JP4118503B2 - Process for producing hydrocarbons in the presence of carbon dioxide - Google Patents

Process for producing hydrocarbons in the presence of carbon dioxide Download PDF

Info

Publication number
JP4118503B2
JP4118503B2 JP2000357848A JP2000357848A JP4118503B2 JP 4118503 B2 JP4118503 B2 JP 4118503B2 JP 2000357848 A JP2000357848 A JP 2000357848A JP 2000357848 A JP2000357848 A JP 2000357848A JP 4118503 B2 JP4118503 B2 JP 4118503B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
mass
carbon dioxide
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000357848A
Other languages
Japanese (ja)
Other versions
JP2002161280A (en
Inventor
茂徳 中静
治 岩本
金次郎 斎藤
紀行 新谷
崇 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oil Gas and Metals National Corp
Original Assignee
Japan Oil Gas and Metals National Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oil Gas and Metals National Corp filed Critical Japan Oil Gas and Metals National Corp
Priority to JP2000357848A priority Critical patent/JP4118503B2/en
Publication of JP2002161280A publication Critical patent/JP2002161280A/en
Application granted granted Critical
Publication of JP4118503B2 publication Critical patent/JP4118503B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水素と一酸化炭素を主成分とする混合ガス(以下「合成ガス」という)から炭化水素類を製造する方法に関する。さらに詳しくは、合成ガスを、二酸化炭素の共存下に、液状炭化水素類中に分散せしめたマンガン酸化物を担体とするルテニウム系触媒に接触させ、炭化水素類、とりわけ灯軽油留分に容易に変換できるワックス分と共にオレフィン分に富む炭化水素類を製造する方法に関する。
【0002】
【従来の技術】
合成ガスから炭化水素類を合成する方法として、フィッシャー・トロプシュ反応(Fischer −Tropsch 反応)、メタノール合成反応などが良く知られている。そして、フィッシャー・トロプシュ反応は鉄、コバルト、ルテニウム等の鉄系触媒で、メタノール合成反応は銅系触媒で、C2含酸素(エタノール、アセトアルデヒド)合成はロジウム系触媒で進行することが知られており、また、これらの炭化水素類の合成に用いる触媒の触媒能は、一酸化炭素の解離吸着(dissociative adsorption) 能と強く関連することが知られている(例えば「均一触媒と不均一触媒」、干鯛、市川共著、丸善、昭和58年刊)。
【0003】
ところで、近年、大気環境保全の観点から、低硫黄分の軽油が望まれており、今後その傾向はますます強くなるものと考えられる。また、原油資源は有限であるとの観点から、それに代わるエネルギー源の開発が望まれており、今後ますます強く望まれるようになるものと考えられる。これらの要望に応える技術として、エネルギー換算で原油に匹敵する可採埋蔵量があるといわれる天然ガス(主成分メタン)から灯軽油等の液体燃料を合成する技術である所謂GTL(gas to liquid)がある。天然ガスは、硫黄分を含まないか、含んでいても脱硫が容易な硫化水素(H2S)やメルカプタン(CH3SH)等であるため、得られる灯軽油等の液体燃料には、その中に殆ど硫黄分が無なく、またセタン価の高い高性能ディーゼル燃料に利用できるなどの利点があるため、このGTLは近年ますます注目されるようになってきている。
【0004】
上記GTLの一環として、合成ガスからフィッシャー・トロプシュ反応(以下「FT反応」という)によって炭化水素類を製造する方法(以下「FT法」という)が盛んに研究されている。このFT法によって炭化水素類を製造するに当たり、灯軽油留分の収率を高めるためには、C10〜C16相当の炭化水素を効率的に合成することが肝要である。一般に、FT反応における炭化水素類生成物の炭素数分布はシュルツ・フローリー(Shultz-Flory)則に従うとされており、シュルツ・フローリー則では、連鎖成長確立α値は、反応温度の上昇と共に大きく減少する傾向にある、つまり反応温度が上昇すると生成炭化水素類の炭素数が大きく低下する傾向にあるとしている。古くは、如何にシュルツ・フローリー則を外し、如何に特定の炭素数の炭化水素類を選択的に合成するかを課題として、盛んに触媒開発等の技術開発が行われたようであるが、未だこの課題を十分解決し得た技術は提案されていない。最近では、寧ろ、シュルツ・フローリー則を外すことにはこだわらずに、ワックス分等の水素化分解により容易に灯軽油留分とすることのできる留分の収率を高め、該ワックス分等を水素化分解することにより、その結果として灯軽油留分の得率を高めようという考え方が一般的になっている。しかしながら、現状の連鎖成長確率は0.85前後であり、これを如何に高めていくかが最近の技術的課題の一つとなっている。とはいえ、あまり連鎖成長確率を高めていくと、生成炭化水素類はワックス分が殆どとなるため、今度はプロセス運転上の問題が生じ、また触媒の一般的性能からしても、連鎖成長確率は0.95前後が事実上の上限と考えられている。
【0005】
そこで、灯軽油留分の得率をなお一層高めるためには、ワックス分を生成させ、その水素化分解による灯軽油留分の得率の向上に加えて、低級オレフィンも生成させ、その二量化、三量化等により灯軽油留分を生成させることも視野に入れる必要がある。この灯軽油留分の得率のなお一層の向上は、連鎖成長確率が高く、かつ生成低級炭化水素中のオレフィン選択性に優れるFT反応を行うことにより達成することができると考えられる。
【0006】
また、上記GTLプロセスにおけるFT法による炭化水素類製造の原料である合成ガスについて見れば、該合成ガスは、主として、天然ガスを自己熱改質法(autothermal reforming) あるいは水蒸気改質法等の改質法にて水素および一酸化炭素を主成分とする混合ガスに改質することにより得られるが、この改質では、下記式(I)の改質反応の他に、下記式(II)の水性ガスシフト反応が並行して起こるため、得られる合成ガスにはどうしても炭酸ガスが含まれる。さらには、未利用の天然ガス田には炭酸ガスを含有するものが少なくなく、かかる炭酸ガスを含有する天然ガスを原料にすれば、得られる合成ガスの炭酸ガス含有量が一層多くなる。
【0007】
CH4+H2O=3H2+CO (I)
CO+H2O=H2+CO2 (II)
【0008】
そして、FT反応では、下記式(III)で示されるように合成ガスから液状炭化水素が合成されるが、反応系内に炭酸ガスが含有されると、炭化水素の合成が妨げられる傾向が強まる(鈴木ら 日本化学会第63春季年会予稿集 3C432 1992年)。また、炭酸ガス含有量が高まると、上記炭酸ガスの反応阻害に加えて、反応系内の水素分圧が低下するため、この点からもFT反応にとって好ましくない状況となる。
【0009】
nCO+2nH2=(CH2n+nH2O (III)
【0010】
したがって、従来、GTLプロセスでは、天然ガスから合成ガスを製造する工程と、合成ガスから液状炭化水素を合成する工程の間に、合成ガス中の炭酸ガスを除去する脱炭酸工程を組み込む事が必須となる。そして、この脱炭酸工程には、通常アミン吸収か、圧力変動吸着分離法(Pressure Swing Adsorption; PSA) が用いられるが、いずれにせよかかる脱炭酸工程は建設コストおよび運転コストの高騰を招くなど好ましくない。炭酸ガスの共存下でFT反応を好適に行い得て、上記脱炭酸工程を簡略化もしくは省略することができれば、GTLプロセスにおける液状炭化水素の製造コストの低減に大きく貢献することができる。
【0011】
【発明が解決しようとする課題】
しかし、現在のところ、連鎖成長確率が高く、かつオレフィン選択性が優れていて、上記灯軽油留分得率のなお一層の向上を十分達成できるFT反応を行い得る触媒、プロセスは未だ提案されていない。従来から、種々のFT反応用の触媒が提案されており、オレフィン類への高選択性を目的とした触媒として、マンガン酸化物担体にルテニウムを担持させた触媒、このルテニウム担持触媒にさらに第三成分を加えた触媒などのルテニウム系触媒が提案されている(特公平3−70691号公報、同3−70692号公報等)。しかし、これらのルテニウム系触媒を用いたFT法では、上記灯軽油留分得率のなお一層の向上を十分達成することができない。すなわち、上記ルテニウム系触媒は、主として固定床式で用いることを目的として開発された触媒であって、このルテニウム系触媒を用いた固定床式のFT法では、このルテニウム系触媒の連鎖成長確率もさることながら、固定床式の反応形式では、ワックス分が多量に生成したとき、この生成したワックス分が触媒の活性点に付着してそれを覆い、触媒の活性が低下する問題や、触媒床の局所が過熱するヒートスポットが生ずる等の問題が発生し易く、安定して円滑に反応を行うことができなくなるという問題がある。
【0012】
ましてや、炭酸ガスの共存下に、上記のように連鎖成長確率が高く、かつオレフィン選択性が優れていて、上記灯軽油留分得率のなお一層の向上を十分達成できるFT反応を行い得る触媒、プロセスは未だ提案されていない。
【0013】
本発明の目的は、上記状況に鑑み、連鎖成長確率が高く、かつオレフィン選択性に優れ、なおかつ触媒活性が高く、ヒートスポットの発生などを来たすことなく、安定して円滑に反応を行うことができ、かつ、かかる所望の反応を炭酸ガスの共存下に行い得るFT法を提供することにあり、他の目的は、生成したワックス分の水素化分解、生成したオレフィンの二量化、三量化等により、灯軽油留分の増産に従来より一層大きく寄与できると共に、合成ガス中の炭酸ガスを除去する脱炭酸工程を簡略化もしくは省略して灯軽油留分の製造コストの低減に大きく寄与できるFT法を提供することにある。
【0014】
【課題を解決するための手段】
上記目的の内、前半の連鎖成長確率が高く、かつオレフィン選択性に優れ、なおかつ触媒活性が高く、ヒートスポットの発生などを来たすことなく、安定して円滑に反応を行うことができるFT法を提供することに関しては、本発明者らは、先に、種々研究の結果、触媒として、一定の物性を有し、一定量のルテニウムをマンガン酸化物担体に担持させた触媒を用い、この触媒を、予め還元処理した後、液状炭化水素類中に一定濃度で分散せしめ分散状態となし、この分散状態の触媒に水素および一酸化炭素を主成分とする混合ガスを接触せしめることにより、上記の所望の好適なる反応を行うことができるFT法を提供し得ることを見出し、すなわち、(a)触媒を一定濃度で液状炭化水素類中に分散させた状態において原料混合ガスと接触させるという特定の反応形式によれば、反応混合物中のワックス分が多量になっても、ワックス分の触媒活性点への付着に起因する触媒活性の低下を十分防止できることおよびヒートスポットの発生を抑制できることを知見し、(b)この特定の反応形式において、所望の連鎖成長確率が高く、かつオレフィン選択性に優れたFT反応を実現するために最も適した特定の物性の触媒を知見し、(c)かつ該触媒の触媒能を十分発揮させるための事前の還元処理の必要性を知見し、これらの知見に基づいて次ぎのような炭化水素類の製造方法を発明して特許出願した。すなわち、マンガン酸化物担体に、ルテニウムを触媒基準で0.1〜50質量%担持した、比表面積4〜200m2/g、触媒粒子径分布0.5〜150μmを示す触媒を、予め還元処理を施した後、液状炭化水素類中に濃度1〜50質量%にて分散せしめ、該触媒に水素および一酸化炭素を主成分とする混合ガスを、加圧下に、反応温度170〜300℃で接触させる炭化水素類の製造方法を発明して特許出願した(特願2000−251185号)。
【0015】
しかして、本発明者らは、上記目的を達成すべくさらに研究を進めたところ、先に発明した上記のような炭化水素類の製造方法において、触媒として、マンガン酸化物担体に、ルテニウムの他、一定量のアルカリ金属およびアルカリ土類金属から選ばれた少なくとも1種の金属の化合物を担持させた触媒を用いると、(イ)一酸化炭素の転化率が一層向上し、かつ触媒寿命も向上すること、(ロ)一定量の炭酸ガス、すなわち二酸化炭素の共存下において所望の好適なる反応を行い得ること、および(ハ)一定量の二酸化炭素の共存下に反応を行うことにより、一酸化炭素の転化率が二酸化炭素の非共存下に反応を行う場合よりなお一層向上することを見出し、これらの知見に基づいて本発明を完成した。
【0016】
すなわち、本発明は、上記目的を達成するために、マンガン酸化物担体に、アルカリ金属およびアルカリ土類金属から選ばれた少なくとも1種の金属の化合物を触媒基準で0.1〜20質量%担持し、さらに、ルテニウムを触媒基準で0.1〜50質量%担持した、比表面積4〜200m2/g、触媒粒子径分布0.5〜150μmを示す触媒を、予め還元処理を施した後、液状炭化水素類中に濃度1〜50質量%にて分散せしめ、該触媒に水素および一酸化炭素を主成分とする混合ガスを、その水素および一酸化炭素の合計圧に対して0.5〜50%の二酸化炭素の共存下に、圧力1〜10MPa、反応温度200〜350℃で接触させる炭化水素類の製造方法を提供する。
【0017】
【発明の実施の形態】
以下に発明を詳細に説明する。
本発明方法では、触媒として、マンガン酸化物担体に、アルカリ金属およびアルカリ土類金属から選ばれた少なくとも1種の金属の化合物(以下「アルカリ(土類)金属化合物」という)およびルテニウムを担持させた触媒であって、そのアルカリ(土類)金属化合物およびルテニウムの担持量、比表面積、触媒粒子径分布の諸物性が以下に述べる一定の範囲内にある触媒が用いられる。なお、本発明で用いる触媒の嵩密度は、0.5〜2.5g/ccが適当である。
【0018】
本発明で用いる触媒において、アルカリ(土類)金属化合物およびルテニウムの担持量は活性点数と関連する。本発明で用いる触媒のアルカリ(土類)金属化合物の担持量は、触媒基準で0.1〜20質量%であり、好ましくは0.2〜10質量%、さらに好ましくは0.2〜3質量%である。また、ルテニウムの担持量は、触媒基準で0.1〜50質量%であり、好ましくは0.1〜20質量%、さらに好ましくは0.5〜5質量%である。アルカリ(土類)金属化合物およびルテニウムの各担持量が上記範囲未満では、活性点数が不足となり十分な触媒活性が得られなくなる虞があるばかりか、アルカリ(土類)金属種と担体成分(マンガン)との相乗効果が得られず、劣化勾配ならびに触媒安定性(寿命)に事欠く。また、アルカリ(土類)金属化合物およびルテニウムの各担持量が上記範囲を超過した際には、担体上にアルカリ(土類)金属化合物とルテニウムが十分担持されなくなり、分散性の低下や担体成分と相互作用を持たないアルカリ(土類)金属種やルテニウム種が発現するため、活性低下や選択性の低下などが著しくなる傾向が見られるため好ましくない。なお、触媒の化学組成は誘導結合プラズマ質量分析法(ICP法)によって求めた。
【0019】
また、本発明で用いる触媒の比表面積は、4〜200m2/gであり、好ましくは4〜120m2/g、さらに好ましくは5〜100m2/gである。比表面積が4m2/g未満では、アルカリ(土類)金属化合物およびルテニウムの分散性が低下する恐れがあり好ましくない。また、比表面積の上限に関しては、一般に固体触媒を扱うに当たっては、広いほど気液固の接触頻度が高まるため好ましい。しかし、マンガン酸化物単独の比表面積の現実的な上限値は200〜250m2/g程度であることを考えると、これにアルカリ(土類)金属化合物およびルテニウム化合物を担持した触媒のそれは最大200m2/g程度と考えられる。なお、触媒の比表面積は、高純度窒素をプローブとしBET法(Braunauer-Emett-Tailor 法)で求めた。
【0020】
また、本発明で用いる触媒の触媒粒子径の分布範囲は、0.5〜150μmであり、好ましくは0.5〜120μm、さらに好ましくは1.0〜105μmである。本発明では、触媒は液状炭化水素類中に分散させて分散状態で使用されるため、その粒子径分布を考慮する必要がある。0.5μm未満のような細か過ぎる粒子は、フィルター等を通過して下流側に溢出するために、反応容器内の触媒濃度が減少して触媒濃度を保持することが難しくなったり、下流側機器が触媒微粒子によって障害を受けるなどの問題が発生する可能性が高くなる。また、場合によっては、フィルターが目詰まりして連続運転ができなくなることも考えられる。150μmを超えるような大きい粒子は、反応容器全体にわたって液状炭化水素類中に均一に分散させることが難しく、触媒を分散したスラリーが不均一となるため、反応活性が低下する可能性が高くなるなど好ましくない。
【0021】
粒子径分布が上記一定範囲内の触媒でも、液状炭化水素類中に分散させたとき、分散に偏りが生じる場合がある。かかる場合には、触媒粒子を液状炭化水素類中に偏りを生じることなく均一に分散させるために、平均粒子径をも考慮することが望ましい。本発明で用いる触媒の平均粒子径は、10〜100μmが好ましく、10〜60μmがさらに好ましく、10〜50μmがなおさらに好ましい。平均粒子径が、上記10〜100μmの範囲の上下限を外れた場合には、触媒粒子の液状炭化水素類中への分散が不均一となり、反応活性が低下する場合がある。
【0022】
本発明で用いる触媒の調製は、その調製方法自体は、従来から知られた担持触媒の一般的調製方法に準じて行うことができる。まず、触媒の調製に用いる担体のマンガン酸化物としては、従来から担体として用いられている各種のマンガン酸化物を適宜選択して用いることができ、空気中加熱による熱転移、あるいは水熱転移により、またはCO、H2による還元により、種々のマンガン酸化物の形態をとることができる。その例として、MnO2、Mn23、Mn34、MnO等が好ましく挙げられる。また、硫酸マンガンのような酸化物以外の塩を出発物質とし、これらから得られたマンガン酸化物を用いることもできる。例えば、熱酸性硫酸マンガンをグラファイト電極(炭素電極)を用いて陽極酸化して得られるγ型MnO2等を好ましく使用できる。上記各種のマンガン酸化物の中でも、3価もしくは4価のように荷電数が高いマンガン酸化物が好ましく用いられる。これは、FT反応中にルテニウムの酸化状態を一定に保ために、担体のマンガン酸化物ではチャージトランスファー(charge transfer) を起こしていると推定されるからである。マンガン酸化物の比表面積は、一般に6m2/g以上が望ましく、その上限は特に制限されないが、上記のとおり200〜250m2/g程度が現実的な上限値である。また、この担体のマンガン酸化物としては、粉末状、顆粒状、打錠成形体、押し出し成形体等の任意の形状のものを用いることができる。
【0023】
上記担体のマンガン酸化物に、アルカリ(土類)金属化合物およびルテニウムを担持させるに際しては、まずアルカリ(土類)金属化合物を担持させ、水分を除去した後、焼成する。次にルテニウムを担持させ、水分を除去した後充分に乾燥する。また、担体のマンガン酸化物へのアルカリ(土類)金属化合物あるいはルテニウムの担持は、例えば、担体をアルカリ(土類)金属化合物あるいはルテニウム化合物の如き触媒種化合物の溶液中に浸漬して、触媒種化合物を担体上に吸着させたり、イオン交換して付着させたり、アルカリなどの沈殿剤を加えて沈着させたり、溶液を蒸発乾固したり、あるいは触媒種化合物の溶液を担体上へ滴下して行うなど、担体と触媒種化合物の溶液とを接触させて行うことができる。この際、得られる目的の触媒におけるアルカリ(土類)金属化合物およびルテニウムの担持量が上記所定量となるように、担体に含有させるアルカリ(土類)金属化合物およびルテニウム化合物の量が調節される。上記担持に用いるアルカリ(土類)金属化合物としては、ナトリウム、カリウム、リチウム、カルシウム、マグネシウム等の塩化物、炭酸塩、硝酸塩、アンモニウム塩等が挙げられる。また、ルテニウム化合物としては、従来からルテニウム担持触媒の調製に用いられている各種のルテニウム化合物を適宜選択して用いることができる。その例として、塩化ルテニウム、硝酸ルテニウム、酢酸ルテニウム、塩化六アンモニアルテニウムなどの水溶性ルテニウム塩や、ルテニウムカルボニル、ルテニウムアセチルアセトナートなどの有機溶剤に可溶なルテニウム化合物などが好ましく挙げられる。上記の如くしてアルカリ(土類)金属化合物およびルテニウム化合物を含有させた担体のマンガン酸化物は、乾燥される。この乾燥は、一般に、常温〜300℃で10〜48時間保持することにより行うことができる。乾燥された各触媒種化合物含有マンガン酸化物は、必要に応じて適宜粉砕し、分級して、所定の触媒粒子径分布、さらに好ましくは所定の平均粒子径の粉末状とされ、かくして本発明で用いる所定の諸物性を有する触媒を得ることができる。
【0024】
本発明の炭化水素類の製造方法においては、上記の如くして調製された触媒は、FT反応に供する前に予め還元処理(活性化処理)される。この還元処理により、触媒がFT反応において所望の触媒活性を示すように活性化される。この還元処理を行わなかった場合には、マンガン酸化物上に担持されたアルカリ(土類)金属種およびルテニウム種が十分に還元されず、FT反応において所望の触媒活性を示さない。この還元処理は、触媒を液状炭化水素類に分散させたスラリー状態で還元性ガスと接触させる方法でも、炭化水素類を用いず単に触媒に還元性ガスを通気、接触させる方法でも好ましく行うことができる。前者の方法における触媒を分散させる液状炭化水素類としては、処理条件下において液状のものであれば、オレフィン類、アルカン類、脂環式炭化水素、芳香族炭化水素を始めとする種々の炭化水素類を使用できる。また、含酸素、含窒素等のヘテロ元素を含む炭化水素であっても良い。これらの炭化水素類の炭素数は、処理条件下において液状のものであれば特に制限する必要はないが、一般にC6〜C40のものが好ましく、C9〜C40のものがより好ましく、C9〜C35のものが最も好ましい。C6の炭化水素類より軽質なものでは溶媒の蒸気圧が高くなり、処理条件幅が制限されるようになる。また、C40の炭化水素類より重質のものでは還元性ガスの溶解度が低下して、十分な還元処理ができなくなる懸念がある。また、炭化水素類中に分散させる触媒量は、1〜50質量%の濃度が適当あり、好ましくは3〜40質量%、より好ましくは5〜35質量%の濃度である。触媒量が1質量%未満では、触媒の還元効率が低下する。触媒の還元効率の低下を防ぐ方法として、還元性ガスの通気量を減少させる方法があるが、還元性ガスの通気量を低下させると気(還元性ガス)−液(溶媒)−固(触媒)の分散が損なわれるため好ましくない。一方、触媒量が50質量%を超えて多量の場合は、炭化水素類に触媒を分散させたスラリーの粘性が高くなり過ぎ、気泡分散が悪くなり、触媒の還元が十分なされなくなるため好ましくない。還元処理温度は、140〜310℃が好ましく、150〜250℃がより好ましく、160〜220℃が最も好適である。140℃未満では、ルテニウムが十分に還元されず、十分な反応活性が得られない。また、310℃を超える高温では、担体のマンガン酸化物の相転位、酸化状態の変化等が進行してルテニウムとの複合体を形成したり、これによって触媒がシンタリング(sintering) して、活性低下を招く可能性が高くなる。この還元処理には、水素を主成分とする還元性ガスを好ましく用いることができる。用いる還元性ガスには、水素以外の成分、例えば水蒸気、窒素、希ガスなどを、還元を妨げない範囲である程度の量を含んでいても良い。この還元処理は、上記処理温度と共に、水素分圧および処理時間にも影響されるが、水素分圧は、1〜100kg/cm2(0.098〜9.8MPa)が好ましく、5〜60kg/cm2(0.49〜5.88MPa)がより好ましく、10〜50kg/cm2(0.98〜4.9MPa)が最も好ましい。還元処理時間は、触媒量、水素通気量等によっても異なるが、一般に、0.1〜72時間が好ましく、1〜48時間がより好ましく、5〜48時間が最も好ましい。処理時間が0.1時間未満では、触媒の活性化が不十分となる。また、72時間を超える長時間還元処理しても、触媒に与える悪影響は無いが、触媒性能の向上も見られないのに処理コストが嵩むなどの好ましくない問題を生じる。
【0025】
上記の如く還元処理した触媒がFT反応、すなわち炭化水素類の合成反応に供せられる。本発明におけるFT反応は、触媒を液状炭化水素類中に分散せしめた分散状態となし、この分散状態の触媒に合成ガスを二酸化炭素の共存下に接触させる。この際、触媒を分散させる炭化水素類としては、上記の予め行う還元処理で用いられる炭化水素類と同様のものを用いることができる。すなわち、反応条件下において液状のものであれば、オレフィン類、アルカン類、脂環式炭化水素、芳香族炭化水素を始めとする種々の炭化水素類、含酸素、含窒素等のヘテロ元素を含む炭化水素等を用いることができ、その炭素数は特に制限する必要はないが、一般にC6〜C40のものが好ましく、C9〜C40のものがより好ましく、C9〜C35のものが最も好ましい。C6の炭化水素類より軽質なものでは溶媒の蒸気圧が高くなり、反応条件幅が制限されるようになる。また、C40の炭化水素類より重質のものでは原料の合成ガスの溶解度が低下して、反応活性が低下する懸念がある。上記の予め行う還元処理において、触媒を液状炭化水素類に分散させて行う方法が採用されている場合は、該還元処理で用いられた液状炭化水素類をそのままこのFT反応において用いることができる。炭化水素類中に分散させる触媒量は、1〜50質量%の濃度であり、好ましくは3〜40質量%、より好ましくは5〜35質量%の濃度である。触媒量が1質量%未満では活性が低下する。活性の低下を防ぐ方法として、合成ガスの通気量を減少させる方法があるが、合成ガスの通気量を低下させると気(合成ガス)−液(溶媒)−固(触媒)の分散が損なわれるため好ましくない。一方、触媒量が50質量%を超えて多量の場合は、炭化水素類に触媒を分散させたスラリーの粘性が高くなりすぎ、気泡分散が悪くなり、反応活性が十分得られなくなるため好ましくない。
【0026】
FT反応に用いる合成ガスは、水素および一酸化炭素を主成分としていれば良く、FT反応を妨げない他の成分が混入されていても差し支えない。FT反応の速度(k)は、水素分圧に約一次で依存するので、水素および一酸化炭素の分圧比(H2/COモル比)が0.6以上であることが望まれる。この反応は、体積減少を伴う反応であるため、水素および一酸化炭素の分圧の合計値が高いほど好ましい。水素および一酸化炭素の分圧比は、その上限は特に制限されないが、現実的なこの分圧比の範囲としては0.6〜2.7が適当であり、好ましくは0.8〜2.5、より好ましくは1〜2.3である。この分圧比が0.6未満では、生成する炭化水素類の収量が低下し、また、この分圧比が2.7を超えると生成する炭化水素類において軽質分が増える傾向が見られる。また、この合成ガスに含まれる水素および一酸化炭素以外の他の成分としては、反応を妨げないものであれば特に制限する必要はないが、当該成分の例としてH2O、N2、CH4等が挙げられる。
【0027】
共存させる二酸化炭素としては、例えば石油製品の改質反応や天然ガス等から得られるものでも問題なく用いることができ、FT反応を妨げない他の成分が混入されていても差し支えなく、例えば、石油製品等の水蒸気改質反応から出るもののように水蒸気や部分酸化された窒素等が含有されたものでも良い。また、この二酸化炭素は、二酸化炭素の含有されてない合成ガスに積極的に添加することもできるし、また、天然ガスを自己熱改質法あるいは水蒸気改質法等で改質して得られた、二酸化炭素を含有する合成ガス中の二酸化炭素を利用すること、すなわち二酸化炭素を含有する合成ガスを脱炭酸処理することなくそのままFT反応に供することもできる。二酸化炭素を含有する合成ガスをそのままFT反応に供すれば、脱炭酸処理に要する設備建設コストおよび運転コストを削減することができ、FT反応で得られる炭化水素類の製造コストを低減することができる。共存させる二酸化炭素の量は、FT反応に供する合成ガスの水素および一酸化炭素の合計圧に対して0.5〜50%であり、好ましくは0.5〜30%であり、さらに好ましくは1〜10%である。FT反応に供する合成ガス(混合ガス)中の二酸化炭素の分圧が上記範囲未満の低いものである場合は、二酸化炭素によるFT反応の促進効果が得られず、上記範囲を超える高いものである場合は、FT反応に供する合成ガス(混合ガス)中の水素および一酸化炭素の分圧が低下し、炭化水素類の収量が低下して経済的に不利となる。二酸化炭素を共存させる時期は、FT反応の初期から反応系内に共存させても良いが、二酸化炭素のFT反応促進効果をより有効に発揮させてより一酸化炭素の転化率を向上させるためには、FT反応開始後10〜100時間の間に反応系内に導入して共存させることが好ましい。
【0028】
しかして、FT反応に供する合成ガス(混合ガス)の全圧(全成分の分圧の合計値)は、1〜10MPaが好ましく、1.5〜6MPaがさらに好ましく、1.8〜4.5MPaがなおさらに好ましい。1MPa未満では、連鎖成長が不十分となりガソリン分、灯軽油分、ワックス分などの収率が低下する傾向が見られるため好ましくない。平衡上は、水素および一酸化炭素の分圧が高いほど有利になるが、該分圧が高まるほどプラント建設コスト等が高まったり、圧縮に必要な圧縮機などの大型化により運転コストが上昇するなどの産業上の観点から該分圧の上限は規制される。
【0029】
このFT反応においては、一般に、合成ガスのH2/COモル比が同一であれば、反応温度が低いほど連鎖成長が進み、かつオレフィン選択性が高くなるが、CO転化率は低くなる。逆に、反応温度が高くなれば、連鎖成長、オレフィン選択性は低くなるが、CO転化率は高くなる。また、H2/CO比が高くなれば、CO転化率が高くなり、連鎖成長、オレフィン選択性は低下し、H2/CO比が低くなれば、その逆となる。これらのファクターが反応に及ぼす効果は、用いる触媒の種類等によってその大小が異なるが、本発明においては、反応温度は200℃〜350℃が好ましく、220〜310℃がさらに好ましく、250〜290℃がなおさらに好ましい。
【0030】
以上述べた本発明の炭化水素類の製造方法に従って、水素および一酸化炭素を主成分とする混合ガスから、二酸化炭素の共存下に炭化水素類を合成すれば、CO転化率がワンパス(once through conversion) で60%以上、連鎖成長確率(α)が0.88〜0.92、低級炭化水素中のオレフィン/パラフィン比が、例えばC3炭化水素では3〜7になるという好結果が得られる。また、二酸化炭素を含有する合成ガスをそのままFT反応に供することにより、脱炭酸処理に要する設備建設コストおよび運転コストを削減することができ、また、二酸化炭素を多量に含有する劣質な天然ガスから誘導された、二酸化炭素を多量に含有する合成ガスを原料として用いることもできる。
なお、CO転化率および連鎖成長確率(α)は下記式で定義されるものである。〔CO転化率〕
【0031】
【数1】

Figure 0004118503
【0032】
〔連鎖成長確率(α)〕
炭素数nの炭化水素の生成物中の質量分率をMn、連鎖成長確率をαとした場合、シュルツ・フローリー分布に従うと、下式のような関係が成り立つ。従って、log(Mn/n)とnをプロットしたときの傾きlog αからα値を知ることができる。
【0033】
【数2】
Figure 0004118503
【0034】
【実施例】
以下、実施例および比較例によりさらに具体的に本発明を説明するが、本発明はこれらの実施例に限定されるものではない。
なお、以下の実施例において、COおよびCH4の分析には、Active Carbon (60/80mesh) を分離カラムに用い熱伝導度型ガスクロマトグラフ(TCD-GC)で行った。なお、Arを内部標準として10vol.%添加した合成ガスを用いた。なお、COおよびCH4のピーク位置、ピーク面積をArと比較することで定性および定量分析した。C1〜C6炭化水素類の分析には、Capillary Column(Al23/KCl PLOT)を分離カラムに用い水素炎イオン化検出型ガスクロマトグラフ(FID-GC)を用い、TCD−GC共通に分析できるC1(メタン)と比較して該炭化水素類の定性、定量を行った。さらに、C5〜C40炭化水素類の分析にはCapillary Column(TC-1)を備えたFID−GCを用い、軽質炭化水素(C1〜C6)と共通に分析できるC5およびC6と比較して該炭化水素類の定性、定量を行った。触媒(担体を含む)比表面積の測定は自動表面積測定装置(ベルソープ28、日本ベル製)を用い窒素をプローブ分子に用いてBET法で測定した。触媒の化学成分の同定はICP(CQM-10000P、島津製作所製)により、粒度分布はレーザー光散乱法による粒度測定装置(Mastersizer MSX-46型、マルバーン製)で求めた。
【0035】
実施例1
予め乾燥した酸化マンガン粉末30g に純水をビュレットから滴下し、飽和吸水量を求めた。この時の飽和吸水量は0.26ml/gだった。炭酸ナトリウム(Na Assay 43質量%)0.31g にイオン交換水( 以下水と略記) を加え8ml とし、撹拌して溶解した。この溶液全量を30g の酸化マンガン粉末に含浸させ、約3 時間放置した後、空気中、温度110℃で数時間乾燥した。塩化ルテニウム(Ru Assay 35質量%)0.09gに水を加えて8ml とし、撹拌して溶解した。この溶液の全量をNa含浸酸化マンガン粉末に含浸させ、約3時間放置した後、空気中、温度110℃で数時間乾燥した。これをメノウ乳鉢に移して粉砕し、触媒粒子径分布0.5 〜150 μm に篩い分けして触媒Aを得た。なお粒子径分布はレーザー光散乱法によって求めた。この触媒の平均粒子径は20μm 、嵩密度は2.3 だった。ICP を用いて組成分析を行った結果、Ru換算で 0.1質量% 、Na換算で0.45質量% 、残り酸化マンガンであった。また、比表面積は 4m2/gであった。触媒A12g を容積100ml の反応器に充填し、分散媒としてn-C1634(ノルマルヘキサデカン)40g を加えた後、水素分圧 20kg/cm2(1.96MPa) 、温度170℃ 、流量100ml/min (STP: standard temperature and pressure) で接触させ24時間還元した後、直ちにヘリウムガスでパージし200℃ まで昇温した。さらに、ヘリウムを流通させながら系内を 20kg/cm2 (1.96MPa) とし、次いでアルゴン10vol.% 、一酸化炭素30vol.% 、残り水素の混合ガス(H2/C0比 2)に切り替えFT反応を開始し、20時間経過後に二酸化炭素を0.2kg/cm2(0.0196MPa) の分圧で導入してGHSV(gas hourly space velocity)2400 で接触させた。48時間後のワンパスCO転化率は69% 、連鎖成長確率は0.90、C3
中のオレフィン/パラフィン比は7だった。
【0036】
実施例2
実施例1に示した調製手法によってRu換算 1質量% 、Na換算0.45質量% 、残り酸化マンガン、比表面積 8m2/g 、触媒粒子径分布0.5-120 μm 、平均粒子径20μm 、嵩密度2.1 の触媒Bを得た。触媒B12g を容積100ml の反応器に充填し、実施例1と同様の還元処理およびFT反応を行った。二酸化炭素はFT反応開始20時間後に2kg/cm2(0.196MPa)の分圧で導入し、GHSV6000で接触させた。反応開始48時間後のワンパスCO転化率は80% 、連鎖成長確率は0.90、C3中のオレフィン/パラフィン比は6だった。
【0037】
実施例3
実施例1に示した調製手法によってRu換算 1質量% 、K 換算0.45質量%(K2CO3を用いNa担持方法と同様) 、残り酸化マンガン、比表面積 8m2/g、触媒粒子径分布0.5-150 μm 、平均粒子径20μm 、嵩密度2.1 の触媒Cを得た。触媒C12gを容積100ml の反応器に充填し、分散媒としてn-C1634(ノルマルヘキサデカン)40gを加えた後、水素分圧 20kg/cm2 (1.96MPa) 、温度170℃ 、流量100ml/min(STP)で触媒に接触させ24時間還元した後、直ちにヘリウムガスでパージし270℃ まで昇温した。次いでアルゴン10vol.% 、一酸化炭素30vol.% 、残り水素の混合ガス(H2/C0比 2.0)に切り替えFT反応を開始し、20時間経過後に二酸化炭素を2kg/cm2(0.196MPa)の分圧で導入し、GHSV6000で接触させた。反応開始48時間後のワンパスCO転化率は83.5% 、連鎖成長確率は0.89、C3中のオレフィン/パラフィン比は7だった。
【0038】
実施例4
実施例3に示した調製手法によってRu換算 2質量% 、Na換算 0.1質量% 、残り酸化マンガン、比表面積 8m2/g、触媒粒子径分布0.5-150 μm 、平均粒子径20μm 、嵩密度2.1 の触媒Dを得た。触媒D12g を容積100ml の反応器に充填し、実施例3と同様の還元処理およびFT反応を行った。二酸化炭素はFT反応開始20時間後に2kg/cm2 (0.196MPa)の分圧で導入し、GHSV6000で接触させた。反応開始48時間後のワンパスCO転化率は83% 、連鎖成長確率は0.89、C3中のオレフィン/パラフィン比は6だった。
【0039】
実施例5
実施例3に示した調製手法によってRu換算 2質量% 、Na換算0.45質量% 、残り酸化マンガン、比表面積 8m2/g、触媒粒子径分布1.0-150 μm 、平均粒子径20μm 、嵩密度2.1 の触媒Eを得た。触媒E12gを容積100ml の反応器に充填し、実施例3と同様の還元処理およびFT反応を行った。二酸化炭素はFT反応開始20時間後に2kg/cm2(0.196MPa)の分圧で導入し、GHSV6000で接触させた。反応開始48時間後のワンパスCO転化率は85.5% 、連鎖成長確率は0.88、C3中のオレフィン/パラフィン比は6だった。
【0040】
実施例6
実施例3に示した調製手法によってRu換算 2質量% 、Ca換算0.45質量%(Ca(NO32・4H2Oを用いNa担持方法と同様) 、残り酸化マンガン、比表面積 8m2/g、触媒粒子径分布1.0-150 μm 、平均粒子径20μm 、嵩密度2.1 の触媒Fを得た。触媒F12gを容積100ml の反応器に充填し、実施例3と同様の還元処理およびFT反応を行った。二酸化炭素はFT反応開始20時間後に2kg/cm2(0.196MPa)の分圧で導入し、GHSV6000で接触させた。反応開始48時間後のワンパスCO転化率は84.5% 、連鎖成長確率は0.88、C3中のオレフィン/パラフィン比は6だった。
【0041】
実施例7
実施例1に示した調製手法によってRu換算 2質量% 、K 換算0.45質量% 、残り酸化マンガン、比表面積 8m2/g、触媒粒子径分布1.0-150 μm 、平均粒子径20μm 、嵩密度2.1 の触媒Gを得た。触媒G12gを容積100ml の反応器に充填し、分散媒としてn-C1634(ノルマルヘキサデカン)40gを加えた後、水素分圧 20kg/cm2 (1.96MPa) 、温度170℃ 、流量100ml/min(STP)で触媒に接触させ24時間還元した後、直ちにヘリウムガスでパージし290℃ まで昇温した。次いでアルゴン10vol.% 、一酸化炭素30vol.% 、残り水素の混合ガス(H2/CO比 2.0)に切り替えFT反応を開始し、20時間経過後に二酸化炭素を2kg/cm2 (0.196MPa)の分圧で導入し、GHSV6000で接触させた。反応開始48時間後のワンパスCO転化率は86.5% 、連鎖成長確率は0.88、C3中のオレフィン/パラフィン比は6だった。
【0042】
実施例8
実施例1に示した調製手法によってRu換算 5質量% 、Na換算0.45質量% 、残り酸化マンガン、比表面積 8m2/g、触媒粒子径分布0.5-150 μm 、平均粒子径20μm 、嵩密度2.1 の触媒Hを得た。触媒H 6gを容積100ml の反応器に充填し、分散媒としてn-C1634(ノルマルヘキサデカン)24g を加えた後、水素分圧 50kg/cm2 (4.9MPa)、温度170℃ 、流量100ml/min(STP)で触媒に接触させ24時間還元した後、直ちにヘリウムガスでパージし300℃ まで昇温した。さらに、ヘリウムを流通させながら系内を 15kg/cm2 (1.47MPa) まで降圧し、次いでアルゴン10vol.% 、一酸化炭素36vol.% 、残り水素の混合ガス(H2/CO比 1.5)に切り替えFT反応を開始し20時間後に二酸化炭素を3kg/cm2(0.294MPa)の分圧で導入し、GHSV12000 で接触させた。反応開始48時間後のワンパスCO転化率は80.2% 、連鎖成長確率は0.88、C3中のオレフィン/パラフィン比は7だった。
【0043】
実施例9
実施例1に示した調製手法によってRu換算20質量% 、Na換算10質量% 、残り酸化マンガン、比表面積 100m2/g、触媒粒子径分布0.5-150 μm 、平均粒子径40μm 、嵩密度1.0 の触媒Iを得た。触媒I 2gを容積100ml の反応器に充填し、水素分圧50kg/cm2 (4.9MPa)、温度140℃ 、流量100ml/min(STP)で触媒に接触させ12時間還元した後、直ちにヘリウムガスでパージし300℃ まで昇温した。その後、ヘリウムを通気下、分散媒としてn-C1634(ノルマルヘキサデカン)40gを圧送し、撹拌した。さらに、ヘリウムを流通させながら系内を 15kg/cm2(1.47MPa)まで降圧し、次いでアルゴン10vol.% 、一酸化炭素39.1.vol% 、残り水素の混合ガス(H2/CO比 1.3)に切り替えFT反応を開始し20時間後に二酸化炭素を5kg/cm2 (0.49MPa) の分圧で導入し、GHSV12000 で接触させた。反応開始48時間後のワンパスCO転化率は79.5% 、連鎖成長確率は0.89、C3中のオレフィン/パラフィン比は7だった。
【0044】
実施例10
実施例1に示した調製手法によってRu換算30質量% 、K 換算15質量% 、残り酸化マンガン、比表面積 120m2/g、触媒粒子径分布0.5-150 μm 、平均粒子径50μm 、嵩密度0.7 の触媒Jを得た。触媒J 2gを容積100ml の反応器に充填し、水素分圧 60kg/cm2 (5.88MPa) 、温度200℃ 、流量100ml/min(STP)で触媒に接触させ12時間還元した後、直ちにヘリウムガスでパージし300℃ まで昇温した。その後、ヘリウムを流通下、分散媒としてn-C1634(ノルマルヘキサデカン)67gを圧送し、撹拌した。ヘリウムで系内を 10kg/cm2 (0.98MPa) まで降圧し、次いでアルゴン10vol.% 、一酸化炭素45vol.% 、残り水素の混合ガス(H2/CO比 1.0)に切り替えFT反応を開始し20時間後に二酸化炭素を2kg/cm2 (0.196MPa)の分圧で導入し、GHSV16000 で接触させた。反応開始48時間後のワンパスCO転化率は74.5% 、連鎖成長確率は0.88、C3中のオレフィン/パラフィン比は5だった。
【0045】
実施例11
実施例1に示した調製手法によってRu換算50質量% 、Ca換算20質量% 、残り酸化マンガン、比表面積 200m2/g、触媒粒子径分布0.5-150 μm 、平均粒子径60μm 、嵩密度0.7 の触媒Kを得た。触媒K 0.5gを容積100ml の反応器に充填し、分散媒としてn-C1634(ノルマルヘキサデカン)50g を加えた後、水素分圧100kg/cm2 (9.8MPa)、温度200℃、流量100ml/min(STP)で触媒に接触させ24時間還元した後、直ちにヘリウムガスでパージし300℃まで昇温した。さらに、ヘリウムを流通させながら系内を 10kg/cm2 (0.98MPa) まで降圧し、次いでアルゴン10vol.% 、一酸化炭素50vol.%、残り水素の混合ガス(H2/CO比 0.8)に切り替えFT反応を開始し20時間後に二酸化炭素を6kg/cm2(0.588MPa)の分圧で導入し、GHSV24000 で接触させた。反応開始48時間後のワンパスCO転化率は90.1% 、連鎖成長確率は0.86、C3中のオレフィン/パラフィン比は3だった。
【0046】
比較例1
実施例1に示した調製手法によってRu換算 2質量% 、Na換算0.45質量% 、残り酸化マンガン、比表面積 8m2/g、触媒粒子径分布1.0-105 μm 、平均粒子径20μm 、嵩密度2.1 の触媒Lを得た。触媒L12g を容積100ml の反応器に充填し、分散媒としてn-C1634(ノルマルヘキサデカン)40g を加えた後、水素分圧 20kg/cm2 (1.96MPa) 、温度170℃ 、流量100ml/min(STP)で触媒に接触させ24時間還元した後、直ちにヘリウムガスでパージし270℃ まで昇温した。次いでアルゴン10vol.% 、一酸化炭素30vol.% 、残り水素の混合ガス(H2/CO比 2)に切り替えGHSV6000で接触させた。反応開始48時間後のワンパスCO転化率は75.0% 、連鎖成長確率は0.9 、C3中のオレフィン/パラフィン比は6だった。このように、FT反応中に二酸化炭素が存在しないとCO転化率( 実施例5と比較) が低下し、生産性が劣る可能性が高くなる。
【0047】
比較例2
実施例1に示した調製手法によってRu換算 2質量% 、残り酸化マンガン、比表面積10m2/g、触媒粒子径分布1.0-150 μm 、平均粒子径20μm 、嵩密度2.1g/ml の触媒Mを得た。触媒M12g を容積100ml の反応器に充填し、分散媒としてn-C1634(ノルマルヘキサデカン)40g を加えた後、水素分圧 20kg/cm2 (1.96MPa) 、温度170℃ 、流量100ml/min(STP)で触媒に接触させ24時間還元した後、直ちにヘリウムガスでパージし270℃ まで昇温した。次いでアルゴン10vol.% 、一酸化炭素30vol.% 残り水素の混合ガス(H2/C0比 2)に切り替え、FT反応を開始し20時間後に二酸化炭素を2kg/cm2 (0.196MPa)の分圧で導入し、GHSV6000で接触させた。反応開始48時間後のワンパスCO転化率は40% 、連鎖成長確率は0.9 、C3中のオレフィン/パラフィン比は5だった。このように、アルカリ(土類)金属化合物を添加しない触媒でFT反応中に二酸化炭素を共存させるとCO転化率( 実施例5と比較) は急激に低下し、生産性が極端に劣る可能性が高くなる。
【0048】
比較例3
予め、乾燥機で充分に乾燥させたアルミナに、ビュレットを用いて蒸留水を滴下し、飽和吸水量0.89ml/gを求めた。塩化ルテニウム(RuCl3・nH2O)5gを蒸留水78.5mlに溶解し、塩化ルテニウム水溶液を調製した。アルミナ40g にこの水溶液35.7mlを滴下して、塩化ルテニウムを含浸し、2 時間放置し水分を除去した。Ru換算 2質量% 、残りアルミナ、比表面積 250m2/g 、触媒粒子径分布1.0-150 μm、平均粒子径20μm 、嵩密度1g/ml の触媒Nを得た。触媒N 9gを容積100ml の反応器に充填し、分散媒としてn-C1634(ノルマルヘキサデカン)30g を加えた後、水素分圧 20kg/cm2(1.96MPa) 、温度170℃ 、流量100ml/min(STP)で触媒に接触させ24時間還元した後、直ちにヘリウムガスでパージし270℃ まで昇温した。さらに、ヘリウムを流通させながら系内を 20kg/cm2 (1.96MPa) とし、次いでアルゴン10vol.% 、一酸化炭素30vol.% 残り水素の混合ガス(H2/CO比 2)に切り替え、FT反応を開始し20時間後に二酸化炭素を2kg/cm2 (0.196MPa)の分圧で導入し、GHSV6000で接触させた。反応開始48時間後のワンパスCO転化率は45% 、連鎖成長確率は0.80、C3中のオレフィン/パラフィン比は3だった。反応結果は、実施例5に比べ二酸化炭素の添加効果は見られず不満足な結果であった。
【0049】
比較例4
比較例3と同じアルミナ40g に、炭酸ナトリウム1gを蒸留水80.9mlに溶解した水溶液35.6mlを滴下して炭酸ナトリウムを含浸した。15時間静置した後、マッフル炉を用いて、600℃ で3時間焼成した。得られた担体に40g に、比較例3と同じ塩化ルテニウム水溶液35.6mlを滴下し、比較例3と同様にルテニウムを担持した。Ru換算 2質量% 、Na換算0.45質量% 、残りアルミナ、比表面積 250m2/g、触媒粒子径分布1.0-105 μm、平均粒子径20μm 、嵩密度1g/ml の触媒Oを得た。触媒O 9gを容積100ml の反応器に充填し、分散媒としてn-C1634(ノルマルヘキサデカン)30gを加えた後、水素分圧 20kg/cm2 (1.96MPa) 、温度170℃ 、流量100ml/min(STP)で触媒に接触させ24時間還元した後、直ちにヘリウムガスでパージし270℃ まで昇温した。さらに、ヘリウムを流通させながら系内を 20kg/cm2 (1.96MPa) とし、次いでアルゴン10vol.% 、一酸化炭素30vol.% 残り水素の混合ガス(H2/CO比 2)に切り替え、FT反応を開始し20時間後に二酸化炭素を2kg/cm2 (0.196MPa)の分圧で導入し、GHSV6000で接触させた。反応開始48時間後のワンパスCO転化率は47% 、連鎖成長確率は0.80、C3中のオレフィン/パラフィン比は3だった。反応結果は、実施例5 に比べ二酸化炭素の添加効果は見られず不満足な結果であった。
【0050】
比較例5
アルミナゾル(Al含有量7質量%)500gとシリカゾル(Si含有量3質量%)500gをホモジナイザーで3時間撹拌混合した後、フィルタープレスで水分を除去し、300℃で乾燥してシリカ−アルミナ担体を得た。得られたシリカ−アルミナ担体(Si 30質量%)の飽和吸水量は1.05ml/gであった。得られた担体40g に、比較例3と同じ塩化ルテニウム水溶液を滴下し、比較例3と同様にルテニウムを担持した。Ru換算2質量% 、残りシリカ−アルミナ、比表面積 240m2/g、触媒粒子径分布1.0-105 μm、平均粒子径20μm 、嵩密度1g/ml の触媒Pを得た。触媒P 9gを容積100ml の反応器に充填し、分散媒としてn-C1634(ノルマルヘキサデカン)30gを加えた後、水素分圧 20kg/cm2 (1.96MPa) 、温度170℃ 、流量100ml/min(STP)で触媒に接触させ24時間還元した後、直ちにヘリウムガスでパージし270℃ まで昇温した。さらに、ヘリウムを流通させながら系内を 20kg/cm2 (1.96MPa) とし、次いでアルゴン10vol.% 、一酸化炭素30vol.% 残り水素の混合ガス(H2/CO比 2)に切り替え、FT反応を開始し20時間後に二酸化炭素を2kg/cm2 (0.196MPa)の分圧で導入し、GHSV6000で接触させた。反応開始48時間後のワンパスCO転化率は46% 、連鎖成長確率は0.80、C3中のオレフィン/パラフィン比は3だった。反応結果は、実施例5に比べ二酸化炭素の添加効果は見られず不満足な結果であった。
【0051】
比較例6
比較例5と同様な手法でシリカ−アルミナ担体(Si 30質量%)を調製した。得られた担体40g に炭酸ナトリウム1gを蒸留水80.9mlに溶解した水溶液35.6mlを滴下して炭酸ナトリウムを含浸した。15時間静置した後、マッフル炉を用いて、600℃で3時間焼成した。得られた担体40g に、比較例3と同じ塩化ルテニウム水溶液35.6mlを滴下し、比較例3と同様にルテニウムを担持した。Ru換算2質量% 、Na換算0.45質量% 、残りシリカ−アルミナ、比表面積 240m2/g、触媒粒子径分布1.0-105 μm、平均粒子径20μm 、嵩密度1g/ml の触媒Qを得た。触媒Q 9gを容積100ml の反応器に充填し、分散媒としてn-C1634(ノルマルヘキサデカン)30gを加えた後、水素分圧 20kg/cm2 (1.96MPa) 、温度170℃ 、流量100ml/min(STP)で触媒に接触させ24時間還元した後、直ちにヘリウムガスでパージし270℃まで昇温した。さらに、ヘリウムを流通させながら系内を 20kg/cm2 (1.96MPa)とし、次いでアルゴン10vol.% 、一酸化炭素30vol.% 残り水素の混合ガス(H2/CO比 2)に切り替え、FT反応を開始し20時間後に二酸化炭素を2kg/cm2(0.196MPa)の分圧で導入し、GHSV6000で接触させた。反応開始48時間後のワンパスCO転化率は48% 、連鎖成長確率は0.80、C3中のオレフィン/パラフィン比は3だった。反応結果は、実施例5に比べ二酸化炭素の添加効果は見られず不満足な結果であった。
【0052】
比較例7
予め、乾燥機で充分に乾燥させたシリカに、ビュレットを用いて蒸留水を滴下し、飽和吸水量1.35ml/gを求めた。硝酸コバルト(Co(NO32・6H2O)100g を蒸留水71.4mlに溶解し、硝酸コバルト水溶液を調製した。シリカ40g にこの水溶液54mlを滴下して、硝酸コバルトを含浸し、2時間放置し水分を除去した後、マッフル炉を用いて500℃ で3時間焼成した。次に、オキシ硝酸ジルコニウム水和物(ZrO(NO32・2H2O)2.4gを蒸留水106ml に溶解し、硝酸ジルコニウム水溶液を調製した。コバルトを担持した前駆体に、この水溶液54mlを滴下して硝酸ジルコニウムを含浸し、2時間放置し水分を除去した後、マッフル炉を用いて500℃ で3時間焼成した。Co換算16質量% 、Zr換算 1質量% 、残りシリカ、比表面積 306m2/g、触媒粒子径分布1.0-105 μm、平均粒子径40μm 、嵩密度0.8g/ml の触媒Rを得た。触媒R 9gを容積100ml の反応器に充填し、水素分圧 20kg/cm2 (1.96MPa) 、温度360℃ 、流量100ml/min(STP)で触媒に接触させ24時間還元した後、直ちにヘリウムガスでパージし270℃ まで降温した。その後、ヘリウムを流通させながら、分散媒としてn-C1634 (ノルマルヘキサデカン)30gを圧送し撹拌した。次いでアルゴン10vol.% 、一酸化炭素30vol.% 残り水素の混合ガス(H2/CO比 2)に切り替え、FT反応を開始し20時間後に二酸化炭素を2kg/cm2 (0.196MPa)の分圧で導入し、GHSV6000で接触させた。反応開始48時間後のワンパスCO転化率は48% 、連鎖成長確率は0.85、C3中のオレフィン/パラフィン比は3だった。反応結果は、実施例5に比べ二酸化炭素の添加効果は見られず不満足な結果であった。
【0053】
比較例8
比較例7に示した調製手法によってシリカ40g にCo30質量% 担持した後、塩化ルテニウム(Ru Assay 35質量%)4.6gを蒸留水103ml に溶解し、塩化ルテニウム水溶液を調製した。この水溶液54mlをCo担持前駆体に滴下して含浸し、2時間放置し水分を除去した後、空気中、110℃ で数時間乾燥した。比表面積 112m2/g、触媒粒子径分布1-105 μm 、平均粒子径75μm 、嵩密度1g/ml の触媒Sを得た。触媒S 9gを容積100ml の反応器に充填し、水素分圧 20kg/cm2 (1.96MPa) 、温度360℃ 、流量100ml/min(STP)で触媒に接触させ24時間還元した後、直ちにヘリウムガスでパージし270℃ まで降温した。その後、ヘリウムを流通させながら、分散媒としてn-C1634 (ノルマルヘキサデカン)30gを圧送し撹拌した。次いでアルゴン10vol.% 、一酸化炭素30vol.% 残り水素の混合ガス(H2/CO比 2)に切り替えGHSV6000で接触させた。反応開始48時間後のワンパスCO転化率は50% 、連鎖成長確率は0.85、C3中のオレフィン/パラフィン比は0.5 だった。反応開始後48時間後のワンパスCO転化率は50%、連鎖成長率は0.85、C3中のオレフィン/パラフィン比は0.5だった。反応結果は、実施例5と比べ二酸化炭素の添加効果は見られず不満足な結果であった。
【0054】
【表1】
Figure 0004118503
【0055】
【表2】
Figure 0004118503
【0056】
【発明の効果】
本発明の炭化水素類の製造方法によれば、二酸化炭素の共存下に、連鎖成長確率が高く、かつオレフィン選択性に優れ、触媒活性が高く、優れた一酸化炭素の転化率、改善された触媒寿命で、なおかつヒートスポットの発生など来たすことなく安定して円滑にFT反応を行うことができる。本発明方法は、生成したワックス分の水素化分解、生成したオレフィンの二量化、三量化等により、灯軽油留分の増産に大きく寄与できると共に、FT反応に先立つ原料合成ガス中の二酸化炭素除去のための脱炭酸工程を簡略化もしくは省略することにより、灯軽油留分の製造コストの低減に大きく寄与できる方法である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing hydrocarbons from a mixed gas containing hydrogen and carbon monoxide as main components (hereinafter referred to as “synthesis gas”). More specifically, the synthesis gas is brought into contact with a ruthenium-based catalyst using manganese oxide dispersed in liquid hydrocarbons in the presence of carbon dioxide as a carrier, so that it can be easily applied to hydrocarbons, particularly kerosene oil fraction. The present invention relates to a process for producing hydrocarbons rich in olefins together with convertible waxes.
[0002]
[Prior art]
As a method for synthesizing hydrocarbons from synthesis gas, Fischer-Tropsch reaction (Fischer-Tropsch reaction), methanol synthesis reaction and the like are well known. The Fischer-Tropsch reaction is an iron-based catalyst such as iron, cobalt, ruthenium, etc., and the methanol synthesis reaction is a copper-based catalyst. 2 Oxygen-containing (ethanol, acetaldehyde) synthesis is known to proceed with rhodium-based catalysts, and the catalytic ability of the catalysts used to synthesize these hydrocarbons has the ability to dissociatively adsorb carbon monoxide. (For example, “Homogeneous and heterogeneous catalysts”, published by Koshiki, Kyo Ichikawa, Maruzen, published in 1983).
[0003]
By the way, in recent years, gas oil with low sulfur content has been desired from the viewpoint of the preservation of the air environment, and this trend is expected to become stronger in the future. In addition, from the viewpoint that crude oil resources are limited, the development of alternative energy sources is desired, and it is expected that this will become more and more strongly desired in the future. As a technology to meet these demands, so-called GTL (gas to liquid) is a technology for synthesizing liquid fuel such as kerosene from natural gas (main component methane) which is said to have recoverable reserves equivalent to crude oil in terms of energy. There is. Natural gas does not contain sulfur, or hydrogen sulfide (H 2 S) and mercaptans (CH Three Since the obtained liquid fuel such as kerosene oil has almost no sulfur content and can be used for high-performance diesel fuel having a high cetane number, this GTL is In recent years, more and more attention has been paid.
[0004]
As part of the GTL, methods for producing hydrocarbons from synthesis gas by the Fischer-Tropsch reaction (hereinafter referred to as “FT reaction”) (hereinafter referred to as “FT method”) have been actively studied. In order to increase the yield of kerosene fraction when producing hydrocarbons by this FT method, C Ten ~ C 16 It is important to efficiently synthesize considerable hydrocarbons. In general, the carbon number distribution of hydrocarbon products in the FT reaction is supposed to follow the Shultz-Flory law, and the chain growth establishment α value greatly decreases as the reaction temperature increases under the Schultz-Flory law. In other words, when the reaction temperature rises, the carbon number of the generated hydrocarbons tends to decrease greatly. In the old days, it seems that technology development such as catalyst development was actively carried out with the issue of how to remove the Schulz-Flory law and how to selectively synthesize hydrocarbons with a specific carbon number, No technology has yet been proposed that has sufficiently solved this problem. In recent years, rather than removing the Schulz-Flory law, the yield of fractions that can be easily made into kerosene fractions by hydrocracking of waxes, etc. has been increased, and the wax content etc. The idea of increasing the yield of kerosene oil fraction as a result of hydrocracking has become common. However, the current chain growth probability is around 0.85, and how to increase this is one of the recent technical problems. Nonetheless, if the chain growth probability is increased too much, the generated hydrocarbons will be mostly waxy, which in turn causes problems in process operation, and the general performance of the catalyst also indicates chain growth. The probability is considered to be a practical upper limit of around 0.95.
[0005]
Therefore, in order to further increase the yield of kerosene fraction, in addition to improving the yield of kerosene fraction by hydrocracking, it also produces lower olefins and dimerizes them. Also, it is necessary to consider the generation of kerosene oil fraction by trimerization. It is considered that further improvement in the yield of this kerosene fraction can be achieved by carrying out an FT reaction having a high chain growth probability and excellent olefin selectivity in the produced lower hydrocarbon.
[0006]
In addition, when looking at the synthesis gas that is a raw material for the production of hydrocarbons by the FT method in the GTL process, the synthesis gas mainly consists of natural gas modified by autothermal reforming or steam reforming. In this reforming, in addition to the reforming reaction of the following formula (I), in addition to the reforming reaction of the following formula (II), it is obtained by reforming into a mixed gas mainly composed of hydrogen and carbon monoxide. Since the water gas shift reaction occurs in parallel, the resultant synthesis gas necessarily contains carbon dioxide. Furthermore, many unused natural gas fields contain carbon dioxide. If natural gas containing such carbon dioxide is used as a raw material, the carbon dioxide content of the resultant synthesis gas is further increased.
[0007]
CH Four + H 2 O = 3H 2 + CO (I)
CO + H 2 O = H 2 + CO 2 (II)
[0008]
In the FT reaction, liquid hydrocarbons are synthesized from synthesis gas as shown by the following formula (III). However, when carbon dioxide gas is contained in the reaction system, the tendency of the synthesis of hydrocarbons to be hindered increases. (Suzuki et al. The 63rd Annual Meeting of the Chemical Society of Japan 3C432 1992). Further, when the carbon dioxide content is increased, the hydrogen partial pressure in the reaction system is lowered in addition to the carbon dioxide reaction inhibition, which is also unfavorable for the FT reaction.
[0009]
nCO + 2nH 2 = (CH 2 ) n + NH 2 O (III)
[0010]
Therefore, conventionally, in the GTL process, it is essential to incorporate a decarbonation step of removing carbon dioxide in the synthesis gas between the step of producing synthesis gas from natural gas and the step of synthesizing liquid hydrocarbons from synthesis gas. It becomes. In this decarboxylation step, usually amine absorption or pressure swing adsorption (PSA) is used, but anyway, such decarboxylation step is preferable because it causes an increase in construction cost and operation cost. Absent. If the FT reaction can be suitably performed in the coexistence of carbon dioxide gas and the decarboxylation step can be simplified or omitted, it can greatly contribute to the reduction of the production cost of the liquid hydrocarbon in the GTL process.
[0011]
[Problems to be solved by the invention]
However, at present, a catalyst and a process capable of performing an FT reaction that has a high chain growth probability and excellent olefin selectivity and can sufficiently achieve the further improvement in the kerosene fraction yield have not been proposed. Absent. Conventionally, various catalysts for FT reaction have been proposed. As a catalyst aiming at high selectivity to olefins, a catalyst in which ruthenium is supported on a manganese oxide carrier, a third catalyst is further added to this ruthenium supported catalyst. Ruthenium-based catalysts such as catalysts with components added have been proposed (Japanese Patent Publication Nos. 3-70691 and 3-70692). However, the FT method using these ruthenium-based catalysts cannot sufficiently achieve further improvement in the kerosene oil fraction yield. That is, the ruthenium catalyst is a catalyst developed mainly for use in a fixed bed type, and the fixed bed type FT method using this ruthenium catalyst also has a chain growth probability of the ruthenium catalyst. Moreover, in the fixed bed type reaction mode, when a large amount of wax is generated, the generated wax adheres to and covers the active sites of the catalyst, and the catalyst activity is reduced. There is a problem in that a problem such as the occurrence of a heat spot that overheats the local area is likely to occur, and the reaction cannot be performed stably and smoothly.
[0012]
In addition, in the presence of carbon dioxide gas, a catalyst capable of performing an FT reaction that has a high chain growth probability as described above, has excellent olefin selectivity, and can sufficiently achieve further improvement in the kerosene fraction yield. The process has not yet been proposed.
[0013]
In view of the above situation, the object of the present invention is to have a high chain growth probability, excellent olefin selectivity, high catalytic activity, and stable and smooth reaction without causing heat spots. It is possible to provide an FT method that can perform such a desired reaction in the presence of carbon dioxide gas, and another object is to hydrocrack the produced wax, dimerize the produced olefin, trimerize, etc. As a result, the FT can contribute significantly to the increase in the production of kerosene oil fractions, and can greatly contribute to the reduction of the production cost of kerosene oil fractions by simplifying or omitting the decarbonation process for removing carbon dioxide in the synthesis gas. To provide a law.
[0014]
[Means for Solving the Problems]
Among the above-mentioned purposes, the FT method has a high probability of chain growth in the first half, excellent olefin selectivity, high catalytic activity, and stable and smooth reaction without causing heat spots. Regarding the provision, the present inventors previously used a catalyst having a certain physical property and having a certain amount of ruthenium supported on a manganese oxide support as a catalyst as a result of various studies. Then, after the reduction treatment in advance, it is dispersed in a liquid hydrocarbon at a constant concentration to form a dispersed state, and the mixed gas containing hydrogen and carbon monoxide as main components is brought into contact with the catalyst in this dispersed state, thereby obtaining the desired It is found that an FT method capable of performing a suitable reaction of (a) a catalyst mixed with a raw material mixed gas in a state where the catalyst is dispersed in liquid hydrocarbons at a constant concentration. According to the specific reaction mode, the reduction of the catalytic activity due to the adhesion of the wax to the catalytic activity point can be sufficiently prevented and the occurrence of heat spots can be suppressed even when the amount of wax in the reaction mixture becomes large. (B) In this specific reaction mode, the catalyst having specific physical properties most suitable for realizing an FT reaction having a high desired chain growth probability and excellent olefin selectivity is found. c) And the necessity of a prior reduction treatment for fully exhibiting the catalytic ability of the catalyst was found, and based on these findings, the following method for producing hydrocarbons was invented and a patent application was filed. That is, a specific surface area of 4 to 200 m, in which ruthenium is supported on a manganese oxide support in an amount of 0.1 to 50% by mass on a catalyst basis. 2 / G, a catalyst having a catalyst particle size distribution of 0.5 to 150 μm is subjected to a reduction treatment in advance, and then dispersed in liquid hydrocarbons at a concentration of 1 to 50% by mass, and hydrogen and carbon monoxide are added to the catalyst. A patent application was invented for a method for producing hydrocarbons in which a mixed gas containing as a main component is brought into contact at a reaction temperature of 170 to 300 ° C. under pressure (Japanese Patent Application No. 2000-251185).
[0015]
As a result, the inventors of the present invention further studied to achieve the above object. As a result, in the above-described method for producing hydrocarbons as described above, as a catalyst, a manganese oxide support was used in addition to ruthenium. When a catalyst carrying a compound of at least one metal selected from a certain amount of alkali metal and alkaline earth metal is used, (a) the conversion of carbon monoxide is further improved and the catalyst life is also improved. (B) a desired and suitable reaction can be performed in the presence of a certain amount of carbon dioxide gas, that is, carbon dioxide, and (c) the reaction is performed in the presence of a certain amount of carbon dioxide, thereby The present inventors have found that the carbon conversion rate is further improved as compared with the case where the reaction is carried out in the absence of carbon dioxide, and the present invention has been completed based on these findings.
[0016]
That is, in order to achieve the above object, the present invention supports a manganese oxide support with 0.1 to 20% by mass of a compound of at least one metal selected from alkali metals and alkaline earth metals based on the catalyst. Furthermore, a specific surface area of 4 to 200 m carrying 0.1 to 50% by mass of ruthenium based on the catalyst. 2 / G, a catalyst having a catalyst particle size distribution of 0.5 to 150 μm is subjected to a reduction treatment in advance, and then dispersed in liquid hydrocarbons at a concentration of 1 to 50% by mass, and hydrogen and carbon monoxide are added to the catalyst. Carbonization in which a mixed gas mainly containing hydrogen is contacted at a pressure of 1 to 10 MPa and a reaction temperature of 200 to 350 ° C. in the presence of 0.5 to 50% of carbon dioxide with respect to the total pressure of hydrogen and carbon monoxide. A method for producing hydrogen is provided.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The invention is described in detail below.
In the method of the present invention, at least one metal compound selected from alkali metals and alkaline earth metals (hereinafter referred to as “alkali (earth) metal compound”) and ruthenium are supported on a manganese oxide support as a catalyst. A catalyst having a variety of physical properties of the supported amount of alkali (earth) metal compound and ruthenium, specific surface area, and catalyst particle size distribution described below is used. The bulk density of the catalyst used in the present invention is suitably 0.5 to 2.5 g / cc.
[0018]
In the catalyst used in the present invention, the supported amount of alkali (earth) metal compound and ruthenium is related to the number of active sites. The supported amount of the alkali (earth) metal compound of the catalyst used in the present invention is 0.1 to 20% by mass, preferably 0.2 to 10% by mass, more preferably 0.2 to 3% by mass based on the catalyst. %. Moreover, the load of ruthenium is 0.1-50 mass% on a catalyst basis, preferably 0.1-20 mass%, more preferably 0.5-5 mass%. If the supported amounts of the alkali (earth) metal compound and ruthenium are less than the above ranges, the number of active sites may be insufficient and sufficient catalytic activity may not be obtained, and alkali (earth) metal species and support components (manganese) ) And synergistic effects are not obtained, and there is a lack of deterioration gradient and catalyst stability (lifetime). In addition, when the amount of each of the alkali (earth) metal compound and ruthenium exceeds the above range, the alkali (earth) metal compound and ruthenium are not sufficiently supported on the carrier, resulting in a decrease in dispersibility and carrier components. An alkali (earth) metal species or a ruthenium species that does not interact with each other is expressed, so that there is a tendency that a decrease in activity and a decrease in selectivity are observed, which is not preferable. The chemical composition of the catalyst was determined by inductively coupled plasma mass spectrometry (ICP method).
[0019]
The specific surface area of the catalyst used in the present invention is 4 to 200 m. 2 / G, preferably 4 to 120 m 2 / G, more preferably 5 to 100 m 2 / G. Specific surface area is 4m 2 If it is less than / g, the dispersibility of the alkali (earth) metal compound and ruthenium may decrease, which is not preferable. Regarding the upper limit of the specific surface area, in general, when handling a solid catalyst, the larger the surface area, the higher the gas-liquid solid contact frequency. However, the practical upper limit of the specific surface area of manganese oxide alone is 200 to 250 m. 2 / G, it is about 200 m at maximum for the catalyst supporting an alkali (earth) metal compound and a ruthenium compound. 2 / G or so. The specific surface area of the catalyst was determined by the BET method (Braunauer-Emett-Tailor method) using high purity nitrogen as a probe.
[0020]
Moreover, the distribution range of the catalyst particle diameter of the catalyst used in the present invention is 0.5 to 150 μm, preferably 0.5 to 120 μm, and more preferably 1.0 to 105 μm. In the present invention, since the catalyst is used in a dispersed state by being dispersed in liquid hydrocarbons, it is necessary to consider its particle size distribution. Particles that are too fine, such as less than 0.5 μm, pass through a filter and overflow to the downstream side, so the catalyst concentration in the reaction vessel decreases and it becomes difficult to maintain the catalyst concentration, or downstream equipment There is a high possibility of problems such as being damaged by catalyst fine particles. In some cases, the filter may be clogged, preventing continuous operation. Large particles exceeding 150 μm are difficult to uniformly disperse in liquid hydrocarbons throughout the reaction vessel, and the slurry in which the catalyst is dispersed becomes non-uniform, which increases the possibility that the reaction activity will decrease. It is not preferable.
[0021]
Even a catalyst having a particle size distribution within the above-mentioned fixed range may cause a deviation in dispersion when dispersed in liquid hydrocarbons. In such a case, it is desirable to consider the average particle size in order to uniformly disperse the catalyst particles in the liquid hydrocarbons without causing a bias. The average particle size of the catalyst used in the present invention is preferably 10 to 100 μm, more preferably 10 to 60 μm, still more preferably 10 to 50 μm. When the average particle diameter is out of the upper and lower limits in the range of 10 to 100 μm, the dispersion of the catalyst particles in the liquid hydrocarbons becomes non-uniform, and the reaction activity may be lowered.
[0022]
The catalyst used in the present invention can be prepared according to a conventionally known method for preparing a supported catalyst. First, as the manganese oxide of the carrier used for the preparation of the catalyst, various manganese oxides conventionally used as a carrier can be appropriately selected and used, by heat transfer by heating in air or by hydrothermal transfer. Or CO, H 2 Various manganese oxide forms can be obtained by the reduction by. As an example, MnO 2 , Mn 2 O Three , Mn Three O Four , MnO and the like are preferable. Further, a salt other than an oxide such as manganese sulfate can be used as a starting material, and a manganese oxide obtained therefrom can be used. For example, γ-type MnO obtained by anodizing thermally acidic manganese sulfate using a graphite electrode (carbon electrode) 2 Etc. can be preferably used. Among the various manganese oxides, manganese oxides having a high charge number such as trivalent or tetravalent are preferably used. This is because it is presumed that charge transfer is caused in the manganese oxide of the carrier in order to keep the ruthenium oxidation state constant during the FT reaction. The specific surface area of manganese oxide is generally 6m 2 / G or more is desirable, and the upper limit is not particularly limited, but is 200 to 250 m as described above. 2 / G is a realistic upper limit. In addition, as the manganese oxide of the carrier, those having any shape such as powder, granule, tableted molded product, and extruded molded product can be used.
[0023]
When supporting the alkali (earth) metal compound and ruthenium on the manganese oxide of the carrier, first, the alkali (earth) metal compound is supported, moisture is removed, and then firing is performed. Next, ruthenium is supported, and after moisture is removed, it is sufficiently dried. In addition, the support of the alkali (earth) metal compound or ruthenium on the manganese oxide of the support is performed by, for example, immersing the support in a solution of a catalyst seed compound such as an alkali (earth) metal compound or ruthenium compound. The seed compound is adsorbed on the support, deposited by ion exchange, deposited by adding a precipitant such as alkali, the solution is evaporated to dryness, or the catalyst seed compound solution is dropped onto the support. For example, by contacting the support with a catalyst seed compound solution. At this time, the amounts of the alkali (earth) metal compound and the ruthenium compound to be contained in the support are adjusted so that the supported amount of the alkali (earth) metal compound and ruthenium in the target catalyst to be obtained is the predetermined amount. . Examples of the alkali (earth) metal compound used for the support include chlorides such as sodium, potassium, lithium, calcium, and magnesium, carbonates, nitrates, and ammonium salts. Moreover, as a ruthenium compound, the various ruthenium compounds conventionally used for preparation of a ruthenium carrying | support catalyst can be selected suitably, and can be used. Preferred examples thereof include water-soluble ruthenium salts such as ruthenium chloride, ruthenium nitrate, ruthenium acetate and hexaammonium ruthenium, and ruthenium compounds soluble in organic solvents such as ruthenium carbonyl and ruthenium acetylacetonate. The support manganese oxide containing the alkali (earth) metal compound and the ruthenium compound as described above is dried. This drying can generally be performed by holding at room temperature to 300 ° C. for 10 to 48 hours. Each dried catalyst seed compound-containing manganese oxide is appropriately pulverized and classified as necessary to obtain a predetermined catalyst particle size distribution, more preferably a powder with a predetermined average particle size. A catalyst having predetermined physical properties to be used can be obtained.
[0024]
In the method for producing hydrocarbons of the present invention, the catalyst prepared as described above is subjected to reduction treatment (activation treatment) in advance before being subjected to the FT reaction. By this reduction treatment, the catalyst is activated so as to exhibit a desired catalytic activity in the FT reaction. If this reduction treatment is not performed, the alkali (earth) metal species and ruthenium species supported on the manganese oxide are not sufficiently reduced, and the desired catalytic activity is not exhibited in the FT reaction. This reduction treatment is preferably performed by a method in which the catalyst is brought into contact with the reducing gas in a slurry state dispersed in liquid hydrocarbons, or a method in which the reducing gas is simply vented and brought into contact with the catalyst without using hydrocarbons. it can. As the liquid hydrocarbons for dispersing the catalyst in the former method, various hydrocarbons such as olefins, alkanes, alicyclic hydrocarbons, aromatic hydrocarbons can be used as long as they are liquid under the processing conditions. Can be used. Further, it may be a hydrocarbon containing a hetero element such as oxygen-containing or nitrogen-containing. The number of carbons of these hydrocarbons is not particularly limited as long as they are liquid under the processing conditions. 6 ~ C 40 Are preferred, C 9 ~ C 40 Is more preferred, C 9 ~ C 35 Is most preferred. C 6 If the hydrocarbon is lighter than the above hydrocarbons, the vapor pressure of the solvent will be high, and the range of processing conditions will be limited. C 40 If they are heavier than the above hydrocarbons, the solubility of the reducing gas is lowered, and there is a concern that sufficient reduction treatment cannot be performed. The amount of the catalyst dispersed in the hydrocarbon is suitably 1 to 50% by mass, preferably 3 to 40% by mass, more preferably 5 to 35% by mass. If the amount of catalyst is less than 1% by mass, the reduction efficiency of the catalyst decreases. As a method of preventing a reduction in the reduction efficiency of the catalyst, there is a method of reducing the reducing gas flow rate. When the reducing gas flow rate is reduced, gas (reducing gas) -liquid (solvent) -solid (catalyst) ) Is not preferable because dispersion of On the other hand, when the amount of the catalyst exceeds 50% by mass, the viscosity of the slurry in which the catalyst is dispersed in hydrocarbons becomes too high, the bubble dispersion becomes worse, and the catalyst is not sufficiently reduced, which is not preferable. The reduction treatment temperature is preferably 140 to 310 ° C, more preferably 150 to 250 ° C, and most preferably 160 to 220 ° C. Below 140 ° C., ruthenium is not sufficiently reduced and sufficient reaction activity cannot be obtained. Further, at a high temperature exceeding 310 ° C., the phase transition of the manganese oxide of the support, the change of the oxidation state, etc. proceed to form a complex with ruthenium, or the catalyst is sintered and activated. The possibility of incurring a decrease is increased. For this reduction treatment, a reducing gas mainly containing hydrogen can be preferably used. The reducing gas to be used may contain a certain amount of components other than hydrogen, for example, water vapor, nitrogen, rare gas, etc. within a range that does not hinder the reduction. This reduction treatment is influenced by the hydrogen partial pressure and the treatment time together with the treatment temperature, but the hydrogen partial pressure is 1 to 100 kg / cm. 2 (0.098 to 9.8 MPa) is preferable, 5 to 60 kg / cm 2 (0.49-5.88 MPa) is more preferable, 10-50 kg / cm 2 (0.98 to 4.9 MPa) is most preferable. The reduction treatment time varies depending on the amount of catalyst, the amount of hydrogen flow, etc., but is generally preferably 0.1 to 72 hours, more preferably 1 to 48 hours, and most preferably 5 to 48 hours. When the treatment time is less than 0.1 hour, the activation of the catalyst becomes insufficient. Further, even if the reduction treatment is performed for a long time exceeding 72 hours, there is no adverse effect on the catalyst, but there is an undesirable problem such as an increase in the processing cost although no improvement in catalyst performance is observed.
[0025]
The catalyst reduced as described above is used for the FT reaction, that is, the synthesis reaction of hydrocarbons. The FT reaction in the present invention is a dispersed state in which the catalyst is dispersed in liquid hydrocarbons, and the synthesis gas is brought into contact with the dispersed catalyst in the presence of carbon dioxide. At this time, as the hydrocarbons in which the catalyst is dispersed, the same hydrocarbons used in the reduction treatment performed in advance can be used. That is, if it is liquid under the reaction conditions, it contains olefins, alkanes, alicyclic hydrocarbons, various hydrocarbons including aromatic hydrocarbons, and hetero elements such as oxygen and nitrogen. Hydrocarbon or the like can be used, and the number of carbons does not need to be particularly limited. 6 ~ C 40 Are preferred, C 9 ~ C 40 Is more preferred, C 9 ~ C 35 Is most preferred. C 6 If it is lighter than these hydrocarbons, the vapor pressure of the solvent will be high, and the reaction condition range will be limited. C 40 If they are heavier than the above hydrocarbons, the solubility of the synthesis gas as the raw material is lowered, and the reaction activity may be lowered. In the reduction treatment performed in advance, in the case where a method in which the catalyst is dispersed in liquid hydrocarbons is employed, the liquid hydrocarbons used in the reduction treatment can be used as they are in this FT reaction. The amount of the catalyst dispersed in the hydrocarbon is 1 to 50% by mass, preferably 3 to 40% by mass, more preferably 5 to 35% by mass. If the amount of catalyst is less than 1% by mass, the activity decreases. As a method of preventing the decrease in activity, there is a method of reducing the aeration amount of synthesis gas. However, when the aeration amount of synthesis gas is reduced, dispersion of gas (synthesis gas) -liquid (solvent) -solid (catalyst) is impaired. Therefore, it is not preferable. On the other hand, when the amount of the catalyst exceeds 50% by mass, the viscosity of the slurry in which the catalyst is dispersed in hydrocarbons becomes too high, resulting in poor bubble dispersion and insufficient reaction activity, which is not preferable.
[0026]
The synthesis gas used for the FT reaction only needs to contain hydrogen and carbon monoxide as main components, and may contain other components that do not interfere with the FT reaction. Since the rate (k) of the FT reaction depends on the hydrogen partial pressure in the first order, the partial pressure ratio of hydrogen and carbon monoxide (H 2 / CO molar ratio) is preferably 0.6 or more. Since this reaction is a reaction accompanied by volume reduction, it is preferable that the total value of the partial pressures of hydrogen and carbon monoxide is higher. The upper limit of the partial pressure ratio of hydrogen and carbon monoxide is not particularly limited, but a practical range of this partial pressure ratio is suitably 0.6 to 2.7, preferably 0.8 to 2.5, More preferably, it is 1 to 2.3. When the partial pressure ratio is less than 0.6, the yield of the generated hydrocarbons decreases, and when the partial pressure ratio exceeds 2.7, the light hydrocarbons tend to increase in the generated hydrocarbons. Further, the components other than hydrogen and carbon monoxide contained in the synthesis gas are not particularly limited as long as they do not interfere with the reaction. 2 O, N 2 , CH Four Etc.
[0027]
As carbon dioxide to be coexisted, for example, those obtained from a reforming reaction of petroleum products or natural gas can be used without any problem, and other components that do not interfere with the FT reaction may be mixed. It may be one containing steam, partially oxidized nitrogen or the like, such as a product coming out of a steam reforming reaction. The carbon dioxide can be positively added to synthesis gas containing no carbon dioxide, and can be obtained by reforming natural gas by a self-thermal reforming method or a steam reforming method. In addition, carbon dioxide in the synthesis gas containing carbon dioxide can be used, that is, the synthesis gas containing carbon dioxide can be directly subjected to the FT reaction without being decarboxylated. If the synthesis gas containing carbon dioxide is subjected to the FT reaction as it is, the equipment construction cost and operation cost required for the decarboxylation treatment can be reduced, and the production cost of hydrocarbons obtained by the FT reaction can be reduced. it can. The amount of carbon dioxide to be coexisted is 0.5 to 50%, preferably 0.5 to 30%, more preferably 1 to the total pressure of hydrogen and carbon monoxide in the synthesis gas used for the FT reaction. -10%. When the partial pressure of carbon dioxide in the synthesis gas (mixed gas) to be subjected to the FT reaction is a low one that is less than the above range, the effect of promoting the FT reaction by carbon dioxide cannot be obtained, and the high pressure exceeds the above range. In this case, the partial pressures of hydrogen and carbon monoxide in the synthesis gas (mixed gas) subjected to the FT reaction are lowered, and the yield of hydrocarbons is lowered, which is economically disadvantageous. Although the carbon dioxide may coexist in the reaction system from the beginning of the FT reaction, in order to improve the carbon monoxide conversion rate more effectively by demonstrating the FT reaction promoting effect of carbon dioxide. Is preferably introduced into the reaction system within 10 to 100 hours after the start of the FT reaction.
[0028]
Thus, the total pressure of the synthesis gas (mixed gas) to be subjected to the FT reaction (total value of partial pressures of all components) is preferably 1 to 10 MPa, more preferably 1.5 to 6 MPa, and 1.8 to 4.5 MPa. Is even more preferred. If it is less than 1 MPa, chain growth is insufficient, and the yield of gasoline, kerosene, wax, etc. tends to decrease, which is not preferable. In terms of equilibrium, the higher the partial pressure of hydrogen and carbon monoxide, the more advantageous. However, the higher the partial pressure, the higher the construction cost of the plant and the higher the operating cost due to the increase in size of the compressor required for compression. From the industrial point of view, the upper limit of the partial pressure is regulated.
[0029]
In this FT reaction, in general, synthesis gas H 2 If the / CO molar ratio is the same, the lower the reaction temperature, the more chain growth proceeds and the higher the olefin selectivity, but the lower the CO conversion. On the contrary, if the reaction temperature is high, chain growth and olefin selectivity are low, but CO conversion is high. H 2 The higher the / CO ratio, the higher the CO conversion, the lower the chain growth and olefin selectivity, 2 The opposite is true when the / CO ratio is low. The effect of these factors on the reaction varies depending on the type of catalyst used, but in the present invention, the reaction temperature is preferably 200 ° C to 350 ° C, more preferably 220 to 310 ° C, and more preferably 250 to 290 ° C. Is even more preferred.
[0030]
According to the method for producing hydrocarbons of the present invention described above, if hydrocarbons are synthesized in the coexistence of carbon dioxide from a mixed gas containing hydrogen and carbon monoxide as main components, the CO conversion can be reduced to once through. conversion) is 60% or more, the chain growth probability (α) is 0.88 to 0.92, and the olefin / paraffin ratio in the lower hydrocarbon is, for example, C Three For hydrocarbons, good results of 3-7 are obtained. Further, by providing the synthesis gas containing carbon dioxide as it is to the FT reaction, it is possible to reduce the equipment construction cost and operation cost required for the decarboxylation treatment, and from the poor natural gas containing a large amount of carbon dioxide. An induced synthesis gas containing a large amount of carbon dioxide can also be used as a raw material.
The CO conversion rate and chain growth probability (α) are defined by the following formulas. [CO conversion rate]
[0031]
[Expression 1]
Figure 0004118503
[0032]
[Probability of chain growth (α)]
When the mass fraction in the product of hydrocarbons having n carbon atoms is Mn and the chain growth probability is α, the following relationship is established according to the Schulz-Flory distribution. Therefore, the α value can be obtained from the slope log α when log (Mn / n) and n are plotted.
[0033]
[Expression 2]
Figure 0004118503
[0034]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited to these Examples.
In the following examples, CO and CH Four The analysis was performed by thermal conductivity gas chromatography (TCD-GC) using Active Carbon (60 / 80mesh) as a separation column. In addition, 10 vol. % Added synthesis gas was used. CO and CH Four Qualitative and quantitative analysis was performed by comparing the peak position and the peak area of Ar with those of Ar. C 1 ~ C 6 For analysis of hydrocarbons, Capillary Column (Al 2 O Three / KCl PLOT) as a separation column and flame ionization detection type gas chromatograph (FID-GC), C that can be analyzed in common with TCD-GC 1 The hydrocarbons were qualitatively and quantitatively compared with (methane). In addition, C Five ~ C 40 For analysis of hydrocarbons, FID-GC equipped with a Capillary Column (TC-1) was used, and light hydrocarbons (C 1 ~ C 6 C that can be analyzed in common with Five And C 6 Qualitative and quantitative determination of the hydrocarbons was performed. The specific surface area of the catalyst (including support) was measured by the BET method using nitrogen as a probe molecule using an automatic surface area measuring apparatus (Bell Soap 28, manufactured by Nippon Bell). The chemical component of the catalyst was identified by ICP (CQM-10000P, manufactured by Shimadzu Corporation), and the particle size distribution was determined by a particle size measuring device (Mastersizer MSX-46 type, manufactured by Malvern) using a laser light scattering method.
[0035]
Example 1
Pure water was added dropwise from 30 to 30 g of the previously dried manganese oxide powder, and the saturated water absorption was determined. The saturated water absorption at this time was 0.26 ml / g. Ion exchange water (hereinafter abbreviated as water) was added to 0.31 g of sodium carbonate (Na Assay 43% by mass) to make 8 ml, and dissolved by stirring. The total amount of this solution was impregnated with 30 g of manganese oxide powder, allowed to stand for about 3 hours, and then dried in air at a temperature of 110 ° C. for several hours. Water was added to 0.09 g of ruthenium chloride (Ru Assay 35% by mass) to make 8 ml, and dissolved by stirring. The total amount of this solution was impregnated with Na-impregnated manganese oxide powder, allowed to stand for about 3 hours, and then dried in air at a temperature of 110 ° C. for several hours. This was transferred to an agate mortar, pulverized, and sieved to a catalyst particle size distribution of 0.5 to 150 μm to obtain catalyst A. The particle size distribution was determined by a laser light scattering method. This catalyst had an average particle size of 20 μm and a bulk density of 2.3. As a result of composition analysis using ICP, it was 0.1% by mass in terms of Ru, 0.45% by mass in terms of Na, and the remaining manganese oxide. The specific surface area is 4m 2 / g. A reactor with a capacity of 100 ml was charged with 12 g of catalyst A, and n-C was used as a dispersion medium. 16 H 34 After adding 40 g of (normal hexadecane), hydrogen partial pressure 20 kg / cm 2 (1.96 MPa), contacted at a temperature of 170 ° C. and a flow rate of 100 ml / min (STP: standard temperature and pressure), reduced for 24 hours, immediately purged with helium gas, and heated to 200 ° C. Furthermore, 20 kg / cm in the system while circulating helium 2 (1.96MPa), then mixed gas of argon 10vol.%, Carbon monoxide 30vol.%, Remaining hydrogen (H 2 / C0 ratio 2) Switch to FT reaction, start carbon dioxide after 20 hours, 0.2kg / cm 2 It was introduced at a partial pressure of (0.0196 MPa) and contacted with GHSV (gas hourly space velocity) 2400. 48-hour one-pass CO conversion is 69%, chain growth probability is 0.90, C3
The olefin / paraffin ratio in it was 7.
[0036]
Example 2
According to the preparation method shown in Example 1, Ru equivalent 1% by mass, Na equivalent 0.45% by mass, remaining manganese oxide, specific surface area 8m 2 catalyst B having a catalyst particle size distribution of 0.5 to 120 μm, an average particle size of 20 μm and a bulk density of 2.1 was obtained. A reactor having a capacity of 100 ml was charged with 12 g of catalyst B, and the same reduction treatment and FT reaction as in Example 1 were carried out. Carbon dioxide is 2kg / cm 20 hours after the start of FT reaction 2 It was introduced at a partial pressure of (0.196 MPa) and contacted with GHSV6000. 48 hours after the start of the reaction, the one-pass CO conversion is 80%, the chain growth probability is 0.90, C Three The olefin / paraffin ratio in it was 6.
[0037]
Example 3
According to the preparation method shown in Example 1, 1 mass% in terms of Ru and 0.45 mass% in terms of K (K 2 CO Three ), The remaining manganese oxide, specific surface area 8m 2 catalyst C having a catalyst particle size distribution of 0.5 to 150 μm, an average particle size of 20 μm, and a bulk density of 2.1 was obtained. A reactor with a capacity of 100 ml is charged with 12 g of catalyst C, and n-C is used as a dispersion medium. 16 H 34 After adding 40g (normal hexadecane), hydrogen partial pressure 20kg / cm 2 (1.96 MPa) The temperature was 170 ° C., contacted with the catalyst at a flow rate of 100 ml / min (STP), reduced for 24 hours, then immediately purged with helium gas and heated to 270 ° C. Next, a mixed gas of argon 10vol.%, Carbon monoxide 30vol.% And the remaining hydrogen (H 2 / C0 ratio 2.0) FT reaction started and carbon dioxide was 2kg / cm after 20 hours 2 It was introduced at a partial pressure of (0.196 MPa) and contacted with GHSV6000. 48 hours after the start of the reaction, the one-pass CO conversion is 83.5%, the chain growth probability is 0.89, C Three The olefin / paraffin ratio in it was 7.
[0038]
Example 4
According to the preparation method shown in Example 3, 2 mass% in terms of Ru, 0.1 mass% in terms of Na, remaining manganese oxide, specific surface area 8 m 2 catalyst D having a catalyst particle size distribution of 0.5 to 150 μm, an average particle size of 20 μm and a bulk density of 2.1 was obtained. The catalyst D12g was charged into a reactor having a volume of 100 ml, and the same reduction treatment and FT reaction as in Example 3 were performed. Carbon dioxide is 2kg / cm 20 hours after the start of FT reaction 2 It was introduced at a partial pressure of (0.196 MPa) and contacted with GHSV6000. 48 hours after the start of the reaction, the one-pass CO conversion is 83%, the chain growth probability is 0.89, C Three The olefin / paraffin ratio in it was 6.
[0039]
Example 5
According to the preparation method shown in Example 3, 2 mass% in terms of Ru, 0.45 mass% in terms of Na, remaining manganese oxide, specific surface area 8 m 2 catalyst E having a catalyst particle size distribution of 1.0 to 150 μm, an average particle size of 20 μm and a bulk density of 2.1 was obtained. A reactor having a capacity of 100 ml was charged with 12 g of the catalyst E, and the same reduction treatment and FT reaction as in Example 3 were performed. Carbon dioxide is 2kg / cm 20 hours after the start of FT reaction 2 It was introduced at a partial pressure of (0.196 MPa) and contacted with GHSV6000. 48 hours after the start of the reaction, the one-pass CO conversion is 85.5%, the chain growth probability is 0.88, C Three The olefin / paraffin ratio in it was 6.
[0040]
Example 6
According to the preparation method shown in Example 3, 2 mass% in terms of Ru and 0.45 mass% in terms of Ca (Ca (NO Three ) 2 ・ 4H 2 Same as Na loading method using O), remaining manganese oxide, specific surface area 8m 2 / g, catalyst F having a catalyst particle size distribution of 1.0-150 μm, an average particle size of 20 μm and a bulk density of 2.1 was obtained. A reactor having a capacity of 100 ml was charged with 12 g of catalyst F, and the same reduction treatment and FT reaction as in Example 3 were carried out. Carbon dioxide is 2kg / cm 20 hours after the start of FT reaction 2 It was introduced at a partial pressure of (0.196 MPa) and contacted with GHSV6000. 48 hours after the start of the reaction, the one-pass CO conversion is 84.5%, the chain growth probability is 0.88, C Three The olefin / paraffin ratio in it was 6.
[0041]
Example 7
According to the preparation method shown in Example 1, 2 mass% in terms of Ru, 0.45 mass% in terms of K, remaining manganese oxide, specific surface area 8 m 2 catalyst G having a catalyst particle size distribution of 1.0 to 150 μm, an average particle size of 20 μm and a bulk density of 2.1 was obtained. A reactor with a capacity of 100 ml is charged with 12 g of catalyst G, and n-C is used as a dispersion medium. 16 H 34 After adding 40g (normal hexadecane), hydrogen partial pressure 20kg / cm 2 (1.96 MPa) The temperature was 170 ° C., contacted with the catalyst at a flow rate of 100 ml / min (STP), reduced for 24 hours, then immediately purged with helium gas and heated to 290 ° C. Next, a mixed gas of argon 10vol.%, Carbon monoxide 30vol.% And the remaining hydrogen (H 2 / CO ratio 2.0) FT reaction started and carbon dioxide was 2kg / cm after 20 hours 2 It was introduced at a partial pressure of (0.196 MPa) and contacted with GHSV6000. 48 hours after the start of the reaction, the one-pass CO conversion is 86.5%, the chain growth probability is 0.88, C Three The olefin / paraffin ratio in it was 6.
[0042]
Example 8
According to the preparation method shown in Example 1, 5 mass% in terms of Ru, 0.45 mass% in terms of Na, remaining manganese oxide, specific surface area 8 m 2 / g, catalyst H having a catalyst particle size distribution of 0.5 to 150 μm, an average particle size of 20 μm and a bulk density of 2.1 was obtained. A reactor with a capacity of 100 ml is charged with 6 g of catalyst H, and n-C is used as a dispersion medium. 16 H 34 After adding 24 g (normal hexadecane), hydrogen partial pressure 50 kg / cm 2 (4.9 MPa), temperature 170 ° C., flow rate 100 ml / min (STP), contacted with the catalyst and reduced for 24 hours, immediately purged with helium gas and heated to 300 ° C. Furthermore, 15 kg / cm in the system while circulating helium 2 (1.47MPa), then argon 10vol.%, Carbon monoxide 36vol.%, Remaining hydrogen mixed gas (H 2 / CO ratio 1.5) Switch to FT reaction and start carbon dioxide 3kg / cm 20 hours later 2 It was introduced at a partial pressure of (0.294 MPa) and contacted with GHSV12000. 48 hours after the start of the reaction, the one-pass CO conversion is 80.2%, the chain growth probability is 0.88, C Three The olefin / paraffin ratio in it was 7.
[0043]
Example 9
According to the preparation method shown in Example 1, 20 mass% in terms of Ru, 10 mass% in terms of Na, remaining manganese oxide, specific surface area 100 m 2 catalyst I having a catalyst particle size distribution of 0.5-150 μm, an average particle size of 40 μm and a bulk density of 1.0 was obtained. A reactor with a capacity of 100 ml is charged with 2 g of catalyst I, and the hydrogen partial pressure is 50 kg / cm. 2 (4.9 MPa), temperature 140 ° C., flow rate 100 ml / min (STP), contacted the catalyst and reduced for 12 hours, then immediately purged with helium gas and heated to 300 ° C. After that, helium is vented and n-C is used as a dispersion 16 H 34 40 g (normal hexadecane) was pumped and stirred. Furthermore, 15 kg / cm in the system while circulating helium 2 (1.47MPa), then argon 10vol.%, Carbon monoxide 39.1.vol%, remaining hydrogen mixed gas (H 2 / CO ratio 1.3) FT reaction started and carbon dioxide was 5kg / cm 20 hours later 2 It was introduced at a partial pressure of (0.49 MPa) and contacted with GHSV12000. 48 hours after the start of the reaction, the one-pass CO conversion is 79.5%, the chain growth probability is 0.89, C Three The olefin / paraffin ratio in it was 7.
[0044]
Example 10
According to the preparation method shown in Example 1, Ru equivalent 30% by mass, K equivalent 15% by mass, remaining manganese oxide, specific surface area 120m 2 catalyst J having a catalyst particle size distribution of 0.5-150 μm, an average particle size of 50 μm, and a bulk density of 0.7 was obtained. 2 g of catalyst J is charged into a 100 ml reactor and the hydrogen partial pressure is 60 kg / cm. 2 (5.88 MPa), contacted with the catalyst at a temperature of 200 ° C. and a flow rate of 100 ml / min (STP), reduced for 12 hours, immediately purged with helium gas, and heated to 300 ° C. After that, n-C as a dispersion medium under helium circulation 16 H 34 67 g (normal hexadecane) was pumped and stirred. 10kg / cm in the system with helium 2 (0.98MPa), then argon 10vol.%, Carbon monoxide 45vol.%, Remaining hydrogen mixed gas (H 2 / CO ratio 1.0) FT reaction started and carbon dioxide was 2kg / cm 20 hours later 2 It was introduced at a partial pressure of (0.196 MPa) and contacted with GHSV16000. 48 hours after the start of the reaction, the one-pass CO conversion is 74.5%, the chain growth probability is 0.88, C Three The olefin / paraffin ratio in it was 5.
[0045]
Example 11
According to the preparation method shown in Example 1, 50 mass% in terms of Ru, 20 mass% in terms of Ca, remaining manganese oxide, specific surface area 200 m 2 catalyst K having a catalyst particle size distribution of 0.5 to 150 μm, an average particle size of 60 μm and a bulk density of 0.7 was obtained. A reactor with a capacity of 100 ml is charged with 0.5 g of catalyst K, and n-C is used as a dispersion medium. 16 H 34 After adding 50 g of (normal hexadecane), hydrogen partial pressure 100 kg / cm 2 The catalyst was brought into contact with the catalyst at a temperature of (9.8 MPa), a temperature of 200 ° C., and a flow rate of 100 ml / min (STP) for 24 hours, then immediately purged with helium gas and heated to 300 ° C. Furthermore, 10 kg / cm in the system while circulating helium 2 (0.98MPa), then argon 10vol.%, Carbon monoxide 50vol.%, Remaining hydrogen mixed gas (H 2 / CO ratio 0.8) FT reaction started and carbon dioxide was 6kg / cm 20 hours later 2 It was introduced at a partial pressure of (0.588 MPa) and contacted with GHSV24000. 48 hours after the start of the reaction, the one-pass CO conversion is 90.1%, the chain growth probability is 0.86, C Three The olefin / paraffin ratio in it was 3.
[0046]
Comparative Example 1
According to the preparation method shown in Example 1, 2 mass% in terms of Ru, 0.45 mass% in terms of Na, remaining manganese oxide, specific surface area 8 m 2 catalyst L having a catalyst particle size distribution of 1.0-105 μm, an average particle size of 20 μm and a bulk density of 2.1 was obtained. A reactor with a capacity of 100 ml is charged with 12 g of catalyst, and n-C is used as a dispersion medium. 16 H 34 After adding 40g of (normal hexadecane), hydrogen partial pressure 20kg / cm 2 (1.96 MPa) The temperature was 170 ° C., contacted with the catalyst at a flow rate of 100 ml / min (STP), reduced for 24 hours, then immediately purged with helium gas and heated to 270 ° C. Next, a mixed gas of argon 10vol.%, Carbon monoxide 30vol.% And the remaining hydrogen (H 2 Switched to / CO ratio 2) and contacted with GHSV6000. 48 hours after the start of the reaction, the one-pass CO conversion is 75.0%, the chain growth probability is 0.9, C Three The olefin / paraffin ratio in it was 6. Thus, if no carbon dioxide is present during the FT reaction, the CO conversion rate (compared with Example 5) is lowered, and the possibility of poor productivity is increased.
[0047]
Comparative Example 2
According to the preparation method shown in Example 1, 2% by mass in terms of Ru, remaining manganese oxide, specific surface area 10 m 2 catalyst M having a catalyst particle size distribution of 1.0-150 μm, an average particle size of 20 μm, and a bulk density of 2.1 g / ml was obtained. The catalyst M12g is charged into a reactor with a capacity of 100 ml, and n-C is used as a dispersion medium. 16 H 34 After adding 40g of (normal hexadecane), hydrogen partial pressure 20kg / cm 2 (1.96 MPa) The temperature was 170 ° C., contacted with the catalyst at a flow rate of 100 ml / min (STP), reduced for 24 hours, then immediately purged with helium gas and heated to 270 ° C. Next, mixed gas of argon 10vol.%, Carbon monoxide 30vol.% Remaining hydrogen (H 2 / C0 ratio 2) Switch to 2), start FT reaction, and after 20 hours carbon dioxide is 2kg / cm 2 It was introduced at a partial pressure of (0.196 MPa) and contacted with GHSV6000. 48 hours after the start of the reaction, the one-pass CO conversion is 40%, the chain growth probability is 0.9, C Three The olefin / paraffin ratio in it was 5. Thus, when carbon dioxide coexists during the FT reaction with a catalyst to which no alkali (earth) metal compound is added, the CO conversion rate (compared with Example 5) is drastically decreased and the productivity may be extremely inferior. Becomes higher.
[0048]
Comparative Example 3
Distilled water was added dropwise to alumina that had been sufficiently dried with a dryer in advance using a burette to obtain a saturated water absorption of 0.89 ml / g. Ruthenium chloride (RuCl Three ・ NH 2 O) 5 g was dissolved in 78.5 ml of distilled water to prepare an aqueous ruthenium chloride solution. 35.7 ml of this aqueous solution was dropped into 40 g of alumina, impregnated with ruthenium chloride, and left for 2 hours to remove moisture. Ru equivalent 2% by mass, remaining alumina, specific surface area 250m 2 catalyst N having a catalyst particle size distribution of 1.0-150 μm, an average particle size of 20 μm and a bulk density of 1 g / ml was obtained. A reactor with a capacity of 100 ml is charged with 9 g of catalyst N, and n-C is used as a dispersion medium. 16 H 34 After adding 30g (normal hexadecane), hydrogen partial pressure 20kg / cm 2 (1.96 MPa) The temperature was 170 ° C., contacted with the catalyst at a flow rate of 100 ml / min (STP), reduced for 24 hours, then immediately purged with helium gas and heated to 270 ° C. Furthermore, 20 kg / cm in the system while circulating helium 2 (1.96MPa), then argon 10vol.%, Carbon monoxide 30vol.% Residual hydrogen mixed gas (H 2 / CO ratio 2), FT reaction is started, and carbon dioxide is 2kg / cm 20 hours later 2 It was introduced at a partial pressure of (0.196 MPa) and contacted with GHSV6000. One-pass CO conversion 48 hours after the start of the reaction is 45%, chain growth probability is 0.80, C Three The olefin / paraffin ratio in it was 3. The reaction results were unsatisfactory as compared with Example 5 because the effect of adding carbon dioxide was not observed.
[0049]
Comparative Example 4
To 40 g of the same alumina as in Comparative Example 3, 35.6 ml of an aqueous solution prepared by dissolving 1 g of sodium carbonate in 80.9 ml of distilled water was added dropwise to impregnate with sodium carbonate. After standing for 15 hours, it was calcined at 600 ° C. for 3 hours using a muffle furnace. To the obtained carrier, 35.6 ml of the same ruthenium chloride aqueous solution as in Comparative Example 3 was added dropwise to 40 g, and ruthenium was supported as in Comparative Example 3. Ru conversion 2% by mass, Na conversion 0.45% by mass, remaining alumina, specific surface area 250m 2 Catalyst O having a catalyst particle size distribution of 1.0-105 μm, an average particle size of 20 μm, and a bulk density of 1 g / ml was obtained. 9 g of catalyst O is packed in a 100 ml reactor and n-C is used as a dispersion medium. 16 H 34 After adding 30g (normal hexadecane), hydrogen partial pressure 20kg / cm 2 (1.96 MPa) The temperature was 170 ° C., contacted with the catalyst at a flow rate of 100 ml / min (STP), reduced for 24 hours, then immediately purged with helium gas and heated to 270 ° C. Furthermore, 20 kg / cm in the system while circulating helium 2 (1.96MPa), then argon 10vol.%, Carbon monoxide 30vol.% Residual hydrogen mixed gas (H 2 / CO ratio 2), FT reaction is started, and carbon dioxide is 2kg / cm after 20 hours 2 It was introduced at a partial pressure of (0.196 MPa) and contacted with GHSV6000. 48 hours after the start of the reaction, the one-pass CO conversion is 47%, the chain growth probability is 0.80, C Three The olefin / paraffin ratio in it was 3. The reaction result was unsatisfactory as compared with Example 5 because the effect of adding carbon dioxide was not observed.
[0050]
Comparative Example 5
500g of alumina sol (Al content 7% by mass) and 500g of silica sol (Si content 3% by mass) were stirred and mixed with a homogenizer for 3 hours, then water was removed with a filter press and dried at 300 ° C to obtain a silica-alumina carrier. Obtained. The saturated water absorption of the obtained silica-alumina carrier (Si 30% by mass) was 1.05 ml / g. The same ruthenium chloride aqueous solution as in Comparative Example 3 was added dropwise to 40 g of the obtained carrier, and ruthenium was supported in the same manner as in Comparative Example 3. 2% by mass in terms of Ru, remaining silica-alumina, specific surface area 240m 2 catalyst P having a catalyst particle size distribution of 1.0-105 μm, an average particle size of 20 μm, and a bulk density of 1 g / ml was obtained. A reactor with a capacity of 100 ml was charged with 9 g of catalyst P, and n-C was used as a dispersion medium. 16 H 34 After adding 30g (normal hexadecane), hydrogen partial pressure 20kg / cm 2 (1.96 MPa) The temperature was 170 ° C., contacted with the catalyst at a flow rate of 100 ml / min (STP), reduced for 24 hours, then immediately purged with helium gas and heated to 270 ° C. Furthermore, 20 kg / cm in the system while circulating helium 2 (1.96MPa), then argon 10vol.%, Carbon monoxide 30vol.% Residual hydrogen mixed gas (H 2 / CO ratio 2), FT reaction is started, and carbon dioxide is 2kg / cm 20 hours later 2 It was introduced at a partial pressure of (0.196 MPa) and contacted with GHSV6000. 48 hours after the start of the reaction, the one-pass CO conversion is 46%, the chain growth probability is 0.80, C Three The olefin / paraffin ratio in it was 3. The reaction results were unsatisfactory as compared with Example 5 because the effect of adding carbon dioxide was not observed.
[0051]
Comparative Example 6
A silica-alumina carrier (Si 30% by mass) was prepared in the same manner as in Comparative Example 5. To 40 g of the obtained carrier, 35.6 ml of an aqueous solution prepared by dissolving 1 g of sodium carbonate in 80.9 ml of distilled water was added dropwise to impregnate with sodium carbonate. After leaving still for 15 hours, it baked at 600 degreeC for 3 hours using the muffle furnace. The same ruthenium chloride aqueous solution 35.6 ml as in Comparative Example 3 was added dropwise to 40 g of the obtained carrier, and ruthenium was supported in the same manner as in Comparative Example 3. 2% by mass in terms of Ru, 0.45% by mass in terms of Na, remaining silica-alumina, specific surface area 240m 2 catalyst Q having a catalyst particle size distribution of 1.0-105 μm, an average particle size of 20 μm, and a bulk density of 1 g / ml was obtained. 9g of catalyst Q is packed into a 100ml reactor and n-C is used as a dispersion medium. 16 H 34 After adding 30g (normal hexadecane), hydrogen partial pressure 20kg / cm 2 (1.96 MPa) At a temperature of 170 ° C., contacted with the catalyst at a flow rate of 100 ml / min (STP) and reduced for 24 hours, immediately purged with helium gas and heated up to 270 ° C. Furthermore, 20 kg / cm in the system while circulating helium 2 (1.96MPa), then argon 10vol.%, Carbon monoxide 30vol.% Residual hydrogen mixed gas (H 2 / CO ratio 2), FT reaction is started, and carbon dioxide is 2kg / cm 20 hours later 2 It was introduced at a partial pressure of (0.196 MPa) and contacted with GHSV6000. 48 hours after the start of the reaction, the one-pass CO conversion is 48%, the chain growth probability is 0.80, C Three The olefin / paraffin ratio in it was 3. The reaction results were unsatisfactory as compared with Example 5 because the effect of adding carbon dioxide was not observed.
[0052]
Comparative Example 7
Distilled water was dropped onto silica that had been sufficiently dried in advance using a burette to obtain a saturated water absorption of 1.35 ml / g. Cobalt nitrate (Co (NO Three ) 2 ・ 6H 2 O) 100 g was dissolved in 71.4 ml of distilled water to prepare an aqueous cobalt nitrate solution. 54 ml of this aqueous solution was dropped into 40 g of silica, impregnated with cobalt nitrate, allowed to stand for 2 hours to remove moisture, and then calcined at 500 ° C. for 3 hours using a muffle furnace. Next, zirconium oxynitrate hydrate (ZrO (NO Three ) 2 ・ 2H 2 O) 2.4 g was dissolved in 106 ml of distilled water to prepare an aqueous zirconium nitrate solution. 54 ml of this aqueous solution was dropped into a precursor supporting cobalt and impregnated with zirconium nitrate, left standing for 2 hours to remove moisture, and then calcined at 500 ° C. for 3 hours using a muffle furnace. Co conversion 16% by mass, Zr conversion 1% by mass, remaining silica, specific surface area 306m 2 catalyst R having a catalyst particle size distribution of 1.0-105 μm, an average particle size of 40 μm, and a bulk density of 0.8 g / ml was obtained. 9 g of catalyst R is charged into a 100 ml reactor and the hydrogen partial pressure is 20 kg / cm. 2 The catalyst was brought into contact with the catalyst at a temperature of 360 ° C. and a flow rate of 100 ml / min (STP) for 24 hours, immediately purged with helium gas, and the temperature was lowered to 270 ° C. Then, while circulating helium, n-C as a dispersion medium 16 H 34 30 g (normal hexadecane) was pumped and stirred. Next, mixed gas of argon 10vol.%, Carbon monoxide 30vol.% Remaining hydrogen (H 2 / CO ratio 2), FT reaction is started, and carbon dioxide is 2kg / cm 20 hours later 2 It was introduced at a partial pressure of (0.196 MPa) and contacted with GHSV6000. 48 hours after the start of the reaction, the one-pass CO conversion is 48%, the chain growth probability is 0.85, C Three The olefin / paraffin ratio in it was 3. The reaction results were unsatisfactory as compared with Example 5 because the effect of adding carbon dioxide was not observed.
[0053]
Comparative Example 8
After 30 mass% of Co was supported on 40 g of silica by the preparation method shown in Comparative Example 7, 4.6 g of ruthenium chloride (Ru Assay 35 mass%) was dissolved in 103 ml of distilled water to prepare an aqueous ruthenium chloride solution. 54 ml of this aqueous solution was dropped onto a Co-supporting precursor, impregnated, left for 2 hours to remove moisture, and then dried in air at 110 ° C. for several hours. Specific surface area 112m 2 Catalyst S having a catalyst particle size distribution of 1 to 105 μm, an average particle size of 75 μm, and a bulk density of 1 g / ml was obtained. 9g of catalyst S is packed in a 100ml reactor and hydrogen partial pressure is 20kg / cm. 2 The catalyst was brought into contact with the catalyst at a temperature of 360 ° C. and a flow rate of 100 ml / min (STP) for 24 hours, immediately purged with helium gas, and the temperature was lowered to 270 ° C. Then, while circulating helium, n-C as a dispersion medium 16 H 34 30 g (normal hexadecane) was pumped and stirred. Next, mixed gas of argon 10vol.%, Carbon monoxide 30vol.% Remaining hydrogen (H 2 Switched to / CO ratio 2) and contacted with GHSV6000. 48 hours after the start of the reaction, the one-pass CO conversion is 50%, the chain growth probability is 0.85, C Three The olefin / paraffin ratio in the medium was 0.5. 48 hours after the start of the reaction, the one-pass CO conversion was 50%, the chain growth rate was 0.85, and the olefin / paraffin ratio in C3 was 0.5. The reaction result was unsatisfactory as compared with Example 5 with no added effect of carbon dioxide.
[0054]
[Table 1]
Figure 0004118503
[0055]
[Table 2]
Figure 0004118503
[0056]
【The invention's effect】
According to the method for producing hydrocarbons of the present invention, in the presence of carbon dioxide, the chain growth probability is high, the olefin selectivity is excellent, the catalytic activity is high, the conversion rate of carbon monoxide is improved, and the improvement is achieved. The FT reaction can be carried out stably and smoothly with the catalyst life and without the occurrence of heat spots. The method of the present invention can greatly contribute to an increase in the production of kerosene oil fractions by hydrocracking the produced wax, dimerizing and trimerizing the produced olefin, and removing carbon dioxide in the raw syngas prior to the FT reaction. This is a method that can greatly contribute to the reduction of the production cost of the kerosene oil fraction by simplifying or omitting the decarbonation step for.

Claims (1)

マンガン酸化物担体に、アルカリ金属およびアルカリ土類金属から選ばれた少なくとも1種の金属の化合物を触媒基準で0.1〜20質量%担持し、さらに、ルテニウムを触媒基準で0.1〜50質量%担持した、比表面積4〜200m2/g、触媒粒子径分布0.5〜150μmを示す触媒を、予め還元処理を施した後、液状炭化水素類中に濃度1〜50質量%にて分散せしめ、該触媒に水素および一酸化炭素を主成分とする混合ガスを、その水素および一酸化炭素の合計圧に対して0.5〜50%の二酸化炭素の共存下に、圧力1〜10MPa、反応温度200〜350℃で接触させる炭化水素類の製造方法。A manganese oxide support is loaded with 0.1 to 20% by mass of a compound of at least one metal selected from alkali metals and alkaline earth metals on a catalyst basis, and further ruthenium is 0.1 to 50 on a catalyst basis. A catalyst having a specific surface area of 4 to 200 m 2 / g and a catalyst particle size distribution of 0.5 to 150 μm supported by mass% is subjected to reduction treatment in advance, and then in a liquid hydrocarbon at a concentration of 1 to 50 mass%. The mixed gas mainly containing hydrogen and carbon monoxide is dispersed in the catalyst in the presence of 0.5 to 50% carbon dioxide with respect to the total pressure of the hydrogen and carbon monoxide, and the pressure is 1 to 10 MPa. The manufacturing method of hydrocarbons made to contact at reaction temperature 200-350 degreeC.
JP2000357848A 2000-11-24 2000-11-24 Process for producing hydrocarbons in the presence of carbon dioxide Expired - Fee Related JP4118503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000357848A JP4118503B2 (en) 2000-11-24 2000-11-24 Process for producing hydrocarbons in the presence of carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000357848A JP4118503B2 (en) 2000-11-24 2000-11-24 Process for producing hydrocarbons in the presence of carbon dioxide

Publications (2)

Publication Number Publication Date
JP2002161280A JP2002161280A (en) 2002-06-04
JP4118503B2 true JP4118503B2 (en) 2008-07-16

Family

ID=18829849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000357848A Expired - Fee Related JP4118503B2 (en) 2000-11-24 2000-11-24 Process for producing hydrocarbons in the presence of carbon dioxide

Country Status (1)

Country Link
JP (1) JP4118503B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003174A (en) * 2001-06-18 2003-01-08 Japan National Oil Corp Method for producing hydrocarbons by fischer-tropsch method
JP2003105344A (en) * 2001-09-28 2003-04-09 Japan National Oil Corp Method for producing hydrocarbons by fischer-tropsch method in coexistence of carbon dioxide

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1867652B (en) * 2003-10-16 2010-04-07 日本气体合成株式会社 Method for producing liquefied petroleum gas containing propane and butane as main component
WO2014024774A1 (en) * 2012-08-10 2014-02-13 住友化学株式会社 Method for producing olefin having 2-4 carbon atoms and method for producing propylene
WO2024048673A1 (en) * 2022-09-01 2024-03-07 日本碍子株式会社 Method for producing liquid fuel and liquid fuel synthesis system
WO2024048674A1 (en) * 2022-09-01 2024-03-07 日本碍子株式会社 Method for producing liquid fuel and liquid fuel synthesis system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003174A (en) * 2001-06-18 2003-01-08 Japan National Oil Corp Method for producing hydrocarbons by fischer-tropsch method
JP4660021B2 (en) * 2001-06-18 2011-03-30 独立行政法人石油天然ガス・金属鉱物資源機構 Process for producing hydrocarbons by the Fischer-Tropsch process
JP2003105344A (en) * 2001-09-28 2003-04-09 Japan National Oil Corp Method for producing hydrocarbons by fischer-tropsch method in coexistence of carbon dioxide
JP4660039B2 (en) * 2001-09-28 2011-03-30 独立行政法人石油天然ガス・金属鉱物資源機構 Process for producing hydrocarbons by Fischer-Tropsch process in the presence of carbon dioxide

Also Published As

Publication number Publication date
JP2002161280A (en) 2002-06-04

Similar Documents

Publication Publication Date Title
AU2005215337B2 (en) Catalyst for producing hydrocarbons, method for preparing the same, and method for producing hydrocarbons using the same
RU2389548C2 (en) Fischer-tropsch synthesis promoter catalyst, method of preparing said catalyst and fischer-tropsch hydrocarbon synthesis method
ZA200504460B (en) Iron-based Fischer-Tropsch catalysts and methods of making and using
US6100304A (en) Processes and palladium-promoted catalysts for conducting Fischer-Tropsch synthesis
US20010031793A1 (en) Highly active fischer-tropsch catalyst having increased thermal stability
AU2001245713A1 (en) Highly active fischer-tropsch synthesis using doped, thermally stable catalyst support
JP5129037B2 (en) Fischer-Tropsch synthesis catalyst and method for producing hydrocarbons
JP2010221108A (en) Catalyst for fischer-tropsch synthesis and method for manufacturing hydrocarbon
WO2009157260A1 (en) Catalyst for fischer-tropsch synthesis, and process for production of hydrocarbon
US6924316B2 (en) Method for producing hydrocarbons by Fischer-Tropsch process
WO2008147013A2 (en) Preparation methods for liquid hydrocarbons from syngas by using the zirconia-aluminum oxide-based fischer-tropsch catalysts
JP4118503B2 (en) Process for producing hydrocarbons in the presence of carbon dioxide
JP4205301B2 (en) Process for producing hydrocarbons by Fischer-Tropsch process
KR102359490B1 (en) Catalyst for CO2 hydrogenation to produce hydrocarbon compounds and preparation method thereof
JP4660039B2 (en) Process for producing hydrocarbons by Fischer-Tropsch process in the presence of carbon dioxide
EP3013473A1 (en) Catalyst composition for the selective conversion of synthesis gas to light olefins
JP4006328B2 (en) Production method of hydrocarbons by Fischer-Tropsch process
JP4660021B2 (en) Process for producing hydrocarbons by the Fischer-Tropsch process
JP4421913B2 (en) Method for producing catalyst for producing hydrocarbons and method for producing hydrocarbons using the catalyst
JP2007517101A (en) Process for converting synthesis gas to hydrocarbons in the presence of β-SiC and effluent from this process
CN106391019B (en) Process for preparing a catalyst intended to be used in the fischer-tropsch reaction
JP4267482B2 (en) Hydrocarbon production catalyst and method for producing hydrocarbons using the catalyst
JP4118494B2 (en) Process for producing hydrocarbons
WO2012102256A1 (en) Catalyst for fischer-tropsch synthesis, and production method therefor, as well as hydrocarbon production method using fischer-tropsch synthesis catalyst
JP5553880B2 (en) Method for producing catalyst for Fischer-Tropsch synthesis

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040331

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050121

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060614

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees