JP2023152852A - Low hydrogen type coated electrode - Google Patents

Low hydrogen type coated electrode Download PDF

Info

Publication number
JP2023152852A
JP2023152852A JP2023045696A JP2023045696A JP2023152852A JP 2023152852 A JP2023152852 A JP 2023152852A JP 2023045696 A JP2023045696 A JP 2023045696A JP 2023045696 A JP2023045696 A JP 2023045696A JP 2023152852 A JP2023152852 A JP 2023152852A
Authority
JP
Japan
Prior art keywords
total
equivalent value
mass
welding
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023045696A
Other languages
Japanese (ja)
Inventor
雅大 渡部
Masahiro Watabe
将 高橋
Susumu Takahashi
瑠太 三浦
Ryuta Miura
実紗子 小松
Misako Komatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Publication of JP2023152852A publication Critical patent/JP2023152852A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

To provide a low hydrogen type coated electrode, hardly raising rod burning even if welding under the high-current welding condition, favorable in welding workability and mechanical performance and capable of obtaining a high-quality weld joint.SOLUTION: A low hydrogen type coated electrode includes in mass% based on total mass of coating material: 25-55% of calcium carbonate; 2-6% of barium carbonate; 10-25% of fluorite and 70 wt.% or more of fluorite particle having the particle size of 75 μm or more; 2.0-5.0% of total of TiO2 conversion value; 4-10% of total of SiO2 conversion value; 1.6-2.5% of total of one or two types of Na and K conversion values; 0.12-0.40% of total of MgO conversion values of Mg oxide; 2-6% of Si; 2.0-5.5% of Mn; 5-15% of Fe; 1.0% or less of Mg; and 1.0% or less of Ti. The electrode is characterized in that the coating material is coated on a steel core line in the coverage of 25-40% in mass% based on total mass of the low hydrogen type coated electrode.SELECTED DRAWING: None

Description

本発明は、低水素系被覆アーク溶接棒に関し、耐棒焼け性に優れた低水素系被覆アーク溶接棒に関するものである。 The present invention relates to a low-hydrogen coated arc welding rod, and more particularly, to a low-hydrogen coated arc welding rod that has excellent stick burn resistance.

低水素系被覆アーク溶接棒は、金属炭酸塩と金属弗化物を主成分とする塩基性被覆剤からなっており、優れた機械的性質を有する溶接金属が得られることから幅広く使用されている。一方、この低水素系被覆アーク溶接棒は、イルミナイト系溶接棒やライムチタニヤ系溶接棒と比較して、アークの安定性に欠け、溶融速度が遅い、ビードが伸びない、凸ビードになるなど溶接作業性が悪いという欠点をもっている。さらに高能率溶接のために高電流の溶接条件で溶接すると、溶接作業能率が向上する反面、溶接棒の後半部において鋼心線が発熱し、被覆剤が焼けた状態、即ち、棒焼け現象(以下、棒焼けという。)を起こし易くなる欠点がある。この棒焼けを生じた溶接棒を使用すると、溶接時にアークが不安定となり、溶接作業性の劣化を招くばかりかブローホールや溶け込み不足などの溶接欠陥が発生する。 Low-hydrogen coated arc welding rods are made of a basic coating agent containing metal carbonates and metal fluorides as main components, and are widely used because they yield weld metals with excellent mechanical properties. On the other hand, compared to illuminite and lime titanium welding rods, this low-hydrogen coated arc welding rod lacks arc stability, has a slow melting rate, does not elongate the bead, and produces a convex bead during welding. It has the disadvantage of poor workability. Furthermore, when welding under high current welding conditions for high-efficiency welding, welding work efficiency improves, but at the same time the steel core wire generates heat in the latter half of the welding rod, causing the coating to burn, resulting in a burnt phenomenon (stick burn phenomenon). It has the disadvantage of being more likely to cause burns (hereinafter referred to as stick burn). If a welding rod with burnt spots is used, the arc becomes unstable during welding, which not only deteriorates welding workability but also causes welding defects such as blowholes and insufficient penetration.

このような状況に対し、アーク安定性の改善の手段として種々提案がされている。例えば、特許文献1には、溶接入熱量を低減させるため低電流域でのアーク安定性を改善した技術が開示されている。これによると炭酸石灰の粒度構成およびマイカの含有量の限定によって低電流域でのアークは安定するが、適正電流域でのアーク吹付け性およびアーク安定性は不良で、融合不良などの溶接欠陥が生じる可能性が高い。 In response to this situation, various proposals have been made as means for improving arc stability. For example, Patent Document 1 discloses a technique that improves arc stability in a low current range in order to reduce welding heat input. According to this, the arc is stabilized in the low current range due to the grain size structure of lime carbonate and the limited mica content, but the arc blowability and arc stability are poor in the appropriate current range, and welding defects such as poor fusion occur. is likely to occur.

さらに、特許文献2に記載の被覆アーク溶接棒では、従来からの低水素系被覆アーク溶接棒の問題点とされてきたアークの安定性、溶接金属の機械的性能を改善できるものの、耐棒焼け性を向上させることは困難であった。 Furthermore, although the coated arc welding rod described in Patent Document 2 can improve the stability of the arc and the mechanical performance of the weld metal, which have been problems with conventional low-hydrogen coated arc welding rods, It was difficult to improve gender.

特開平7-276081号公報Japanese Patent Application Publication No. 7-276081 特開昭57-72790号公報Japanese Unexamined Patent Publication No. 57-72790

本発明は、上述した問題点に鑑みて案出されたものであり、特に高電流の溶接条件で溶接しても棒焼けを起こしにくい低水素系被覆アーク溶接棒を提供することを目的とする。 The present invention was devised in view of the above-mentioned problems, and an object of the present invention is to provide a low-hydrogen coated arc welding rod that is less likely to cause stick burn even when welding under particularly high current welding conditions. .

本発明の要旨は、
(1)鋼心線に被覆剤が塗装されている低水素系被覆アーク溶接棒において、前記被覆剤は、被覆剤全質量に対する質量%で、炭酸石灰:25~55%、炭酸バリウム:2~6%、蛍石:10~25%、かつ、蛍石の粒度が、蛍石の重量%で75μm以上の粒子:70%以上、Ti酸化物のTiO2換算値の合計:2.0~5.0%、Si酸化物のSiO2換算値の合計:4~10%、Na化合物のNa換算値とK化合物のK換算値の1種又は2種以上の合計:1.6~2.5%、Mg酸化物のMgO換算値の合計:0.12~0.40%、Si:2~6%、Mn:2.0~5.5%、Fe:5~15%を含有し、Mg:1.0%以下、Ti:1.0%以下であり、残部は塗装剤及び不純物からなる被覆剤を、鋼心線に低水素系被覆アーク溶接棒全質量に対する質量%で25~40%の被覆率で塗装したことを特徴とする。
The gist of the invention is
(1) In a low-hydrogen-based coated arc welding rod in which a coating agent is applied to the steel core wire, the coating agent is expressed in mass% based on the total mass of the coating material: lime carbonate: 25 to 55%, barium carbonate: 2 to 5%. 6%, fluorite: 10 to 25%, and particles with a fluorite particle size of 75 μm or more in weight percent of fluorite: 70% or more, total TiO 2 equivalent value of Ti oxide: 2.0 to 5 .0%, total SiO 2 equivalent value of Si oxide: 4 to 10%, sum of one or more types of Na equivalent value of Na compound and K equivalent value of K compound: 1.6 to 2.5 %, total MgO equivalent value of Mg oxide: 0.12 to 0.40%, Si: 2 to 6%, Mn: 2.0 to 5.5%, Fe: 5 to 15%, Mg : 1.0% or less, Ti: 1.0% or less, and the remainder is coating agent and impurities. It is characterized by being coated with a coverage rate of .

(2)被覆剤全質量に対する質量%で、Ni:0.5~10.0%、金属B、B合金及びB酸化物の1種又は2種以上のB換算値の合計:0.05~0.50%を更に含有することを特徴とする(1)に記載の低水素系被覆アーク溶接棒。 (2) Mass % based on the total mass of the coating material: Ni: 0.5 to 10.0%, sum of B conversion values of one or more of metal B, B alloy, and B oxide: 0.05 to The low hydrogen-based coated arc welding rod according to (1), further containing 0.50%.

(3)被覆剤全質量に対する質量%で、Mo:0.5~2.0%を更に含有することを特徴とする(1)又は(2)に記載の低水素系被覆アーク溶接棒。 (3) The low hydrogen-based coated arc welding rod according to (1) or (2), further containing Mo: 0.5 to 2.0% in mass % based on the total mass of the coating material.

本発明の低水素系被覆アーク溶接棒によれば、高電流の溶接条件で溶接しても棒焼けを起こしにくく、溶接作業性及び機械的性能も良好で高品質な溶接接手を得ることができる低水素系被覆アーク溶接棒を提供することができる。 According to the low-hydrogen coated arc welding rod of the present invention, it is possible to obtain a high-quality welded joint that is less likely to cause stick burn even when welding under high current welding conditions, and has good welding workability and mechanical performance. A low hydrogen-based coated arc welding rod can be provided.

本発明者らは、上述した課題を解決するために、高電流の溶接条件で溶接しても棒焼けを起こしにくく、溶接作業性及び機械的性能も良好な低水素系被覆アーク溶接棒の被覆剤の組成成分について詳細に検討した。 In order to solve the above-mentioned problems, the present inventors have developed a low-hydrogen-based coated arc welding rod that is resistant to stick burn even when welded under high current welding conditions and has good welding workability and mechanical performance. The composition of the agent was examined in detail.

その結果、炭酸石灰、炭酸バリウム、蛍石、蛍石の粒度、Ti酸化物のTiO2換算値の合計、Si酸化物のSiO2換算値の合計、Na化合物のNa換算値とK化合物のK換算値の1種又は2種以上の合計、Mg酸化物のMgO換算値の合計、Si、Mn、Fe、Mg、Tiを適正とし、25~40%の被覆率とすることで高電流の溶接条件で溶接しても棒焼けを起こしにくく、溶接作業性及び機械的性能も良好にすることができることを見出し、さらに検討を重ねて本発明を完成した。 As a result, the particle size of lime carbonate, barium carbonate, fluorite, and fluorite, the total TiO 2 equivalent value of Ti oxide, the total SiO 2 equivalent value of Si oxide, the Na equivalent value of Na compound, and the K of K compound High current welding is possible by setting the sum of one or more types of conversion values, the sum of MgO conversion values of Mg oxide, Si, Mn, Fe, Mg, and Ti to an appropriate coverage rate of 25 to 40%. It was discovered that even when welding under certain conditions, stick burns do not easily occur, and the welding workability and mechanical performance can also be improved, and after further studies, the present invention was completed.

以下、本発明における低水素系被覆アーク溶接棒について、被覆剤中の各組成の限定理由について詳細に説明する。なお、低水素系被覆アーク溶接棒の各成分組成における含有率は、被覆剤全質量に対する質量%で表すこととし、その質量%を表すときには単に%と記載する。 Hereinafter, regarding the low hydrogen-based coated arc welding rod of the present invention, reasons for limiting each composition in the coating material will be explained in detail. Note that the content in each component composition of the low hydrogen-based coated arc welding rod is expressed in mass % with respect to the total mass of the coating material, and when expressing the mass %, it is simply written as %.

[炭酸石灰:25~55%]
炭酸石灰は、アークの熱で分解してCO2ガスを発生し、溶接金属を大気から保護する効果がある。炭酸石灰が25%未満では、シールド効果が不足し、ブローホールが発生しやすくなる。また炭酸石灰が25%未満では、、溶接金属中に大気中の窒素が混入し、靱性が低下する。一方、炭酸石灰が55%を超えると、アークが不安定となってビード形状が凸状になり、スラグ剥離性も悪くなる。従って、炭酸石灰は25~55%とする。
[Carbonated lime: 25-55%]
Lime carbonate is decomposed by the heat of the arc and generates CO 2 gas, which has the effect of protecting the weld metal from the atmosphere. If the lime carbonate content is less than 25%, the shielding effect is insufficient and blowholes are likely to occur. If the lime carbonate content is less than 25%, atmospheric nitrogen will be mixed into the weld metal, resulting in a decrease in toughness. On the other hand, if the lime carbonate content exceeds 55%, the arc becomes unstable, the bead shape becomes convex, and the slag removability becomes poor. Therefore, the carbonate lime content should be 25-55%.

[蛍石:10~25%]
[粒度が75μm以上の粒子が70%以上]
蛍石は、溶融スラグの流動性を調整してビード外観を良好にする効果がある。蛍石が10%未満では、溶融スラグの流動性が悪くなり、スラグ被包が不安定となってビード外観が不良になる。一方、蛍石が25%を超えると、被覆筒の形状が不完全となって片溶け状態となり、アークが不安定となる。従って、蛍石は10~25%とする。また蛍石は、粒度が75μm以上の粒子が70%未満の場合、耐棒焼け性が劣化し、溶接後半にシールド効果が不足し、ブローホールが発生しやすくなる。従って、粒度が75μm以上の粒子が70%以上とする。
[Fluorite: 10-25%]
[70% or more particles with a particle size of 75 μm or more]
Fluorite has the effect of adjusting the fluidity of molten slag and improving the bead appearance. If the fluorite content is less than 10%, the fluidity of the molten slag becomes poor, the slag envelopment becomes unstable, and the bead appearance becomes poor. On the other hand, if the fluorite content exceeds 25%, the shape of the covering tube becomes incomplete, resulting in a one-sided melting state, and the arc becomes unstable. Therefore, the amount of fluorite should be 10 to 25%. In addition, when less than 70% of fluorite particles have a particle size of 75 μm or more, the stick scorch resistance deteriorates, the shielding effect is insufficient in the latter half of welding, and blowholes are likely to occur. Therefore, the proportion of particles with a particle size of 75 μm or more should be 70% or more.

[Ti酸化物のTiO2換算値の合計:2.0~5.0%]
Ti酸化物は、ルチール、酸化チタン、チタンスラグ、チタン酸カルシウム等から添加され、溶融スラグの粘性を調整してビード形状を良好にする効果がある。Ti酸化物のTiO2換算値が2.0%未満であると、スラグの粘性が低下し、ビード形状が不良になる。一方、Ti酸化物のTiO2換算値が5.0%を超えると、溶融スラグの粘性が高くなってスラグの流動性が悪くなるので、ビード形状が凸状となる。従って、Ti酸化物TiO2換算値は2.0~5.0%とする。
[Total TiO 2 equivalent value of Ti oxide: 2.0 to 5.0%]
Ti oxide is added from rutile, titanium oxide, titanium slag, calcium titanate, etc., and has the effect of adjusting the viscosity of the molten slag and improving the bead shape. If the TiO 2 equivalent value of the Ti oxide is less than 2.0%, the viscosity of the slag decreases and the bead shape becomes poor. On the other hand, if the TiO 2 equivalent value of the Ti oxide exceeds 5.0%, the viscosity of the molten slag becomes high and the fluidity of the slag deteriorates, so that the bead shape becomes convex. Therefore, the TiO 2 equivalent value of Ti oxide is set to 2.0 to 5.0%.

[Si酸化物のSiO2換算値の合計:4~10%]
Si酸化物は、珪砂、長石、水ガラス等から添加され、溶融スラグの粘性を高め、適切な粘性のスラグを確保してビード形状を良好にする効果がある。Si酸化物のSiO2換算値の合計が4%未満では、溶融スラグの粘性が低くなり、ビード形状が不良となる。一方、Si酸化物のSiO2換算値の合計が10%を超えると、スラグがガラス状になり、スラグ剥離性が不良になる。従って、Si酸化物のSiO2換算値の合計は4~10%とする。
[Total SiO 2 equivalent value of Si oxide: 4 to 10%]
Si oxide is added from silica sand, feldspar, water glass, etc., and has the effect of increasing the viscosity of the molten slag, ensuring a slag with appropriate viscosity, and improving the bead shape. If the total SiO 2 equivalent value of the Si oxide is less than 4%, the viscosity of the molten slag will be low and the bead shape will be poor. On the other hand, if the total SiO 2 equivalent value of Si oxide exceeds 10%, the slag becomes glassy and the slag removability becomes poor. Therefore, the total SiO 2 equivalent value of Si oxide is 4 to 10%.

[炭酸バリウム:2~6%]
炭酸バリウムは、アーク電圧を下げる効果があり、アーク安定性を向上する効果がある。炭酸バリウムが2%未満ではアークが不安定となってビード外観が不良になる。一方、炭酸バリウムが6%を超えるとアークが弱くなりすぎ、アーク不安定となる。従って、炭酸バリウムは2~6%とする。
[Barium carbonate: 2-6%]
Barium carbonate has the effect of lowering arc voltage and improving arc stability. If the barium carbonate content is less than 2%, the arc becomes unstable and the bead appearance becomes poor. On the other hand, if barium carbonate exceeds 6%, the arc becomes too weak and the arc becomes unstable. Therefore, the barium carbonate content should be 2 to 6%.

[Na化合物のNa換算値とK化合物のK換算値の1種又は2種以上の合計:1.6~2.5%]
Na化合物及びK化合物は、珪酸ソーダや珪酸カリウム等の水ガラス等から主に添加され、溶接棒製造時の塗装性及び溶接時のアークの安定性を向上する効果がある。また、カリ長石、弗化ソーダ、硼酸ナトリウムからも添加され、溶接作業性確保の上からも必要である。Na化合物のNa換算値とK化合物のK換算値の1種又は2種以上の合計が1.6%未満では、アークが不安定になる。また、溶接棒製造時に被覆剤表面に割れが生じやすくなり耐脱落性が低下する。一方、Na化合物のNa換算値とK化合物のK換算値の1種又は2種以上の合計が2.5%を超えると、アークの吹き付けが強く不安定になる。従って、Na化合物のNa換算値とK化合物のK換算値の1種又は2種以上の合計は1.6~2.5%とする。
[Total of one or more types of Na equivalent value of Na compound and K equivalent value of K compound: 1.6 to 2.5%]
Na compounds and K compounds are mainly added from water glasses such as sodium silicate and potassium silicate, and have the effect of improving paintability during welding rod manufacture and arc stability during welding. Potassium feldspar, sodium fluoride, and sodium borate are also added, and are necessary to ensure welding workability. If the sum of one or more of the Na equivalent value of the Na compound and the K equivalent value of the K compound is less than 1.6%, the arc becomes unstable. Furthermore, cracks are likely to occur on the surface of the coating material during the manufacture of the welding rod, resulting in reduced drop-off resistance. On the other hand, if the sum of one or more of the Na equivalent value of the Na compound and the K equivalent value of the K compound exceeds 2.5%, the arc blowing becomes strong and unstable. Therefore, the total of one or more of the Na equivalent value of the Na compound and the K equivalent value of the K compound is 1.6 to 2.5%.

[Mg酸化物のMgO換算値の合計:0.12~0.40%]
Mg酸化物は、酸化マグネシウム、マグネシアクリンカー等から添加され、珪酸カリウム、珪酸ナトリウムとの反応硬化性も良く、耐熱性に優れており、被覆剤の固着性を良好にして被覆剤の耐脱落性、耐棒焼け性を向上させる。Mg酸化物のMgO換算値の合計が0.12%未満では、硬化性、耐熱性が不足し耐脱落性、耐棒焼け性が劣化する。一方、Mg酸化物のMgO換算値の合計が0.40%を超えると、溶融スラグの粘性が高くなるので、ビード形状が凸状となる。従って、Mg酸化物のMgO換算値の合計は0.12~0.40%とする。
[Total MgO equivalent value of Mg oxide: 0.12 to 0.40%]
Mg oxide is added from magnesium oxide, magnesia clinker, etc., and has good curing properties by reaction with potassium silicate and sodium silicate, and has excellent heat resistance, improves the adhesion of the coating material, and improves the shedding resistance of the coating material. , improves stick scorch resistance. If the total MgO equivalent value of Mg oxide is less than 0.12%, the hardenability and heat resistance will be insufficient, and the peeling resistance and burn resistance will deteriorate. On the other hand, when the total MgO equivalent value of Mg oxide exceeds 0.40%, the viscosity of the molten slag becomes high and the bead shape becomes convex. Therefore, the total MgO equivalent value of Mg oxide is 0.12 to 0.40%.

[Mg:1.0%以下]
Mgは、金属Mg、Al-Mg等から添加され、他の合金成分よりも反応性が高いので、被覆の溶融性が良く、アークの電位傾度を下げて電圧を安定させる効果が有るので、アークの持続性が良く、アークを安定させることができる。一方、Mgが1.0%を超えると、被覆が溶融過剰となりアークの広がりが劣化して不安定となり、ビード形状が不良になる。従って、Mgは1.0%以下とする。
[Mg: 1.0% or less]
Mg is added from metal Mg, Al-Mg, etc., and has higher reactivity than other alloy components, so the coating has good melting properties and has the effect of lowering the potential gradient of the arc and stabilizing the voltage. It has good durability and can stabilize the arc. On the other hand, when Mg exceeds 1.0%, the coating becomes excessively melted, the arc spread deteriorates and becomes unstable, and the bead shape becomes poor. Therefore, Mg should be 1.0% or less.

[Si:2~6%]
Siは、金属Si、Fe-Si、Fe-Si-Mn等から添加され、溶接金属の脱酸を目的として使用されるとともに、溶接作業性の面からも必要である。Siが2%未満では、脱酸不足となって溶接金属中にブローホールが発生しやすくなる。一方、Siが6%を超えると、溶接金属の粒界に低融点酸化物を析出させ、溶接金属の靱性が低下する。従って、Siは2~6%とする。
[Si: 2-6%]
Si is added from metal Si, Fe-Si, Fe-Si-Mn, etc., and is used for the purpose of deoxidizing weld metal, and is also necessary from the viewpoint of welding workability. If Si is less than 2%, deoxidation is insufficient and blowholes are likely to occur in the weld metal. On the other hand, when Si exceeds 6%, low melting point oxides are precipitated at the grain boundaries of the weld metal, reducing the toughness of the weld metal. Therefore, Si is set at 2 to 6%.

[Mn:2.0~5.5%]
Mnは、金属Mn、Fe-Mn、Fe-Si-Mn等から添加され、Siと同様に脱酸剤として重要であり、溶接金属組織を微細化して溶接金属の靱性及び強度を高める効果がある。Mnが2.0%未満では、溶接金属の強度が低く、脱酸不足となって溶接金属中にブローホールが発生しやすくなる。一方、Mnが5.5%を超えると、焼入れ性が強く作用し、溶接金属の強度が過剰に高くなり、靭性が低下する。従って、Mnは2.0~5.5%とする。
[Mn: 2.0 to 5.5%]
Mn is added from metal Mn, Fe-Mn, Fe-Si-Mn, etc., and like Si, it is important as a deoxidizing agent, and has the effect of refining the weld metal structure and increasing the toughness and strength of the weld metal. . When Mn is less than 2.0%, the strength of the weld metal is low and deoxidation is insufficient, making it easy for blowholes to occur in the weld metal. On the other hand, when Mn exceeds 5.5%, the hardenability is strongly affected, the strength of the weld metal becomes excessively high, and the toughness decreases. Therefore, Mn is set at 2.0 to 5.5%.

[Fe:5~15%]
Feは、鉄粉やFe-Mn,Fe-Moといった鉄合金粉や鉄酸化物から添加され、アークの電位傾度を低下させてアーク長を短くして被覆剤の片溶けを防止させる効果がある。Feが5%未満では、アーク長が長くなって、溶接途中にアークが消失しやすく、アークが不安定となる。一方、Feが15%を超えると、スラグ剤が少なくなるため、スラグの被包が不均一となり、ビード形状が不良となる。従って、Feは5~15%とする。
[Fe: 5-15%]
Fe is added from iron powder, iron alloy powder such as Fe-Mn, Fe-Mo, or iron oxide, and has the effect of reducing the arc potential gradient, shortening the arc length, and preventing one-sided melting of the coating material. . If Fe is less than 5%, the arc length becomes long, the arc tends to disappear during welding, and the arc becomes unstable. On the other hand, when Fe exceeds 15%, the amount of slag agent decreases, resulting in uneven slag encapsulation and poor bead shape. Therefore, Fe is set at 5 to 15%.

[Ti:1.0%以下]
Tiは、金属Ti、Fe-Ti等から添加され、脱酸剤として有効であると同時に、溶接金属のミクロ組織を微細化して靭性を向上させる効果がある。一方、Tiが1.0%を超えると、溶接金属中のTi酸化物の析出が増加し、溶接金属の靱性が低下する。従って、Tiは1.0%以下とする。
[Ti: 1.0% or less]
Ti is added from metal Ti, Fe-Ti, etc., and is effective as a deoxidizing agent and at the same time has the effect of refining the microstructure of the weld metal and improving toughness. On the other hand, when Ti exceeds 1.0%, precipitation of Ti oxides in the weld metal increases, and the toughness of the weld metal decreases. Therefore, Ti should be 1.0% or less.

[被覆率:低水素系被覆アーク溶接棒全質量に対する被覆剤の質量%で25~40%]
被覆剤の鋼心線の外周への被覆率は、溶接時の耐シールド性に大きく影響する。被覆率が低水素系被覆アーク溶接棒全質量に対する被覆剤の質量%(以下、単に%という。)が25%未満では、被覆剤自体が少なくなってシールド不足となり、溶接金属中のN含有量が増加して溶接金属の靱性が低下する。一方、被覆剤の被覆率が40%を超えると、スラグ量が過多となってアークが不安定になる。従って、被覆率は25~40%とする。
[Coverage rate: 25 to 40% by mass of coating material based on the total mass of low hydrogen coated arc welding rod]
The coverage rate of the coating material on the outer periphery of the steel core wire has a large effect on the shielding resistance during welding. If the mass percentage (hereinafter simply referred to as %) of the coating agent relative to the total mass of the hydrogen-based coated arc welding rod is less than 25%, the amount of the coating agent itself decreases, resulting in insufficient shielding, and the N content in the weld metal decreases. increases, and the toughness of the weld metal decreases. On the other hand, if the coverage of the coating agent exceeds 40%, the amount of slag becomes excessive and the arc becomes unstable. Therefore, the coverage is set at 25 to 40%.

[Ni:0.5~10.0%]
Niは、金属Niから添加され、溶接金属の靭性を向上させる元素である。Niが0.5%未満では靭性向上の効果が得られない。一方、Niが10.0%を超えると、溶接金属の強度が過剰に高くなり、靭性が低下する。従って、Niは0.5~10.0%以下とする。
[Ni: 0.5-10.0%]
Ni is an element that is added from metal Ni and improves the toughness of weld metal. If Ni is less than 0.5%, the effect of improving toughness cannot be obtained. On the other hand, when Ni exceeds 10.0%, the strength of the weld metal becomes excessively high and the toughness decreases. Therefore, Ni should be 0.5 to 10.0% or less.

[金属B、B合金及びB酸化物の1種又は2種以上のB換算値の合計:0.05~0.50%]
Bは、金属B、Fe-B、Fe-Mn-B、硼砂、コレマナイト等から添加され、微量で焼入れ性を向上させて粒界フェライトの生成抑制に有効な元素で、溶接金属の靭性の向上に効果がある。金属B、B合金及びB酸化物の1種又は2種以上のB換算値の合計が0.05%未満では靭性向上の効果が得られない。一方、金属B、B合金及びB酸化物の1種又は2種以上のB換算値の合計が0.50%を超えると、溶接金属の強度が過剰に高くなり、靭性が低下する。従って、金属B、B合金及びB酸化物の1種又は2種以上のB換算値の合計は0.05~0.50%以下とする。
[Total B conversion value of one or more types of metal B, B alloy, and B oxide: 0.05 to 0.50%]
B is an element added from metal B, Fe-B, Fe-Mn-B, borax, colemanite, etc., and is effective in improving hardenability in small amounts and suppressing the formation of grain boundary ferrite, improving the toughness of weld metal. is effective. If the total B conversion value of one or more of metal B, B alloy, and B oxide is less than 0.05%, the effect of improving toughness cannot be obtained. On the other hand, if the sum of the B equivalent values of one or more of metal B, B alloy, and B oxide exceeds 0.50%, the strength of the weld metal becomes excessively high and the toughness decreases. Therefore, the total B conversion value of one or more of the metal B, B alloy, and B oxide should be 0.05 to 0.50% or less.

[Moの合計:0.5~2.0%]
Moは、金属Mo、Fe-Mo等から添加され、溶接金属の強度をより向上させる効果がある。Moが0.5%未満では、強度向上の効果が得られない。一方、Moが2.0%を超えると、溶接金属の強度が過剰に高くなり、靭性が低下する。従って、Moの合計は0.5~2.0%以下とする。
[Total Mo: 0.5-2.0%]
Mo is added from metal Mo, Fe-Mo, etc., and has the effect of further improving the strength of the weld metal. If Mo is less than 0.5%, the effect of improving strength cannot be obtained. On the other hand, when Mo exceeds 2.0%, the strength of the weld metal becomes excessively high and the toughness decreases. Therefore, the total amount of Mo should be 0.5 to 2.0% or less.

なお、本発明の低水素系被覆アーク溶接棒の被覆剤の残部は、塗装剤、合金粉に含まれる不純物である。塗装剤は、ヘクトライト、マイカ等が用いられ、1種以上を合計で5%以下が好ましい。 The remainder of the coating material of the low-hydrogen coated arc welding rod of the present invention is impurities contained in the coating material and alloy powder. As the coating agent, hectorite, mica, etc. are used, and the total amount of one or more types is preferably 5% or less.

以下、実施例により本発明の効果を具体的に説明する。 EXAMPLES Hereinafter, the effects of the present invention will be specifically explained with reference to Examples.

本実施例は、溶接棒塗装機を用い、表1に示す組成成分の直径4mm、長さ400mmの鋼心線を用いて、表2及び表3に示す組成成分の被覆剤を、表2に示す被覆率で塗装した後、乾燥させて各種低水素系被覆アーク溶接棒を試作した。 In this example, a welding rod coating machine was used to coat a steel core wire with a diameter of 4 mm and a length of 400 mm with the composition shown in Table 1, and a coating agent with the composition shown in Tables 2 and 3 as shown in Table 2. After coating with the indicated coverage, it was dried and various low-hydrogen coated arc welding rods were produced as prototypes.

なお、表1、表2及び表3について「-」との表記はその成分を意図的に含有させていないことを意味する。 Note that in Tables 1, 2, and 3, the notation "-" means that the component was not intentionally included.

製造した溶接棒の耐棒焼け性、被覆の脱落率、溶接作業性、機械性能及び溶接欠陥について調査した。 The stick burn resistance, shedding rate of coating, welding workability, mechanical performance, and welding defects of the manufactured welding rods were investigated.

[耐棒焼け性]
耐棒焼け性は、200Aで残溶接棒長さ50~60mmまで下向溶接した際、被覆が健全であり、溶接棒先端に明確な保護筒が形成されて、棒焼けしていないものを良好とした。
[Stick resistance]
Stick burn resistance is good if the coating is sound, a clear protective tube is formed at the tip of the welding rod, and there is no stick burn when downward welding is performed at 200A with a remaining welding rod length of 50 to 60 mm. And so.

[被覆の脱落率]
耐脱落性の評価は、被覆の脱落率で評価した。約1.5kgの溶接棒を板厚6mmで作成した55mm×300mm×500mmの鋼製の箱に入れ、この箱の長手方向を軸として1分間で40回転の速度で5分間回転させ、被覆剤の脱落した重量割合を測定した。その脱落率が2.0%未満を良好とした。
[Shelling rate of coating]
The shedding resistance was evaluated based on the shedding rate of the coating. Approximately 1.5 kg of welding rod was placed in a 55 mm x 300 mm x 500 mm steel box made with a plate thickness of 6 mm, and rotated for 5 minutes at a speed of 40 revolutions per minute with the longitudinal direction of the box as the axis to remove the coating material. The percentage of weight that had fallen off was measured. A drop-off rate of less than 2.0% was considered good.

[溶接作業性]
溶接作業性の評価は、JIS G 3106 SM490Aの板厚16mm、幅100mm、長さ450mmの鋼板を用い、交流溶接にて、下向、水平すみ肉、立向上進溶接を行い、総合的に感応評価をした。
[Welding workability]
Welding workability was evaluated using JIS G 3106 SM490A steel plates with a thickness of 16 mm, a width of 100 mm, and a length of 450 mm, using AC welding to perform downward, horizontal fillet, and vertical advancement welding. I made an evaluation.

(アーク状態)
溶接中にアークが消失せずに、一定のアーク長が得られ、アークの直進性に乱れが無いものを安定とした。
(arc state)
Welding was considered stable if the arc did not disappear during welding, a constant arc length was obtained, and there was no disturbance in the straightness of the arc.

(ビード形状)
両止端部が揃い、余盛高さ、ビード幅、波目や表面状態が一定なものを良好とした。
(bead shape)
Good results were obtained when both toes were aligned and the overfill height, bead width, wavy pattern, and surface condition were constant.

(スラグ流動性)
溶接中に健全な溶融池が得られ、溶融スラグが溶融池に侵入せずに、溶接棒先端に溶融スラグが接触しなかった場合を良好とした。
(Slag fluidity)
A case where a healthy molten pool was obtained during welding, molten slag did not enter the molten pool, and molten slag did not come into contact with the tip of the welding rod was considered good.

(スラグ剥離性)
溶接後、凝固スラグをチッピングハンマーにて叩いた時、スラグに亀裂が入り、その後簡単に除去できる場合を良好とした。
(Slag removability)
After welding, when the solidified slag was hit with a chipping hammer, a case where cracks appeared in the slag and could be easily removed afterwards was considered good.

[機械性能の評価]
JIS G 3106 SM490Aの板厚20mmの鋼板を用い、JIS Z 3211に準じて、電流極性は交流を用い、溶接電流は150~170A、予熱・パス間温度は90~110℃で溶着金属試験体を作製した。
[Evaluation of machine performance]
Using a JIS G 3106 SM490A steel plate with a thickness of 20 mm, the weld metal specimen was prepared in accordance with JIS Z 3211, using alternating current polarity, a welding current of 150 to 170 A, and a preheating/interpass temperature of 90 to 110°C. Created.

機械性能の評価は、溶着金属の引張強さ及び-30℃でのシャルピー衝撃試験の3回の吸収エネルギー平均値により評価し、引張強さ490MPa以上で吸収エネルギーが80J以上であるものを良好とした。 Mechanical performance was evaluated based on the tensile strength of the weld metal and the average absorbed energy of three Charpy impact tests at -30°C, and those with a tensile strength of 490 MPa or more and an absorbed energy of 80 J or more were considered good. did.

[溶接欠陥]
溶接欠陥(ブローホールなど)は、機械試験片採取前に、JIS Z 3104「鋼溶接継手の放射線透過試験法」により溶接金属におけるきずを判定した。透過写真から「附属書4表1 きずの種別」で第1種~4種のどのきずに該当するか判断し、「6.きずの分類」できずを1類~4類に分ける。このうち1類:A、2類:B、3類及び4類:Cとして、AとBは良好、Cは不良とした。
[Welding defects]
Weld defects (such as blowholes) were determined by determining flaws in the weld metal according to JIS Z 3104 "Radiation transmission test method for steel welded joints" before collecting mechanical test pieces. From the transmissive photograph, determine which flaw falls under "Types 1 to 4" in "Appendix 4 Table 1 Types of Flaws" and classify the flaws that cannot be described in "6. Classification of Flaws" into categories 1 to 4. Among them, Class 1: A, Class 2: B, Class 3 and Class 4: C, A and B were considered good, and C was bad.

これらの分析結果及び調査結果を表4にまとめて示す。 These analysis results and survey results are summarized in Table 4.

表2及び表3中の溶接棒No.1~15が本発明例、溶接棒No.16~31は比較例である。本発明例である溶接棒No.1~15は、被覆剤全質量に対する質量%で、炭酸石灰、炭酸バリウム、蛍石、蛍石の粒度、Ti酸化物のTiO2換算値の合計、Si酸化物のSiO2換算値の合計、Na化合物のNa換算値とK化合物のK換算値の1種又は2種以上の合計、Mg酸化物のMgO換算値の合計、Si、Mn、Fe、Mg、Tiが適量であり、被覆剤を、鋼心線に溶接棒全質量に対する質量%で適量で塗装した。そのため、これらの本発明例では、アークが安定し、ビード形状が良好で、スラグ流動性が良好で、スラグ剥離性が良好で、耐棒焼け性が良好で、被覆の脱落率も少なく、溶接欠陥も無かった。さらに、これらの本発明例では、溶着金属の引張強さ及び吸収エネルギーの機械的性質が良好であった。また、溶接棒No.2、3、5、7、10、12、14は、Niが適正であり、溶接棒No.1、6、7、8、11、13、14は金属B、B合金及びB酸化物の1種又は2種以上のB換算値の合計が適正であるため、吸収エネルギーがより良好であった。一方、溶接棒No.1、2、3、8、9、10、11、13、14はMoが適正であるため、引張強さがより良好であった。 Welding rod No. in Tables 2 and 3. 1 to 15 are examples of the present invention, welding rod No. Nos. 16 to 31 are comparative examples. Welding rod No. which is an example of the present invention. 1 to 15 are mass % based on the total mass of the coating material, the particle size of lime carbonate, barium carbonate, fluorite, fluorite, the sum of the TiO 2 equivalent value of Ti oxide, the sum of the SiO 2 equivalent value of Si oxide, The sum of one or more of the Na equivalent value of the Na compound and the K equivalent value of the K compound, the sum of the MgO equivalent value of the Mg oxide, Si, Mn, Fe, Mg, and Ti are in appropriate amounts, and the coating material is , the steel core wire was coated in an appropriate amount by mass % based on the total mass of the welding rod. Therefore, in these examples of the present invention, the arc is stable, the bead shape is good, the slag fluidity is good, the slag peeling property is good, the stick burn resistance is good, the shedding rate of the coating is low, and the welding There were no defects. Furthermore, in these examples of the present invention, the mechanical properties of the welded metal in terms of tensile strength and absorbed energy were good. Also, welding rod No. For welding rods No. 2, 3, 5, 7, 10, 12, and 14, Ni is appropriate. 1, 6, 7, 8, 11, 13, and 14 had better absorption energy because the sum of the B conversion values of one or more of metal B, B alloy, and B oxide was appropriate. . On the other hand, welding rod No. Nos. 1, 2, 3, 8, 9, 10, 11, 13, and 14 had better tensile strength because Mo was appropriate.

比較例である溶接棒No.16~31では、被覆剤全質量に対する質量%で、成分が本開示で規定する範囲外であったため、1以上の評価項目において不合格となった。 Welding rod No. which is a comparative example. Samples Nos. 16 to 31 failed in one or more evaluation items because the components were outside the range specified in the present disclosure in terms of mass % based on the total mass of the coating material.

溶接棒No.16は、炭酸石灰が少ないので、溶着金属中にブローホールが発生し、吸収エネルギーが低かった。また、Na化合物のNa2О換算値とK化合物のK2О換算値の1種又は2種以上の合計が少ないので、アークが不安定であり、被覆の脱落率が高かった。さらに、B換算値の合計が少ないので吸収エネルギーをさらに向上する効果は得られなかった。 Welding rod no. In No. 16, since there was little lime carbonate, blowholes were generated in the weld metal, and the absorbed energy was low. Furthermore, since the sum of one or more of the Na 2 O equivalent value of the Na compound and the K 2 O equivalent value of the K compound was small, the arc was unstable and the rate of shedding of the coating was high. Furthermore, since the total B conversion value was small, the effect of further improving absorbed energy could not be obtained.

溶接棒No.17は、Siが多いので吸収エネルギーが低値であった。また、Feが少ないので、アークが不安定であった。さらに、Niが少ないので吸収エネルギーをさらに向上する効果は得られなかった。 Welding rod no. Sample No. 17 had a low absorbed energy value because it contained a large amount of Si. Furthermore, since there was little Fe, the arc was unstable. Furthermore, since the amount of Ni was small, the effect of further improving absorbed energy could not be obtained.

溶接棒No.18は、Mnが少ないので溶接金属の強度が低く、ブローホールが発生した。また、Moが少ないので強度をさらに向上する効果は得られなかった。 Welding rod no. In No. 18, the strength of the weld metal was low due to low Mn content, and blowholes occurred. Furthermore, since the amount of Mo was small, no effect of further improving the strength could be obtained.

溶接棒No.19は、炭酸石灰が多いので、アークが不安定となり、ビード形状が凸状になり、スラグ剥離性が悪化していた。また、Siが少ないので、溶接金属中にブローホールが発生した。 Welding rod no. In No. 19, since the amount of lime carbonate was large, the arc became unstable, the bead shape became convex, and the slag removability deteriorated. Furthermore, since there was little Si, blowholes were generated in the weld metal.

溶接棒No.20は、炭酸バリウムが少ないので、アークが不安定となり、ビード外観が不良であった。また、SiO2換算値の合計が多いので、スラグ剥離性が不良であった。 Welding rod no. No. 20 contained less barium carbonate, so the arc became unstable and the bead appearance was poor. Furthermore, since the total SiO 2 equivalent value was large, the slag removability was poor.

溶接棒No.21は、炭酸バリウムが多いのでアーク不安定となった。また、TiO2換算値の合計が多いので、スラグの流動性が悪化し、ビード形状が凸状となった。 Welding rod no. In No. 21, the arc became unstable due to the large amount of barium carbonate. Furthermore, since the total TiO 2 equivalent value was large, the fluidity of the slag deteriorated and the bead shape became convex.

溶接棒No.22は、蛍石が少ないので、スラグの流動性が悪くなり、ビード形状が不良となった。また、MgO換算値の合計が少ないので、耐棒焼け性が不良となり、被覆の脱落率が高かった。 Welding rod no. Sample No. 22 had a small amount of fluorite, so the fluidity of the slag was poor and the bead shape was poor. Furthermore, since the total MgO equivalent value was small, the stick scorch resistance was poor and the rate of shedding of the coating was high.

溶接棒No.23は、蛍石が多いので、片溶け状態となり、アークが不安定となった。また、B換算値が多いので強度が高くなり、吸収エネルギーが低値であった。 Welding rod no. Since No. 23 contained a large amount of fluorite, it became a one-sided melting state and the arc became unstable. In addition, since the B conversion value was large, the strength was high and the absorbed energy was low.

溶接棒No.24は、TiO2換算値の合計が少ないので、ビード形状が不良であった。 Welding rod no. Sample No. 24 had a poor bead shape because the total TiO 2 equivalent value was small.

また、Mnが多いので強度が高くなり、吸収エネルギーが低値であった。 In addition, since there was a large amount of Mn, the strength was high and the absorbed energy was low.

溶接棒No.25は、SiO2換算値の合計が少ないので、スラグの流動性が低く、ビード形状が不良であった。また、Tiが多いので、吸収エネルギーが低値であった。 Welding rod no. No. 25 had a low total SiO 2 equivalent value, so the fluidity of the slag was low and the bead shape was poor. Furthermore, since there was a large amount of Ti, the absorbed energy was low.

溶接棒No.26は、Na化合物のNa2О換算値とK化合物のK2О換算値の1種又は2種以上の合計が多いので、アークが不安定となった。また、Moが多いので強度が高くなり、吸収エネルギーが低値であった。 Welding rod no. In No. 26, the arc became unstable because the sum of one or more of the Na 2 O equivalent value of the Na compound and the K 2 O equivalent value of the K compound was large. In addition, since there was a large amount of Mo, the strength was high and the absorbed energy was low.

溶接棒No.27は、MgO換算値の合計が多いのでスラグの流動性が不良となり、ビード形状が凸状となった。また、Niが多いので強度が高くなり、吸収エネルギーが低値であった。 Welding rod no. No. 27 had a large total MgO equivalent value, so the fluidity of the slag was poor and the bead shape was convex. In addition, since there was a large amount of Ni, the strength was high and the absorbed energy was low.

溶接棒No.28は、蛍石における粒度が75μm以上の粒子が少ないので、耐棒焼け性が不良であり、溶着金属中にブローホールが発生した。また、Feが多いのでビード形状が不良であった。 Welding rod no. In No. 28, there were few particles with a particle size of 75 μm or more in the fluorite, so the burn resistance was poor and blowholes were generated in the weld metal. In addition, the bead shape was poor because of the large amount of Fe.

溶接棒No.29は、被覆剤の被覆率が低かったため、吸収エネルギーが低値であった。また、Mgが多いので、アークが不安定となり、ビード形状が不良であった。 Welding rod no. Sample No. 29 had a low absorption energy value because the coating rate of the coating material was low. Furthermore, since there was a large amount of Mg, the arc became unstable and the bead shape was poor.

溶接棒No.30は、被覆剤の被覆率が高かったため、アークが不安定となった。また、TiO2換算値の合計が少ないので、ビード形状が不良であった。 Welding rod no. In No. 30, the arc became unstable because the coverage of the coating material was high. Furthermore, since the total TiO 2 equivalent value was small, the bead shape was poor.

溶接棒No.31は、SiO2換算値の合計が少ないので、スラグの流動性が低く、ビード形状が不良であった。また、Na化合物のNa2О換算値とK化合物のK2О換算値の1種又は2種以上の合計が多いので、アークが不安定であった。 Welding rod no. Sample No. 31 had a low total SiO 2 equivalent value, so the fluidity of the slag was low and the bead shape was poor. Further, since the sum of one or more of the Na 2 O equivalent value of the Na compound and the K 2 O equivalent value of the K compound was large, the arc was unstable.

Claims (3)

鋼心線に被覆剤が塗装されている低水素系被覆アーク溶接棒において、
前記被覆剤は、被覆剤全質量に対する質量%で、
炭酸石灰:25~55%、
炭酸バリウム:2~6%、
蛍石:10~25%、かつ、蛍石の粒度が、蛍石の重量%で75μm以上の粒子:70%以上、
Ti酸化物のTiO2換算値の合計:2.0~5.0%、
Si酸化物のSiO2換算値の合計:4~10%、
Na化合物のNa換算値とK化合物のK換算値の1種又は2種以上の合計:1.6~2.5%、
Mg酸化物のMgO換算値の合計:0.12~0.40%、
Si:2~6%、
Mn:2.0~5.5%、
Fe:5~15%を含有し、
Mg:1.0%以下、
Ti:1.0%以下であり、
残部は塗装剤及び不純物からなる被覆剤を、鋼心線に低水素系被覆アーク溶接棒全質量に対する質量%で25~40%の被覆率で塗装したことを特徴とする低水素系被覆アーク溶接棒。
In low-hydrogen coated arc welding rods whose steel core wire is coated with coating material,
The coating material has a mass % based on the total mass of the coating material,
Carbonated lime: 25-55%,
Barium carbonate: 2-6%,
Fluorite: 10 to 25%, and particles in which the particle size of fluorite is 75 μm or more in weight% of fluorite: 70% or more,
Total TiO 2 equivalent value of Ti oxide: 2.0 to 5.0%,
Total SiO 2 equivalent value of Si oxide: 4 to 10%,
Total of one or more of the Na equivalent value of the Na compound and the K equivalent value of the K compound: 1.6 to 2.5%,
Total MgO equivalent value of Mg oxide: 0.12 to 0.40%,
Si: 2-6%,
Mn: 2.0 to 5.5%,
Contains Fe: 5 to 15%,
Mg: 1.0% or less,
Ti: 1.0% or less,
Low-hydrogen coated arc welding characterized in that the steel core wire is coated with a coating agent, the remainder of which is a coating agent and impurities, at a coverage rate of 25 to 40% by mass based on the total mass of the low-hydrogen coated arc welding rod. rod.
被覆剤全質量に対する質量%で、
Ni:0.5~10.0%、
金属B、B合金及びB酸化物の1種又は2種以上のB換算値の合計:0.05~0.50%の1種または2種を更に含有することを特徴とする請求項1に記載の低水素系被覆アーク溶接棒。
Mass% based on the total mass of the coating material,
Ni: 0.5-10.0%,
According to claim 1, further containing one or more of metal B, B alloy, and B oxide, with a total B equivalent value of 0.05 to 0.50%. The low hydrogen-based coated arc welding rod described above.
被覆剤全質量に対する質量%で、
Mo:0.5~2.0%を更に含有することを特徴とする請求項1又は2に記載の低水素系被覆アーク溶接棒。
Mass% based on the total mass of the coating material,
The low hydrogen-based coated arc welding rod according to claim 1 or 2, further comprising Mo: 0.5 to 2.0%.
JP2023045696A 2022-03-31 2023-03-22 Low hydrogen type coated electrode Pending JP2023152852A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022059965 2022-03-31
JP2022059965 2022-03-31

Publications (1)

Publication Number Publication Date
JP2023152852A true JP2023152852A (en) 2023-10-17

Family

ID=88349611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023045696A Pending JP2023152852A (en) 2022-03-31 2023-03-22 Low hydrogen type coated electrode

Country Status (1)

Country Link
JP (1) JP2023152852A (en)

Similar Documents

Publication Publication Date Title
JP5179073B2 (en) Flux-cored wire for gas shielded arc welding
JP2010110817A (en) Low-hydrogen coated electrode
JP6437471B2 (en) Low hydrogen coated arc welding rod
JP5367312B2 (en) High cellulosic coated arc welding rod
JP7387450B2 (en) Iron powder low hydrogen coated arc welding rod
JP2020131221A (en) Baked flux for submerged arc welding for high-strength steel
JP3552375B2 (en) Large heat input latent arc welding method for thick steel plate with excellent toughness of weld metal
JP7210410B2 (en) Iron Powder Low Hydrogen Type Coated Arc Welding Rod
JP6688162B2 (en) Illuminite coated arc welding rod
JP2023152852A (en) Low hydrogen type coated electrode
JP2022153136A (en) Low-hydrogen iron-powder coated arc welding rod
JP2018114515A (en) Coated electrode for low hydrogen type fillet welding
JP7506017B2 (en) Low hydrogen iron powder covered metal arc welding rod
JP7506043B2 (en) Shielded metal arc welding electrodes
JP6845094B2 (en) High titanium oxide shielded metal arc welding rod
JP7383513B2 (en) Covered arc welding rod for 9% Ni steel welding
JP7239437B2 (en) Iron Powder Low Hydrogen Type Coated Arc Welding Rod
JP7039353B2 (en) Low hydrogen coated arc welding rod
JP6938361B2 (en) Lime titania-based shielded metal arc welding rod
JP2022141504A (en) Low hydrogen type coated electrode
JP2024112534A (en) Low hydrogen type covered electrode
JP7346328B2 (en) Low hydrogen coated arc welding rod for horizontal fillet welding
JP6987800B2 (en) Illuminite-based shielded metal arc welding rod
JP2022157343A (en) Low hydrogen type coated arc welding rod
JP3184743B2 (en) Covered arc welding rod for low hydrogen vertical down welding