JP2023150515A - Controller of internal combustion engine - Google Patents

Controller of internal combustion engine Download PDF

Info

Publication number
JP2023150515A
JP2023150515A JP2022059661A JP2022059661A JP2023150515A JP 2023150515 A JP2023150515 A JP 2023150515A JP 2022059661 A JP2022059661 A JP 2022059661A JP 2022059661 A JP2022059661 A JP 2022059661A JP 2023150515 A JP2023150515 A JP 2023150515A
Authority
JP
Japan
Prior art keywords
valve
intake
internal combustion
combustion engine
lift amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022059661A
Other languages
Japanese (ja)
Inventor
陽介 中田
Yosuke Nakata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2022059661A priority Critical patent/JP2023150515A/en
Publication of JP2023150515A publication Critical patent/JP2023150515A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

To contribute to further reducing mechanical loss in an internal combustion engine comprising a plurality of suction valves for each cylinder.SOLUTION: An internal combustion engine is configured such that a plurality of suction valves is provided in one cylinder, and a maximum lift amount of one suction valve or timing at which the maximum lift amount is taken is made different from a maximum lift amount of another suction valve or timing at which the maximum lift amount is taken. Then, the internal combustion engine is configured such that a spring constant of a spring that elastically biases a valve body of the one suction valve in a closing direction and a spring constant of a spring that elastically biases the valve body of the other suction valve in the closing direction are set to different values.SELECTED DRAWING: Figure 3

Description

本発明は、動力源として車両等に搭載される内燃機関に関する。 The present invention relates to an internal combustion engine mounted on a vehicle or the like as a power source.

4ストロークレシプロエンジンとして、各気筒毎に複数の吸気ポート及び吸気バルブを設けている、いわゆるマルチバルブエンジンが公知である(例えば、下記特許文献を参照)。 As a four-stroke reciprocating engine, a so-called multi-valve engine in which each cylinder is provided with a plurality of intake ports and intake valves is known (see, for example, the following patent documents).

特開2016-044723号公報Japanese Patent Application Publication No. 2016-044723

内燃機関の出力及び燃費性能の一層の向上を図るためのアプローチとして、気筒の吸排気バルブを開閉駆動することに伴う機械損失の低減が挙げられる。一般的なマルチバルブエンジンでは、一つの気筒に実装される複数のバルブを同数のカムローブにより同時に押圧してこれらを開弁させる。このため、各バルブの弁体を閉じる方向に弾性付勢しているバルブスプリングからカムシャフトが受ける反力の和が大きくなり、タペット(または、バルブリフタ)とカムローブとの間の摩擦も増大する。 One approach to further improve the output and fuel efficiency of internal combustion engines is to reduce the mechanical loss associated with opening and closing intake and exhaust valves of cylinders. In a typical multi-valve engine, multiple valves mounted in one cylinder are simultaneously pressed by the same number of cam lobes to open them. Therefore, the sum of the reaction forces that the camshaft receives from the valve springs that elastically bias the valve bodies of each valve in the closing direction increases, and the friction between the tappet (or valve lifter) and the cam lobe also increases.

バルブリフト量(開弁量)を小さくしたり、バルブスプリングのばね定数を小さくしたりすれば、カムシャフトが受ける反力を小さくし、タペットとカムローブとの間の摩擦を軽減することが可能である。しかしながら、バルブリフト量を縮小すると、気筒に流入する吸気量が減少する上、筒内流動、特に空気と燃料とをよく混合するために重要なタンブル流も弱くなって、内燃機関の出力、燃費及びエミッションに悪影響をもたらす。また、単純にバルブスプリングのばね定数を小さくすると、共振が発生しやすくなるという別の問題を招く。 By reducing the valve lift amount (valve opening amount) or reducing the spring constant of the valve spring, it is possible to reduce the reaction force applied to the camshaft and reduce the friction between the tappet and cam lobe. be. However, reducing the valve lift amount not only reduces the amount of intake air flowing into the cylinder, but also weakens the in-cylinder flow, especially the tumble flow, which is important for mixing air and fuel well, which reduces the output of the internal combustion engine and fuel efficiency. and have a negative impact on emissions. Furthermore, simply reducing the spring constant of the valve spring causes another problem in that resonance is more likely to occur.

本発明は、各気筒毎に複数の吸気バルブを備える内燃機関にあって、機械損失のさらなる低減に寄与することを所期の目的としている。 An objective of the present invention is to contribute to further reduction of mechanical loss in an internal combustion engine having a plurality of intake valves for each cylinder.

本発明では、一つの気筒に複数の吸気バルブを設け、そのうち一方の吸気バルブの最大リフト量または最大リフト量をとるタイミングと、他方の吸気バルブの最大リフト量または最大リフト量をとるタイミングとを異ならせた内燃機関を構成した。 In the present invention, a plurality of intake valves are provided in one cylinder, and the timing at which one of the intake valves takes the maximum lift amount or the maximum lift amount, and the timing when the other intake valve takes the maximum lift amount or maximum lift amount are determined. Different internal combustion engines were constructed.

より好ましくは、前記一方の吸気バルブの弁体を閉じる方向に弾性付勢するスプリングのばね定数と、前記他方の吸気バルブの弁体を閉じる方向に弾性付勢するスプリングのばね定数とを異なる大きさに設定する。 More preferably, the spring constant of the spring that elastically biases the valve body of the one intake valve in the closing direction and the spring constant of the spring that elastically biases the valve body of the other intake valve in the direction of closing are set to be different. Set to

本発明によれば、各気筒毎に複数の吸気バルブを備える内燃機関における機械損失のさらなる低減に寄与し得る。 According to the present invention, it is possible to contribute to further reduction of mechanical loss in an internal combustion engine including a plurality of intake valves for each cylinder.

本発明の一実施形態における車両用内燃機関及び制御装置の概略構成を示す図。1 is a diagram showing a schematic configuration of a vehicle internal combustion engine and a control device according to an embodiment of the present invention. 同実施形態の内燃機関の吸気バルブ及び吸気カムシャフトを示す斜視図。FIG. 3 is a perspective view showing an intake valve and an intake camshaft of the internal combustion engine of the same embodiment. 同実施形態の内燃機関の一つの気筒が備える複数の吸気バルブの一方のリフト量と他方のそれとの関係を例示するタイミング図。FIG. 3 is a timing chart illustrating the relationship between the lift amount of one of the plurality of intake valves included in one cylinder of the internal combustion engine of the same embodiment and that of the other. 同実施形態の内燃機関の一つの気筒が備える複数の吸気バルブの一方のリフト量と他方のそれとの関係を例示するタイミング図。FIG. 3 is a timing chart illustrating the relationship between the lift amount of one of the plurality of intake valves included in one cylinder of the internal combustion engine of the same embodiment and that of the other. 同実施形態の内燃機関の一つの気筒が備える複数の吸気バルブの一方のリフト量と他方のそれとの関係を例示するタイミング図。FIG. 3 is a timing chart illustrating the relationship between the lift amount of one of the plurality of intake valves included in one cylinder of the internal combustion engine of the same embodiment and that of the other.

本発明の一実施形態を、図面を参照して説明する。図1に、本実施形態における車両用内燃機関の概要を示す。本実施形態の内燃機関は、ポート噴射式の4ストローク火花点火レシプロエンジンであり、複数の気筒1(例えば、三気筒。図1には、そのうち一つを図示している)を包有する。各気筒1の吸気ポートの近傍には、吸気ポートに向けて燃料を噴射するインジェクタ11を気筒1毎に設けている。また、各気筒1の燃焼室の天井部に、点火プラグ12を取り付けてある。点火プラグ12は、点火コイルにて発生した誘導電圧の印加を受けて、中心電極と接地電極との間で火花放電を惹起するものである。点火コイルは、半導体スイッチング素子であるイグナイタとともに、コイルケースに一体的に内蔵される。 An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an overview of a vehicle internal combustion engine in this embodiment. The internal combustion engine of this embodiment is a port injection type four-stroke spark ignition reciprocating engine, and includes a plurality of cylinders 1 (for example, three cylinders, one of which is shown in FIG. 1). In the vicinity of the intake port of each cylinder 1, an injector 11 is provided for each cylinder 1 to inject fuel toward the intake port. Further, a spark plug 12 is attached to the ceiling of the combustion chamber of each cylinder 1. The spark plug 12 causes a spark discharge between a center electrode and a ground electrode upon application of an induced voltage generated in an ignition coil. The ignition coil is integrally built into the coil case together with the igniter, which is a semiconductor switching element.

吸気を供給するための吸気通路3は、外部から空気を取り入れて各気筒1の吸気ポートへと導く。吸気通路3上には、エアクリーナ31、吸気絞り弁である電子スロットルバルブ32、サージタンク33、吸気マニホルド34を、上流からこの順序に配置している。 The intake passage 3 for supplying intake air takes in air from the outside and guides it to the intake port of each cylinder 1. On the intake passage 3, an air cleaner 31, an electronic throttle valve 32 which is an intake throttle valve, a surge tank 33, and an intake manifold 34 are arranged in this order from upstream.

排気を排出するための排気通路4は、気筒1内で燃料を燃焼させた結果発生した排気を各気筒1の排気ポートから外部へと導く。この排気通路4上には、排気マニホルド42及び排気浄化用の三元触媒41を配置している。 The exhaust passage 4 for discharging exhaust gas guides the exhaust gas generated as a result of burning fuel in the cylinders 1 from the exhaust port of each cylinder 1 to the outside. An exhaust manifold 42 and a three-way catalyst 41 for exhaust purification are arranged on the exhaust passage 4.

排気ガス再循環(Exhaust Gas Recirculation)装置2は、排気通路4と吸気通路3とを連通する外部EGR通路21と、EGR通路21上に設けたEGRクーラ22と、EGR通路21を開閉し当該EGR通路21を流れるEGRガスの流量を制御するEGRバルブ23とを要素とする。EGR通路21の入口は、排気通路4における触媒41の下流の所定箇所に接続している。EGR通路21の出口は、吸気通路3におけるスロットルバルブ32の下流の所定箇所(特に、サージタンク33若しくは吸気マニホルド34)に接続している。 The exhaust gas recirculation device 2 includes an external EGR passage 21 that communicates the exhaust passage 4 and the intake passage 3, an EGR cooler 22 provided on the EGR passage 21, and an EGR passage 21 that opens and closes the EGR passage 21. The element includes an EGR valve 23 that controls the flow rate of EGR gas flowing through the passage 21. The entrance of the EGR passage 21 is connected to a predetermined location downstream of the catalyst 41 in the exhaust passage 4 . The outlet of the EGR passage 21 is connected to a predetermined location downstream of the throttle valve 32 in the intake passage 3 (in particular, the surge tank 33 or the intake manifold 34).

本実施形態にあって、内燃機関の運転制御を司る電子制御装置(Electronic Control Unit)0は、プロセッサ、メモリ、入力インタフェース、出力インタフェース等を有したマイクロコンピュータシステムである。ECU0は、複数基のECUまたはコントローラがCAN(Controller Area Network)等の電気通信回線を介して相互に通信可能に接続されてなるものであることがある。 In this embodiment, an electronic control unit 0 that controls the operation of the internal combustion engine is a microcomputer system that includes a processor, a memory, an input interface, an output interface, and the like. The ECU0 may include a plurality of ECUs or controllers connected to each other so as to be communicable via a telecommunication line such as a CAN (Controller Area Network).

ECU0の入力インタフェースには、車両の実車速を検出する車速センサから出力される車速信号a、内燃機関のクランクシャフトの回転角度及びエンジン回転数を検出するクランク角センサから出力されるクランク角信号b、運転者によるアクセルペダルの踏込量(アクセル開度、換言すれば要求されるエンジントルクまたはエンジン負荷率)を検出するセンサから出力されるアクセル開度信号c、気筒1に連なる吸気通路3(スロットルバルブ32の下流、特に、サージタンク33若しくは吸気マニホルド34)内の吸気温及び吸気圧を検出する温度・圧力センサから出力される吸気温・吸気圧信号d、内燃機関の冷却水温を検出する水温センサから出力される冷却水温信号e、車両の加速度または車両が現在所在している路面の勾配を検出する加速度センサから出力される加速度信号f、内燃機関の吸気カムシャフト13の複数のカム角にてカム角センサから出力されるカム角信号g、運転者が操作するスイッチやセレクタレバー(に付随するポジションセンサ)等から出力される信号h等が入力される。 The input interface of ECU0 includes a vehicle speed signal a output from a vehicle speed sensor that detects the actual vehicle speed of the vehicle, and a crank angle signal b output from a crank angle sensor that detects the rotation angle and engine rotation speed of the crankshaft of the internal combustion engine. , an accelerator opening signal c output from a sensor that detects the amount of depression of the accelerator pedal by the driver (accelerator opening, in other words, required engine torque or engine load factor); An intake temperature/intake pressure signal d output from a temperature/pressure sensor that detects the intake air temperature and intake pressure downstream of the valve 32, particularly in the surge tank 33 or intake manifold 34), and a water temperature that detects the cooling water temperature of the internal combustion engine. A cooling water temperature signal e outputted from a sensor, an acceleration signal f outputted from an acceleration sensor that detects the acceleration of the vehicle or the gradient of the road surface on which the vehicle is currently located, and multiple cam angles of the intake camshaft 13 of the internal combustion engine. A cam angle signal g outputted from a cam angle sensor, a signal h outputted from a switch operated by the driver, a selector lever (a position sensor attached thereto), etc. are input.

ECU0の出力インタフェースからは、点火プラグ12に付随するイグナイタに対して点火信号i、インジェクタ11に対して燃料噴射信号j、スロットルバルブ32に対して開度操作信号k、EGRバルブ23に対して開度操作信号l等を出力する。 From the output interface of the ECU0, an ignition signal i is sent to the igniter attached to the spark plug 12, a fuel injection signal j is sent to the injector 11, an opening operation signal k is sent to the throttle valve 32, and an opening signal is sent to the EGR valve 23. outputs an operation signal l, etc.

ECU0のプロセッサは、メモリに格納されているプログラムを解釈、実行し、運転パラメータを演算して内燃機関の運転を制御する。ECU0は、制御に必要な各種情報a、b、c、d、e、f、g、hを入力インタフェースを介して取得し、エンジン回転数を知得するとともに気筒1に吸入される空気(新気)量を推算する。そして、吸入空気量に見合った(理論空燃比またはその近傍の目標空燃比を達成できるような)要求燃料噴射量、燃料噴射タイミング(一度の燃焼に対する燃料噴射の回数を含む)、燃料噴射圧、点火タイミング(一度の燃焼に対する点火の回数を含む)、要求EGR率(または、EGRガス量、EGRガス分圧)等といった各種運転パラメータを決定する。ECU0は、運転パラメータに対応した各種制御信号i、j、k、lを出力インタフェースを介して印加する。 The processor of ECU0 interprets and executes programs stored in memory, calculates operating parameters, and controls the operation of the internal combustion engine. ECU0 acquires various information a, b, c, d, e, f, g, h necessary for control via the input interface, learns the engine rotation speed, and detects the air (fresh air) taken into cylinder 1. ) Estimate the amount. Then, the required fuel injection amount commensurate with the intake air amount (to achieve the stoichiometric air-fuel ratio or a target air-fuel ratio close to it), fuel injection timing (including the number of fuel injections for one combustion), fuel injection pressure, Various operating parameters such as ignition timing (including the number of ignitions for one combustion), required EGR rate (or EGR gas amount, EGR gas partial pressure), etc. are determined. ECU0 applies various control signals i, j, k, l corresponding to operating parameters via an output interface.

図2に示すように、本実施形態の内燃機関は、各気筒1毎に複数の吸気ポート及び吸気バルブ14を備えている。各吸気ポートを開閉するポペット弁体141、142はそれぞれ、バルブスプリング143、144により閉じる方向、即ち弁座に着座する方向に弾性付勢されている。吸気バルブ14を開閉駆動するカムシャフト13には、各気筒1毎に吸気バルブ14と同数のカムローブ131、132を突設してある。各カムローブ131、132がバルブタペットに接触してこれを押圧すると、吸気バルブ14の弁体141、142がスプリング143、144の弾性付勢力に抗して押し下げられ、弁体141、142が弁座から離反する、つまりは吸気バルブ14が開く。 As shown in FIG. 2, the internal combustion engine of this embodiment includes a plurality of intake ports and intake valves 14 for each cylinder 1. Poppet valve bodies 141 and 142 that open and close each intake port are elastically biased by valve springs 143 and 144, respectively, in the direction of closing, that is, in the direction of seating on the valve seat. A camshaft 13 that drives the intake valves 14 to open and close is provided with protruding cam lobes 131 and 132 of the same number as the intake valves 14 for each cylinder 1. When each of the cam lobes 131, 132 contacts and presses the valve tappet, the valve bodies 141, 142 of the intake valve 14 are pushed down against the elastic urging force of the springs 143, 144, and the valve bodies 141, 142 are pressed against the valve seat. In other words, the intake valve 14 opens.

本実施形態では、一つの気筒1の複数の吸気バルブ14の弁体141、142を各々駆動する第一カムローブ131のプロフィールと第二カムローブ131のプロフィールとを異ならせている。換言すれば、カムシャフト13の軸心方向(カムシャフト13の中心軸が伸びる方向に平行な方向)から見たときに、第一カムローブ131と第二カムローブ132とが完全に重なり合わない。 In this embodiment, the profile of the first cam lobe 131 and the profile of the second cam lobe 131 that respectively drive the valve bodies 141 and 142 of the plurality of intake valves 14 of one cylinder 1 are made different. In other words, when viewed from the axial direction of the camshaft 13 (a direction parallel to the direction in which the central axis of the camshaft 13 extends), the first cam lobe 131 and the second cam lobe 132 do not completely overlap.

図3に示す例では、第一弁体141を駆動する第一カムローブ131の中心角と、第二弁体142を駆動する第二カムローブ132の中心角とをカムシャフト13の回転方向に沿ってずらすことで、第二弁体142のリフト量(破線で表す)が最大となるタイミングを、第一弁体141のリフト量(実線で表す)が最大となるタイミングから、クランク角度換算で最大5°CA遅らせている。これにより、吸気バルブ14の両弁体141、142を押し開こうとするカムシャフト13に作用する反力の最大値が減少する。さらに、第二弁体142を付勢するスプリング144のばね定数を、第一弁体141を付勢するスプリング143のばね定数よりも小さく設定して、共振の発生を抑制しながら、バルブタペットとカムローブ132との間の摩擦を軽減することができる。 In the example shown in FIG. 3, the center angle of the first cam lobe 131 that drives the first valve body 141 and the center angle of the second cam lobe 132 that drives the second valve body 142 are set along the rotation direction of the camshaft 13. By shifting, the timing at which the lift amount (represented by the broken line) of the second valve element 142 reaches its maximum can be changed by up to 5 times in terms of crank angle from the timing at which the lift amount (represented by the solid line) of the first valve element 141 reaches its maximum. °CA is delayed. As a result, the maximum value of the reaction force acting on the camshaft 13 that tries to push open both the valve bodies 141 and 142 of the intake valve 14 is reduced. Furthermore, the spring constant of the spring 144 that biases the second valve body 142 is set to be smaller than the spring constant of the spring 143 that biases the first valve body 141, thereby suppressing the occurrence of resonance and allowing the valve tappet to Friction between the cam lobe 132 and the cam lobe 132 can be reduced.

図4に示す例では、第一弁体141を駆動する第一カムローブ131に比して、第二弁体142を駆動する第二カムローブ132を低くし、第二弁体142のリフト量(破線で表す)の最大値を、第一弁体141のリフト量(実線で表す)の最大値よりも小さくしている。両者の差は、2mm以下とする。これにより、吸気バルブ14の両弁体141、142を押し開こうとするカムシャフト13に作用する反力の最大値が減少する。さらに、第二弁体142を付勢するスプリング144のばね定数を、第一弁体141を付勢するスプリング143のばね定数よりも小さく設定して、共振の発生を抑制しながら、バルブタペットとカムローブ132との間の摩擦を軽減することができる。 In the example shown in FIG. 4, the second cam lobe 132 that drives the second valve body 142 is made lower than the first cam lobe 131 that drives the first valve body 141, and the lift amount of the second valve body 142 (broken line The maximum value of the lift amount (represented by a solid line) of the first valve body 141 is made smaller than the maximum value of the lift amount (represented by a solid line) of the first valve body 141. The difference between the two shall be 2 mm or less. As a result, the maximum value of the reaction force acting on the camshaft 13 that tries to push open both the valve bodies 141 and 142 of the intake valve 14 is reduced. Furthermore, the spring constant of the spring 144 that biases the second valve body 142 is set to be smaller than the spring constant of the spring 143 that biases the first valve body 141, thereby suppressing the occurrence of resonance and allowing the valve tappet to Friction between the cam lobe 132 and the cam lobe 132 can be reduced.

図5に示す例は、図3に示す例と図4に示す例との組み合わせである。やはり、吸気バルブ14の両弁体141、142を押し開こうとするカムシャフト13に作用する反力の最大値が減少する。さらに、第二弁体142を付勢するスプリング144のばね定数を、第一弁体141を付勢するスプリング143のばね定数よりも小さく設定して、共振の発生を抑制しながら、バルブタペットとカムローブ132との間の摩擦を軽減することができる。 The example shown in FIG. 5 is a combination of the example shown in FIG. 3 and the example shown in FIG. Again, the maximum value of the reaction force acting on the camshaft 13 that tries to push open both valve bodies 141 and 142 of the intake valve 14 is reduced. Furthermore, the spring constant of the spring 144 that biases the second valve body 142 is set to be smaller than the spring constant of the spring 143 that biases the first valve body 141, thereby suppressing the occurrence of resonance and allowing the valve tappet to Friction between the cam lobe 132 and the cam lobe 132 can be reduced.

なお、一つの気筒1に連なる複数の吸気ポートに個別にインジェクタ11を設置している場合、第一弁体141が開閉する吸気ポートに臨むインジェクタ11から噴射する燃料の量に比して、第二弁体142が開閉する吸気ポートに臨むインジェクタ11から噴射する燃料の量をより減量することも考えられる。 Note that when the injectors 11 are individually installed in a plurality of intake ports connected to one cylinder 1, the amount of fuel injected from the injector 11 facing the intake port opened and closed by the first valve body 141 is It is also conceivable to further reduce the amount of fuel injected from the injector 11 facing the intake port where the two valve bodies 142 open and close.

本実施形態によれば、気筒1に流入する吸気量を必要十分に確保し、筒内流動特にタンブル流を効果的に発生させながら、吸気バルブ14の開閉駆動に伴う機械損失のより一層の低減を図ることができる。 According to the present embodiment, the necessary and sufficient amount of intake air flowing into the cylinder 1 is ensured, and while the in-cylinder flow, particularly the tumble flow, is effectively generated, the mechanical loss accompanying the opening/closing drive of the intake valve 14 is further reduced. can be achieved.

本発明は、以上に詳述した実施形態に限られるものではない。各部の具体的構成等は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。 The present invention is not limited to the embodiments detailed above. The specific configuration of each part can be modified in various ways without departing from the spirit of the present invention.

0…制御装置(ECU)
1…気筒
13…吸気カムシャフト
131、132…カムローブ
14…バルブ
141、142…弁体
143、144…バルブスプリング
0...Control unit (ECU)
1...Cylinder 13...Intake camshaft 131, 132...Cam lobe 14...Valve 141, 142...Valve body 143, 144...Valve spring

Claims (2)

一つの気筒に複数の吸気バルブを設け、
そのうち一方の吸気バルブの最大リフト量または最大リフト量をとるタイミングと、他方の吸気バルブの最大リフト量または最大リフト量をとるタイミングとを異ならせる内燃機関。
Multiple intake valves are provided in one cylinder,
An internal combustion engine in which the maximum lift amount or the timing at which one of the intake valves takes the maximum lift amount is different from the maximum lift amount or the timing at which the other intake valve takes the maximum lift amount.
前記一方の吸気バルブの弁体を閉じる方向に弾性付勢するスプリングのばね定数と、前記他方の吸気バルブの弁体を閉じる方向に弾性付勢するスプリングのばね定数とを異ならせる請求項1記載の内燃機関。 2. The spring constant of the spring that elastically biases the valve body of the one intake valve in the closing direction is different from the spring constant of the spring that elastically biases the valve body of the other intake valve in the closing direction. internal combustion engine.
JP2022059661A 2022-03-31 2022-03-31 Controller of internal combustion engine Pending JP2023150515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022059661A JP2023150515A (en) 2022-03-31 2022-03-31 Controller of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022059661A JP2023150515A (en) 2022-03-31 2022-03-31 Controller of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2023150515A true JP2023150515A (en) 2023-10-16

Family

ID=88327526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022059661A Pending JP2023150515A (en) 2022-03-31 2022-03-31 Controller of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2023150515A (en)

Similar Documents

Publication Publication Date Title
US5950582A (en) Internal combustion engine with variable camshaft timing and intake valve masking
US7128044B1 (en) Engine control with variable control valve
US6640756B2 (en) Electromagnetic valve controller of an internal combustion engine
US9670866B2 (en) Control device and control method for internal combustion engine
EP1878892A2 (en) Spark ignition type multi-cylinder engine
US20110283688A1 (en) Operation control device and operation control method for multi-cylinder internal combustion engine
JP5589906B2 (en) gasoline engine
EP1520969B1 (en) Control device for spark-ignition engine
US10704504B1 (en) Deceleration cylinder cut-off (DCCO) methodology with enhanced EGR
EP3415745A1 (en) Engine control device
JP4098684B2 (en) Control device for compression ignition internal combustion engine
JP2023150515A (en) Controller of internal combustion engine
EP2063092A1 (en) An internal combustion engine system, and a method in such an engine system
JP6252006B2 (en) Engine control device
JP4102268B2 (en) Compression ignition internal combustion engine
CN111706439A (en) System and method for cylinder deactivation in a dedicated EGR engine
US6758195B1 (en) System and method for fast exhaust gas recirculation in a combustion chamber
JP2020133593A (en) Internal combustion engine
US8219301B2 (en) Control device for internal combustion engine
US6736105B1 (en) Control system for direct injection spark ignition engines with a cam profile switching device
JP6548571B2 (en) Internal combustion engine
JP7218051B2 (en) Control device for internal combustion engine
US7917280B2 (en) Method and device for operating an internal combustion engine
JPS622138B2 (en)
JP2020139410A (en) Internal combustion engine control device