JP2023157643A - Carbon dioxide occlusion reduction type catalyst - Google Patents

Carbon dioxide occlusion reduction type catalyst Download PDF

Info

Publication number
JP2023157643A
JP2023157643A JP2022067679A JP2022067679A JP2023157643A JP 2023157643 A JP2023157643 A JP 2023157643A JP 2022067679 A JP2022067679 A JP 2022067679A JP 2022067679 A JP2022067679 A JP 2022067679A JP 2023157643 A JP2023157643 A JP 2023157643A
Authority
JP
Japan
Prior art keywords
catalyst
alkali metal
content
porous carrier
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022067679A
Other languages
Japanese (ja)
Inventor
哲賜 大村
Tetsushi Omura
満 松本
Mitsuru Matsumoto
弘高 米倉
Hirotaka Yonekura
真利 酒井
Masatoshi Sakai
将嗣 菊川
Masashi Kikukawa
正和 青木
Masakazu Aoki
武史 平林
Takeshi Hirabayashi
一伸 石橋
Kazunobu Ishibashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2022067679A priority Critical patent/JP2023157643A/en
Publication of JP2023157643A publication Critical patent/JP2023157643A/en
Pending legal-status Critical Current

Links

Abstract

To provide a CO2 occlusion reduction type catalyst which exhibits excellent CO2 occlusion performance and methanation catalytic activity even at a low temperature.SOLUTION: A carbon dioxide occlusion reduction type catalyst contains: a porous carrier comprising a metal oxide and having an average pore diameter of 3-50 nm and pore volume of 0.3-1.5 cm3/g; ruthenium supported on the porous carrier; and an alkali metal supported on the porous carrier. A content of the ruthenium is 1-5 pts.mass based on 100 pts.mass of a total content of the porous carrier and the ruthenium. A content of the alkali metal is 2.8-4.5 mass% in terms of oxide based on the whole catalyst.SELECTED DRAWING: None

Description

本発明は、二酸化炭素(CO)吸蔵還元型触媒に関し、より詳しくは、アルカリ金属を含有するCO吸蔵還元型触媒に関する。 TECHNICAL FIELD The present invention relates to a carbon dioxide (CO 2 ) storage-reduction catalyst, and more particularly to a CO 2 storage-reduction catalyst containing an alkali metal.

二酸化炭素(CO)を原料としたメタン化反応は、近年の地球温暖化抑制のためのCO排出量削減の観点から注目されている。このようなメタン化反応に用いられる触媒としては、CO吸蔵材としての酸化カルシウム(CaO)とメタン化触媒としてのルテニウム(Ru)とがアルミナ等の担体に担持されたCO吸蔵還元型触媒(例えば、特開2020-110769号公報(特許文献1)及びA.Bermejo-Lopezら、Applied Catalysis B:Environmental、2019年、第256巻、117845(非特許文献1))が知られている。このCO吸蔵還元型触媒は、COを含むガスを流通させることによってCOを吸蔵し、還元ガス(例えば、H)を流通させることによって吸蔵したCOを還元してメタン(CH)を生成する。 BACKGROUND ART Methanation reactions using carbon dioxide (CO 2 ) as a raw material have attracted attention in recent years from the perspective of reducing CO 2 emissions to suppress global warming. Catalysts used in such methanation reactions include CO 2 storage reduction catalysts in which calcium oxide (CaO) as a CO 2 storage material and ruthenium (Ru) as a methanation catalyst are supported on a carrier such as alumina. (For example, JP 2020-110769 A (Patent Document 1) and A. Bermejo-Lopez et al., Applied Catalysis B: Environmental, 2019, Volume 256, 117845 (Non-Patent Document 1)) are known. This CO 2 storage reduction type catalyst stores CO 2 by passing a gas containing CO 2 and reduces the stored CO 2 by passing a reducing gas (for example, H 2 ) to produce methane (CH 4 ) . ) is generated.

しかしながら、CO吸蔵材としてCaOを用いたCO吸蔵還元型触媒においては、吸蔵/還元時の動作開始温度が320℃と高温であるため、CO吸蔵還元型触媒システムの作動時に熱エネルギーを過剰に投入する必要があり、システムのエネルギー効率が低下するという問題があった。 However, in a CO 2 storage reduction catalyst that uses CaO as a CO 2 storage material, the operation start temperature during storage/reduction is as high as 320°C, so thermal energy is consumed during operation of the CO 2 storage reduction catalyst system. There was a problem in that it was necessary to input an excessive amount of energy, reducing the energy efficiency of the system.

また、A.Bermejo-Lopezら、Applied Catalysis B:Environmental、2019年、第256巻、117845(非特許文献1)には、CO吸蔵材としての酸化ナトリウム(NaO)とメタン化触媒としてのルテニウム(Ru)とがアルミナ等の担体に担持されたCO吸蔵還元型触媒が記載されている。このCO吸蔵還元型触媒においても、吸蔵/還元時の動作開始温度が370℃と高温であるため、CO吸蔵還元型触媒システムの作動時に熱エネルギーを過剰に投入する必要があり、システムのエネルギー効率が低下するという問題があった。また、非特許文献1には、NaOの含有量が少なくなるにつれて、メタンの生成量が少なくなることが示唆されている。 Also, A. Bermejo-Lopez et al., Applied Catalysis B: Environmental, 2019, Vol. 256, 117845 (Non-Patent Document 1) describes the use of sodium oxide (Na 2 O) as a CO 2 storage material and ruthenium (Ru) as a methanation catalyst. ) is supported on a carrier such as alumina, and a CO 2 storage reduction type catalyst is described. Even in this CO 2 storage reduction type catalyst, the operation start temperature during storage/reduction is as high as 370°C, so it is necessary to input excessive thermal energy when the CO 2 storage reduction type catalyst system is operated. There was a problem that energy efficiency decreased. Furthermore, Non-Patent Document 1 suggests that as the content of Na 2 O decreases, the amount of methane produced decreases.

特開2020-110769号公報Japanese Patent Application Publication No. 2020-110769

A.Bermejo-Lopezら、Applied Catalysis B:Environmental、2019年、第256巻、117845A. Bermejo-Lopez et al., Applied Catalysis B: Environmental, 2019, Volume 256, 117845

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、低温においても優れたCO吸蔵性能とメタン化触媒活性を発現するCO吸蔵還元型触媒を提供することを目的とする。 The present invention has been made in view of the problems of the prior art described above, and an object of the present invention is to provide a CO 2 storage reduction catalyst that exhibits excellent CO 2 storage performance and methanation catalyst activity even at low temperatures. .

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、CO吸蔵材としてのアルカリ金属とメタン化触媒としてのルテニウム(Ru)とがアルミナ等の担体に担持されたCO吸蔵還元型触媒において、アルカリ金属の含有量を特定の範囲内とすることによって、低温においても優れたCO吸蔵性能とメタン化触媒活性とが発現することを見出し、本発明を完成するに至った。 As a result of intensive research to achieve the above object, the present inventors have discovered that a CO 2 storage material in which an alkali metal as a CO 2 storage material and ruthenium (Ru) as a methanation catalyst are supported on a carrier such as alumina. The present inventors have discovered that by controlling the alkali metal content within a specific range in a reduced catalyst, excellent CO 2 storage performance and methanation catalyst activity can be achieved even at low temperatures, leading to the completion of the present invention. .

すなわち、本発明のCO吸蔵還元型触媒は、金属酸化物からなり、平均細孔径が3~50nmであり、細孔容積が0.3~1.5cm/gである多孔質担体と、前記多孔質担体に担持されたルテニウムと、前記多孔質担体に担持されたアルカリ金属とを含有する触媒であり、前記ルテニウムの含有量が、前記多孔質担体とルテニウムとの合計含有量100質量部に対して、1~5質量部であり、前記アルカリ金属の含有量が、前記触媒全体に対して、酸化物換算で2.8~4.5質量%であることを特徴とするものである。 That is, the CO 2 storage reduction catalyst of the present invention comprises a porous carrier made of a metal oxide, having an average pore diameter of 3 to 50 nm, and a pore volume of 0.3 to 1.5 cm 3 /g; The catalyst contains ruthenium supported on the porous carrier and an alkali metal supported on the porous carrier, and the ruthenium content is 100 parts by mass of the total content of the porous carrier and ruthenium. 1 to 5 parts by mass, and the content of the alkali metal is 2.8 to 4.5 mass% in terms of oxide based on the entire catalyst. .

本発明のCO吸蔵還元型触媒においては、前記アルカリ金属がナトリウムであることが好ましく、また、X線回折パターンにおいて、前記アルカリ金属の酸化物の結晶子径が44nmに相当する回折ピークが存在しないことが好ましい。 In the CO 2 storage reduction catalyst of the present invention, the alkali metal is preferably sodium, and in the X-ray diffraction pattern, there is a diffraction peak corresponding to a crystallite diameter of 44 nm of the alkali metal oxide. It is preferable not to do so.

本発明によれば、低温においても優れたCO吸蔵性能とメタン化触媒活性を発現するCO吸蔵還元型触媒を得ることが可能となる。 According to the present invention, it is possible to obtain a CO 2 storage reduction type catalyst that exhibits excellent CO 2 storage performance and methanation catalyst activity even at low temperatures.

実施例1~3及び比較例1~7で得られた触媒のCO転化率の温度特性を示すグラフである。2 is a graph showing the temperature characteristics of the CO 2 conversion rate of the catalysts obtained in Examples 1 to 3 and Comparative Examples 1 to 7. 実施例1~3及び比較例1~7で得られた触媒のCO転化率が50%となる温度T50とCO吸蔵材の含有量との関係を示すグラフである。2 is a graph showing the relationship between the temperature T50 at which the CO 2 conversion rate of the catalysts obtained in Examples 1 to 3 and Comparative Examples 1 to 7 becomes 50% and the content of the CO 2 storage material. 実施例2~3及び比較例3~4で得られた触媒のX線回折パターンを示すグラフである。1 is a graph showing X-ray diffraction patterns of catalysts obtained in Examples 2 to 3 and Comparative Examples 3 to 4.

以下、本発明をその好適な実施形態に即して詳細に説明する。 Hereinafter, the present invention will be explained in detail based on its preferred embodiments.

〔CO吸蔵還元型触媒〕
本発明の二酸化炭素(CO)吸蔵還元型触媒は、金属酸化物からなる多孔質担体と、前記多孔質担体に担持されたルテニウムと、前記多孔質担体に担持されたアルカリ金属とを含有する触媒である。
[ CO2 storage reduction catalyst]
The carbon dioxide (CO 2 ) storage reduction catalyst of the present invention contains a porous carrier made of a metal oxide, ruthenium supported on the porous carrier, and an alkali metal supported on the porous carrier. It is a catalyst.

本発明に用いられる担体は、金属酸化物からなる多孔質担体である。担体として多孔質のものを用いることによって、ガス成分が良好に拡散し、CO吸蔵性能及びメタン化触媒活性が向上する。前記金属酸化物としては、CO吸蔵還元型触媒の担体として用いられるものであれば特に制限はなく、例えば、アルミナ(Al)、シリカ(SiO)、ジルコニア(ZrO)、チタニア(TiO)等の公知の金属酸化物が挙げられる。これらの金属酸化物のうち、メタン化触媒活性が高くなるという観点から、アルミナ、チタニアが好ましく、アルミナがより好ましい。また、このような金属酸化物は、1種を単独で使用しても2種以上を併用してもよい。 The carrier used in the present invention is a porous carrier made of metal oxide. By using a porous carrier, gas components can diffuse well, and CO 2 storage performance and methanation catalyst activity are improved. The metal oxide is not particularly limited as long as it can be used as a carrier for a CO 2 storage reduction catalyst, and examples include alumina (Al 2 O 3 ), silica (SiO 2 ), zirconia (ZrO 2 ), and titania. Known metal oxides such as (TiO 2 ) may be used. Among these metal oxides, alumina and titania are preferred, and alumina is more preferred, from the viewpoint of increasing methanation catalyst activity. Further, such metal oxides may be used alone or in combination of two or more.

前記多孔質担体の平均細孔径は、3~50nmであり、5~20nmであることが好ましい。多孔質担体の平均細孔径が前記下限未満になると、ガス成分が十分に拡散せず、CO吸蔵性能及びメタン化触媒活性が低下する傾向にあり、他方、前記上限を超えると、細孔構造の安定性が低下する傾向にある。 The average pore diameter of the porous carrier is 3 to 50 nm, preferably 5 to 20 nm. If the average pore diameter of the porous carrier is less than the above lower limit, the gas components will not diffuse sufficiently, and the CO 2 storage performance and methanation catalyst activity will tend to decrease.On the other hand, if it exceeds the above upper limit, the pore structure will deteriorate. stability tends to decrease.

また、前記多孔質担体の細孔容積は、0.3~1.5cm/gであり、0.3~1.0cm/gであることが好ましい。多孔質担体の細孔容積が前記下限未満になると、ガス成分が十分に拡散せず、CO吸蔵性能及びメタン化触媒活性が低下する傾向にあり、他方、前記上限を超えると、多孔質担体の熱的安定性が低下する傾向にある。 Further, the pore volume of the porous carrier is 0.3 to 1.5 cm 3 /g, preferably 0.3 to 1.0 cm 3 /g. If the pore volume of the porous carrier is less than the above-mentioned lower limit, the gas components will not diffuse sufficiently, and the CO 2 storage performance and methanation catalyst activity will tend to decrease.On the other hand, if the pore volume of the porous carrier exceeds the above-mentioned upper limit, Thermal stability tends to decrease.

本発明のCO吸蔵還元型触媒においては、前記多孔質担体にルテニウム(Ru)が担持されている。このRuは、メタン化触媒として作用するものであり、具体的には、CO吸蔵材に吸蔵されたCOが還元ガス(例えば、H)と反応して還元されることによってメタン(CH)が生成する際にCOの還元反応を促進するものである。 In the CO 2 storage reduction catalyst of the present invention, ruthenium (Ru) is supported on the porous carrier. This Ru acts as a methanation catalyst, and specifically, CO 2 stored in the CO 2 storage material reacts with a reducing gas (for example, H 2 ) and is reduced to produce methane (CH 4 ) promotes the reduction reaction of CO 2 when it is generated.

本発明のCO吸蔵還元型触媒において、Ruの含有量は、前記多孔質担体とRuとの合計含有量100質量部に対して、1~5質量部である。Ruの含有量が前記範囲内にあると、COの還元反応が促進され、メタン化触媒活性が向上する。一方、Ruの含有量が前記下限未満になると、COの還元反応が十分に促進されず、メタン化触媒活性が低下する。他方、Ruの含有量が前記上限を超えると、前記多孔質担体の細孔が閉塞してCO吸蔵量が減少するため、CO吸蔵性能が低下したり、Ruが粒成長してメタン化触媒活性が低下したりする。 In the CO 2 storage reduction catalyst of the present invention, the content of Ru is 1 to 5 parts by mass based on 100 parts by mass of the total content of the porous carrier and Ru. When the Ru content is within the above range, the reduction reaction of CO 2 is promoted and the methanation catalyst activity is improved. On the other hand, if the Ru content is less than the lower limit, the reduction reaction of CO 2 will not be sufficiently promoted and the methanation catalyst activity will decrease. On the other hand, if the Ru content exceeds the upper limit, the pores of the porous carrier are blocked and the amount of CO 2 storage decreases, resulting in a decrease in CO 2 storage performance and grain growth of Ru, resulting in methane formation. Catalytic activity may decrease.

また、本発明のCO吸蔵還元型触媒においては、前記多孔質担体にアルカリ金属が担持されている。このアルカリ金属は、CO吸蔵材として作用するものである。このようなアルカリ金属は、通常、酸化物、炭酸塩、炭酸水素塩の状態で前記多孔質担体に担持されている。 Furthermore, in the CO 2 storage reduction catalyst of the present invention, an alkali metal is supported on the porous carrier. This alkali metal acts as a CO 2 storage material. Such alkali metals are usually supported on the porous carrier in the form of oxides, carbonates, or bicarbonates.

前記アルカリ金属としては、例えば、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)が挙げられ、中でも、CO吸蔵性能が更に向上するという観点から、Naが好ましい。 Examples of the alkali metal include lithium (Li), sodium (Na), potassium (K), rubidium (Rb), and cesium (Cs). Among them, from the viewpoint of further improving CO 2 storage performance, Na is preferred.

本発明のCO吸蔵還元型触媒において、前記アルカリ金属の含有量は、前記触媒全体に対して、酸化物換算で2.8~4.5質量%である。前記アルカリ金属の含有量が前記範囲内にあると、低温においても優れたCO吸蔵性能とメタン化触媒活性とが発現する。一方、前記アルカリ金属の含有量が前記下限未満になると、COの吸蔵サイトが少なくなり、CO吸蔵量が減少するため、CO吸蔵性能及びメタン化触媒活性が低下する。他方、前記アルカリ金属の含有量が前記上限を超えると、前記多孔質担体の細孔が閉塞してCO吸蔵量が減少するため、CO吸蔵性能及びメタン化触媒活性が低下する。また、前記アルカリ金属の酸化物の結晶子径が大きくなり、低温でのCO吸蔵性能とメタン化触媒活性とが低下する。前記アルカリ金属の含有量としては、低温でのCO吸蔵性能とメタン化触媒活性とが更に向上するという観点から、酸化物換算で2.8~4.2質量%が好ましく、3.0~4.0質量%がより好ましい。 In the CO 2 storage reduction type catalyst of the present invention, the content of the alkali metal is 2.8 to 4.5% by mass in terms of oxide based on the entire catalyst. When the content of the alkali metal is within the above range, excellent CO 2 storage performance and methanation catalyst activity are exhibited even at low temperatures. On the other hand, when the alkali metal content is less than the lower limit, the number of CO 2 storage sites decreases and the amount of CO 2 storage decreases, resulting in a decrease in CO 2 storage performance and methanation catalyst activity. On the other hand, when the content of the alkali metal exceeds the upper limit, the pores of the porous carrier are clogged and the amount of CO 2 storage decreases, resulting in a decrease in CO 2 storage performance and methanation catalyst activity. Moreover, the crystallite size of the alkali metal oxide increases, and the CO 2 storage performance and methanation catalyst activity at low temperatures decrease. The content of the alkali metal is preferably 2.8 to 4.2% by mass in terms of oxide, and 3.0 to 4.2% by mass in terms of oxide, from the viewpoint of further improving CO 2 storage performance and methanation catalyst activity at low temperatures. 4.0% by mass is more preferred.

また、本発明のCO吸蔵還元型触媒は、そのX線回折パターンにおいて、前記アルカリ金属の酸化物の結晶子径が44nmに相当する回折ピークが存在しないこと、すなわち、結晶子径が粗大なアルカリ金属の酸化物を含有しないことが好ましい。前記アルカリ金属の酸化物の結晶子径が44nmに相当する回折ピークが存在する、すなわち、結晶子径が粗大なアルカリ金属の酸化物を含有すると、低温でのCO吸蔵性能とメタン化触媒活性とが低下する傾向にある。なお、このような結晶子径が粗大なアルカリ金属の酸化物は、アルカリ金属の含有量が前記上限を超えると、生成しやすくなる。 In addition, the CO 2 storage reduction catalyst of the present invention has no diffraction peak corresponding to the crystallite size of 44 nm of the alkali metal oxide in its X-ray diffraction pattern, that is, the crystallite size is coarse. Preferably, it does not contain alkali metal oxides. If there is a diffraction peak corresponding to a crystallite size of 44 nm in the alkali metal oxide, that is, if an alkali metal oxide with a coarse crystallite size is contained, the CO 2 storage performance and methanation catalyst activity at low temperatures will decrease. is on the decline. Note that such alkali metal oxides having a coarse crystallite size are likely to be produced when the alkali metal content exceeds the above upper limit.

〔CO吸蔵還元型触媒の調製方法〕
このような本発明のCO吸蔵還元型触媒は、例えば、以下のようにして調製することができる。すなわち、アルカリ金属塩を所定の質量比で含有する水溶液を調製し、この水溶液に、Ruを担持した金属酸化物からなる多孔質担体を所定量添加した後、乾燥、焼成することによって、前記金属酸化物からなる多孔質担体にアルカリ金属とRuとが担持したCO吸蔵還元型触媒を得ることができる。また、アルカリ金属塩を所定の質量比で含有する水溶液を調製し、この水溶液に、金属酸化物からなる多孔質担体を所定量添加した後、乾燥、焼成して、前記金属酸化物からなる多孔質担体にアルカリ金属酸化物が担持したCO吸蔵材を調製し、このCO吸蔵材を、所定量のRu塩が溶解した水溶液に添加した後、乾燥、焼成することによっても、前記金属酸化物からなる多孔質担体にアルカリ金属酸化物とRuとが担持したCO吸蔵還元型触媒を得ることができる。さらに、アルカリ金属塩及びRu塩を所定の質量比で含有する水溶液を調製し、この水溶液に、金属酸化物からなる多孔質担体を所定量添加した後、乾燥、焼成することによっても、前記金属酸化物からなる多孔質担体にアルカリ金属酸化物とRuとが担持したCO吸蔵還元型触媒を得ることができる。
[Method for preparing CO 2 storage reduction catalyst]
Such a CO 2 storage reduction type catalyst of the present invention can be prepared, for example, as follows. That is, an aqueous solution containing an alkali metal salt in a predetermined mass ratio is prepared, a predetermined amount of a porous carrier made of a metal oxide supporting Ru is added to the aqueous solution, and then the metal is removed by drying and baking. A CO 2 storage reduction type catalyst in which an alkali metal and Ru are supported on a porous carrier made of an oxide can be obtained. Alternatively, an aqueous solution containing an alkali metal salt at a predetermined mass ratio is prepared, a predetermined amount of a porous carrier made of a metal oxide is added to this aqueous solution, and the porous carrier made of the metal oxide is dried and fired. The metal oxidation can also be achieved by preparing a CO 2 storage material in which an alkali metal oxide is supported on a solid carrier, and adding this CO 2 storage material to an aqueous solution in which a predetermined amount of Ru salt is dissolved, followed by drying and baking. It is possible to obtain a CO 2 storage reduction catalyst in which an alkali metal oxide and Ru are supported on a porous carrier made of aluminum. Furthermore, by preparing an aqueous solution containing an alkali metal salt and a Ru salt in a predetermined mass ratio, adding a predetermined amount of a porous carrier made of a metal oxide to this aqueous solution, and drying and baking, the metal A CO 2 storage reduction type catalyst in which an alkali metal oxide and Ru are supported on a porous carrier made of an oxide can be obtained.

焼成条件としては、アルカリ金属塩が酸化物、炭酸塩及び炭酸水素塩の状態に、Ru塩がRuに変換される条件であれば特に制限はないが、例えば、焼成温度としては、400~600℃が好ましく、450~550℃がより好ましく、また、焼成時間としては、1~5時間が好ましく、2~4時間がより好ましい。 There are no particular restrictions on the firing conditions as long as the alkali metal salts are converted into oxides, carbonates, and hydrogen carbonates, and the Ru salts are converted into Ru. C., more preferably 450 to 550.degree. C., and the firing time is preferably 1 to 5 hours, more preferably 2 to 4 hours.

前記アルカリ金属塩としては、例えば、アルカリ金属(Li、Na、K、Rb、Cs)の硝酸塩、炭酸塩、酢酸塩が挙げられる。また、Ru塩としては、例えば、ニトロシル硝酸ルテニウム、硝酸ルテニウム、塩化ルテニウム、ルテニウムカルボニルが挙げられる。 Examples of the alkali metal salts include nitrates, carbonates, and acetates of alkali metals (Li, Na, K, Rb, and Cs). Examples of the Ru salt include ruthenium nitrosyl nitrate, ruthenium nitrate, ruthenium chloride, and ruthenium carbonyl.

〔COの吸蔵還元処理〕
このような本発明のCO吸蔵還元型触媒は、例えば、以下のようなCOの吸蔵還元処理に適用することができる。すなわち、本発明のCO吸蔵還元型触媒にCOを含むガスを接触させてCOを吸蔵させた後、このCOが吸蔵した前記CO吸蔵還元型触媒に還元ガス(例えば、H)を接触させることによって、吸蔵したCOが還元されてCHが生成する。また、本発明のCO吸蔵還元型触媒にCOとHとを含むガスを接触させてCOを吸蔵させながら、吸蔵したCOと還元ガス(例えば、H)とを反応させることによって、吸蔵したCOが還元されてCHが生成する。
[CO 2 storage and reduction treatment]
Such a CO 2 storage and reduction catalyst of the present invention can be applied to, for example, the following CO 2 storage and reduction treatment. That is, after the CO 2 storage reduction type catalyst of the present invention is brought into contact with a gas containing CO 2 to store CO 2 , a reducing gas (for example, H 2 ), the occluded CO 2 is reduced and CH 4 is produced. Alternatively, the CO 2 storage reduction catalyst of the present invention may be brought into contact with a gas containing CO 2 and H 2 to store CO 2 while causing the stored CO 2 to react with a reducing gas (for example, H 2 ). , the stored CO 2 is reduced and CH 4 is generated.

本発明のCO吸蔵還元型触媒は、低温においての優れたCO吸蔵性能とメタン化触媒活性を発現することから、上記のCOの吸蔵還元処理の開始時等の低温状態においても、過剰な熱エネルギーを供給せずに、COの還元とCHの生成を可能にする。 The CO 2 storage reduction catalyst of the present invention exhibits excellent CO 2 storage performance and methanation catalyst activity at low temperatures. It enables the reduction of CO 2 and the production of CH 4 without supplying significant thermal energy.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.

(実施例1)
イオン交換水に、硝酸ナトリウム(NaNO、富士フイルム和光純薬株式会社製、品番:192-02555)を溶解し、得られた水溶液に、ルテニウム担持アルミナ粉末(Ru/Al、エヌ・イーケムキャット株式会社製、品番:HYAc-5E N-Type、Ru含有量:5質量%、アルミナ含有量:95質量%、アルミナの平均細孔径:13nm、アルミナの細孔容積:0.38cm/g)を、得られる触媒においてNaOの含有量が触媒全体に対して2.8質量%となるように添加した。得られた分散液を約2時間攪拌した後、250℃に加熱して蒸発乾固させた。得られた乾固物を110℃で12時間乾燥させた後、500℃で3時間焼成した。得られた触媒粉末(約6g)を圧力1000kg/cmで1分間加圧した後、粉砕し、篩を用いて分級して、AlにNaOとRuとが担持した、0.5~1.0mm径の触媒粉末〔NaO(2.8)/Ru(4.9)/Al(92.3)〕を得た。
(Example 1)
Sodium nitrate (NaNO 3 , manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., product number: 192-02555) was dissolved in ion-exchanged water, and ruthenium-supported alumina powder (Ru/Al 2 O 3 , N. Manufactured by Echem Cat Co., Ltd., product number: HYAc-5E N-Type, Ru content: 5% by mass, alumina content: 95% by mass, average pore diameter of alumina: 13 nm, pore volume of alumina: 0.38 cm 3 / g) was added so that the Na 2 O content in the resulting catalyst was 2.8% by mass based on the total catalyst. The resulting dispersion was stirred for about 2 hours and then heated to 250°C to evaporate to dryness. The obtained dried product was dried at 110°C for 12 hours and then calcined at 500°C for 3 hours. The obtained catalyst powder (approximately 6 g ) was pressurized at a pressure of 1000 kg/cm 2 for 1 minute, then pulverized and classified using a sieve . A catalyst powder [Na 2 O (2.8)/Ru (4.9)/Al 2 O 3 (92.3)] with a diameter of .5 to 1.0 mm was obtained.

(実施例2)
得られる触媒においてNaOの含有量が触媒全体に対して3.7質量%となるように前記Ru/Al粉末を添加した以外は実施例1と同様にして、AlにNaOとRuとが担持した、0.5~1.0mm径の触媒粉末〔NaO(3.7)/Ru(4.8)/Al(91.5)〕を得た。
(Example 2)
Al 2 O 3 was prepared in the same manner as in Example 1 , except that the Ru/Al 2 O 3 powder was added so that the Na 2 O content in the resulting catalyst was 3.7% by mass based on the entire catalyst. A catalyst powder with a diameter of 0.5 to 1.0 mm [Na 2 O (3.7)/Ru (4.8)/Al 2 O 3 (91.5)] supported by Na 2 O and Ru was Obtained.

(実施例3)
得られる触媒においてNaOの含有量が触媒全体に対して4.5質量%となるように前記Ru/Al粉末を添加した以外は実施例1と同様にして、AlにNaOとRuとが担持した、0.5~1.0mm径の触媒粉末〔NaO(4.5)/Ru(4.8)/Al(90.7)〕を得た。
(Example 3)
Al 2 O 3 was prepared in the same manner as in Example 1 except that the Ru/Al 2 O 3 powder was added so that the Na 2 O content in the resulting catalyst was 4.5% by mass based on the entire catalyst. A catalyst powder with a diameter of 0.5 to 1.0 mm [Na 2 O (4.5)/Ru (4.8)/Al 2 O 3 (90.7)] supported by Na 2 O and Ru was Obtained.

(比較例1)
得られる触媒においてNaOの含有量が触媒全体に対して1.0質量%となるように前記Ru/Al粉末を添加した以外は実施例1と同様にして、AlにNaOとRuとが担持した、0.5~1.0mm径の触媒粉末〔NaO(1.0)/Ru(4.9)/Al(94.1)〕を得た。
(Comparative example 1)
Al 2 O 3 was prepared in the same manner as in Example 1, except that the Ru/Al 2 O 3 powder was added so that the Na 2 O content in the resulting catalyst was 1.0% by mass based on the entire catalyst. A catalyst powder with a diameter of 0.5 to 1.0 mm [Na 2 O (1.0)/Ru (4.9)/Al 2 O 3 (94.1)] supported by Na 2 O and Ru was Obtained.

(比較例2)
得られる触媒においてNaOの含有量が触媒全体に対して5.4質量%となるように前記Ru/Al粉末を添加した以外は実施例1と同様にして、AlにNaOとRuとが担持した、0.5~1.0mm径の触媒粉末〔NaO(5.4)/Ru(4.7)/Al(89.9)〕を得た。
(Comparative example 2)
Al 2 O 3 was prepared in the same manner as in Example 1, except that the Ru/Al 2 O 3 powder was added so that the Na 2 O content in the resulting catalyst was 5.4% by mass based on the entire catalyst. A catalyst powder with a diameter of 0.5 to 1.0 mm [Na 2 O (5.4)/Ru (4.7)/Al 2 O 3 (89.9)] supported by Na 2 O and Ru was Obtained.

(比較例3)
得られる触媒においてNaOの含有量が触媒全体に対して8.7質量%となるように前記Ru/Al粉末を添加した以外は実施例1と同様にして、AlにNaOとRuとが担持した、0.5~1.0mm径の触媒粉末〔NaO(8.7)/Ru(4.6)/Al(86.7)〕を得た。
(Comparative example 3)
Al 2 O 3 was prepared in the same manner as in Example 1, except that the Ru/Al 2 O 3 powder was added so that the Na 2 O content in the resulting catalyst was 8.7% by mass based on the entire catalyst. A catalyst powder with a diameter of 0.5 to 1.0 mm [Na 2 O (8.7)/Ru (4.6)/Al 2 O 3 (86.7)] supported by Na 2 O and Ru was Obtained.

(比較例4)
得られる触媒においてNaOの含有量が触媒全体に対して12.5質量%となるように前記Ru/Al粉末を添加した以外は実施例1と同様にして、AlにNaOとRuとが担持した、0.5~1.0mm径の触媒粉末〔NaO(12.5)/Ru(4.4)/Al(83.1)〕を得た。
(Comparative example 4)
Al 2 O 3 was prepared in the same manner as in Example 1 except that the Ru/Al 2 O 3 powder was added so that the Na 2 O content in the resulting catalyst was 12.5% by mass based on the entire catalyst. A catalyst powder with a diameter of 0.5 to 1.0 mm [Na 2 O (12.5)/Ru (4.4)/Al 2 O 3 (83.1)] supported by Na 2 O and Ru was Obtained.

(比較例5)
硝酸ナトリウムの代わりに硝酸カルシウム(Ca(NO、富士フイルム和光純薬株式会社製、品番:039-00735)を用い、得られる触媒においてCaOの含有量が触媒全体に対して4.5質量%となるように前記Ru/Al粉末を添加した以外は実施例1と同様にして、AlにCaOとRuとが担持した、0.5~1.0mm径の触媒粉末〔CaO(4.5)/Ru(4.8)/Al(90.7)〕を得た。
(Comparative example 5)
Calcium nitrate (Ca(NO 3 ) 2 , manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., product number: 039-00735) was used instead of sodium nitrate, and the CaO content in the resulting catalyst was 4.5 with respect to the entire catalyst. A catalyst with a diameter of 0.5 to 1.0 mm in which CaO and Ru were supported on Al 2 O 3 was prepared in the same manner as in Example 1 except that the Ru/Al 2 O 3 powder was added in such a manner that the Ru/Al 2 O 3 powder was added in a mass %. A powder [CaO (4.5)/Ru (4.8)/Al 2 O 3 (90.7)] was obtained.

(比較例6)
得られる触媒においてCaOの含有量が触媒全体に対して8.7質量%となるように前記Ru/Al粉末を添加した以外は比較例5と同様にして、AlにCaOとRuとが担持した、0.5~1.0mm径の触媒粉末〔CaO(8.7)/Ru(4.6)/Al(86.7)〕を得た。
(Comparative example 6)
CaO was added to Al 2 O 3 in the same manner as in Comparative Example 5, except that the Ru/Al 2 O 3 powder was added so that the CaO content in the resulting catalyst was 8.7% by mass based on the entire catalyst. A catalyst powder [CaO (8.7)/Ru (4.6)/Al 2 O 3 (86.7)] with a diameter of 0.5 to 1.0 mm was obtained, which was supported by Ru and Ru.

(比較例7)
得られる触媒においてCaOの含有量が触媒全体に対して16.0質量%となるように前記Ru/Al粉末を添加した以外は比較例5と同様にして、AlにCaOとRuとが担持した、0.5~1.0mm径の触媒粉末〔CaO(16.0)/Ru(4.2)/Al(79.8)〕を得た。
(Comparative Example 7)
CaO was added to Al 2 O 3 in the same manner as in Comparative Example 5, except that the Ru/Al 2 O 3 powder was added so that the CaO content in the resulting catalyst was 16.0% by mass based on the entire catalyst. A catalyst powder [CaO (16.0)/Ru (4.2)/Al 2 O 3 (79.8)] with a diameter of 0.5 to 1.0 mm was obtained, which was supported by Ru and Ru.

<COのメタン化温度特性の評価>
得られた触媒粉末を容積が2.4cmとなるようにステンレス鋼(SUS)製反応管(内径:6mm)に充填し、この反応管を昇温脱離分析装置(ヘンミ計算尺株式会社製「TP-5000」)に装着した。触媒床に、H(40%)+CO(10%)+He(残部)のH/CO含有ガスを1気圧下、流量40ml/minの条件で流通させながら、触媒床を50℃から350℃まで昇温速度5℃/minで昇温した。触媒床を50℃以下に降温した後、再度、上記の条件にて触媒床を50℃から350℃まで昇温速度5℃/minで昇温した。この2回目の昇温時において、触媒出ガス中のCO量を測定し、触媒入りガス中のCO量と触媒出ガス中のCO量とからCO転化率を求めた。その結果を図1に示す。図1に示した結果に基づいて、CO転化率が50%となる温度T50を求めた。その結果を表1に示す。また、CO吸蔵材(NaO又はCaO)の含有率に対してT50をプロットした結果を図2に示す。
<Evaluation of CO 2 methanation temperature characteristics>
The obtained catalyst powder was filled into a stainless steel (SUS) reaction tube (inner diameter: 6 mm) to a volume of 2.4 cm 3 , and the reaction tube was heated using a temperature programmed desorption analyzer (manufactured by Henmi Slide Rule Co., Ltd.). TP-5000"). The catalyst bed was heated from 50°C while flowing H 2 /CO 2 -containing gas of H 2 (40%) + CO 2 (10%) + He (remainder) under 1 atm and at a flow rate of 40 ml/min. The temperature was raised to 350°C at a rate of 5°C/min. After the temperature of the catalyst bed was lowered to 50° C. or lower, the temperature of the catalyst bed was again raised from 50° C. to 350° C. at a temperature increase rate of 5° C./min under the above conditions. During the second temperature rise, the amount of CO 2 in the gas coming out of the catalyst was measured, and the conversion rate of CO 2 was determined from the amount of CO 2 in the gas containing the catalyst and the amount of CO 2 in the gas coming out of the catalyst. The results are shown in Figure 1. Based on the results shown in FIG. 1, the temperature T50 at which the CO 2 conversion rate becomes 50% was determined. The results are shown in Table 1. Further, FIG. 2 shows the results of plotting T50 against the content of the CO 2 storage material (Na 2 O or CaO).

表1及び図2に示したように、アルカリ金属の含有量(酸化物換算)を所定の範囲内とすることによって、T50が低く、低温において優れた触媒活性を発現するCO吸蔵還元型触媒(実施例1~3)が得られることが確認された。一方、アルカリ金属の含有量(酸化物換算)が多くなりすぎると、T50が高くなり、低温での触媒活性が低下することがわかった(比較例2~4)。 As shown in Table 1 and Figure 2, the CO 2 storage reduction catalyst has a low T50 and exhibits excellent catalytic activity at low temperatures by keeping the alkali metal content (in terms of oxide) within a predetermined range. It was confirmed that (Examples 1 to 3) could be obtained. On the other hand, it was found that when the alkali metal content (in terms of oxide) was too large, T50 increased and the catalytic activity at low temperatures decreased (Comparative Examples 2 to 4).

また、実施例3で得られたCO吸蔵還元型触媒は、アルカリ金属の含有量(酸化物換算)と同程度の含有量(酸化物換算)でアルカリ土類金属を含有する触媒(比較例5)に比べて、T50が低く、低温での触媒活性が優れていることがわかった。 In addition, the CO 2 storage reduction type catalyst obtained in Example 3 was a catalyst containing an alkaline earth metal at a content (in terms of oxide) comparable to that of the alkali metal (in terms of oxide) (comparative example). It was found that the T50 was lower than that of 5), and the catalytic activity at low temperatures was excellent.

<X線回折測定>
得られた触媒粉末のX線回折パターンを、X線回折装置(株式会社リガク製「UltimaIV」)を用い、CuKαをX線源として使用して測定した。その結果を図3に示す。
<X-ray diffraction measurement>
The X-ray diffraction pattern of the obtained catalyst powder was measured using an X-ray diffraction apparatus ("Ultima IV" manufactured by Rigaku Corporation) using CuKα as an X-ray source. The results are shown in FIG.

図3に示したように、NaOの含有量が8.7質量%以上の触媒(比較例3~4)においては、NaOの結晶子径が44nmに相当する回折ピークが観測されたが、NaOの含有量が4.5質量%以下のCO吸蔵還元型触媒(実施例2~3)においては、観測されなかった。この結果から、アルカリ金属の含有量が増加すると、結晶子径が44nm以上の粗大な粒子が生成するため、低温での触媒活性が低下すると考えられる。 As shown in Figure 3, in the catalysts with a Na 2 O content of 8.7% by mass or more (Comparative Examples 3 to 4), a diffraction peak corresponding to a Na 2 O crystallite diameter of 44 nm was observed. However, it was not observed in the CO 2 storage reduction catalysts (Examples 2 and 3) in which the Na 2 O content was 4.5% by mass or less. From this result, it is considered that when the alkali metal content increases, coarse particles with a crystallite diameter of 44 nm or more are generated, and thus the catalytic activity at low temperatures decreases.

以上説明したように、本発明によれば、低温においても優れたCO吸蔵性能とメタン化触媒活性を発現するCO吸蔵還元型触媒を得ることが可能となる。したがって、本発明のCO吸蔵還元型触媒は、CO浄化システムの始動時等の低温状態においてもCOを効率よく吸蔵してCHに還元することが可能な触媒として有用である。 As explained above, according to the present invention, it is possible to obtain a CO 2 storage reduction type catalyst that exhibits excellent CO 2 storage performance and methanation catalyst activity even at low temperatures. Therefore, the CO 2 storage reduction catalyst of the present invention is useful as a catalyst that can efficiently store CO 2 and reduce it to CH 4 even in low temperature conditions such as when starting up a CO 2 purification system.

Claims (3)

金属酸化物からなり、平均細孔径が3~50nmであり、細孔容積が0.3~1.5cm/gである多孔質担体と、前記多孔質担体に担持されたルテニウムと、前記多孔質担体に担持されたアルカリ金属とを含有する触媒であり、
前記ルテニウムの含有量が、前記多孔質担体とルテニウムとの合計含有量100質量部に対して、1~5質量部であり、
前記アルカリ金属の含有量が、前記触媒全体に対して、酸化物換算で2.8~4.5質量%である
ことを特徴とする二酸化炭素吸蔵還元型触媒。
a porous carrier made of a metal oxide and having an average pore diameter of 3 to 50 nm and a pore volume of 0.3 to 1.5 cm 3 /g; ruthenium supported on the porous carrier; A catalyst containing an alkali metal supported on a solid carrier,
The content of the ruthenium is 1 to 5 parts by mass with respect to 100 parts by mass of the total content of the porous carrier and ruthenium,
A carbon dioxide storage reduction catalyst characterized in that the content of the alkali metal is 2.8 to 4.5% by mass in terms of oxide based on the entire catalyst.
前記アルカリ金属がナトリウムであることを特徴とする請求項1に記載の二酸化炭素吸蔵還元型触媒。 The carbon dioxide storage reduction catalyst according to claim 1, wherein the alkali metal is sodium. X線回折パターンにおいて、前記アルカリ金属の酸化物の結晶子径が44nmに相当する回折ピークが存在しないことを特徴とする請求項1又は2に記載の二酸化炭素吸蔵還元型触媒。 3. The carbon dioxide storage reduction catalyst according to claim 1, wherein in the X-ray diffraction pattern, there is no diffraction peak corresponding to a crystallite diameter of 44 nm of the alkali metal oxide.
JP2022067679A 2022-04-15 2022-04-15 Carbon dioxide occlusion reduction type catalyst Pending JP2023157643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022067679A JP2023157643A (en) 2022-04-15 2022-04-15 Carbon dioxide occlusion reduction type catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022067679A JP2023157643A (en) 2022-04-15 2022-04-15 Carbon dioxide occlusion reduction type catalyst

Publications (1)

Publication Number Publication Date
JP2023157643A true JP2023157643A (en) 2023-10-26

Family

ID=88469575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022067679A Pending JP2023157643A (en) 2022-04-15 2022-04-15 Carbon dioxide occlusion reduction type catalyst

Country Status (1)

Country Link
JP (1) JP2023157643A (en)

Similar Documents

Publication Publication Date Title
JP5972678B2 (en) Synthesis gas production catalyst and synthesis gas production method
JP4648567B2 (en) Autothermal reforming catalyst and method for producing fuel gas for fuel cell
JPH0680972A (en) Depth desulfurization of light-to-middle oil
JP4864688B2 (en) Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst
JP4648566B2 (en) Autothermal reforming catalyst and method for producing fuel gas for fuel cell
JP7047575B2 (en) Methaneization catalyst and method for producing methane using it
JP7447275B2 (en) Catalyst for CO2 methanation reaction with high activity and long-term stability, and method thereof
JP4890194B2 (en) Method for producing carbon monoxide removal catalyst
JP2023157643A (en) Carbon dioxide occlusion reduction type catalyst
KR102186058B1 (en) Catalyst Comprising MgO-Al2O3 Hybrid Support and The Method of Preparing Synthesis Gas from Carbon Dioxide Reforming of Alcohol Using the Same
JP4525909B2 (en) Water gas shift reaction catalyst, method for producing the same, and method for producing water gas
JP6329286B2 (en) Method for producing catalyst for oxygenate synthesis, and method for producing oxygenate
JP4118503B2 (en) Process for producing hydrocarbons in the presence of carbon dioxide
JP2005254076A (en) Reforming catalyst composition
JPWO2017130937A1 (en) Heterogeneous catalyst structure and method for producing the same
JP6102473B2 (en) Catalyst for producing synthesis gas, method for regenerating the catalyst, and method for producing synthesis gas
CN113952956A (en) Preparation method of methane dry reforming catalyst, methane dry reforming catalyst and application thereof
JP5107046B2 (en) Hydrocarbon steam reforming catalyst
JP2023143010A (en) Carbon dioxide absorption-reduction catalyst
CN107349947A (en) A kind of acetic acid hydrogenation catalyst and its application
WO2023037652A1 (en) Carbon monoxide production method and device used therefor
US20240024855A1 (en) Methods for preparing a catalytic converter by displacement of water gas at high temperature and method for reducing carbon monoxide content
JP5388925B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide
JP2009078267A (en) Autothermal reforming catalyst and method for producing hydrogen or synthesis gas
JP2006286552A (en) Manufacturing method of fuel gas for solid oxide fuel cell operated in middle and low temperature ranges