JPH082926A - Production of soft ferrite particle powder for low-temperature sintering - Google Patents

Production of soft ferrite particle powder for low-temperature sintering

Info

Publication number
JPH082926A
JPH082926A JP6155352A JP15535294A JPH082926A JP H082926 A JPH082926 A JP H082926A JP 6155352 A JP6155352 A JP 6155352A JP 15535294 A JP15535294 A JP 15535294A JP H082926 A JPH082926 A JP H082926A
Authority
JP
Japan
Prior art keywords
particle powder
ferrite
low
temperature sintering
soft ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6155352A
Other languages
Japanese (ja)
Other versions
JP3389937B2 (en
Inventor
Tatsuya Nakamura
龍哉 中村
Suehiko Miura
末彦 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP15535294A priority Critical patent/JP3389937B2/en
Publication of JPH082926A publication Critical patent/JPH082926A/en
Application granted granted Critical
Publication of JP3389937B2 publication Critical patent/JP3389937B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Abstract

PURPOSE:To provide an industrial production process for a soft ferrite particle for low-temperature sintering to give a sintered ferrite having high magnetic permeability in the frequency range of 1-MHz to 100MHz even by sintering at a low temperature, i.e., <=900 deg.C. CONSTITUTION:Ni-Zn-Cu soft ferrite particle powder for low-temperature sintering is produced by using gamma-Fe2O3 powder having an average particle diameter of <=0.06mum as the Fe2O3 raw material, calcining the raw material powder in a range of 750-800 deg.C and roughly crushing the calcined product.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低温焼結用ソフトフェ
ライト粒子粉末の製造法に関し、特に各種電子部品など
のデバイスに好適に用いられる低温焼結用ソフトフェラ
イト粒子粉末を製造する新規技術手段を提供するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing soft ferrite particle powder for low temperature sintering, and a new technical means for producing the soft ferrite particle powder for low temperature sintering which is particularly suitable for use in devices such as various electronic parts. Is provided.

【0002】[0002]

【従来の技術】周知の如く、電子機器の軽薄短小化に伴
い、これに用いられる各種電子部品の小型化、高性能化
が益々要求されている。
2. Description of the Related Art As is well known, as electronic devices have become lighter, thinner, shorter and smaller, various electronic parts used therein have been required to have smaller size and higher performance.

【0003】例えば、電子機器の電気回路に用いられる
インダクタは、磁芯または空芯ボビンに絶縁被覆を有す
る銅線を巻線してコイルを形成する巻線型から現在はフ
ェライト焼結型の積層チップインダクタが提案され実用
化もされてきている。
For example, an inductor used in an electric circuit of an electronic device is a laminated chip of a ferrite sintering type from a winding type in which a copper wire having an insulating coating is wound around a magnetic core or an air core bobbin to form a coil. Inductors have been proposed and put into practical use.

【0004】このフェライト焼結型の積層チップインダ
クタは次の製造工程を経て製造されている。即ち、フェ
ライト粒子粉末を含む磁性体ペーストと、Ag、Pdあ
るいはAg−Pd(電極物質)等の金属粉末を含む導体
ペーストを各々準備し、複数個の約半ターン分の導電パ
ターン印刷層をその間にフェライト印刷層を介して螺旋
状に連続的に接続されるように形成し、導電パターンが
積層方向に螺旋状になるような積層体を作り、これを焼
成炉に入れ所定温度で焼成して焼結させて積層インダク
タを得、得られた積層インダクタの両端面に前記導電パ
ターン印刷に用いたのと同じ導電ペーストを施し、適当
な温度で焼付けて外部電極を形成して積層チップインダ
クタを得るという工程である。積層型チップインダクタ
用の磁性体としては、Ni−Znフェライト、Ni−Z
n−Cuフェライト等のNi系フェライトが用いられて
いる。
This ferrite sintered type multilayer chip inductor is manufactured through the following manufacturing steps. That is, a magnetic paste containing ferrite particle powder and a conductor paste containing metal powder such as Ag, Pd or Ag-Pd (electrode material) are prepared respectively, and a plurality of conductive pattern printing layers for about half a turn are provided between them. To form a spirally connected conductive pattern through the ferrite print layer, and to form a laminate in which the conductive pattern is spiral in the stacking direction. A multilayer inductor is obtained by sintering, and the same conductive paste used for printing the conductive pattern is applied to both end surfaces of the obtained multilayer inductor, and baked at an appropriate temperature to form external electrodes to obtain a multilayer chip inductor. That is the process. Examples of magnetic materials for laminated chip inductors include Ni-Zn ferrite and Ni-Z.
Ni-based ferrite such as n-Cu ferrite is used.

【0005】ところで、上述の如く積層型チップインダ
クタの製造工程においては、導電パターンとフェライト
の印刷積層体を同時高温(通常、1000℃前後)焼成
する方法を採っているために、Ag、Pd等の電極物質
とフェライトの界面反応(相互拡散)によってフェライ
ト本来の特性が劣化するという問題点を有しており、こ
の問題点を回避するためには約900℃以下という低温
度で焼成する必要があるとされている。
By the way, in the manufacturing process of the multilayer chip inductor as described above, since the method of simultaneously firing the conductive pattern and the printed laminate of ferrite at a high temperature (usually around 1000 ° C.) is adopted, Ag, Pd, etc. There is a problem that the original characteristics of ferrite deteriorate due to the interfacial reaction (mutual diffusion) between the electrode material and the ferrite, and in order to avoid this problem, it is necessary to perform firing at a low temperature of about 900 ° C or less. It is said that there is.

【0006】しかし、900℃以下の温度で焼成した場
合には、、積層型チップインダクタ用の磁性体として透
磁率等の電磁気特性に優れたNi系フェライト焼結体が
得られ難いことが指摘されている。
However, it has been pointed out that when sintered at a temperature of 900 ° C. or less, it is difficult to obtain a Ni-based ferrite sintered body excellent in electromagnetic characteristics such as magnetic permeability as a magnetic body for a laminated chip inductor. ing.

【0007】従来、900℃以下という低温で焼成して
焼結させることが可能なソフトフェライト粒子粉末を得
る技術が幾つか提案されている。例えば、特開平5−1
75032号公報には、Fe2 3 、NiO、ZnO及
びCuO原料の配合物にCoOを添加混合したフェライ
ト原料混合物を700℃の温度で仮焼成した後に粉砕し
てNi−Zn−Cuフェライト粒子粉末を製造するとい
う方法が開示されている。また、特公平6−30297
号公報には、酸化鉄と、2価の金属(M2 )の酸化物
(ただしM2 は、ニッケルおよび/または銅、あるいは
これに亜鉛を加えたもの)との配合物にLi2 Oと4価
の金属(M4 )の酸化物(ただしM4 は、チタン、スズ
およびゲルマニウムの内の一種以上)添加混合したフェ
ライト原料混合物を600〜800℃程度の温度で仮焼
成した後に粉砕してソフトフェライト粒子粉末を製造す
る方法が開示されている。
Conventionally, several techniques have been proposed for obtaining soft ferrite particle powder that can be fired and sintered at a low temperature of 900 ° C. or lower. For example, Japanese Patent Laid-Open No. 5-1
No. 75032 discloses a Ni-Zn-Cu ferrite particle powder obtained by calcination of a ferrite raw material mixture prepared by adding and mixing CoO to a mixture of Fe 2 O 3 , NiO, ZnO and CuO raw materials at a temperature of 700 ° C. and then pulverized. Is disclosed. In addition, Japanese Patent Publication No. 6-30297
In the publication, a mixture of iron oxide and an oxide of a divalent metal (M 2 ) (where M 2 is nickel and / or copper, or zinc added thereto) and Li 2 O are added. An oxide of a tetravalent metal (M 4 ) (where M 4 is at least one of titanium, tin and germanium) is added and mixed, and the ferrite raw material mixture is calcinated at a temperature of about 600 to 800 ° C. and then pulverized. A method of making a soft ferrite particle powder is disclosed.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、特開平
5−175032号公報記載の技術は、仮焼成後にボー
ルミル等にて長時間湿式粉砕を行い微粒子化した0.0
1〜0.1μm程度のNi−Zn−Cuフエライト粒子
粉末を調製し、続いて、焼成して焼結させる際、空気よ
り酸素濃度の低い雰囲気下での焼成が不可欠であり、工
程上複雑となり好ましくない。また、長時間の湿式粉砕
は、生産性に問題があるだけでなく、粉砕媒体の摩耗、
更にはこの摩耗により生じた粉末によってフェライト粉
末が汚染され、結果的に電磁気特性に悪影響を及ぼす可
能性がある。
However, in the technique described in Japanese Patent Laid-Open No. 5-175032, fine pulverization is carried out by performing wet pulverization for a long time in a ball mill or the like after calcination.
When preparing a Ni-Zn-Cu ferrite particle powder of about 1 to 0.1 μm, and subsequently firing and sintering, firing in an atmosphere having a lower oxygen concentration than air is indispensable, which complicates the process. Not preferable. Further, long-time wet crushing not only has a problem in productivity, but also wear of the crushing medium,
Further, the powder generated by this abrasion may contaminate the ferrite powder, and as a result, the electromagnetic characteristics may be adversely affected.

【0009】また、特公平6−30297号公報記載の
技術は、高い透磁率を有したフェライト焼結体を得るた
め、酸化鉄と2価の金属の酸化物との配合物にLi2
と4価の金属の酸化物を添加混合することが必須となっ
ているが、これ等を添加することによる効果も充分でな
く、また経済的にコスト高となり好ましくない。
Further, in the technique disclosed in Japanese Patent Publication No. 6-30297, in order to obtain a ferrite sintered body having a high magnetic permeability, Li 2 O is added to a mixture of iron oxide and a divalent metal oxide.
It is indispensable to add and mix a tetravalent metal oxide and a tetravalent metal oxide, but the effect of adding these is not sufficient, and the cost is economically increased, which is not preferable.

【0010】従って、当業界では、900℃以下という
低温で焼成して焼結させた場合であっても、高透磁率を
有したフェライト焼結体が得られるという低温焼結用ソ
フトフェライト粒子粉末を提供することが最大の技術的
課題となっている。
Therefore, in the industry, a soft ferrite particle powder for low-temperature sintering, which can obtain a ferrite sintered body having a high magnetic permeability even when fired and sintered at a low temperature of 900 ° C. or less. To provide is the greatest technical challenge.

【0011】[0011]

【課題を解決するための手段】前記技術的課題は、次の
通りの本発明によって達成できる。即ち、本発明は、F
2 3 、NiO、ZnO及びCuOの各粒子粉末から
なる原料配合物を仮焼成した後に粉砕してNi−Zn−
Cuフェライト粒子粉末からなる低温焼結用ソフトフェ
ライト粒子粉末を得るに当たって、Fe2 3 原料とし
て平均粒子径が0.06μm以下であるγ−F2 3
子粉末を用い、且つ750〜800℃の温度範囲で仮焼
成した後に粗粉砕することを特徴とする低温焼結用ソフ
トフェライト粒子粉末の製造法である。
The above technical problems can be achieved by the present invention as follows. That is, the present invention is
e 2 O 3 , NiO, ZnO, and CuO, a raw material mixture consisting of particle powders is calcined and then pulverized to form Ni-Zn-
In obtaining the soft ferrite particle powder for low temperature sintering composed of Cu ferrite particle powder, γ-F 2 O 3 particle powder having an average particle diameter of 0.06 μm or less was used as a Fe 2 O 3 raw material, and 750 to 800 ° C. The method for producing a soft ferrite particle powder for low-temperature sintering is characterized by calcination in the temperature range of 1) and coarse pulverization.

【0012】次に、本発明実施にあたっての諸条件につ
いて説明する。
Next, various conditions for carrying out the present invention will be described.

【0013】先ず、本発明におけるFe2 3 原料につ
いて説明する。本発明の目的とする900℃以下という
低温で焼成して焼結させた場合であっても、高透磁率を
有したフェライト焼結体が得られるという低温焼結用ソ
フトフェライト粒子粉末を得るためにはFe2 3 原料
として平均粒子径が0.06μm以下であるγ−Fe2
3 粒子粉末を用いなければならない。平均粒子径が
0.06μmを越えるγ−Fe2 3 粒子粉末を用いて
得たソフトフェライト粒子粉末は、900℃以下で焼成
して焼結させた場合高い透磁率を有したフェライト焼結
体が得られない。
First, the Fe 2 O 3 raw material in the present invention will be described. To obtain a soft ferrite particle powder for low-temperature sintering that a ferrite sintered body having a high magnetic permeability can be obtained even when sintered and sintered at a low temperature of 900 ° C. or less, which is the object of the present invention. Γ-Fe 2 having an average particle diameter of 0.06 μm or less as a Fe 2 O 3 raw material.
O 3 particle powder must be used. The soft ferrite particle powder obtained by using the γ-Fe 2 O 3 particle powder having an average particle diameter exceeding 0.06 μm is a ferrite sintered body having a high magnetic permeability when fired at 900 ° C. or less and sintered. Can't get

【0014】次に、本発明においてγ−Fe2 3 粒子
粉末と混合させるNiO、ZnO及びCuOの各粒子粉
末は、750〜800℃の温度範囲でγ−Fe2 3
子に拡散反応し得るものであればいかなるものでもよい
が、作業性等を勘案するとこれらの酸化物、水酸化物が
好ましい。
Next, the NiO, ZnO and CuO particle powders to be mixed with the γ-Fe 2 O 3 particle powder in the present invention diffuse-react on the γ-Fe 2 O 3 particles in the temperature range of 750 to 800 ° C. Any material may be used as long as it can be obtained, but in consideration of workability and the like, these oxides and hydroxides are preferable.

【0015】次に、本発明における原料配合割合につい
て説明する。本発明の目的とする低温焼結用ソフトフェ
ライト粒子粉末を得るためには、γ−Fe2 3 45〜
50モル%に対し、NiO10〜30モル%、ZnO1
0〜40モル%及びCuO5〜15モル%とすることが
望ましい。
Next, the raw material mixing ratio in the present invention will be described. In order to obtain the soft ferrite particle powder for low temperature sintering which is the object of the present invention, γ-Fe 2 O 3 45-
10 to 30 mol% of NiO and ZnO1 to 50 mol%
It is desirable that the content be 0-40 mol% and CuO 5-15 mol%.

【0016】次に、本発明における仮焼成温度について
説明すると、仮焼成温度は、750〜800℃の範囲で
なければならない。800℃を越える温度で仮焼成して
得られるソフトフェライト粒子粉末を900℃以下で焼
成して焼結させた場合には高い透磁率を有したフェライ
ト焼結体が得られない。
Next, the calcination temperature in the present invention will be described. The calcination temperature must be in the range of 750 to 800 ° C. When the soft ferrite particle powder obtained by calcining at a temperature over 800 ° C. is calcined at 900 ° C. or less and sintered, a ferrite sintered body having a high magnetic permeability cannot be obtained.

【0017】一方、仮焼成温度が750℃未満の場合に
も、スピネルフェライト単相がえられるが、得られるフ
ェライト粒子が小さすぎるため、これを900℃以下で
焼成して焼結させた場合、1〜10MHz程度の低周波
数帯域において高い透磁率を有するフェライト焼結体が
得られない。
On the other hand, even when the calcination temperature is less than 750 ° C., a spinel ferrite single phase is obtained, but since the ferrite particles obtained are too small, when this is baked and sintered at 900 ° C. or less, A ferrite sintered body having a high magnetic permeability in a low frequency band of about 1 to 10 MHz cannot be obtained.

【0018】[0018]

【作用】本発明において最も重要な点は、Ni−Zn−
Cuフェライト粒子粉末からなる低温焼結用ソフトフェ
ライト粒子粉末を得るに当たって、平均粒子径が0.0
6μm以下であるγ−F2 3 粒子粉末をFe2 3
料として用い、且つ750〜800℃の温度範囲で仮焼
成した場合には、長時間の湿式粉砕処理を施すことな
く、粗粉砕によって容易に微粒子化ができ、また、この
微粒子粉末を900℃以下で焼成して焼結させた場合に
は、焼結密度が高く、1MHz〜100MHzの周波数
帯域において高透磁率を有したフェライト焼結体が得ら
れるという事実である。
The most important point in the present invention is Ni-Zn-
In obtaining the soft ferrite particle powder for low temperature sintering composed of Cu ferrite particle powder, the average particle diameter was 0.0
When γ-F 2 O 3 particle powder having a particle size of 6 μm or less is used as a Fe 2 O 3 raw material and calcined in a temperature range of 750 to 800 ° C., coarse crushing is performed without performing wet crushing treatment for a long time. When the fine particle powder is fired at 900 ° C. or less and sintered, the sintered density is high and the ferrite sintered body has a high magnetic permeability in the frequency band of 1 MHz to 100 MHz. The fact is that a union is obtained.

【0019】この事実について、本発明者は、平均粒子
径が0.06μm以下であるγ−F2 3 粒子粉末をF
2 3 原料として用いていることによって、低い仮焼
成温度でスピネル単相が作製できること、また、γ−F
2 3 粒子へのNiO、ZnO及びCuOの拡散速度
を大きくすることができるために低温でもフェライト化
反応が十分に進行するものと考えている。
With respect to this fact, the present inventor has proposed that the γ-F 2 O 3 particle powder having an average particle diameter of 0.06 μm or less is F
e 2 O 3 As a raw material, a spinel single phase can be produced at a low calcination temperature, and γ-F
Since it is possible to increase the diffusion rate of NiO, ZnO, and CuO into the e 2 O 3 particles, it is considered that the ferritization reaction sufficiently proceeds even at low temperatures.

【0020】また、低温でのフェライト化反応であるた
め、フェライト粒子の粒子成長が抑えられ微細なものと
なって、仮焼成後の長時間の湿式粉砕処理が不要となる
ものと考えている。
Further, since it is a ferrite-forming reaction at a low temperature, it is considered that the particle growth of ferrite particles is suppressed and the particles become finer, and the long-time wet pulverization process after the calcination is unnecessary.

【0021】[0021]

【実施例】次に、実施例並びに比較例により本発明を説
明する。
EXAMPLES Next, the present invention will be described with reference to Examples and Comparative Examples.

【0022】尚、以下の実施例並びに比較例におけるフ
ェライト焼結体の焼結密度は、アルキメデス法に準じて
測定した。また、透磁率は、焼結体を超音波加工装置を
用いて、外径38.8mm、内径16.9mmのリング
状に研削加工して得たリング状試料を作製し、該試料を
同軸管サンプルホルダーに挿入し、ネットワークアナラ
イザを使用した反射法によつて周波数1MHz〜100
MHzでの入力インピーダンスを測定した後算出した。
The sintered densities of the ferrite sintered bodies in the following examples and comparative examples were measured according to the Archimedes method. For the magnetic permeability, a ring-shaped sample obtained by grinding a sintered body into a ring shape having an outer diameter of 38.8 mm and an inner diameter of 16.9 mm using an ultrasonic processing device was prepared, and the sample was then manufactured by using a coaxial tube. Insert the sample into a sample holder and use the reflection method with a network analyzer to measure frequencies from 1 MHz to 100 MHz.
It was calculated after measuring the input impedance at MHz.

【0023】実施例1 平均粒子径0.05μmのγ−Fe2 3 粒子粉末6
3.5g、NiO粒子粉末8.3g、ZnO粒子粉末1
8.1g及びCuO粒子粉末8.4gとをアトライタに
より湿式混合した後、この混合物を濾別・乾燥してNi
−Zn−Cuフェライト原料混合物を得、該原料混合物
を電気炉中790℃で4時間仮焼成し、続いて、ボール
ミルを用い回転数:300回転/分、固形分:40wt
%の条件下で2時間湿式粉砕して低温焼結用ソフトフェ
ライト粒子粉末を得た。
Example 1 γ-Fe 2 O 3 particle powder 6 having an average particle diameter of 0.05 μm
3.5 g, NiO particle powder 8.3 g, ZnO particle powder 1
After wet mixing 8.1 g and 8.4 g of CuO particle powder with an attritor, the mixture was filtered and dried to obtain Ni.
-Zn-Cu ferrite raw material mixture was obtained, and the raw material mixture was pre-baked at 790 ° C for 4 hours in an electric furnace, and subsequently, using a ball mill, rotation speed: 300 rotations / minute, solid content: 40 wt.
% For 2 hours to obtain soft ferrite particles for low temperature sintering.

【0024】次いで、得られた低温焼結用ソフトフェラ
イト粒子粉末30gにPVA(ポリビニルアルコール)
2.0gを添加混合した後、50mmφの円板状にプレ
ス成形(プレス圧500kg/cm2 )した。この成形
体を焼成温度890℃で4時間焼成してNi−Zn−C
uフェライト焼結体を得た。得られた焼結体の焼結密度
は4.62g/ccであり、周波数1MHz、10MH
z及び100MHzにおける透磁率はそれぞれ188、
217及び32であった。
Next, PVA (polyvinyl alcohol) was added to 30 g of the obtained soft ferrite particle powder for low temperature sintering.
After 2.0 g was added and mixed, it was press-molded into a disk shape of 50 mmφ (pressing pressure 500 kg / cm 2 ). This compact was fired at a firing temperature of 890 ° C. for 4 hours to obtain Ni-Zn-C.
A u-ferrite sintered body was obtained. The sintered density of the obtained sintered body is 4.62 g / cc, and the frequency is 1 MHz and 10 MH.
The magnetic permeability at z and 100 MHz is 188,
217 and 32.

【0025】実施例2 仮焼成温度を760℃とした以外は実施例1と同様にし
てNi−Zn−Cuフェライト粒子粉末からなる低温焼
結用ソフトフェライト粒子粉末を得た。次いで、得られ
た低温焼結用ソフトフェライト粒子粉末を用い実施例1
と同様にしてNi−Zn−Cuフェライト焼結体を得
た。得られたフェライト焼結体の焼結密度は4.81g
/ccであり、周波数1MHz、10MHz及び100
MHzにおける透磁率はそれぞれ198、228及び3
3であった。
Example 2 A soft ferrite particle powder for low temperature sintering composed of Ni-Zn-Cu ferrite particle powder was obtained in the same manner as in Example 1 except that the calcination temperature was 760 ° C. Then, the obtained soft ferrite particle powder for low temperature sintering was used in Example 1.
A Ni-Zn-Cu ferrite sintered body was obtained in the same manner as in. The sintered density of the obtained ferrite sintered body is 4.81 g.
/ Cc, frequency 1 MHz, 10 MHz and 100
The magnetic permeability at MHz is 198, 228 and 3 respectively.
It was 3.

【0026】比較例1 Fe2 3 原料として、平均粒子径0.2μmのγ−F
2 3 粒子粉末を用いた以外は実施例1と同様にして
Ni−Zn−Cuフェライト粒子粉末からなる低温焼結
用ソフトフェライト粒子粉末を得た。次いで、得られた
低温焼結用ソフトフェライト粒子粉末を用い実施例1と
同様にしてNi−Zn−Cuフェライト焼結体を得た。
得られたフェライト焼結体の焼結密度は4.25g/c
cであり、周波数1MHz、10MHz及び100MH
zにおける透磁率はそれぞれ117、119及び28で
あった。
Comparative Example 1 γ-F having an average particle diameter of 0.2 μm was used as a Fe 2 O 3 raw material.
e is 2 O 3 except for using the particles to obtain a soft ferrite particles for low-temperature sintering consisting of Ni-Zn-Cu ferrite particles in the same manner as in Example 1. Then, using the obtained soft ferrite particle powder for low temperature sintering, a Ni—Zn—Cu ferrite sintered body was obtained in the same manner as in Example 1.
The sintered density of the obtained ferrite sintered body is 4.25 g / c.
c, frequency 1 MHz, 10 MHz and 100 MH
The magnetic permeability in z was 117, 119, and 28, respectively.

【0027】比較例2 Fe2 3 原料として、平均粒子径0.2μmのα−F
2 3 粒子粉末を用いた以外は実施例1と同様にして
Ni−Zn−Cuフェライト粒子粉末からなる低温焼結
用ソフトフェライト粒子粉末を得た。次いで、得られた
低温焼結用ソフトフェライト粒子粉末を用い実施例1と
同様にしてNi−Zn−Cuフェライト焼結体を得た。
得られたフェライト焼結体の焼結密度は3.85g/c
cであり、周波数1MHz、10MHz及び100MH
zにおける透磁率はそれぞれ70、71及び26であっ
た。
Comparative Example 2 As an Fe 2 O 3 raw material, α-F having an average particle diameter of 0.2 μm was used.
e is 2 O 3 except for using the particles to obtain a soft ferrite particles for low-temperature sintering consisting of Ni-Zn-Cu ferrite particles in the same manner as in Example 1. Then, using the obtained soft ferrite particle powder for low temperature sintering, a Ni—Zn—Cu ferrite sintered body was obtained in the same manner as in Example 1.
The sintered density of the obtained ferrite sintered body is 3.85 g / c.
c, frequency 1 MHz, 10 MHz and 100 MH
The magnetic permeability at z was 70, 71 and 26, respectively.

【0028】比較例3 Fe2 3 原料として、平均粒子径0.05μmのγ−
Fe2 3 粒子粉末を用い、850℃の温度で仮焼成し
た以外は実施例1と同様にしてNi−Zn−Cuフェラ
イト粒子粉末からなる低温焼結用ソフトフェライト粒子
粉末を得た。次いで、得られた低温焼結用ソフトフェラ
イト粒子粉末を用い実施例1と同様にしてNi−Zn−
Cuフェライト焼結体を得た。得られたフェライト焼結
体の焼結密度は3.90g/ccであり、周波数1MH
z、10MHz及び100MHzにおける透磁率はそれ
ぞれ81、80及び26であった。
Comparative Example 3 As a Fe 2 O 3 raw material, γ-having an average particle diameter of 0.05 μm was used.
A soft ferrite particle powder for low temperature sintering composed of Ni—Zn—Cu ferrite particle powder was obtained in the same manner as in Example 1 except that the Fe 2 O 3 particle powder was used and calcined at a temperature of 850 ° C. Then, using the obtained soft ferrite particle powder for low temperature sintering, in the same manner as in Example 1, Ni-Zn-
A Cu ferrite sintered body was obtained. The sintered density of the obtained ferrite sintered body is 3.90 g / cc, and the frequency is 1 MH.
The magnetic permeability at z, 10 MHz and 100 MHz was 81, 80 and 26, respectively.

【0029】比較例4 Fe2 3 原料として、平均粒子径0.05μmのγ−
Fe2 3 粒子粉末を用い、730℃の温度で仮焼成し
た以外は実施例1と同様にしてNi−Zn−Cuフェラ
イト粒子粉末からなる低温焼結用ソフトフェライト粒子
粉末を得た。次いで、得られた低温焼結用ソフトフェラ
イト粒子粉末を用い実施例1と同様にしてNi−Zn−
Cuフェライト焼結体を得た。得られたフェライト焼結
体の焼結密度は4.34g/ccであり、周波数1MH
z、10MHz及び100MHzにおける透磁率はそれ
ぞれ79、78及び30であった。
Comparative Example 4 As a Fe 2 O 3 raw material, γ-having an average particle diameter of 0.05 μm was used.
A soft ferrite particle powder for low temperature sintering composed of Ni—Zn—Cu ferrite particle powder was obtained in the same manner as in Example 1 except that the Fe 2 O 3 particle powder was used and calcined at a temperature of 730 ° C. Then, using the obtained soft ferrite particle powder for low temperature sintering, in the same manner as in Example 1, Ni-Zn-
A Cu ferrite sintered body was obtained. The sintered density of the obtained ferrite sintered body is 4.34 g / cc, and the frequency is 1 MH.
The magnetic permeability at z, 10 MHz and 100 MHz was 79, 78 and 30, respectively.

【0030】[0030]

【発明の効果】以上説明した通りの本発明によれば、前
出実施例にも示した通り、長時間の湿式粉砕を施すこと
なく粗粉砕で容易に微粒子化ができ、この微粒子粉末を
900℃以下の低温で焼成して焼結させた場合には高透
磁率を有したフェライト焼結体が得られる。従って、本
発明により製造される低温焼結用ソフトフェライト粒子
粉末は各種電子部品用材料として最適のものといえる。
According to the present invention as described above, as shown in the above-mentioned Examples, the fine particles can be easily made into fine particles by coarse pulverization without applying wet pulverization for a long time. When sintered by firing at a low temperature of ℃ or less, a ferrite sintered body having a high magnetic permeability can be obtained. Therefore, it can be said that the soft ferrite particle powder for low temperature sintering produced by the present invention is the most suitable as a material for various electronic parts.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Fe2 3 、NiO、ZnO及びCuO
の各粒子粉末からなる原料配合物を仮焼成した後に粉砕
してNi−Zn−Cuフェライト粒子粉末からなる低温
焼結用ソフトフェライト粒子粉末を得るに当たって、F
2 3 原料として平均粒子径が0.06μm以下であ
るγ−F2 3 粒子粉末を用い、且つ750〜800℃
の温度範囲で仮焼成した後に粗粉砕することを特徴とす
る低温焼結用ソフトフェライト粒子粉末の製造法。
1. Fe 2 O 3 , NiO, ZnO and CuO
In order to obtain a soft ferrite particle powder for low temperature sintering consisting of Ni—Zn—Cu ferrite particle powder by calcination of the raw material mixture consisting of each particle powder of
As the e 2 O 3 raw material, γ-F 2 O 3 particle powder having an average particle diameter of 0.06 μm or less is used, and 750 to 800 ° C.
A method for producing a soft ferrite particle powder for low-temperature sintering, which comprises calcination in the temperature range of 1) and coarsely crushing.
JP15535294A 1994-06-14 1994-06-14 Manufacturing method of soft ferrite particles for low temperature sintering Expired - Fee Related JP3389937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15535294A JP3389937B2 (en) 1994-06-14 1994-06-14 Manufacturing method of soft ferrite particles for low temperature sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15535294A JP3389937B2 (en) 1994-06-14 1994-06-14 Manufacturing method of soft ferrite particles for low temperature sintering

Publications (2)

Publication Number Publication Date
JPH082926A true JPH082926A (en) 1996-01-09
JP3389937B2 JP3389937B2 (en) 2003-03-24

Family

ID=15604027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15535294A Expired - Fee Related JP3389937B2 (en) 1994-06-14 1994-06-14 Manufacturing method of soft ferrite particles for low temperature sintering

Country Status (1)

Country Link
JP (1) JP3389937B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368272B1 (en) * 1997-12-16 2003-03-15 주식회사 포스코 Method for fabricating raw materials of nickel-copper-zinc ferrite utilizing spent resources
KR100368273B1 (en) * 1997-12-17 2003-04-11 주식회사 포스코 Method for fabricating nickel-copper-zinc ferrite material using waste liquid and iron oxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368272B1 (en) * 1997-12-16 2003-03-15 주식회사 포스코 Method for fabricating raw materials of nickel-copper-zinc ferrite utilizing spent resources
KR100368273B1 (en) * 1997-12-17 2003-04-11 주식회사 포스코 Method for fabricating nickel-copper-zinc ferrite material using waste liquid and iron oxide

Also Published As

Publication number Publication date
JP3389937B2 (en) 2003-03-24

Similar Documents

Publication Publication Date Title
CN106045492B (en) Ferrite composition and electronic component
JP6740817B2 (en) Ferrite composition, ferrite sintered body, electronic component and chip coil
TWI712575B (en) Ferrite composition and laminated electronic component
JP2011213578A (en) Ferrite composition and electronic component
KR102232105B1 (en) Ferrite composition and multilayer electronic component
KR20160118973A (en) Ferrite composition and electronic component
JP4826093B2 (en) Ferrite, electronic component and manufacturing method thereof
JP2005132715A (en) Ni-Cu-Zn SYSTEM FERRITE MATERIAL AND ITS MANUFACTURING METHOD
JP2002015913A (en) Magnetic ferrite powder, magnetic ferrite sintered body, laminated ferrite part and its manufacturing method
CN107879736A (en) Ferrite composition and electronic unit
JP3389937B2 (en) Manufacturing method of soft ferrite particles for low temperature sintering
JP2001010820A (en) Ferrite composition, ferrite sintered compact laminate- type electronic part and production thereof
JP4255044B2 (en) Oxide magnetic material and method for producing oxide magnetic material
JP2004153197A (en) Magnetic material and its producing process
WO2024093990A1 (en) Magnetic material and multilayer inductor comprising said material
JPH09270314A (en) Ferrite material and ferrite
JP2023180401A (en) Ferrite composition, ferrite sintered body and electronic component
KR940011694B1 (en) Ferrite for chip inductor
JP2018154508A (en) Ferrite, ferrite substrate, and thin film inductor using the same
JP2893302B2 (en) Oxide magnetic material
JPH0897025A (en) Chip transformer magnetic material and chip transformer
JP2004143042A (en) Magnetic material for micro wave, manufacturing method therefor, and high-frequency circuit parts
JPH09270313A (en) Ferrite material, and ferrite, and its manufacture
JPH1072252A (en) Ferrite material for plating
JP2000195716A (en) Magnetic material, inductance element, and manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees