% of ZnO, 5-15 mol% of CuO, and 0-3 mol% of CoO, wherein a crystallite size is 180 nm or less. The Ni-Zn-Cu-based ferrite powder is used in a sintered compact or ferrite sheet.SELECTED DRAWING: None

Description

本発明は、Ni-Zn-Cu系フェライト材料に関し、低温で焼結可能となるフェライト粉末に関するものであり、また、本発明は、前記フェライト粉末を使用した焼結体、フェライトシートに関するものである。 The present invention relates to a Ni-Zn-Cu-based ferrite material, and relates to a ferrite powder that can be sintered at low temperatures.The present invention also relates to a sintered body and a ferrite sheet using the ferrite powder. .

近年、家庭用及び産業用等の電子機器の小型・軽量化が進んでおり、それに伴い、前述の各種電子機器に用いられる電子部品の小型化、高効率化、高周波数化のニーズが高まっている。 In recent years, household and industrial electronic devices have become smaller and lighter, and as a result, there has been a growing need for smaller, more efficient, and higher frequency electronic components used in the various electronic devices mentioned above. There is.

例えば電子機器の電子回路に用いられるインダクタは、磁心または空芯ボビンに絶縁被覆を有する銅線を巻線してコイルを形成する巻線型から、フェライト焼結型の積層型チップインダクタが実用化されている。 For example, inductors used in the electronic circuits of electronic devices have evolved from wire-wound types, in which a coil is formed by winding copper wire with an insulating coating around a magnetic core or air-core bobbin, to ferrite sintered multilayer chip inductors, which have been put into practical use. ing.

この積層型チップインダクタは次の製造工程を経て製造される。即ち、フェライト粉末を含むペーストをシート状に成膜してなるグリーンシートに、Ag、Ag-Pd等の電極材料を含むペーストを用いて導電パターンを印刷などにより形成した後、これらを積層し、所定の温度において焼結させて、外部電極を形成する工程で製造される。 This multilayer chip inductor is manufactured through the following manufacturing steps. That is, after forming a conductive pattern by printing or the like using a paste containing an electrode material such as Ag or Ag-Pd on a green sheet formed by forming a sheet of paste containing ferrite powder, these are laminated, It is manufactured through a process of sintering at a predetermined temperature to form external electrodes.

ところで、上述の如く積層型チップインダクタの製造工程においては、電極材料とフェライトの積層体を同時焼成する方法を採っているために、Ag、Ag-Pd等の電極材料とフェライトとの界面反応(相互拡散)によってフェライト本来の特性が劣化するという問題点を有しており、この問題を回避するためには約900℃以下という低温で焼成する必要があるとされている。 By the way, as mentioned above, in the manufacturing process of the multilayer chip inductor, since the method of co-firing the laminate of the electrode material and ferrite is adopted, the interfacial reaction between the electrode material such as Ag or Ag-Pd and the ferrite ( The problem is that the original characteristics of ferrite deteriorate due to mutual diffusion (interdiffusion), and in order to avoid this problem, it is said that it is necessary to sinter at a low temperature of about 900° C. or lower.

しかし、900℃以下の温度で焼成した場合には、積層型チップインダクタ用の磁性体として透磁率等の電磁気特性に優れたNi系フェライト焼結体が得られ難い。 However, when firing at a temperature of 900° C. or lower, it is difficult to obtain a Ni-based ferrite sintered body having excellent electromagnetic properties such as magnetic permeability as a magnetic material for a multilayer chip inductor.

これまで、Ni-Zn-Cu系フェライト粉末について、低温においても焼結可能な技術が幾つか提案されている。例えば焼結助剤であるホウケイ酸ガラスを添加することで焼結時に液相を生成させ、フェライト粒子の成長を促進する方法(特許文献1)、他にもガラス成分を添加する方法として、SiO、B、NaOからなるガラス成分を添加して、液相焼結を形成し、フェライト粒子成長を促進させる方法がある(特許文献2)。環境負荷の大きいPbO、フェライトの透磁率を減少させ、その他電子機器にも悪影響を与えるNaを含まないガラス成分を添加して、液相焼結を形成し、フェライト粒子成長を促進させる方法もある(特許文献3)。またRFID用用途として、Ni-Zn-Cu系フェライト粉末の結晶相のXRD回折ピークの半値幅を制御して、高透磁率化を実現させる方法がある(特許文献4)。 Up to now, several techniques have been proposed for Ni--Zn--Cu based ferrite powder that can be sintered even at low temperatures. For example, there is a method of adding borosilicate glass, which is a sintering aid, to generate a liquid phase during sintering and promoting the growth of ferrite particles (Patent Document 1), and another method of adding a glass component is SiO There is a method of adding a glass component consisting of 2 , B 2 O 3 and Na 2 O to form liquid phase sintering and promoting the growth of ferrite particles (Patent Document 2). There is also a method of forming liquid phase sintering and promoting ferrite particle growth by adding PbO, which has a large environmental impact, and a glass component that does not contain Na, which reduces the magnetic permeability of ferrite and has a negative impact on electronic devices. (Patent Document 3). Furthermore, for RFID applications, there is a method of controlling the half width of the XRD diffraction peak of the crystal phase of Ni-Zn-Cu-based ferrite powder to achieve high magnetic permeability (Patent Document 4).

特開平5-326241号公報Japanese Patent Application Publication No. 5-326241 特開2000-208316号公報Japanese Patent Application Publication No. 2000-208316 特開2007-99539号公報Japanese Patent Application Publication No. 2007-99539 特開2005-64468号公報Japanese Patent Application Publication No. 2005-64468

特許文献1~3のいずれもガラス成分を添加することで液相焼結を形成し、フェライト粒子成長を促進させる方法を採っている。しかしながら、これらの添加剤の添加量はごく少量であり、均一に分散させることが難しく、フェライト粒子の不均一な成長を促進させる。また、特許文献4では、焼結助剤は添加されていないが、1060℃以上の高温で焼成する必要があり、低温での焼結は考慮されていない。 All of Patent Documents 1 to 3 adopt a method of forming liquid phase sintering by adding a glass component to promote ferrite particle growth. However, the amount of these additives added is very small, and it is difficult to uniformly disperse them, which promotes non-uniform growth of ferrite particles. Further, in Patent Document 4, although no sintering aid is added, it is necessary to sinter at a high temperature of 1060° C. or higher, and sintering at a low temperature is not considered.

そこで、本発明では、上記の従来技術における課題を解決するため、低温で焼結可能となるNi-Zn-Cu系フェライト粉末を提供することを目的とする。 Therefore, in order to solve the problems in the prior art described above, the present invention aims to provide a Ni--Zn--Cu based ferrite powder that can be sintered at low temperatures.

前記技術的課題は、次の通りの本発明によって達成できる。 The above technical problem can be achieved by the present invention as follows.

すなわち、本発明は、Feを45~49mol%、NiOを5~25mol%、
ZnOを15~40mol%、CuOを5~15mol%及びCoOを0~3mol%含有し、結晶子サイズが180nm以下であることを特徴とするNi-Zn-Cu系フェライト粉末である(本発明1)。
That is, in the present invention, Fe 2 O 3 is 45 to 49 mol%, NiO is 5 to 25 mol%,
It is a Ni-Zn-Cu-based ferrite powder characterized by containing 15 to 40 mol% of ZnO, 5 to 15 mol% of CuO, and 0 to 3 mol% of CoO, and having a crystallite size of 180 nm or less (invention 1). ).

また、本発明は、歪が0.330以下である本発明1に記載のNi-Zn-Cu系フェライト粉末である(本発明2)。 Further, the present invention is the Ni-Zn-Cu-based ferrite powder according to Invention 1, which has a strain of 0.330 or less (Invention 2).

また、本発明は、大気中860℃で焼成した際に、焼結密度が5.00g/cm以上となる本発明1又は本発明2に記載のNi-Zn-Cu系フェライト粉末である(本発明3)。 The present invention also provides the Ni-Zn-Cu-based ferrite powder according to the present invention 1 or the present invention 2, which has a sintered density of 5.00 g/cm 3 or more when fired at 860° C. in the atmosphere ( Present invention 3).

また、本発明は、本発明1~3のいずれか一項に記載のNi-Zn-Cu系フェライト粉末を使用した焼結体である(本発明4)。 Further, the present invention is a sintered body using the Ni-Zn-Cu-based ferrite powder according to any one of Inventions 1 to 3 (Invention 4).

また、本発明は、本発明1~3のいずれか一項に記載のNi-Zn-Cu系フェライト粉末を使用したフェライトシートである(本発明5)。 Further, the present invention is a ferrite sheet using the Ni-Zn-Cu-based ferrite powder according to any one of Inventions 1 to 3 (Invention 5).

本発明に係るNi-Zn-Cu系フェライト粉末は、結晶子サイズが小さいので、低温で焼結しても高い焼結密度のフェライト焼結体を得ることができる。また、本発明に係るNi-Zn-Cu系フェライト粉末は、例えば860℃の低温で焼結可能であるので、Agと磁性粉が同時焼成される積層型インダクタに使用される際、融点の低いAgの拡散を抑制出来、インダクタ性能の向上が期待される。 Since the Ni-Zn-Cu-based ferrite powder according to the present invention has a small crystallite size, a ferrite sintered body with a high sintered density can be obtained even when sintered at a low temperature. In addition, since the Ni-Zn-Cu-based ferrite powder according to the present invention can be sintered at a low temperature of, for example, 860°C, when used in a multilayer inductor in which Ag and magnetic powder are co-fired, it is possible to sinter the powder with a low melting point. It is expected that the diffusion of Ag can be suppressed and the inductor performance will be improved.

本発明に係るNi-Zn-Cu系フェライト粉末について述べる。 The Ni--Zn--Cu based ferrite powder according to the present invention will be described.

本発明に係るNi-Zn-Cu系フェライト粉末は、構成金属元素としてFe、Ni、Zn及びCu、必要により、Coを含有する。構成金属元素それぞれを、Fe、NiO、ZnO、CuO及びCoOに換算したときに、Fe、NiO、ZnO、CuO及びCoOの合計(100%)を基準として、Feを49mol%以下、NiOを5~25mol%、ZnOを15~40mol%、CuOを5~15mol%、及びCoOを0~3mol%含有する。 The Ni--Zn--Cu-based ferrite powder according to the present invention contains Fe, Ni, Zn, and Cu, and if necessary, Co as constituent metal elements. When each of the constituent metal elements is converted into Fe 2 O 3 , NiO, ZnO, CuO and CoO, based on the total (100%) of Fe 2 O 3 , NiO, ZnO, CuO and CoO, Fe 2 O 3 49 mol% or less, NiO 5 to 25 mol%, ZnO 15 to 40 mol%, CuO 5 to 15 mol%, and CoO 0 to 3 mol%.

本発明に係るNi-Zn-Cu系フェライト粉末のFe含有量は、Fe換算で49mol%以下である。Fe含有量が49mol%を超える場合は、焼結性が著しく低下する。Feの含有量は好ましくは48.9mol%以下、より好ましくは48.8mol%以下である。下限は45mol%程度である。 The Fe content of the Ni-Zn-Cu-based ferrite powder according to the present invention is 49 mol% or less in terms of Fe 2 O 3 . When the Fe content exceeds 49 mol%, sinterability is significantly reduced. The Fe content is preferably 48.9 mol% or less, more preferably 48.8 mol% or less. The lower limit is about 45 mol%.

本発明に係るNi-Zn-Cu系フェライト粉末のNi含有量は、NiO換算で5~25mol%である。Ni含有量が5mol%未満の場合、μ’が低下するため好ましくない。またキュリー温度が低下し、使用可能な温度範囲が限定されるため、好ましくない。Ni含有量が25mol%を超える場合も、μ’が低下するため好ましくない。Ni含有量は好ましくは6~24.9mol%、より好ましくは7~24.8mol%である。 The Ni content of the Ni-Zn-Cu-based ferrite powder according to the present invention is 5 to 25 mol% in terms of NiO. If the Ni content is less than 5 mol%, μ' decreases, which is not preferable. Further, the Curie temperature decreases, which limits the usable temperature range, which is not preferable. It is also not preferable that the Ni content exceeds 25 mol% because μ' decreases. The Ni content is preferably 6 to 24.9 mol%, more preferably 7 to 24.8 mol%.

本発明に係るNi-Zn-Cu系フェライト粉末のZn含有量は、ZnO換算で15~40mol%である。Zn含有量が15mol%未満の場合、μ’が低下するため好ましくない。またキュリー温度が低下し、使用可能な温度範囲が限定されるため、好ましくない。Zn含有量が40mol%を超える場合も、μ’が低下するため好ましくない。Zn含有量は好ましくは18~38mol%、より好ましくは20~35mol%である The Zn content of the Ni-Zn-Cu-based ferrite powder according to the present invention is 15 to 40 mol% in terms of ZnO. If the Zn content is less than 15 mol%, μ' decreases, which is not preferable. Further, the Curie temperature decreases, which limits the usable temperature range, which is not preferable. It is also not preferable that the Zn content exceeds 40 mol% because μ' decreases. Zn content is preferably 18 to 38 mol%, more preferably 20 to 35 mol%

本発明に係るNi-Zn-Cu系フェライト粉末のCu含有量は、CuO換算で5~15mol%である。Cu含有量が5mol%未満の場合、焼結性が低下し、低温で焼結体を製造することが困難になる。Cu含有量が15mol%を超える場合は、μ’が低下するため好ましくない。Cuの含有量は好ましくは6~14mol%、より好ましくは7~13mol%である。 The Cu content of the Ni--Zn--Cu based ferrite powder according to the present invention is 5 to 15 mol% in terms of CuO. When the Cu content is less than 5 mol%, sinterability decreases, making it difficult to produce a sintered body at low temperatures. If the Cu content exceeds 15 mol%, μ' decreases, which is not preferable. The content of Cu is preferably 6 to 14 mol%, more preferably 7 to 13 mol%.

本発明に係るNi-Zn-Cu系フェライト粉末はCoを含有しても良い。Co含有量は、CoO換算で0~3mol%である。本発明においては、フェライトがCoを含有することによって、スネークの限界線が高周波数側にシフトするため、高周波数域における複素透磁率の虚数部μ”に対する実数部μ’の比であるフェライトコアのQ(μ’/μ”)を向上させることが出来る。ただし、Co含有量が、CoO換算で3mol%を超えると、透磁率が低下し、フェライトコアのQも低下する傾向がある。Co含有量は好ましくは0~2.9mol%、より好ましくは0~2.8mol%である。 The Ni--Zn--Cu based ferrite powder according to the present invention may contain Co. The Co content is 0 to 3 mol% in terms of CoO. In the present invention, since the snake limit line is shifted to the high frequency side due to the ferrite containing Co, the ferrite core is the ratio of the real part μ' to the imaginary part μ' of complex magnetic permeability in the high frequency range. It is possible to improve the Q (μ′/μ”) of However, when the Co content exceeds 3 mol % in terms of CoO, the magnetic permeability tends to decrease and the Q of the ferrite core also tends to decrease. The Co content is preferably 0 to 2.9 mol%, more preferably 0 to 2.8 mol%.

本発明に係るNi-Zn-Cu系フェライト粉末は、結晶子サイズが180nm以下である。結晶子サイズが180nmを超える場合、磁性粉段階で粒子成長が促進されているため、焼結体、グリーンシートを焼成する際に、焼結性が低下して、低温での焼結が出来なくなる。より好ましくは、175nm以下、さらにより好ましくは170nm以下である。下限は100nm程度である。 The Ni--Zn--Cu based ferrite powder according to the present invention has a crystallite size of 180 nm or less. If the crystallite size exceeds 180 nm, particle growth is promoted at the magnetic powder stage, so when firing a sintered body or green sheet, the sinterability decreases, making it impossible to sinter at low temperatures. . More preferably, it is 175 nm or less, and even more preferably 170 nm or less. The lower limit is about 100 nm.

本発明に係るNi-Zn-Cu系フェライト粉末は、結晶の歪が0.330以下が好ましい。歪が0.330を超える場合、μ’が低下することがあるため好ましくない。より好ましくは0.325以下、さらにより好ましくは0.320以下である。下限は0.100程度である。なお、本発明に係るNi-Zn-Cu系フェライト粉末は、スピネルフェライト単相であることが好ましい。 The Ni--Zn--Cu based ferrite powder according to the present invention preferably has a crystal strain of 0.330 or less. If the strain exceeds 0.330, μ' may decrease, which is not preferable. It is more preferably 0.325 or less, even more preferably 0.320 or less. The lower limit is about 0.100. Note that the Ni--Zn--Cu based ferrite powder according to the present invention is preferably a spinel ferrite single phase.

本発明に係るNi-Zn-Cu系フェライト粉末は、その特性に影響を及ぼさない範囲で前記元素のほかに不純物レベルの種々の元素を含んでいてもよい。一般的に、Biを添加することはフェライトの焼結温度の低温化の効果があると知られている。しかし、Biの分散状態が不均一である場合、焼成時に粒子の不均一な成長を促進させるため、積極的なBi添加は好ましくなく、0ppmであることが好ましい。 The Ni--Zn--Cu based ferrite powder according to the present invention may contain various elements at impurity levels in addition to the above-mentioned elements as long as the properties thereof are not affected. It is generally known that adding Bi has the effect of lowering the sintering temperature of ferrite. However, when the dispersion state of Bi is non-uniform, it is not preferable to actively add Bi because it promotes non-uniform growth of particles during firing, and 0 ppm is preferable.

本発明に係るNi-Zn-Cu系フェライト粉末は、不可避的な不純物としてSiをSiO換算で500ppmを上限として含有してもよい。Snなどは含有しないことが好ましい(0ppm)。 The Ni--Zn--Cu-based ferrite powder according to the present invention may contain Si as an unavoidable impurity with an upper limit of 500 ppm in terms of SiO 2 . It is preferable not to contain Sn or the like (0 ppm).

本発明に係るNi-Zn-Cu系フェライト粉末は、常法により、フェライトを構成する各元素の酸化物、炭酸塩、水酸化物、シュウ酸塩等の原料を所定の組成割合で混合して得られた原料混合物、又は、水溶液中で各元素を沈殿させて得られた共沈物を、大気中において650~950℃の温度範囲で1~20時間仮焼成した後、粉砕することにより得ることができる。仮焼成の温度は、好ましくは700~940℃である。 The Ni-Zn-Cu-based ferrite powder according to the present invention is produced by mixing raw materials such as oxides, carbonates, hydroxides, and oxalates of each element constituting ferrite in a predetermined composition ratio using a conventional method. The obtained raw material mixture or the coprecipitate obtained by precipitating each element in an aqueous solution is calcined in the air at a temperature range of 650 to 950°C for 1 to 20 hours, and then pulverized. be able to. The temperature for pre-firing is preferably 700 to 940°C.

本発明においては、Fe原料であるFeのBET比表面積が6.0m/g以上であることが好ましい。FeのBET比表面積が6.0m/g未満の場合、各原料の混合が不均一となり、フェライト磁性粉としての焼結性が低下し、低温焼結時に高い焼結密度が得られない。FeのBET比表面積は6.5~40.0m/gがより好ましく、更により好ましくは7.0~30.0m/gである。なお、FeのBET比表面積は、Feの合成段階、焼成段階及び粉砕等でコントロールできる。 In the present invention, it is preferable that the BET specific surface area of Fe 2 O 3 as the Fe raw material is 6.0 m 2 /g or more. When the BET specific surface area of Fe 2 O 3 is less than 6.0 m 2 /g, the mixing of each raw material becomes uneven, the sinterability of the ferrite magnetic powder decreases, and it becomes difficult to obtain a high sintered density during low-temperature sintering. I can't. The BET specific surface area of Fe 2 O 3 is more preferably 6.5 to 40.0 m 2 /g, even more preferably 7.0 to 30.0 m 2 /g. Note that the BET specific surface area of Fe 2 O 3 can be controlled by the synthesis stage, calcination stage, pulverization, etc. of Fe 2 O 3 .

また、本発明では、Ni-Zn-Cu系フェライト粉末の製造時に焼結助剤を添加していないため、粒子の不均一な成長を抑制できる。 Furthermore, in the present invention, since no sintering aid is added during the production of the Ni-Zn-Cu-based ferrite powder, non-uniform growth of particles can be suppressed.

次に、本発明に係るNi-Zn-Cu系フェライト焼結体について述べる。 Next, the Ni--Zn--Cu based ferrite sintered body according to the present invention will be described.

フェライト焼結体の焼結密度は、低温焼結時でも高い焼結密度が得られることが好ましく、例えば860℃程度の低温焼成時においても、5.00g/cm以上であることが好ましい。焼結密度が5.00g/cm未満の場合、十分な電磁気特性が得られず、また焼結体の機械的強度が低くなり好ましくない。焼結密度の上限は5.40g/cm程度である。 The sintered density of the ferrite sintered body is preferably 5.00 g/cm 3 or higher even when sintered at a low temperature, for example, 860° C. or higher. If the sintered density is less than 5.00 g/cm 3 , sufficient electromagnetic properties cannot be obtained and the mechanical strength of the sintered body becomes low, which is not preferable. The upper limit of the sintered density is about 5.40 g/cm 3 .

本発明に係るNi-Zn-Cu系フェライト焼結体は、本発明に係るNi-Zn-Cu系フェライト粉末を金型を用いて、0.3~3.0×10t/mの圧力で加圧する、所謂、粉末加圧成型法により得られた成型体、又は、本発明に係るNi-Zn-Cu系フェライト粉末を含有するグリーンシートを積層する、所謂、グリーンシート法により得られた積層体を840~1050℃で1~20時間、好ましくは1~10時間焼結することによって得ることができる。成型方法としては、公知の方法を使用できるが、上記粉末加圧成型法やグリーンシート法が好ましい。 The Ni-Zn-Cu ferrite sintered body according to the present invention is produced by molding the Ni-Zn-Cu ferrite powder according to the present invention in a mold at a rate of 0.3 to 3.0×10 4 t/m 2 . A molded body obtained by the so-called powder pressure molding method, which is applied with pressure, or a molded body obtained by the so-called green sheet method, which is laminated with green sheets containing the Ni-Zn-Cu ferrite powder according to the present invention. The laminate can be obtained by sintering the laminate at 840 to 1050°C for 1 to 20 hours, preferably 1 to 10 hours. As the molding method, any known method can be used, but the powder pressure molding method and green sheet method described above are preferred.

焼結温度が840℃未満であると、焼結密度が低下する為、十分な電磁気特性が得られず、また焼結体の機械的強度が低くなる。焼結温度が1050℃を越える場合には、焼結体に変形が生じやすくなる為、所望の形状の焼結体を得ることが困難になる。また例えば積層チップインダクタの場合、Ag、Ag-Pd等の電極材料とフェライトの積層体を同時焼成するため、電極とフェライトの界面反応(相互拡散)によって、電極の断線及びフェライト本来の特性が劣化する。より好ましい焼結温度は860~1040℃である。 If the sintering temperature is less than 840°C, the sintered density will decrease, so sufficient electromagnetic properties will not be obtained, and the mechanical strength of the sintered body will decrease. If the sintering temperature exceeds 1050°C, the sintered body is likely to be deformed, making it difficult to obtain a sintered body with a desired shape. In addition, for example, in the case of a multilayer chip inductor, since a laminate of electrode materials such as Ag or Ag-Pd and ferrite are fired at the same time, an interfacial reaction (mutual diffusion) between the electrode and ferrite may cause disconnection of the electrode and deterioration of the original characteristics of ferrite. do. A more preferred sintering temperature is 860-1040°C.

本発明に係るNi-Zn-Cu系フェライト焼結体は、用途に応じて、所定の形状とすることによって、積層チップインダクタ、インダクタンス素子、その他電子部品用の磁性材料として用いることができる。 The Ni--Zn--Cu-based ferrite sintered body according to the present invention can be used as a magnetic material for laminated chip inductors, inductance elements, and other electronic components by shaping it into a predetermined shape depending on the purpose.

次に、本発明におけるグリーンシートについて述べる。 Next, the green sheet in the present invention will be described.

グリーンシートとは、上記Ni-Zn-Cu系フェライト粉末を結合材料、可塑剤及び溶剤等と混合することによって塗料とし、該塗料をドクターブレード式コーター等で数μmから数百μmの厚さに成膜した後、乾燥してなるシートである。このシートを重ねた後、加圧することで積層体とし、用途に応じて、該積層体を所定の温度で焼結させることで、積層チップインダクタ、インダクタンス素子、その他電子部品を得ることができる。 Green sheet is a paint made by mixing the above Ni-Zn-Cu ferrite powder with a binding material, a plasticizer, a solvent, etc., and the paint is coated with a doctor blade coater etc. to a thickness of several μm to several hundred μm. This sheet is formed by forming a film and then drying it. After stacking these sheets, they are pressurized to form a laminate, and depending on the application, the laminate is sintered at a predetermined temperature to obtain multilayer chip inductors, inductance elements, and other electronic components.

本発明におけるグリーンシートは、本発明に係るNi-Zn-Cu系フェライト粉末を100重量部に対して結合材料を2~20重量部、可塑剤を0.5~15重量部含有する。好ましくは、結合材料を4~15重量部、可塑剤を1~10重量部含有する。また、成膜後の乾燥が不十分なことにより溶剤が残留していても良い。更に、必要に応じて粘度調整剤等の公知の添加剤を添加しても良い。 The green sheet in the present invention contains 2 to 20 parts by weight of a binding material and 0.5 to 15 parts by weight of a plasticizer per 100 parts by weight of the Ni-Zn-Cu ferrite powder according to the present invention. Preferably, it contains 4 to 15 parts by weight of binding material and 1 to 10 parts by weight of plasticizer. Further, solvent may remain due to insufficient drying after film formation. Furthermore, known additives such as a viscosity modifier may be added as necessary.

結合材料の種類は、ポリビニルブチラール、ポリアクリル酸エステル、ポリメチルメタクリレート、塩化ビニル、ポリメタクリル酸エステル、エチレンセルロース、アビエチン酸レジン等である。好ましい結合材料は、ポリビニルブチラールである。 Types of bonding materials include polyvinyl butyral, polyacrylic ester, polymethyl methacrylate, vinyl chloride, polymethacrylic ester, ethylene cellulose, abietic acid resin, and the like. A preferred bonding material is polyvinyl butyral.

結合材料が2重量部未満の場合はグリーンシートが脆くなり、また、強度を持たす為には20重量部を越える含有量は必要ない。 If the binding material is less than 2 parts by weight, the green sheet will become brittle, and in order to have strength, it is not necessary to have a content exceeding 20 parts by weight.

可塑剤の種類は、フタル酸ベンジル-n-ブチル、ブチルフタリルグリコール酸ブチル、ジブチルフタレート、ジメチルフタレート、ポリエチレングリコール、フタル酸エステル、ブチルステアレート、メチルアジテート等である。 Types of plasticizers include benzyl-n-butyl phthalate, butyl phthalyl glycolate, dibutyl phthalate, dimethyl phthalate, polyethylene glycol, phthalate ester, butyl stearate, methyl agitate, and the like.

可塑剤が0.5重量部未満の場合はグリーンシートが固くなり、ひび割れが生じやすくなる。可塑剤が15重量部を越える場合はグリーンシートが軟らかくなり、扱いにくくなる。 If the amount of plasticizer is less than 0.5 parts by weight, the green sheet becomes hard and cracks are likely to occur. If the amount of plasticizer exceeds 15 parts by weight, the green sheet becomes soft and difficult to handle.

本発明におけるグリーンシートの製造においては、Ni-Zn-Cu系フェライト粉末100重量部に対して15~150重量部の溶剤を使用する。溶剤が上記範囲外である場合は、均一なグリーンシートが得られないので、これを焼結して得られる積層チップインダクタ、インダクタンス素子、その他電子部品は特性にバラツキのあるものとなりやすい。 In producing the green sheet according to the present invention, 15 to 150 parts by weight of a solvent is used per 100 parts by weight of Ni-Zn-Cu ferrite powder. If the solvent is outside the above range, a uniform green sheet will not be obtained, and the multilayer chip inductors, inductance elements, and other electronic components obtained by sintering the green sheet will likely have varying characteristics.

溶剤の種類は、アセトン、ベンゼン、ブタノール、エタノール、メチルエチルケトン、トルエン、プロピルアルコール、イソプロピルアルコール、酢酸n-ブチル、3メチル-3メトキシ-1ブタノール等である。 Examples of the solvent include acetone, benzene, butanol, ethanol, methyl ethyl ketone, toluene, propyl alcohol, isopropyl alcohol, n-butyl acetate, 3-methyl-3-methoxy-1-butanol, and the like.

積層圧力は、0.2×10~0.6×10t/mが好ましい。 The lamination pressure is preferably 0.2×10 4 to 0.6×10 4 t/m 2 .

次に、本発明に係るフェライトシートについて述べる。 Next, the ferrite sheet according to the present invention will be described.

本発明では、Ni-Zn-Cu系フェライト焼結体を板状にして用いて、フェライトシートにすることができる。 In the present invention, a ferrite sheet can be obtained by using a Ni--Zn--Cu ferrite sintered body in the form of a plate.

本発明における板状のフェライト焼結体の厚さは、0.01~1mmが好ましい。より好ましくは0.02~1mmであり、更に好ましくは0.03~0.5mmである。 The thickness of the plate-shaped ferrite sintered body in the present invention is preferably 0.01 to 1 mm. More preferably 0.02 to 1 mm, still more preferably 0.03 to 0.5 mm.

本発明に係るフェライトシートでは、フェライト焼結板の少なくとも一方の表面には粘着層を設けることができる。粘着層の厚みは0.001~0.1mmが好ましい。 In the ferrite sheet according to the present invention, an adhesive layer can be provided on at least one surface of the sintered ferrite plate. The thickness of the adhesive layer is preferably 0.001 to 0.1 mm.

本発明に係るフェライトシートでは、フェライト焼結板の少なくとも一方の表面には保護層を設けることができる。保護層の厚みは0.001~0.1mmが好ましい。 In the ferrite sheet according to the present invention, a protective layer can be provided on at least one surface of the sintered ferrite plate. The thickness of the protective layer is preferably 0.001 to 0.1 mm.

本発明における粘着層としては、両面粘着テープが挙げられる。両面粘着テープとしては、特に制限されるものではなく、公知の両面粘着テープを使用し得る。また、粘着層として、フェライト焼結板の片面に粘着層、屈曲性且つ伸縮性のフィルム又はシート、粘着層および離型シートを順次積層したものであってもよい。 Examples of the adhesive layer in the present invention include double-sided adhesive tape. The double-sided adhesive tape is not particularly limited, and any known double-sided adhesive tape may be used. Alternatively, the adhesive layer may be one in which an adhesive layer, a flexible and stretchable film or sheet, an adhesive layer, and a release sheet are sequentially laminated on one side of a sintered ferrite plate.

本発明における保護層は、これを設けることによりフェライト焼結板を分割した場合の粉落ちに対しての信頼性及び耐久性を高めることができる。該保護層としては、フェライトシートを屈曲させた場合に破断することなく伸びる樹脂であれば特に制限されるものではなく、PETフィルム等が例示される。 By providing the protective layer in the present invention, reliability and durability against powder falling off when the sintered ferrite plate is divided can be improved. The protective layer is not particularly limited as long as it is a resin that stretches without breaking when the ferrite sheet is bent, and examples thereof include PET film and the like.

本発明に係るフェライトシートは、屈曲した部分に密着させて貼付する為と、使用時に割れることを防ぐ為に、予め、フェライト焼結板の少なくとも一方の表面に設けられた少なくとも1つの溝を起点としてフェライト焼結板が分割可能に構成されてもよい。前記溝は連続していても、断続的に形成されていてもよく、また、多数の微小な凹部を形成することで、溝の代用とすることもできる。溝は断面がU字型又はV字型が望ましい。 The ferrite sheet according to the present invention has at least one groove formed in advance on at least one surface of the ferrite sintered plate as a starting point in order to stick it tightly to a bent part and to prevent it from cracking during use. The sintered ferrite plate may be configured to be separable. The grooves may be continuous or discontinuously formed, and may be substituted for grooves by forming a large number of minute recesses. The groove preferably has a U-shaped or V-shaped cross section.

本発明に係るフェライトシートは、屈曲した部分に密着させて貼付する為と、使用時に割れることを防ぐ為に、予め、フェライト焼結板を小片状に分割しておくことが好ましい。例えば、予め、フェライト焼結板の少なくとも一方の表面に設けられた少なくとも1つの溝を起点としてフェライト焼結板を分割したり、溝を形成することなくフェライト焼結板を分割して小片状とする方法のいずれでもよい。 For the ferrite sheet according to the present invention, it is preferable to divide the ferrite sintered plate into small pieces in advance in order to adhere the ferrite sheet closely to the bent portion and to prevent it from breaking during use. For example, the ferrite sintered plate may be divided in advance using at least one groove provided on at least one surface of the ferrite sintered plate as a starting point, or the ferrite sintered plate may be divided into small pieces without forming any grooves. Any of the following methods may be used.

フェライト焼結板は、溝によって任意の大きさの三角形、四辺形、多角形またはそれらの組合せに区分される。例えば、三角形、四辺形、多角形の1辺の長さは、通常1~12mmであり、被付着物の接着面が曲面の場合は、好ましくは1mm以上でその曲率半径の1/3以下、より好ましくは1mm以上で1/4以下である。溝を形成した場合、溝以外の場所で不定形に割れることなく、平面は勿論、円柱状の側曲面および多少の凹凸のある面に密着または実質的に密着することが出来る。 The sintered ferrite plate is divided into triangles, quadrilaterals, polygons, or combinations thereof of arbitrary size by grooves. For example, the length of one side of a triangle, quadrilateral, or polygon is usually 1 to 12 mm, and if the surface to be adhered to is a curved surface, it is preferably 1 mm or more and 1/3 or less of the radius of curvature. More preferably, it is 1 mm or more and 1/4 or less. When a groove is formed, it can adhere or substantially adhere to not only a flat surface but also a cylindrical curved side surface and a somewhat uneven surface without being broken into irregular shapes at locations other than the groove.

フェライト焼結板に形成する溝の開口部の幅は、通常250μm以下が好ましく、より好ましくは1~150μmである。開口部の幅が250μmを超える場合は、フェライト焼結板の透磁率の低下が大きくなり好ましくない。また、溝の深さは、フェライト焼結板の厚さの通常1/20~3/5である。なお、厚さが0.1mm~0.2mmの薄い焼結フェライト板の場合、溝の深さは、焼結フェライト板の厚さの好ましくは1/20~1/4、より好ましくは1/20~1/6である。 The width of the opening of the groove formed in the sintered ferrite plate is usually preferably 250 μm or less, more preferably 1 to 150 μm. If the width of the opening exceeds 250 μm, the magnetic permeability of the sintered ferrite plate will decrease significantly, which is not preferable. Further, the depth of the groove is usually 1/20 to 3/5 of the thickness of the sintered ferrite plate. In addition, in the case of a thin sintered ferrite plate with a thickness of 0.1 mm to 0.2 mm, the depth of the groove is preferably 1/20 to 1/4, more preferably 1/4 of the thickness of the sintered ferrite plate. It is 20 to 1/6.

以下に、本発明における実施例を示し、本発明を具体的に説明する。 EXAMPLES Below, Examples of the present invention will be shown to specifically explain the present invention.

[Fe原料の比表面積の測定]
Fe原料の比表面積は、「Macsorb HM model-1208」(Mountech株式会社製)を用いて、BET法により測定した。実施例、比較例に使用した各Fe原料の比表面積を表1に記載した。
[Measurement of specific surface area of Fe 2 O 3 raw material]
The specific surface area of the Fe 2 O 3 raw material was measured by the BET method using "Macsorb HM model-1208" (manufactured by Mountech Co., Ltd.). Table 1 shows the specific surface area of each Fe 2 O 3 raw material used in Examples and Comparative Examples.

[フェライト組成の測定]
上述のフェライトコア用のフェライト仮焼粉の組成は、多元素同時蛍光X線分析装置 Simultix 14((株)リガク)を用いて測定した。
[Measurement of ferrite composition]
The composition of the calcined ferrite powder for the ferrite core described above was measured using a multi-element simultaneous fluorescence X-ray analyzer Simultix 14 (manufactured by Rigaku Corporation).

[結晶相の同定・定量]
フェライトを構成する結晶相は、D8 ADVANCEを用いて評価した。
[Identification and quantification of crystal phase]
The crystal phase constituting ferrite was evaluated using D8 ADVANCE.

[結晶子サイズ、歪、格子定数]
フェライトの結晶子サイズ、歪及び格子定数は、前記X線回折と同様にして、D8 ADVANCEを用いて、TOPASソフトウェアVer.4にて評価した。
[Crystallite size, strain, lattice constant]
The crystallite size, strain, and lattice constant of ferrite were determined using D8 ADVANCE using TOPAS software Ver. Evaluation was made at 4.

[フェライトコアの磁気特性の測定]
上述のフェライトコア用のフェライト仮焼粉15g及び6.5%希釈したPVA水溶液1.5mLを混合した粉末を、外径20mmφ、内径10mmφの金型に投入し、プレス機にて、1ton/cmで圧縮し、860、880、900、920℃で2時間焼成することで、初透磁率を測定するためのフェライトのリングコアを得た。
[Measurement of magnetic properties of ferrite core]
A powder mixture of 15 g of the above-mentioned calcined ferrite powder for the ferrite core and 1.5 mL of a 6.5% diluted PVA aqueous solution was put into a mold with an outer diameter of 20 mmφ and an inner diameter of 10 mmφ, and a press machine was used to produce a powder of 1 ton/cm. 2 and fired at 860, 880, 900, and 920°C for 2 hours to obtain a ferrite ring core for measuring initial magnetic permeability.

リングコアの初透磁率は、インピーダンス/マテリアルアナライザーE4991A(アジレント・テクノロジー(株)製)を用いて100kHz及び1MHzの周波数において測定した。 The initial magnetic permeability of the ring core was measured at frequencies of 100 kHz and 1 MHz using an impedance/material analyzer E4991A (manufactured by Agilent Technologies).

[フェライトコアの焼結密度の測定]
前述の磁気特性測定用のフェライト焼結体の焼結密度は、外径、内径寸法及び重量を測定し、計算で求めた。
[Measurement of sintered density of ferrite core]
The sintered density of the ferrite sintered body for measuring magnetic properties was determined by measuring the outer diameter, inner diameter, and weight.

実施例1:
Ni-Zn-Cuフェライトの組成が、所定の組成になるように各酸化物原料を秤量し、湿式混合を行った後、混合スラリーを濾別・乾燥して原料混合粉末を得た(Fe原料は、表1の酸化鉄(1)を使用した)。該原料混合粉末を大気中で750~850℃で2時間焼成して得られた仮焼成物を振動ミルで粉砕し、本発明に係るNi-Zn-Cuフェライト粉末を得た。得られた粉末の組成、結晶子サイズ、歪及び格子定数を表2に記載した。
Example 1:
Each oxide raw material was weighed and wet-mixed so that the composition of Ni-Zn-Cu ferrite would be a predetermined composition, and then the mixed slurry was filtered and dried to obtain a raw material mixed powder (Fe 2 As the O 3 raw material, iron oxide (1) shown in Table 1 was used). The raw material mixed powder was fired at 750 to 850° C. for 2 hours in the air, and the resulting pre-fired product was pulverized with a vibration mill to obtain Ni--Zn--Cu ferrite powder according to the present invention. The composition, crystallite size, strain, and lattice constant of the obtained powder are listed in Table 2.

得られたNi-Zn-Cuフェライト粉末を前述の方法で成型体をとした。この成型体を大気中で焼結温度860~920℃において、2時間焼結して得られるフェライト焼結体の焼結密度及び初透磁率(100kHz、1MHz)を表2に記載した。 The obtained Ni--Zn--Cu ferrite powder was made into a molded body by the method described above. Table 2 shows the sintered density and initial magnetic permeability (100 kHz, 1 MHz) of the ferrite sintered body obtained by sintering this molded body in the air at a sintering temperature of 860 to 920° C. for 2 hours.

得られたNi-Zn-CuフェライトのXRDによる評価から、スピネルフェライトの単相であることが確認出来た。 Evaluation of the obtained Ni-Zn-Cu ferrite by XRD confirmed that it was a single phase of spinel ferrite.

実施例2、3:
組成範囲を種々変更した以外は実施例1と同様にしてNi-Zn-Cuフェライト粉末を得た。得られたNi-Zn-Cuフェライト粉末の組成、結晶子サイズ及び歪を表2に記載した。また得られたNi-Zn-Cuフェライト粉末を用いて、実施例1と同様にして作製したフェライト焼結体の焼結密度及び初透磁率(100kHz、1MHz)を表2に記載した。
Examples 2 and 3:
Ni--Zn--Cu ferrite powder was obtained in the same manner as in Example 1 except that the composition range was variously changed. The composition, crystallite size, and strain of the obtained Ni--Zn--Cu ferrite powder are listed in Table 2. Table 2 also shows the sintered density and initial permeability (100 kHz, 1 MHz) of a ferrite sintered body produced in the same manner as in Example 1 using the obtained Ni--Zn--Cu ferrite powder.

実施例4、5:
組成範囲を種々変更し、Coを追加した以外は実施例1と同様にしてNi-Zn-Cu-Coフェライト粉末を得た。得られたNi-Zn-Cu-Coフェライト粉末の組成、結晶子サイズ及び歪を表2に記載した。また得られたNi-Zn-Cu-Coフェライト粉末を用いて、実施例1と同様にして作製したフェライト焼結体の焼結密度及び初透磁率(100kHz、1MHz)を表2に記載した。
Examples 4 and 5:
Ni--Zn--Cu--Co ferrite powder was obtained in the same manner as in Example 1, except that the composition range was variously changed and Co was added. The composition, crystallite size and strain of the obtained Ni-Zn-Cu-Co ferrite powder are listed in Table 2. Table 2 also lists the sintered density and initial permeability (100kHz, 1MHz) of a ferrite sintered body produced in the same manner as in Example 1 using the obtained Ni-Zn-Cu-Co ferrite powder.

比較例1:
組成範囲を種々変更した以外は実施例1と同様にしてNi-Zn-Cuフェライト粉末を得た。得られたNi-Zn-Cuフェライト粉末の組成、結晶子サイズ及び歪を表2に記載した。また得られたNi-Zn-Cuフェライト粉末を用いて、実施例1と同様にして作製したフェライト焼結体の焼結密度及び初透磁率(100kHz、1MHz)を表2に記載した。
Comparative example 1:
Ni--Zn--Cu ferrite powder was obtained in the same manner as in Example 1 except that the composition range was variously changed. The composition, crystallite size, and strain of the obtained Ni--Zn--Cu ferrite powder are listed in Table 2. Table 2 also shows the sintered density and initial permeability (100 kHz, 1 MHz) of a ferrite sintered body produced in the same manner as in Example 1 using the obtained Ni--Zn--Cu ferrite powder.

比較例2:
Fe原料に表1中の酸化鉄原料(2)を使用した以外は、実施例1と同様にしてNi-Zn-Cuフェライト粉末を得た。得られたNi-Zn-Cuフェライト粉末の組成、結晶子サイズ及び歪を表2に記載した。また得られたNi-Zn-Cuフェライト粉末を用いて、実施例1と同様にして作製したフェライト焼結体の焼結密度及び初透磁率(100kHz、1MHz)を表2に記載した。
Comparative example 2:
Ni--Zn--Cu ferrite powder was obtained in the same manner as in Example 1, except that iron oxide raw material (2) in Table 1 was used as the Fe 2 O 3 raw material. The composition, crystallite size, and strain of the obtained Ni--Zn--Cu ferrite powder are listed in Table 2. Table 2 also shows the sintered density and initial permeability (100 kHz, 1 MHz) of a ferrite sintered body produced in the same manner as in Example 1 using the obtained Ni--Zn--Cu ferrite powder.

比較例3:
Fe原料に表1中の酸化鉄原料(3)を使用した以外は、実施例1と同様にしてNi-Zn-Cuフェライト粉末を得た。得られたNi-Zn-Cuフェライト粉末の組成、結晶子サイズ及び歪を表2に記載した。また得られたNi-Zn-Cuフェライト粉末を用いて、実施例1と同様にして作製したフェライト焼結体の焼結密度及び初透磁率(100kHz、1MHz)を表2に記載した。
Comparative example 3:
Ni--Zn--Cu ferrite powder was obtained in the same manner as in Example 1, except that iron oxide raw material (3) in Table 1 was used as the Fe 2 O 3 raw material. The composition, crystallite size, and strain of the obtained Ni--Zn--Cu ferrite powder are listed in Table 2. Table 2 also shows the sintered density and initial permeability (100 kHz, 1 MHz) of a ferrite sintered body produced in the same manner as in Example 1 using the obtained Ni--Zn--Cu ferrite powder.

比較例4:
Fe原料に表1中の酸化鉄原料(4)を使用した以外は、実施例1と同様にしてNi-Zn-Cuフェライト粉末を得た。得られたNi-Zn-Cuフェライト粉末の組成、結晶子サイズ及び歪を表2に記載した。また得られたNi-Zn-Cuフェライト粉末を用いて、実施例1と同様にして作製したフェライト焼結体の焼結密度及び初透磁率(100kHz、1MHz)を表2に記載した。
Comparative example 4:
Ni--Zn--Cu ferrite powder was obtained in the same manner as in Example 1, except that iron oxide raw material (4) in Table 1 was used as the Fe 2 O 3 raw material. The composition, crystallite size, and strain of the obtained Ni--Zn--Cu ferrite powder are listed in Table 2. Table 2 also shows the sintered density and initial permeability (100 kHz, 1 MHz) of a ferrite sintered body produced in the same manner as in Example 1 using the obtained Ni--Zn--Cu ferrite powder.

比較例5:
Fe原料に表1中の酸化鉄原料(2)を使用した以外は、実施例4と同様にしてNi-Zn-Cu-Coフェライト粉末を得た。得られたNi-Zn-Cu-Coフェライト粉末の組成、結晶子サイズ及び歪を表2に記載した。また得られたNi-Zn-Cu-Coフェライト粉末を用いて、実施例1と同様にして作製したフェライト焼結体の焼結密度及び初透磁率(100kHz、1MHz)を表2に記載した。
Comparative example 5:
Ni--Zn--Cu--Co ferrite powder was obtained in the same manner as in Example 4, except that iron oxide raw material (2) in Table 1 was used as the Fe 2 O 3 raw material. The composition, crystallite size and strain of the obtained Ni-Zn-Cu-Co ferrite powder are listed in Table 2. Table 2 also lists the sintered density and initial permeability (100kHz, 1MHz) of a ferrite sintered body produced in the same manner as in Example 1 using the obtained Ni-Zn-Cu-Co ferrite powder.

比較例6:
Fe原料に表1中の酸化鉄原料(2)を使用した以外は、実施例5と同様にしてNi-Zn-Cu-Coフェライト粉末を得た。得られたNi-Zn-Cu-Coフェライト粉末の組成、結晶子サイズ及び歪を表2に記載した。また得られたNi-Zn-Cu-Coフェライト粉末を用いて、実施例1と同様にして作製したフェライト焼結体の焼結密度及び初透磁率(100kHz、1MHz)を表2に記載した。
Comparative example 6:
Ni--Zn--Cu--Co ferrite powder was obtained in the same manner as in Example 5, except that iron oxide raw material (2) in Table 1 was used as the Fe 2 O 3 raw material. The composition, crystallite size and strain of the obtained Ni-Zn-Cu-Co ferrite powder are listed in Table 2. Table 2 also lists the sintered density and initial permeability (100kHz, 1MHz) of a ferrite sintered body produced in the same manner as in Example 1 using the obtained Ni-Zn-Cu-Co ferrite powder.

Figure 2023158013000001
Figure 2023158013000001

Figure 2023158013000002
Figure 2023158013000002

本発明に係るNi-Zn-Cu系フェライト粉末は、例えば860℃等の低温で焼結した場合でも、焼結密度5.00g/cm以上であり、また、100kHz及び1MHzにおける透磁率について、同じ焼結温度で対比した場合、比較例対比で高くなっている。よって、フェライト焼結体及びフェライトシートの前駆体として好適であり、また積層チップインダクタ、インダクタンス素子、その他電子部品用の磁性粉として好適である。
The Ni-Zn-Cu ferrite powder according to the present invention has a sintered density of 5.00 g/cm 3 or more even when sintered at a low temperature such as 860°C, and has a magnetic permeability at 100 kHz and 1 MHz. When compared at the same sintering temperature, it is higher than that of the comparative example. Therefore, it is suitable as a precursor for ferrite sintered bodies and ferrite sheets, and as a magnetic powder for laminated chip inductors, inductance elements, and other electronic components.

すなわち、本発明は、Feを45~49mol%、NiOを5~25mol%、ZnOを15~40mol%、CuOを5~15mol%及びCoOを0~3mol%含有し、結晶子サイズが180nm以下であるNi-Zn-Cu系フェライト粉末であって、前記Ni-Zn-Cu系フェライト粉末がスピネルフェライト単相であることを特徴とするNi-Zn-Cu系フェライト粉末である(本発明1)。 That is, the present invention contains 45 to 49 mol% of Fe 2 O 3 , 5 to 25 mol% of NiO, 15 to 40 mol% of ZnO, 5 to 15 mol% of CuO, and 0 to 3 mol% of CoO, and the crystallite size is 180 nm or less, the Ni-Zn-Cu ferrite powder is characterized in that the Ni-Zn-Cu ferrite powder is a single phase spinel ferrite (the present invention) 1).

Claims (5)

Feを45~49mol%、NiOを5~25mol%、ZnOを15~40mol%、CuOを5~15mol%及びCoOを0~3mol%含有し、結晶子サイズが180nm以下であることを特徴とするNi-Zn-Cu系フェライト粉末。 Contains 45 to 49 mol% of Fe 2 O 3 , 5 to 25 mol% of NiO, 15 to 40 mol% of ZnO, 5 to 15 mol% of CuO, and 0 to 3 mol% of CoO, and has a crystallite size of 180 nm or less. Characteristic Ni-Zn-Cu ferrite powder. 歪が0.330以下である請求項1に記載のNi-Zn-Cu系フェライト粉末。 The Ni-Zn-Cu-based ferrite powder according to claim 1, which has a strain of 0.330 or less. 大気中860℃で焼成した際に、焼結密度が5.00g/cm以上となる請求項1又は請求項2に記載のNi-Zn-Cu系フェライト粉末。 The Ni-Zn-Cu-based ferrite powder according to claim 1 or 2, which has a sintered density of 5.00 g/cm 3 or more when fired at 860° C. in the atmosphere. 請求項1~3のいずれか一項に記載のNi-Zn-Cu系フェライト粉末を使用した焼結体。 A sintered body using the Ni-Zn-Cu ferrite powder according to any one of claims 1 to 3. 請求項1~3のいずれか一項に記載のNi-Zn-Cu系フェライト粉末を使用したフェライトシート。 A ferrite sheet using the Ni-Zn-Cu ferrite powder according to any one of claims 1 to 3.
JP2023136607A 2018-03-16 2023-08-24 Ni-Zn-Cu-BASED FERRITE POWDER, SINTERED COMPACT, FERRITE SHEET Pending JP2023158013A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018050116 2018-03-16
JP2018050116 2018-03-16
JP2020506574A JP7406183B2 (en) 2018-03-16 2019-03-12 Ni-Zn-Cu ferrite powder, sintered body, ferrite sheet
PCT/JP2019/010118 WO2019176968A1 (en) 2018-03-16 2019-03-12 Ni-zn-cu-based ferrite powder, sintered body, and ferrite sheet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020506574A Division JP7406183B2 (en) 2018-03-16 2019-03-12 Ni-Zn-Cu ferrite powder, sintered body, ferrite sheet

Publications (1)

Publication Number Publication Date
JP2023158013A true JP2023158013A (en) 2023-10-26

Family

ID=67907764

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020506574A Active JP7406183B2 (en) 2018-03-16 2019-03-12 Ni-Zn-Cu ferrite powder, sintered body, ferrite sheet
JP2023136607A Pending JP2023158013A (en) 2018-03-16 2023-08-24 Ni-Zn-Cu-BASED FERRITE POWDER, SINTERED COMPACT, FERRITE SHEET

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020506574A Active JP7406183B2 (en) 2018-03-16 2019-03-12 Ni-Zn-Cu ferrite powder, sintered body, ferrite sheet

Country Status (5)

Country Link
JP (2) JP7406183B2 (en)
KR (1) KR102634603B1 (en)
CN (1) CN111788156B (en)
TW (1) TWI820093B (en)
WO (1) WO2019176968A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7398092B2 (en) * 2019-12-05 2023-12-14 パウダーテック株式会社 Ferrite mixed powder, carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3580144B2 (en) * 1998-10-01 2004-10-20 株式会社村田製作所 Method for producing Ni-Cu-Zn ferrite material
US6187218B1 (en) * 1908-10-19 2001-02-13 Murata Manufacturing Co., Ltd. Method of producing Ni-Cu-Zn ferrite material
JP3381939B2 (en) 1992-05-15 2003-03-04 ティーディーケイ株式会社 Ferrite sintered body, chip inductor parts, composite laminated parts and magnetic core
JPH07130525A (en) * 1993-11-02 1995-05-19 Tokin Corp Manufacture of oxide magnetic material and chip inductor
JPH0917625A (en) * 1995-06-26 1997-01-17 Taiyo Yuden Co Ltd Oxide magnetic material and its manufacture
JP2000109323A (en) * 1998-10-01 2000-04-18 Toda Kogyo Corp Production of platelike spinel-type ferrite powdery particle
JP3343813B2 (en) 1999-01-11 2002-11-11 ティーディーケイ株式会社 Magnetic ferrite materials, multilayer chip ferrite parts and composite multilayer parts
KR100349003B1 (en) * 1999-03-09 2002-08-17 티디케이가부시기가이샤 Method for the Preparation of Soft Magnetic Ferrite Powder and Method for the Production of Laminated Chip Inductor
JP3908045B2 (en) * 2002-01-31 2007-04-25 Jfeケミカル株式会社 Manufacturing method of iron oxide powder and ferrite powder for chip inductor
JP2005064468A (en) 2003-07-28 2005-03-10 Kyocera Corp Ferrite core for rfid, its manufacturing method, and ferrite coil using the same
JP2006016280A (en) * 2004-07-05 2006-01-19 Neomax Co Ltd Ni-Cu-Zn FERRITE AND ITS MANUFACTURING METHOD
JP4215261B2 (en) * 2004-10-29 2009-01-28 Tdk株式会社 Ferrite magnetic material and manufacturing method thereof
JP4753016B2 (en) 2005-09-30 2011-08-17 戸田工業株式会社 Ferrite powder, green sheet containing ferrite powder, and ferrite sintered body
US20100000769A1 (en) * 2007-01-23 2010-01-07 Tadahiro Ohmi Composite magnetic body, method of manufacturing the same, circuit board using the same, and electronic apparatus using the same
JP5915846B2 (en) * 2012-02-13 2016-05-11 戸田工業株式会社 Ni-Zn-Cu ferrite powder, green sheet containing the Ni-Zn-Cu ferrite powder, and Ni-Zn-Cu ferrite sintered body
US9824802B2 (en) * 2012-10-31 2017-11-21 Toda Kogyo Corp. Ferrite sintered plate and ferrite sintered sheet
US10128029B2 (en) * 2013-10-31 2018-11-13 Toda Kogyo Corp. Ferrite ceramics, ferrite sintered plate and ferrite sintered sheet
EP3094599A1 (en) * 2014-01-17 2016-11-23 SABIC Global Technologies B.V. Nickel-zinc ferrites and methods for preparing same using fine iron oxide and bag house dust
CN105308003B (en) * 2014-05-22 2017-08-01 户田工业株式会社 Ferrite sintered plate and ferrite sintered

Also Published As

Publication number Publication date
KR102634603B1 (en) 2024-02-08
CN111788156A (en) 2020-10-16
KR20200130811A (en) 2020-11-20
TW201945317A (en) 2019-12-01
CN111788156B (en) 2023-04-28
WO2019176968A1 (en) 2019-09-19
JP7406183B2 (en) 2023-12-27
TW202402709A (en) 2024-01-16
TWI820093B (en) 2023-11-01
JPWO2019176968A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
JP5212623B2 (en) Ni-Zn-Cu ferrite powder, green sheet containing the Ni-Zn-Cu ferrite powder, and Ni-Zn-Cu ferrite sintered body.
JP5582279B2 (en) Inductance element comprising Ni-Zn-Cu ferrite sintered body
KR101281373B1 (en) Ferrite composition and electronic component
JP6536405B2 (en) Ferrite sintered body, ferrite sintered plate and ferrite sintered sheet
EP2816020B1 (en) Ni-Zn-Cu-BASED FERRITE POWDER, GREEN SHEET COMPRISING SAID Ni-Zn-Cu-BASED FERRITE POWDER, AND SINTERED Ni-Zn-Cu-BASED FERRITE
JP2023158013A (en) Ni-Zn-Cu-BASED FERRITE POWDER, SINTERED COMPACT, FERRITE SHEET
JP2007145703A (en) Ni-Zn-BASED FERRITE POWDER, GREEN SHEET CONTAINING THE Ni-Zn-BASED FERRITE POWDER AND Ni-Zn-BASED FERRITE-SINTERED COMPACT
TWI857790B (en) Ni-Zn-Cu series ferric iron powder, sintered body, ferric iron flakes
JP7224574B2 (en) Ni-Zn-Cu ferrite powder, electronic parts, antennas and RF tags
JP4753016B2 (en) Ferrite powder, green sheet containing ferrite powder, and ferrite sintered body
KR20090032636A (en) Low temperature sintering ferrites and manufacturing method the same
JP4835969B2 (en) Magnetic oxide material and multilayer inductor using the same
JP5660698B2 (en) Magnetic oxide material
JP4752849B2 (en) Manufacturing method of sintered ferrite
JP2008184364A (en) Oxide magnetic material
JPH082926A (en) Production of soft ferrite particle powder for low-temperature sintering
JP6245966B2 (en) Soft magnetic materials for inductors

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230922

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240828

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20241024