JP2023135097A - suspension control device - Google Patents

suspension control device Download PDF

Info

Publication number
JP2023135097A
JP2023135097A JP2022040129A JP2022040129A JP2023135097A JP 2023135097 A JP2023135097 A JP 2023135097A JP 2022040129 A JP2022040129 A JP 2022040129A JP 2022040129 A JP2022040129 A JP 2022040129A JP 2023135097 A JP2023135097 A JP 2023135097A
Authority
JP
Japan
Prior art keywords
vehicle
data
learning
value
state quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022040129A
Other languages
Japanese (ja)
Inventor
諒 松浦
Ryo Matsuura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Astemo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Astemo Ltd filed Critical Hitachi Astemo Ltd
Priority to JP2022040129A priority Critical patent/JP2023135097A/en
Publication of JP2023135097A publication Critical patent/JP2023135097A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)

Abstract

To provide a suspension control device which can effectively extract learning data and improve the accuracy of an output by AI.SOLUTION: A variable damper 6 (force generation mechanism) is provided so as to be interposed between a vehicle body 1 and a wheel 2 of a vehicle. A suspension control device controls the variable damper 6 which can adjust force between the vehicle body 1 and the wheel 2. The suspension control device comprises: an on-spring acceleration sensor 8 and a vehicle height sensor 9 as a vehicle state amount acquisition unit which detects a state amount of the vehicle; and an AI learning unit 23 which learns a command value to the variable damper 6 on the basis of the acquisition result of the on-spring acceleration sensor 8 and the vehicle height sensor 9. The AI learning unit 23 includes a learning data extraction part 25 which removes data whose an on-spring speed exceeds a threshold on the basis of the absolute value of the on-spring speed (physical amount) having high correlation with the operation necessity of the variable damper 6.SELECTED DRAWING: Figure 3

Description

本開示は、車両のサスペンションを制御するサスペンション制御装置に関する。 The present disclosure relates to a suspension control device that controls a suspension of a vehicle.

これまでのサスペンション制御は、車両状態を検出または推定し、それに応じたフィードバック制御を行っている(特許文献1参照)。フィードバック制御には、例えばスカイフック制御則やBLQ(Bi-linear Optimal Control)が用いられている。また、特許文献1には、直接最適制御の指令と車両状態をAI(artificial intelligence)に予め学習させ、学習結果の重み係数のみを用いて指令を算出することで、ステップ毎の最適化なしにリアルタイムで最適制御を実現する手段が開示されている。 Conventional suspension control detects or estimates the vehicle state and performs feedback control accordingly (see Patent Document 1). For example, the skyhook control law and BLQ (Bi-linear Optimal Control) are used for the feedback control. Furthermore, in Patent Document 1, by having AI (artificial intelligence) learn the direct optimal control commands and vehicle conditions in advance, and calculating the commands using only the weighting coefficients of the learning results, there is no need for step-by-step optimization. A means for achieving optimal control in real time is disclosed.

特開2021-109517号公報JP 2021-109517 Publication

ところで、特許文献1に開示されたサスペンション制御装置では、走行試験等で計測したデータを、机上またはリアルタイムでAIに学習させ、最適制御指令の精度を向上させている。このとき、学習において多く含まれるパターンに偏って、AIによる最適制御指令の精度が高くなる。計測データには、車両への入力が大きい路面のデータと平坦な路面のデータとが混在している。このうち平坦な路面では、ロール等の車両入力がない限りサスペンションは積極的に制御しなくてよい。しかしながら、計測データ全てを学習に用いると、サスペンションを積極的に制御すべきパターンの割合が相対的に低くなる虞れがある。その場合、制御で必要なパターンに対して、AIによる最適制御指令の精度が低下するという課題があった。 By the way, in the suspension control device disclosed in Patent Document 1, the accuracy of the optimal control command is improved by having the AI learn data measured in a driving test or the like on a desk or in real time. At this time, the accuracy of the optimal control command by AI is biased toward patterns that are included in many learning patterns. The measured data includes a mixture of data on road surfaces that require a large amount of input to the vehicle and data on flat road surfaces. On flat roads, the suspension does not need to be actively controlled unless there is a vehicle input such as roll. However, if all the measurement data is used for learning, there is a risk that the proportion of patterns in which the suspension should be actively controlled will be relatively low. In that case, there was a problem in that the accuracy of the optimal control command by AI deteriorates with respect to the pattern required for control.

本発明の一実施形態の目的は、学習用データを効果的に抽出し、AIによる出力の精度を向上させることが可能なサスペンション制御装置を提供することにある。 An object of an embodiment of the present invention is to provide a suspension control device that can effectively extract learning data and improve the accuracy of output by AI.

本発明の一実施形態は、車両の車体と車輪との間に介装して設けられ、前記車体と前記車輪との間の力を調整可能な力発生機構を制御するサスペンション制御装置であって、前記車両の状態量を検出または推定する車両状態量取得部と、前記車両状態量取得部の取得結果に基づいて前記力発生機構に対する指令値を学習するAI学習部と、を有し、前記AI学習部は、前記力発生機構の動作要否と相関が高い物理量の絶対値に基づいて、前記絶対値が閾値を超えないデータを除去する機能を有している。 One embodiment of the present invention is a suspension control device that is interposed between a vehicle body and wheels and controls a force generation mechanism that can adjust the force between the vehicle body and the wheels. , a vehicle state quantity acquisition unit that detects or estimates a state quantity of the vehicle; and an AI learning unit that learns a command value for the force generation mechanism based on the acquisition result of the vehicle state quantity acquisition unit; The AI learning unit has a function of removing data whose absolute value does not exceed a threshold value, based on the absolute value of a physical quantity that is highly correlated with whether or not the force generation mechanism needs to operate.

また、本発明の一実施形態は、車両の車体と車輪との間に介装して設けられ、前記車体と前記車輪との間の力を調整可能な力発生機構を制御するサスペンション制御装置であって、前記車両の状態量を推定する車両状態量学習部と、前記車両状態量学習部の推定結果に基づいて前記力発生機構に対する指令値を学習するAI学習部と、を有し、前記AI学習部は、前記力発生機構の動作要否と相関が高い前記状態量の絶対値に基づいて、前記絶対値が閾値を超えないデータを除去する機能を有し、前記車両状態量学習部は、前記AI学習部による除去後のデータを用いて、前記車両の動作に関する物理量に基づいて前記状態量を学習する。 Further, an embodiment of the present invention provides a suspension control device that is interposed between a vehicle body and a wheel and controls a force generation mechanism that is capable of adjusting a force between the vehicle body and the wheel. and an AI learning section that learns a command value for the force generation mechanism based on the estimation result of the vehicle state amount learning section, The AI learning unit has a function of removing data whose absolute value does not exceed a threshold based on the absolute value of the state quantity that has a high correlation with whether or not the force generation mechanism needs to operate, and the vehicle state quantity learning unit uses the data removed by the AI learning unit to learn the state quantity based on the physical quantity related to the operation of the vehicle.

本発明の一実施形態によれば、学習用データを効果的に抽出し、AIによる出力の精度を向上させることができる。 According to an embodiment of the present invention, it is possible to effectively extract learning data and improve the accuracy of output by AI.

第1ないし第3の実施形態によるサスペンション制御装置を模式的に示す図である。1 is a diagram schematically showing a suspension control device according to first to third embodiments; FIG. コントローラのDNNを学習する手順を示す説明図である。FIG. 2 is an explanatory diagram showing a procedure for learning the DNN of a controller. 第1の実施形態によるAI学習部を示すブロック図である。FIG. 2 is a block diagram showing an AI learning unit according to the first embodiment. 第2の実施形態によるAI学習部を示すブロック図である。FIG. 2 is a block diagram showing an AI learning unit according to a second embodiment. 第3の実施形態によるAI学習部を示すブロック図である。FIG. 3 is a block diagram showing an AI learning unit according to a third embodiment. 第4の実施形態によるサスペンション制御装置を模式的に示す図である。FIG. 7 is a diagram schematically showing a suspension control device according to a fourth embodiment. 第4の実施形態によるAI学習部を示すブロック図である。FIG. 3 is a block diagram showing an AI learning unit according to a fourth embodiment.

以下、本発明の実施形態によるサスペンション制御装置を、4輪自動車に適用した場合を例に挙げ、添付図面に従って詳細に説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a suspension control device according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings, taking as an example a case in which it is applied to a four-wheel vehicle.

図1ないし図3は、本発明の第1の実施形態を示している。図1において、車両のボディを構成する車体1の下側には、例えば左,右の前輪と左,右の後輪(以下、総称して車輪2という)が設けられている。これらの車輪2は、タイヤ3を含んで構成されている。タイヤ3は、路面の細かい凹凸を吸収するばねとして作用する。 1 to 3 show a first embodiment of the invention. In FIG. 1, left and right front wheels and left and right rear wheels (hereinafter collectively referred to as wheels 2) are provided on the lower side of a vehicle body 1 that constitutes the body of a vehicle. These wheels 2 include tires 3. The tire 3 acts as a spring that absorbs fine irregularities on the road surface.

サスペンション装置4は、車体1と車輪2との間に介装して設けられている。サスペンション装置4は、懸架ばね5(以下、スプリング5という)と、スプリング5と並列関係をなして車体1と車輪2との間に介装して設けられた減衰力調整式緩衝器(以下、可変ダンパ6という)とにより構成される。なお、図1は、1組のサスペンション装置4を、車体1と車輪2との間に設けた場合を模式的に図示している。4輪自動車の場合、サスペンション装置4は、4つの車輪2と車体1との間に個別に独立して合計4組設けられる。 The suspension device 4 is interposed between the vehicle body 1 and the wheels 2. The suspension device 4 includes a suspension spring 5 (hereinafter referred to as spring 5) and a damping force adjustable shock absorber (hereinafter referred to as spring 5) interposed between the vehicle body 1 and the wheels 2 in parallel with the spring 5. (referred to as a variable damper 6). Note that FIG. 1 schematically shows a case where one set of suspension devices 4 is provided between a vehicle body 1 and wheels 2. As shown in FIG. In the case of a four-wheeled vehicle, a total of four suspension devices 4 are individually and independently provided between the four wheels 2 and the vehicle body 1.

ここで、サスペンション装置4の可変ダンパ6は、車体1側と車輪2側との間で調整可能な力を発生する力発生機構である。可変ダンパ6は、減衰力調整式の油圧緩衝器を用いて構成されている。可変ダンパ6には、発生減衰力の特性(即ち、減衰力特性)をハードな特性(硬特性)からソフトな特性(軟特性)に連続的に調整するため、減衰力調整バルブ等からなる減衰力可変アクチュエータ7が付設されている。なお、減衰力可変アクチュエータ7は、減衰力特性を必ずしも連続的に調整する構成でなくてもよく、例えば2段階以上の複数段階で減衰力を調整可能なものであってもよい。また、可変ダンパ6は、圧力制御タイプでもよく、流量制御タイプであってもよい。 Here, the variable damper 6 of the suspension device 4 is a force generation mechanism that generates an adjustable force between the vehicle body 1 side and the wheel 2 side. The variable damper 6 is configured using a damping force adjustable hydraulic shock absorber. The variable damper 6 includes a damping force adjustment valve, etc., in order to continuously adjust the characteristics of the generated damping force (that is, the damping force characteristics) from hard characteristics (hard characteristics) to soft characteristics (soft characteristics). A variable force actuator 7 is attached. Note that the variable damping force actuator 7 does not necessarily have to be configured to continuously adjust the damping force characteristics, and may be capable of adjusting the damping force in multiple stages, for example, two or more stages. Further, the variable damper 6 may be of a pressure control type or a flow rate control type.

ばね上加速度センサ8は、車体1(ばね上)の上下加速度を検出する。ばね上加速度センサ8は、車体1の任意の位置に設けられている。ばね上加速度センサ8は、例えば可変ダンパ6の近傍となる位置で車体1に取り付けられている。ばね上加速度センサ8は、所謂ばね上側となる車体1側で上下方向の振動加速度を検出し、その検出信号を電子制御ユニット11(以下、ECU11という)に出力する。 The sprung mass acceleration sensor 8 detects the vertical acceleration of the vehicle body 1 (sprung mass). The sprung acceleration sensor 8 is provided at any position on the vehicle body 1. The sprung acceleration sensor 8 is attached to the vehicle body 1 at a position near the variable damper 6, for example. The sprung acceleration sensor 8 detects vertical vibration acceleration on the so-called sprung side of the vehicle body 1, and outputs the detection signal to an electronic control unit 11 (hereinafter referred to as ECU 11).

車高センサ9は、車体1の高さを検出する。車高センサ9は、例えばばね上側となる車体1側に、それぞれの車輪2に対応して複数個(例えば、4個)設けられている。即ち、各車高センサ9は、各車輪2に対する車体1の相対位置(高さ位置)を検出し、その検出信号をECU11に出力する。車高センサ9およびばね上加速度センサ8は、車両の状態量を検出する車両状態量取得部を構成する。なお、車両の状態量は、車体1の上下加速度と車体1の高さに限らない。車両の状態量は、例えば、車体1の高さ(車高)を微分した相対速度、車体1の上下加速度を積分した上下速度などを含んでもよい。この場合、車両状態量取得部は、車高センサ9、ばね上加速度センサ8に加えて、車高を微分する微分器、上下加速度を積分する積分器などを有している。 Vehicle height sensor 9 detects the height of vehicle body 1 . A plurality of vehicle height sensors 9 (for example, four) are provided, for example, on the sprung side of the vehicle body 1, corresponding to each wheel 2. That is, each vehicle height sensor 9 detects the relative position (height position) of the vehicle body 1 with respect to each wheel 2, and outputs the detection signal to the ECU 11. The vehicle height sensor 9 and the sprung acceleration sensor 8 constitute a vehicle state quantity acquisition section that detects the state quantity of the vehicle. Note that the state quantity of the vehicle is not limited to the vertical acceleration of the vehicle body 1 and the height of the vehicle body 1. The state quantity of the vehicle may include, for example, a relative velocity obtained by differentiating the height of the vehicle body 1 (vehicle height), a vertical velocity obtained by integrating the vertical acceleration of the vehicle body 1, and the like. In this case, the vehicle state quantity acquisition unit includes, in addition to the vehicle height sensor 9 and the sprung acceleration sensor 8, a differentiator that differentiates the vehicle height, an integrator that integrates the vertical acceleration, and the like.

路面計測センサ10は、路面情報としての路面プロフィールを検出する路面プロフィール取得部を構成している。路面計測センサ10は、例えば複数のミリ波レーダによって構成されている。路面計測センサ10は、車両前方の路面状態(具体的には、検出対象の路面までの距離と角度、画面位置と距離を含む)を計測して検出する。路面計測センサ10は、路面の検出値に基づき、路面のプロフィールを出力する。 The road surface measurement sensor 10 constitutes a road surface profile acquisition section that detects a road surface profile as road surface information. The road surface measurement sensor 10 includes, for example, a plurality of millimeter wave radars. The road surface measurement sensor 10 measures and detects the road surface condition in front of the vehicle (specifically, including the distance and angle to the road surface to be detected, and the screen position and distance). The road surface measurement sensor 10 outputs a road surface profile based on the detected value of the road surface.

なお、路面計測センサ10は、例えばミリ波レーダとモノラルカメラを組み合わせたものでもよく、特開2011-138244号公報等に記載のように、左,右一対の撮像素子(デジタルカメラ等)を含むステレオカメラによって構成されてもよい。路面計測センサ10は、超音波距離センサ等によって構成されてもよい。 Note that the road surface measurement sensor 10 may be a combination of a millimeter wave radar and a monaural camera, for example, and includes a pair of left and right image pickup devices (digital cameras, etc.) as described in Japanese Patent Laid-Open No. 2011-138244. It may also be configured by a stereo camera. The road surface measurement sensor 10 may be configured by an ultrasonic distance sensor or the like.

ECU11は、車両の姿勢制御等を含む挙動制御を行う制御装置である。ECU11は、車両の車体1側に搭載されている。ECU11は、例えばマイクロコンピュータを用いて構成されている。ECU11は、データの記憶が可能なメモリ11Aを有している。ECU11は、コントローラ12を備えている。 The ECU 11 is a control device that performs behavior control including vehicle attitude control. The ECU 11 is mounted on the vehicle body 1 side of the vehicle. The ECU 11 is configured using, for example, a microcomputer. The ECU 11 has a memory 11A that can store data. The ECU 11 includes a controller 12.

ECU11は、その入力側がばね上加速度センサ8、車高センサ9および路面計測センサ10に接続され、出力側が可変ダンパ6の減衰力可変アクチュエータ7に接続されている。ECU11は、ばね上加速度センサ8による上下方向の振動加速度の検出値と、車高センサ9による車高の検出値と、路面計測センサ10による路面の検出値とに基づき、路面のプロフィールと車両状態量をコントローラ12に出力する。コントローラ12は、路面のプロフィールと車両状態量とに基づいて、サスペンション装置4の可変ダンパ6(力発生機構)で発生すべき力を求め、その命令信号をサスペンション装置4の減衰力可変アクチュエータ7に出力する。 The ECU 11 has an input side connected to the sprung acceleration sensor 8, a vehicle height sensor 9, and a road surface measurement sensor 10, and an output side connected to the variable damping force actuator 7 of the variable damper 6. The ECU 11 determines the road surface profile and vehicle condition based on the detected value of vertical vibration acceleration by the sprung acceleration sensor 8, the detected value of the vehicle height by the vehicle height sensor 9, and the detected value of the road surface by the road surface measurement sensor 10. output the amount to the controller 12. The controller 12 determines the force to be generated by the variable damper 6 (force generation mechanism) of the suspension device 4 based on the road surface profile and vehicle state quantity, and sends the command signal to the variable damping force actuator 7 of the suspension device 4. Output.

ECU11は、例えば車両が10~20m程度を走行した数秒間に亘って、車両状態量と路面入力のデータをメモリ11Aに保存する。これにより、ECU11は、車両が所定の走行距離を走行したときの路面入力の時系列データ(路面プロフィール)と、車両状態量の時系列データとを生成する。コントローラ12は、路面のプロフィールと車両状態量の時系列データに基づいて、可変ダンパ6で発生すべき減衰力を調整するように制御する。 The ECU 11 stores vehicle state quantities and road surface input data in the memory 11A for several seconds when the vehicle travels, for example, about 10 to 20 meters. Thereby, the ECU 11 generates time-series data of road surface input (road surface profile) when the vehicle travels a predetermined distance, and time-series data of vehicle state quantities. The controller 12 performs control to adjust the damping force to be generated by the variable damper 6 based on the road surface profile and time series data of vehicle state quantities.

コントローラ12は、AIを構成する学習済みのDNN13(ディープニューラルネットワーク)を備えている。DNN13は、AI学習部23の一部であり、例えば4層以上の多層のニューラルネットワークによって構成されている。各層は、複数のニューロンを備えており、隣り合う2つの層のニューロンは、重み係数で結合されている。重み係数は、事前の学習によって設定されている。コントローラ12は、ばね上加速度センサ8による上下方向の振動加速度の検出値と、車高センサ9による車高の検出値と、路面計測センサ10による路面の検出値とに基づいて 、路面入力の時系列データ(路面プロフィール)と、車両状態量の時系列データとを取得する。コントローラ12は、路面入力の時系列データと、車両状態量の時系列データとに基づいて、最適指令値の時系列データを出力する。このとき、最新の最適指令値が、現時点の最適な減衰力の指令値に対応する。これにより、コントローラ12は、現在の車両と路面に対して最も適切な減衰力の指令値を出力する。減衰力の指令値は、減衰力可変アクチュエータ7を駆動するための電流値に対応している。 The controller 12 includes a trained DNN 13 (deep neural network) that constitutes AI. The DNN 13 is a part of the AI learning unit 23, and is configured by a multilayer neural network of, for example, four or more layers. Each layer includes a plurality of neurons, and neurons in two adjacent layers are connected by weighting coefficients. The weighting coefficients are set through prior learning. The controller 12 determines when the road surface is input based on the detected value of vertical vibration acceleration by the sprung mass acceleration sensor 8, the detected value of the vehicle height by the vehicle height sensor 9, and the detected value of the road surface by the road surface measurement sensor 10. Acquire series data (road surface profile) and time series data of vehicle state quantities. The controller 12 outputs time-series data of optimal command values based on time-series data of road surface input and time-series data of vehicle state quantities. At this time, the latest optimum command value corresponds to the current optimum damping force command value. Thereby, the controller 12 outputs the most appropriate damping force command value for the current vehicle and road surface. The damping force command value corresponds to a current value for driving the variable damping force actuator 7.

次に、コントローラ12のDNN13の学習方法について、図2に示す説明図を参照して説明する。DNN13は、(1)直接最適制御指令値探索、(2)指令値学習、(3)重み係数ダウンロードの処理を実行することによって、構築される。 Next, a method of learning the DNN 13 of the controller 12 will be described with reference to the explanatory diagram shown in FIG. The DNN 13 is constructed by executing the following processes: (1) direct optimal control command value search, (2) command value learning, and (3) weighting coefficient download.

まず、直接最適制御指令値探索を実行するために、車両モデル21を含む解析モデル20を構成する。解析モデル20は、車両の状態量を推定する車両状態量取得部を構成している。図2には、車両モデル21が1輪モデルの場合を例示した。車両モデル21は、例えば左右一対の2輪モデルでもよく、4輪モデル(フルビークルモデル)でもよい。車両モデル21には、路面入力と、直接最適制御部22から最適指令値が入力される。直接最適制御部22は、以下に示す直接最適制御指令値探索の手順に従って、最適指令値を求める。 First, an analysis model 20 including a vehicle model 21 is configured in order to directly search for an optimal control command value. The analytical model 20 constitutes a vehicle state quantity acquisition unit that estimates the state quantity of the vehicle. FIG. 2 illustrates a case where the vehicle model 21 is a one-wheel model. The vehicle model 21 may be, for example, a two-wheel model with a pair of left and right wheels, or a four-wheel model (full vehicle model). The vehicle model 21 receives a road surface input and an optimum command value directly from the optimum control section 22 . The direct optimum control unit 22 obtains the optimum command value according to the direct optimum control command value search procedure described below.

(1)直接最適制御指令値探索
直接最適制御部22は、事前に車両モデル21を含む解析モデル20を用いて、繰り返し演算により最適指令値を探索する。最適指令値の探索は、以下に示す最適制御問題と定式化し、最適化手法を用いて数値解析的に求める。
(1) Search for Direct Optimal Control Command Value The direct optimal control unit 22 uses the analytical model 20 including the vehicle model 21 in advance to search for the optimal command value through repeated calculations. The search for the optimal command value is formulated as the optimal control problem shown below, and is determined numerically using an optimization method.

対象となる車両の運動は、状態方程式によって数1の式で表されるものとする。なお、式中のドットは、時間tによる1階微分(d/dt)を意味する。 It is assumed that the motion of the target vehicle is expressed by the equation of state shown in Equation 1. Note that the dot in the formula means the first-order differential (d/dt) with respect to time t.

Figure 2023135097000002
Figure 2023135097000002

ここで、xは状態量、uは制御入力である。状態方程式の初期条件は、数2の式のように与えられる。 Here, x is a state quantity and u is a control input. The initial condition of the state equation is given as shown in Equation 2.

Figure 2023135097000003
Figure 2023135097000003

初期時刻t0から終端時刻tまでの間に課せられる等式拘束条件と不等式拘束条件は、数3の式および数4の式のように表される。 The equality constraint and inequality constraint imposed between the initial time t 0 and the terminal time t f are expressed as in equation 3 and equation 4.

Figure 2023135097000004
Figure 2023135097000004

Figure 2023135097000005
Figure 2023135097000005

最適制御問題は、数1の式に示す状態方程式と、数2の式に示す初期条件と、数3および数4の式に示す拘束条件を満足しつつ、数5の式に示す評価関数Jを最小にするような制御入力u(t)を求める問題である。 The optimal control problem is based on the evaluation function J shown in equation 5 while satisfying the state equation shown in equation 1, the initial condition shown in equation 2, and the constraint conditions shown in equation 3 and equation 4. The problem is to find a control input u(t) that minimizes .

Figure 2023135097000006
Figure 2023135097000006

上記のような拘束条件付きの最適制御問題を解くのは、非常に困難である。このため、最適化手法として拘束条件を簡単に扱うことができる直接法を用いる。この手法は、最適制御問題をパラメタ最適化問題に変換し、最適化手法を用いて解を得る方法である。 Solving an optimal control problem with constraints such as those described above is extremely difficult. For this reason, a direct method is used as an optimization method that can easily handle constraint conditions. This method converts an optimal control problem into a parameter optimization problem and uses an optimization method to obtain a solution.

最適制御問題をパラメタ最適化問題に変換するため、初期時刻t0から終端時刻tまでをN個の区間に分割する。各区間の終端時刻をt1,t2,…,tNと表すと、それらの関係は、数6に示す通りとなる。 In order to convert the optimal control problem into a parameter optimization problem, the period from initial time t 0 to terminal time t f is divided into N sections. If the end time of each section is expressed as t 1 , t 2 , . . . , t N , the relationship therebetween is as shown in Equation 6.

Figure 2023135097000007
Figure 2023135097000007

連続的な入力u(t)は、数7に示すように、各区間の終端時刻における離散的な値uiで置き換えられる。 The continuous input u(t) is replaced with a discrete value u i at the end time of each section, as shown in Equation 7.

Figure 2023135097000008
Figure 2023135097000008

入力u0,u1,…,uNに対して状態方程式を初期条件x0から数値積分し、各区間の終端時刻における状態量x1,x2,…,xNを求める。このとき、各区間内の入力は、各区間の終端時刻で与えられる入力を一次補間して求める。以上の結果、入力に対して状態量が決定され、これによって評価関数と拘束条件が表現される。よって、変換したパラメタ最適化問題は、次のように表すことができる。 The state equation is numerically integrated for the inputs u 0 , u 1 , . . . , u N from the initial condition x 0 to find the state quantities x 1 , x 2 , . At this time, the input within each section is obtained by linear interpolation of the input given at the end time of each section. As a result of the above, the state quantity is determined for the input, and the evaluation function and constraint conditions are expressed by this. Therefore, the converted parameter optimization problem can be expressed as follows.

最適化すべきパラメタをまとめてXとすると、数8の式に示すようになる。 If the parameters to be optimized are collectively denoted by X, then the equation shown in Equation 8 is obtained.

Figure 2023135097000009
Figure 2023135097000009

よって、数5の式に示す評価関数は、数9の式のように表される。 Therefore, the evaluation function shown in equation 5 can be expressed as equation 9.

Figure 2023135097000010
Figure 2023135097000010

また、数3および数4の式に示す拘束条件は、数10および数11の式のように表される。 Further, the constraint conditions shown in equations 3 and 4 are expressed as equations 10 and 11.

Figure 2023135097000011
Figure 2023135097000011

Figure 2023135097000012
Figure 2023135097000012

このようにして、前述のような最適制御問題は、数8ないし数11の式で表されるパラメタ最適化問題に変換することができる。 In this way, the optimal control problem as described above can be converted into a parameter optimization problem expressed by Equations 8 to 11.

路面に応じた最適制御指令を求める問題を最適制御問題として定式化するための評価関数Jは、上下加速度Azが最少となって乗り心地が良く、かつ制御指令値uを小さくするように、数12の式のように定義する。ここで、q1,q2は重み係数である。q1,q2は、例えば実験結果等により予め設定されている。 The evaluation function J for formulating the problem of finding the optimal control command according to the road surface as an optimal control problem is determined by a number such that the vertical acceleration Az is minimized, the riding comfort is good, and the control command value u is small. Define it as shown in equation 12. Here, q 1 and q 2 are weighting coefficients. q 1 and q 2 are set in advance based on, for example, experimental results.

Figure 2023135097000013
Figure 2023135097000013

直接最適制御部22は、このように定式化したパラメタ最適化問題を最適化手法により数値解析的に求め、様々な路面での最適指令値を導出する。 The direct optimum control unit 22 numerically and analytically obtains the parameter optimization problem formulated in this way using an optimization method, and derives optimum command values for various road surfaces.

(2)指令値学習
AI学習部23は、DNN24を備えている。AI学習部23は、直接最適制御指令値探索により導出した最適指令値を出力とし、そのときの路面プロフィール、車両状態量を入力として、様々な路面の入出力を、人工知能となるDNN24に学習させる。DNN24は、学習用のディープニューラルネットワークであり、車載用のDNN13と同じ構成になっている。DNN24には、路面プロフィールとして路面入力の時系列データと、車両状態量の時系列データとが入力される。このとき、路面入力と車両状態量とに対応して最適指令値の時系列データを教師データとして、DNN24におけるニューロン間の重み係数が求められる。なお、DNN24の学習には、後述する学習データ抽出部25によって抽出されたデータ(路面入力の時系列データ、車両状態量の時系列データ、最適指令値の時系列データ)が使用される。
(2) Command value learning The AI learning section 23 includes a DNN 24. The AI learning unit 23 outputs the optimal command value derived by directly searching for the optimal control command value, and uses the road surface profile and vehicle state quantities at that time as input, and learns various road surface inputs and outputs to the DNN 24, which is an artificial intelligence. let The DNN 24 is a deep neural network for learning, and has the same configuration as the in-vehicle DNN 13. Time series data of road surface input and time series data of vehicle state quantities are input to the DNN 24 as a road surface profile. At this time, weighting coefficients between neurons in the DNN 24 are determined using time-series data of optimal command values as teacher data corresponding to road surface inputs and vehicle state quantities. It should be noted that for learning of the DNN 24, data (time series data of road surface input, time series data of vehicle state quantities, time series data of optimal command values) extracted by a learning data extraction unit 25, which will be described later, is used.

(3)重み係数ダウンロード
指令値学習によって学習したDNN24の重み係数を、実際のECU11の指令値決定部となるDNN13に設定する。これにより、コントローラ12のDNN13が構成される。
(3) Weighting coefficient download The weighting coefficient of the DNN 24 learned through command value learning is set in the DNN 13 which becomes the command value determining section of the actual ECU 11. This configures the DNN 13 of the controller 12.

(4)最適指令値計算
DNN13を含むコントローラ12は、車両に搭載される。コントローラ12の入力側には、ばね上加速度センサ8、車高センサ9および路面計測センサ10が接続されている。コントローラ12の出力側には、可変ダンパ6の減衰力可変アクチュエータ7に接続されている。コントローラ12は、ばね上加速度センサ8、車高センサ9および路面計測センサ10の検出信号に基づいて、路面入力と車両状態量とを取得する。コントローラ12は、路面プロフィールとして路面入力の時系列データと、車両状態量の時系列データとをDNN13に入力する。DNN13は、路面入力と車両状態量の時系列データが入力されると、学習結果に応じて最適指令となる可変ダンパ6に対する指令値を出力する。
(4) Optimal command value calculation The controller 12 including the DNN 13 is mounted on the vehicle. A sprung acceleration sensor 8, a vehicle height sensor 9, and a road surface measurement sensor 10 are connected to the input side of the controller 12. The output side of the controller 12 is connected to the variable damping force actuator 7 of the variable damper 6. The controller 12 acquires road surface input and vehicle state quantities based on detection signals from the sprung acceleration sensor 8, the vehicle height sensor 9, and the road surface measurement sensor 10. The controller 12 inputs time series data of road surface input and time series data of vehicle state quantities to the DNN 13 as a road surface profile. When the DNN 13 receives the time series data of the road surface input and the vehicle state quantity, it outputs a command value for the variable damper 6 that is an optimal command according to the learning result.

このように、直接最適制御部22は、様々な条件において、直接最適制御指令をオフラインの数値最適化により導出する。その際の路面プロフィールおよび車両状態量と最適指令を人工知能(DNN24)に学習させる。この結果、ステップ毎の最適化を行うことなく、DNN13を搭載したコントローラ12(ECU11)によって、直接最適制御を実現することができる。 In this way, the direct optimal control unit 22 derives direct optimal control commands by off-line numerical optimization under various conditions. At that time, artificial intelligence (DNN24) is made to learn the road surface profile, vehicle state quantities, and optimal commands. As a result, direct optimal control can be realized by the controller 12 (ECU 11) equipped with the DNN 13 without performing step-by-step optimization.

次に、学習データ抽出部25によるデータ抽出処理について説明する。まず、学習に用いる路面入力、車両状態量、最適制御指令のデータを蓄積する。これらのデータは、例えば路面入力のデータから解析モデル20(車両モデル21)および直接最適制御部22を用いて算出したものでもよく、実際に車両を走行させてセンサ(ばね上加速度センサ8、車高センサ9、路面計測センサ10)によって取得したデータでもよい。センサによって計測したデータを用いる場合には、センサが車両の状態量を検出する車両状態量取得部を構成する。 Next, data extraction processing by the learning data extraction unit 25 will be explained. First, data on road surface input, vehicle state quantities, and optimal control commands used for learning are accumulated. These data may be calculated from road surface input data using the analytical model 20 (vehicle model 21) and the direct optimal control unit 22, or may be calculated by actually driving the vehicle and using sensors (spring acceleration sensor 8, vehicle It may be data acquired by a height sensor 9 or a road surface measurement sensor 10). When using data measured by a sensor, the sensor constitutes a vehicle state quantity acquisition unit that detects the state quantity of the vehicle.

これらのデータのうち、車両状態量に含まれるばね上速度と、学習値となる最適制御指令の制御量との相関を求める。制御量の増加しない範囲で、ばね上速度の絶対値の閾値となる一定値を決定する。この一定値は、ばね上速度の振幅の大きさの閾値である。この閾値の設定方法は、閾値の上限側からの設定方法である。閾値の下限側からの設定としては、平坦な路面を直進している際のデータが除外可能なように、閾値を決定する。 Among these data, a correlation is found between the sprung speed included in the vehicle state quantity and the control amount of the optimal control command, which is the learning value. A constant value is determined as a threshold value of the absolute value of the sprung mass speed within a range in which the control amount does not increase. This constant value is a threshold value for the magnitude of the amplitude of the sprung mass velocity. This threshold value setting method is a method of setting the threshold value from the upper limit side. As for setting the threshold value from the lower limit side, the threshold value is determined so that data when the vehicle is traveling straight on a flat road surface can be excluded.

次に、車両の走行試験等でばね上加速度センサ8、車高センサ9および路面計測センサ10によって計測したデータ(検出値)をAI学習部23に入力する。AI学習部23は、直接最適制御部22を用いて最適指令値(制御量)を算出する。 Next, data (detected values) measured by the sprung acceleration sensor 8, vehicle height sensor 9, and road surface measurement sensor 10 during a vehicle running test or the like is input to the AI learning section 23. The AI learning unit 23 directly uses the optimal control unit 22 to calculate an optimal command value (control amount).

一方、学習データ抽出部25は、例えばばね上加速度センサ8からのばね上加速度に基づいて、ばね上速度を取得する。学習データ抽出部25は、センサからの検出値に対応したばね上速度を用いて、取得済みのデータをAI学習用のデータとして抽出するかを判断する。具体的には、学習データ抽出部25は、物理量としてのばね上速度に基づいて、AI学習用のデータとして抽出するか否かを判断する。 On the other hand, the learning data extraction unit 25 acquires the sprung speed based on the sprung acceleration from the sprung acceleration sensor 8, for example. The learning data extraction unit 25 uses the sprung speed corresponding to the detected value from the sensor to determine whether to extract the acquired data as data for AI learning. Specifically, the learning data extraction unit 25 determines whether to extract data for AI learning based on the sprung speed as a physical quantity.

ばね上速度は、制御量(最適指令値)と相関が大きい。このため、ばね上速度の絶対値が予め決定した一定値(閾値)以上である場合に、データを抽出して学習に用いると判断する。DNN24の学習には、ばね上速度の絶対値が一定値(閾値)以上である場合のデータが使用される。一方、DNN24の学習には、ばね上速度の絶対値が一定値よりも小さい場合のデータは使用されない。 The sprung speed has a large correlation with the control amount (optimum command value). Therefore, when the absolute value of the sprung mass speed is equal to or greater than a predetermined constant value (threshold value), it is determined that data is extracted and used for learning. For learning of the DNN 24, data when the absolute value of the sprung mass speed is equal to or higher than a certain value (threshold value) is used. On the other hand, data when the absolute value of the sprung mass speed is smaller than a certain value is not used for learning of the DNN 24.

このとき、ばね上速度(物理量)の値は、ばね上加速度センサ8の検出値を用いて算出した値である。これに限らず、ばね上速度の値は、ばね上速度センサを用いて直接的に計測してもよい。また、ばね上速度の値は、路面入力から解析モデル20(車両モデル21)を用いて推定した推定値でもよい。即ち、抽出前の車両状態量のデータは、走行試験で取得したデータに限らず、路面入力に基づいて、解析モデル20によって算出したものでもよい。 At this time, the value of the sprung mass velocity (physical quantity) is a value calculated using the detected value of the sprung mass acceleration sensor 8. However, the value of the sprung mass speed may be directly measured using a sprung mass speed sensor. Further, the value of the sprung speed may be an estimated value estimated from road surface input using the analytical model 20 (vehicle model 21). That is, the data of the vehicle state quantity before extraction is not limited to data acquired in a driving test, but may be data calculated by the analytical model 20 based on road surface input.

また、学習データ抽出部25によるデータ抽出の判定結果は、DNN24の学習に用いるか否かに限らず、計測したデータに対して直接最適制御部22を用いて最適指令値(制御量)を算出するか否かの判断に用いてもよい。この場合、抽出されなかったデータに対して最適指令値を算出する必要がなくなるから、不要な最適指令値の算出を省くことでき、学習時間を短縮することができる。さらに、学習データ抽出部25によるデータ抽出の判定結果は、リアルタイムで計測中のデータを保存するか否かに用いてもよく、DNNのリアルタイム学習を行う場合にDNNに入力するか否かに用いてもよい。また、オンラインで集積されたデータを用いたオフラインでDNNを学習させる場合には、学習データ抽出部25によるデータ抽出の判定結果は、計測データをサーバに送信するか否かに用いてもよい。 In addition, the determination result of data extraction by the learning data extraction unit 25 is not limited to whether or not it is used for learning the DNN 24, and the optimum command value (control amount) is calculated directly using the optimum control unit 22 for the measured data. It may also be used to determine whether or not to do so. In this case, there is no need to calculate the optimal command value for the data that has not been extracted, so unnecessary calculation of the optimal command value can be omitted, and the learning time can be shortened. Furthermore, the determination result of data extraction by the learning data extraction unit 25 may be used to determine whether or not to save the data being measured in real time, and may be used to determine whether or not to input the data to the DNN when performing real-time learning of the DNN. It's okay. Furthermore, when the DNN is trained offline using data accumulated online, the determination result of data extraction by the learning data extraction unit 25 may be used to determine whether or not to transmit the measurement data to the server.

かくして、本実施形態によれば、車両の車体1と車輪2との間に介装して設けられ、車体1と車輪2との間の力を調整可能な可変ダンパ6(力発生機構)を制御するサスペンション制御装置であって、車両の状態量を検出する車両状態量取得部としてのばね上加速度センサ8および車高センサ9と、ばね上加速度センサ8および車高センサ9の取得結果に基づいて可変ダンパ6に対する指令値を学習するAI学習部23と、を有し、AI学習部23は、可変ダンパ6の動作要否と相関が高いばね上速度(物理量)の絶対値に基づいて、ばね上速度が閾値を超えないデータを除去する学習データ抽出部25を有している。 Thus, according to the present embodiment, the variable damper 6 (force generation mechanism) is provided interposed between the vehicle body 1 and the wheels 2 and is capable of adjusting the force between the vehicle body 1 and the wheels 2. The suspension control device controls a sprung acceleration sensor 8 and a vehicle height sensor 9 as a vehicle state quantity acquisition unit that detects vehicle state quantities, and based on the acquisition results of the sprung mass acceleration sensor 8 and vehicle height sensor 9. and an AI learning unit 23 that learns a command value for the variable damper 6 based on the absolute value of the sprung mass speed (physical quantity) that has a high correlation with whether or not the variable damper 6 needs to operate. It has a learning data extraction unit 25 that removes data in which the sprung speed does not exceed a threshold value.

これにより、AI学習部23は、走行中にセンサ等で計測が可能な物理量に着目してデータ抽出の閾値を設け、学習用のデータからサスペンション装置4を積極的に制御する必要がないパターンを除外する。この結果、最適制御指令の制御量に対して相関が低いデータを除去してDNN24を学習することができる。この結果、DNN24の学習用データを効果的に抽出し、DNN24の学習結果に基づくDNN13の推定精度を向上させることができる。 As a result, the AI learning unit 23 focuses on physical quantities that can be measured with sensors or the like while driving, sets thresholds for data extraction, and creates patterns that do not require active control of the suspension device 4 from the learning data. exclude. As a result, the DNN 24 can be learned by removing data that has a low correlation with the control amount of the optimal control command. As a result, it is possible to effectively extract the learning data for the DNN 24 and improve the estimation accuracy of the DNN 13 based on the learning results of the DNN 24.

また、ばね上速度は、制御指令を算出するときの主な入力になるため、指令値との相関は強い。しかしながら、例えばフィルタ処理等によって、ばね上速度にも感度のない範囲が存在する。これに対し、学習データ抽出部25は、ばね上速度の絶対値として、ばね上速度の振幅の大きさに基づいて、データを抽出するか否かを判断する。このため、ばね上速度の感度のない範囲のデータを除去することができる。これにより、ばね上速度の閾値を決定した後は、簡便にデータの抽出を行うことができる。この結果、走行時に取得したデータを用いてDNN13をリアルタイム学習させるときでも、容易に適用することができる。 Furthermore, since the sprung mass speed is the main input when calculating the control command, it has a strong correlation with the command value. However, due to, for example, filter processing, there is a range in which the sprung mass speed is not sensitive. On the other hand, the learning data extraction unit 25 determines whether or not to extract data based on the magnitude of the amplitude of the sprung mass speed as the absolute value of the sprung mass velocity. Therefore, data in a range in which sprung mass speed is not sensitive can be removed. Thereby, after determining the threshold value of the sprung mass speed, data can be easily extracted. As a result, the present invention can be easily applied even when the DNN 13 is trained in real time using data acquired during driving.

なお、第1の実施形態では、4輪全てで同じDNN13を用いる場合を例示した。本発明はこれに限らず、前輪と後輪でそれぞれ異なるDNNの重みを設定し、4輪独立して可変ダンパを制御してもよい。 Note that in the first embodiment, the case where the same DNN 13 is used for all four wheels is illustrated. The present invention is not limited to this, and the variable dampers may be controlled independently for the four wheels by setting different DNN weights for the front wheels and the rear wheels.

次に、図4は第2の実施形態を示している。第2の実施形態の特徴は、AI学習部は、ばね上とばね下の相対速度の変化速度が所定条件を満たすときに、相対速度の絶対値が閾値を超えたデータを用いて学習を行い、それ以外のデータを除去することにある。なお、第2の実施形態では、上述した第1の実施形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。 Next, FIG. 4 shows a second embodiment. The feature of the second embodiment is that the AI learning unit performs learning using data in which the absolute value of the relative velocity exceeds a threshold value when the rate of change of the relative velocity between the sprung mass and the unsprung mass satisfies a predetermined condition. , to remove other data. Note that, in the second embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and the description thereof will be omitted.

AI学習部31は、第2の実施形態による学習データ抽出部32によって抽出されたデータ(路面入力の時系列データ、車両状態量の時系列データ、最適指令値の時系列データ)を用いて、DNN24を学習させる。そこで、学習データ抽出部32によるデータ抽出処理について説明する。 The AI learning unit 31 uses the data extracted by the learning data extraction unit 32 according to the second embodiment (time series data of road surface input, time series data of vehicle state quantities, time series data of optimal command values), Train DNN24. Therefore, data extraction processing by the learning data extraction unit 32 will be explained.

まず、学習に用いる路面入力、車両状態量、最適制御指令のデータを蓄積する。学習データ抽出部32は、バンドパスフィルタ33(BPF)を備えている。バンドパスフィルタ33は、これらのデータのうち、車両状態量に含まれるばね上とばね下の相対速度に対して、制御を適用すべき周波数帯域の信号を通過させ、他の周波数帯域の信号を減衰させる。このとき、バンドパスフィルタ33の通過帯域は、例えば1Hz付近のように制御が増加する周波数帯域に設定されている。バンドパスフィルタ33の通過帯域は、事前に走行データを解析し、制御量が増加する周波数帯域を調べることによって、決定されている。 First, data on road surface input, vehicle state quantities, and optimal control commands used for learning are accumulated. The learning data extraction unit 32 includes a bandpass filter 33 (BPF). Among these data, the bandpass filter 33 passes signals in a frequency band to which control should be applied with respect to the relative speed of the sprung mass and unsprung mass included in the vehicle state quantity, and passes signals in other frequency bands. Attenuate. At this time, the pass band of the band pass filter 33 is set to a frequency band in which control increases, for example around 1 Hz. The passband of the bandpass filter 33 is determined in advance by analyzing travel data and examining the frequency band in which the control amount increases.

また、バンドパスフィルタ33を通過した相対速度の信号と、学習値となる最適制御指令の制御量との相関を求める。制御量の増加しない範囲で、相対速度の閾値となる一定値を決定する。この一定値は、相対速度の振幅の大きさの閾値である。一定値(閾値)は、平坦な路面を直進している際のデータが除外可能な値に決定してもよい。 Furthermore, the correlation between the relative velocity signal that has passed through the bandpass filter 33 and the control amount of the optimal control command that is the learning value is determined. A constant value is determined as a threshold value of relative speed within a range where the control amount does not increase. This constant value is a threshold value for the amplitude of the relative velocity. The constant value (threshold value) may be determined to be a value that allows data when the vehicle is traveling straight on a flat road surface to be excluded.

次に、車両の走行試験等でばね上加速度センサ8、車高センサ9および路面計測センサ10によって計測したデータ(検出値)をAI学習部31に入力する。AI学習部31は、直接最適制御部22を用いて最適指令値(制御量)を算出する。 Next, data (detected values) measured by the sprung acceleration sensor 8, vehicle height sensor 9, and road surface measurement sensor 10 during a vehicle running test or the like is input to the AI learning section 31. The AI learning unit 31 directly uses the optimal control unit 22 to calculate an optimal command value (control amount).

一方、学習データ抽出部32は、例えばばね上加速度センサ8と車高センサ9の検出値に基づいて、相対速度を取得する。学習データ抽出部32は、センサからの検出値に対応した相対速度を用いて、取得済みのデータをAI学習用のデータとして抽出するかを判断する。具体的には、学習データ抽出部32は、物理量としての相対速度のうちバンドパスフィルタ33の通過帯域の信号を抽出する。その上で、学習データ抽出部32は、バンドパスフィルタ33を通過した相対速度の振幅の大きさが予め決められた一定値(閾値)以上である場合に、データを抽出して学習に用いると判断する。DNN24の学習には、相対速度の通過帯域成分の絶対値(振幅の大きさ)が一定値(閾値)以上である場合に、そのときのデータが使用される。一方、それ以外のデータは、DNN24の学習には使用されない。 On the other hand, the learning data extraction unit 32 acquires the relative speed based on the detected values of the sprung acceleration sensor 8 and the vehicle height sensor 9, for example. The learning data extraction unit 32 uses the relative velocity corresponding to the detected value from the sensor to determine whether to extract the acquired data as data for AI learning. Specifically, the learning data extraction unit 32 extracts a signal in the passband of the bandpass filter 33 out of the relative velocity as a physical quantity. Then, the learning data extraction unit 32 extracts the data and uses it for learning when the magnitude of the amplitude of the relative velocity that has passed through the band pass filter 33 is greater than or equal to a predetermined constant value (threshold value). to decide. For learning of the DNN 24, when the absolute value (magnitude of amplitude) of the passband component of the relative velocity is greater than or equal to a certain value (threshold), data at that time is used. On the other hand, other data is not used for learning of the DNN 24.

このとき、相対速度(物理量)の値は、ばね上加速度センサ8、車高センサ9の検出値を用いて算出した値である。これに限らず、相対速度の値は、例えば可変ダンパが取付けられたストロークセンサを用いて直接的に計測してもよい。また、相対速度の値は、路面入力から解析モデル20(車両モデル21)を用いて推定した推定値でもよい。即ち、抽出前の車両状態量のデータは、走行試験で取得したデータに限らず、路面入力に基づいて、解析モデル20によって算出したものでもよい。また、学習データ抽出部32によるデータ抽出の判定結果は、DNN24の学習に用いるか否かに限らず、計測したデータに対して直接最適制御部22を用いて最適指令値(制御量)を算出するか否かの判断に用いてもよい。 At this time, the value of the relative speed (physical quantity) is a value calculated using the detected values of the sprung mass acceleration sensor 8 and the vehicle height sensor 9. The value of the relative velocity is not limited to this, and the value of the relative velocity may be directly measured using, for example, a stroke sensor equipped with a variable damper. Further, the value of the relative speed may be an estimated value estimated from road surface input using the analytical model 20 (vehicle model 21). That is, the data of the vehicle state quantity before extraction is not limited to data acquired in a driving test, but may be data calculated by the analytical model 20 based on road surface input. In addition, the determination result of data extraction by the learning data extraction unit 32 is not limited to whether or not it is used for learning the DNN 24, but the optimum command value (control amount) is calculated directly using the optimum control unit 22 for the measured data. It may also be used to determine whether or not to do so.

かくして、第2の実施形態でも、第1の実施形態とほぼ同様の作用効果を得ることができる。相対速度の場合、相対速度の変化速度としての周波数に応じて指令値(制御量)が増減する。これに対し、第2の実施形態では、AI学習部31は、相対速度の周波数(変化速度)が所定条件を満たすときに、相対速度の振幅(絶対値)が閾値を超えたデータを用いて学習を行う。このため、相対速度の感度が高い範囲のデータを用いて、DNN24を学習させることができる。 In this way, the second embodiment can also achieve substantially the same effects as the first embodiment. In the case of relative speed, the command value (control amount) increases or decreases depending on the frequency as the rate of change of relative speed. In contrast, in the second embodiment, the AI learning unit 31 uses data in which the amplitude (absolute value) of the relative velocity exceeds the threshold when the frequency (rate of change) of the relative velocity satisfies a predetermined condition. Learn. Therefore, the DNN 24 can be trained using data in a range where relative speed sensitivity is high.

次に、図5は第3の実施形態を示している。第3の実施形態の特徴は、AI学習部は、ばね上加速度の変化速度が所定条件を満たすときに、ばね上加速度の絶対値が閾値を超えたデータを用いて学習を行い、それ以外のデータを除去することにある。なお、第3の実施形態では、上述した第1の実施形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。 Next, FIG. 5 shows a third embodiment. The feature of the third embodiment is that when the rate of change of the sprung mass acceleration satisfies a predetermined condition, the AI learning unit performs learning using data in which the absolute value of the sprung mass acceleration exceeds a threshold value; The purpose is to remove data. Note that, in the third embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and the description thereof will be omitted.

AI学習部41は、第3の実施形態による学習データ抽出部42によって抽出されたデータ(路面入力の時系列データ、車両状態量の時系列データ、最適指令値の時系列データ)を用いて、DNN24を学習させる。そこで、学習データ抽出部42によるデータ抽出処理について説明する。 The AI learning unit 41 uses the data extracted by the learning data extraction unit 42 according to the third embodiment (time series data of road surface input, time series data of vehicle state quantities, time series data of optimal command values), Train DNN24. Therefore, data extraction processing by the learning data extraction unit 42 will be explained.

まず、学習に用いる路面入力、車両状態量、最適制御指令のデータを蓄積する。学習データ抽出部42は、バンドパスフィルタ43(BPF)を備えている。バンドパスフィルタ43は、これらのデータのうち、車両状態量に含まれるばね上加速度に対して、制御を適用すべき周波数帯域の信号を通過させ、他の周波数帯域の信号を減衰させる。このとき、バンドパスフィルタ43の通過帯域は、例えば1Hz付近のように制御が増加する周波数帯域に設定されている。バンドパスフィルタ43の通過帯域は、事前に走行データを解析し、制御量が増加する周波数帯域を調べることによって、決定されている。 First, data on road surface input, vehicle state quantities, and optimal control commands used for learning are accumulated. The learning data extraction unit 42 includes a bandpass filter 43 (BPF). Of these data, the bandpass filter 43 passes signals in a frequency band to which control should be applied to the sprung mass acceleration included in the vehicle state quantity, and attenuates signals in other frequency bands. At this time, the pass band of the band pass filter 43 is set to a frequency band in which control increases, for example around 1 Hz. The passband of the bandpass filter 43 is determined in advance by analyzing travel data and examining the frequency band in which the control amount increases.

また、バンドパスフィルタ43を通過したばね上加速度の信号と、学習値となる最適制御指令の制御量との相関を求める。制御量の増加しない範囲で、ばね上加速度の閾値となる一定値を決定する。この一定値は、ばね上加速度の振幅の大きさの閾値である。一定値(閾値)は、平坦な路面を直進している際のデータが除外可能な値に決定してもよい。 Furthermore, the correlation between the signal of the sprung mass acceleration that has passed through the bandpass filter 43 and the control amount of the optimal control command that is the learning value is determined. A constant value serving as a threshold value of sprung mass acceleration is determined within a range in which the control amount does not increase. This constant value is a threshold value for the amplitude of the sprung mass acceleration. The constant value (threshold value) may be determined to be a value that allows data when the vehicle is traveling straight on a flat road surface to be excluded.

次に、車両の走行試験等でばね上加速度センサ8、車高センサ9および路面計測センサ10によって計測したデータ(検出値)をAI学習部41に入力する。AI学習部41は、直接最適制御部22を用いて最適指令値(制御量)を算出する。 Next, data (detected values) measured by the sprung acceleration sensor 8, vehicle height sensor 9, and road surface measurement sensor 10 during a vehicle running test or the like is input to the AI learning section 41. The AI learning unit 41 directly uses the optimal control unit 22 to calculate an optimal command value (control amount).

一方、学習データ抽出部42は、例えばばね上加速度センサ8の検出値としてばね上加速度を取得する。学習データ抽出部42は、センサからの検出値に対応したばね上加速度を用いて、取得済みのデータをAI学習用のデータとして抽出するかを判断する。具体的には、学習データ抽出部42は、物理量としてのばね上加速度のうちバンドパスフィルタ43の通過帯域の信号を抽出する。その上で、学習データ抽出部42は、バンドパスフィルタ43を通過したばね上加速度の振幅の大きさが予め決められた一定値(閾値)以上である場合に、データを抽出して学習に用いると判断する。DNN24の学習には、ばね上加速度の通過帯域成分の絶対値(振幅の大きさ)が一定値(閾値)以上である場合に、そのときのデータが使用される。一方、それ以外のデータは、DNN24の学習には使用されない。 On the other hand, the learning data extraction unit 42 acquires the sprung mass acceleration as a detection value of the sprung mass acceleration sensor 8, for example. The learning data extraction unit 42 uses the sprung acceleration corresponding to the detected value from the sensor to determine whether to extract the acquired data as data for AI learning. Specifically, the learning data extraction unit 42 extracts a signal in the passband of the bandpass filter 43 from the sprung mass acceleration as a physical quantity. Then, the learning data extraction unit 42 extracts data and uses it for learning when the magnitude of the amplitude of the sprung mass acceleration that has passed the band pass filter 43 is equal to or greater than a predetermined constant value (threshold value). I judge that. For learning of the DNN 24, when the absolute value (magnitude of amplitude) of the passband component of the sprung mass acceleration is greater than or equal to a certain value (threshold), data at that time is used. On the other hand, other data is not used for learning of the DNN 24.

このとき、ばね上加速度(物理量)の値は、ばね上加速度センサ8の検出値である。これに限らず、ばね上加速度の値は、路面入力から解析モデル20(車両モデル21)を用いて推定した推定値でもよい。即ち、抽出前の車両状態量のデータは、走行試験で取得したデータに限らず、路面入力に基づいて、解析モデル20によって算出したものでもよい。また、学習データ抽出部42によるデータ抽出の判定結果は、DNN24の学習に用いるか否かに限らず、計測したデータに対して直接最適制御部22を用いて最適指令値(制御量)を算出するか否かの判断に用いてもよい。 At this time, the value of the sprung mass acceleration (physical quantity) is the detection value of the sprung mass acceleration sensor 8. The value of the sprung acceleration is not limited to this, and may be an estimated value estimated from the road surface input using the analytical model 20 (vehicle model 21). That is, the data of the vehicle state quantity before extraction is not limited to data acquired in a driving test, but may be data calculated by the analytical model 20 based on road surface input. In addition, the determination result of data extraction by the learning data extraction unit 42 is not limited to whether or not it is used for learning the DNN 24, but the optimum command value (control amount) is calculated directly using the optimum control unit 22 for the measured data. It may also be used to determine whether or not to do so.

かくして、第3の実施形態でも、第1の実施形態とほぼ同様の作用効果を得ることができる。ばね上加速度の場合、ばね上加速度の周波数に応じて指令値(制御量)が増減する。これに対し、第3の実施形態では、AI学習部41は、ばね上加速度の周波数(変化速度)が所定条件を満たすときに、ばね上加速度の振幅(絶対値)が閾値を超えたデータを用いて学習を行う。このため、ばね上加速度の感度が高い範囲のデータを用いて、DNN24を学習させることができる。 In this way, the third embodiment can also provide substantially the same effects as the first embodiment. In the case of sprung acceleration, the command value (control amount) increases or decreases depending on the frequency of sprung acceleration. In contrast, in the third embodiment, the AI learning unit 41 receives data in which the amplitude (absolute value) of the sprung mass acceleration exceeds the threshold when the frequency (change rate) of the sprung mass acceleration satisfies a predetermined condition. Learn by using Therefore, the DNN 24 can be trained using data in a range where the sensitivity of sprung mass acceleration is high.

次に、図6および図7は第4の実施形態を示している。第4の実施形態の特徴は、AI学習部は、力発生機構の動作要否と相関が高い車両の状態量の絶対値に基づいて、前記絶対値が閾値を超えないデータを除去する機能を有し、車両状態量学習部は、前記AI学習部による除去後のデータを用いて、前記車両の動作に関する物理量に基づいて前記車両の状態量を学習することにある。なお、第4の実施形態では、上述した第1の実施形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。 Next, FIGS. 6 and 7 show a fourth embodiment. The feature of the fourth embodiment is that the AI learning unit has a function of removing data whose absolute value does not exceed a threshold value, based on the absolute value of the state quantity of the vehicle that has a high correlation with the necessity of operation of the force generation mechanism. The vehicle state quantity learning unit is configured to learn the state quantity of the vehicle based on the physical quantity related to the operation of the vehicle using the data removed by the AI learning unit. Note that in the fourth embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and the description thereof will be omitted.

第4の実施形態では、ECU51は、車両の姿勢制御等を含む挙動制御を行う制御装置である。ECU51は、車両の車体1側に搭載されている。ECU51は、第1の実施形態によるECU11と同様に構成されている。ECU51は、例えばマイクロコンピュータを用いて構成され、データの記憶が可能なメモリ51Aを有している。ECU51は、コントローラ52を備えている。 In the fourth embodiment, the ECU 51 is a control device that performs behavior control including attitude control of the vehicle. The ECU 51 is mounted on the vehicle body 1 side of the vehicle. The ECU 51 is configured similarly to the ECU 11 according to the first embodiment. The ECU 51 is configured using, for example, a microcomputer, and has a memory 51A capable of storing data. The ECU 51 includes a controller 52.

ECU51は、その入力側がCAN53および路面計測センサ10に接続され、出力側が可変ダンパ6の減衰力可変アクチュエータ7に接続されている。ECU51は、CAN53(Controller Area Network)から車両の動作に関する物理量を取得する。車両の動作に関する物理量には、例えば車輪速、操舵角等が含まれている。コントローラ52は、車両の動作に関する物理量に基づいて、車両の状態量を推定する。コントローラ52は、この車両の状態量と、路面計測センサ10による路面の検出値とに基づいて、サスペンション装置4の可変ダンパ6(力発生機構)で発生すべき力を求め、その命令信号をサスペンション装置4の減衰力可変アクチュエータ7に出力する。 The ECU 51 has an input side connected to the CAN 53 and the road surface measurement sensor 10, and an output side connected to the variable damping force actuator 7 of the variable damper 6. The ECU 51 acquires physical quantities related to the operation of the vehicle from a CAN 53 (Controller Area Network). The physical quantities related to the operation of the vehicle include, for example, wheel speed, steering angle, and the like. The controller 52 estimates the state quantity of the vehicle based on the physical quantity related to the operation of the vehicle. The controller 52 determines the force to be generated by the variable damper 6 (force generation mechanism) of the suspension device 4 based on the vehicle state quantity and the road surface detection value by the road surface measurement sensor 10, and sends the command signal to the suspension. It is output to the variable damping force actuator 7 of the device 4.

ECU51は、例えば車両が10~20m程度を走行した数秒間に亘って、車両状態量と路面入力のデータをメモリ51Aに保存する。これにより、ECU51は、車両が所定の走行距離を走行したときの路面入力の時系列データ(路面プロフィール)と、車両状態量の時系列データとを生成する。コントローラ52は、路面のプロフィールと車両状態量の時系列データに基づいて、可変ダンパ6で発生すべき減衰力を調整するように制御する。 The ECU 51 stores vehicle state quantities and road surface input data in the memory 51A for several seconds when the vehicle travels, for example, about 10 to 20 meters. Thereby, the ECU 51 generates time-series data of road surface input (road surface profile) when the vehicle travels a predetermined distance, and time-series data of vehicle state quantities. The controller 52 performs control to adjust the damping force to be generated by the variable damper 6 based on the road surface profile and time series data of vehicle state quantities.

コントローラ52は、学習済みのDNN13(ディープニューラルネットワーク)を備えている。これに加えて、コントローラ52は、車両の動作に関する物理量に基づいて車両の状態量を推定する車両状態量学習部54を備えている。車両状態量学習部54は、DNNを備えており、車両の動作に関する物理量と車両の状態量との相関関係を学習している。これにより、車両状態量学習部54は、CAN53から取得した車両の動作に関する物理量から車両の状態量を推定する。 The controller 52 includes a trained DNN 13 (deep neural network). In addition, the controller 52 includes a vehicle state quantity learning section 54 that estimates the state quantity of the vehicle based on physical quantities related to the operation of the vehicle. The vehicle state quantity learning unit 54 includes a DNN and learns the correlation between the physical quantities related to the operation of the vehicle and the vehicle state quantities. Thereby, the vehicle state quantity learning section 54 estimates the state quantity of the vehicle from the physical quantity related to the operation of the vehicle acquired from the CAN 53.

コントローラ52は、車両状態量学習部54によって推定した車両の状態量の推定値と、路面計測センサ10による路面の検出値とに基づいて 、路面入力の時系列データ(路面プロフィール)と、車両状態量の時系列データとを取得する。コントローラ52のDNN13は、路面入力の時系列データと、車両状態量の時系列データとに基づいて、最適指令値の時系列データを出力する。これにより、コントローラ52は、現在の車両と路面に対して最も適切な減衰力の指令値を出力する。減衰力の指令値は、減衰力可変アクチュエータ7を駆動するための電流値に対応している。 The controller 52 calculates the time-series data of road surface input (road surface profile) and the vehicle state based on the estimated value of the state amount of the vehicle estimated by the vehicle state amount learning unit 54 and the detected value of the road surface by the road surface measurement sensor 10. Obtain the amount of time series data. The DNN 13 of the controller 52 outputs time-series data of optimal command values based on time-series data of road surface input and time-series data of vehicle state quantities. Thereby, the controller 52 outputs the most appropriate damping force command value for the current vehicle and road surface. The damping force command value corresponds to a current value for driving the variable damping force actuator 7.

AI学習部55は、第4の実施形態による学習データ抽出部56によって抽出されたデータ(路面入力の時系列データ、車両状態量の時系列データ、最適指令値の時系列データ)を用いて、DNN24を学習させる。これに加え、車両状態量学習部54は、第4の実施形態による学習データ抽出部56によって抽出されたデータ(路面入力の時系列データ、車両状態量の時系列データ)を用いて、車両状態量学習部54のDNNを学習させる。そこで、学習データ抽出部56によるデータ抽出処理について説明する。 The AI learning unit 55 uses the data extracted by the learning data extraction unit 56 according to the fourth embodiment (time series data of road surface input, time series data of vehicle state quantities, time series data of optimal command values), Train DNN24. In addition, the vehicle state quantity learning unit 54 uses the data (time series data of road surface input, time series data of vehicle state quantities) extracted by the learning data extraction unit 56 according to the fourth embodiment to determine the vehicle state. The DNN of the quantity learning unit 54 is learned. Therefore, data extraction processing by the learning data extraction unit 56 will be explained.

まず、学習に用いる路面入力、車両状態量、最適制御指令のデータを蓄積する。これらのデータは、例えば路面入力のデータから解析モデル20(車両モデル21)および直接最適制御部22を用いて算出したものでもよく、実際に車両を走行させてセンサ(ばね上加速度センサ8、車高センサ9、路面計測センサ10)によって取得したデータでもよい。これらのデータのうち、車両状態量に含まれるばね上速度と、最適制御指令の制御量との相関を求める。制御量の増加しない範囲で、ばね上速度の絶対値の閾値となる一定値を決定する。この一定値は、ばね上速度の振幅の大きさの閾値である。この閾値の設定方法は、閾値の上限側からの設定方法である。閾値の下限側からの設定としては、平坦な路面を直進している際のデータが除外可能なように、閾値を決定する。 First, data on road surface input, vehicle state quantities, and optimal control commands used for learning are accumulated. These data may be calculated from road surface input data using the analytical model 20 (vehicle model 21) and the direct optimal control unit 22, or may be calculated by actually driving the vehicle and using sensors (spring acceleration sensor 8, vehicle It may be data acquired by a height sensor 9 or a road surface measurement sensor 10). Among these data, the correlation between the sprung mass speed included in the vehicle state quantity and the control amount of the optimal control command is determined. A constant value is determined as a threshold value of the absolute value of the sprung mass speed within a range in which the control amount does not increase. This constant value is a threshold value for the magnitude of the amplitude of the sprung mass velocity. This threshold value setting method is a method of setting the threshold value from the upper limit side. As for setting the threshold value from the lower limit side, the threshold value is determined so that data when the vehicle is traveling straight on a flat road surface can be excluded.

次に、CAN53から取得した車輪速および操舵角のデータと、車両の走行試験等でばね上加速度センサ8、車高センサ9および路面計測センサ10によって計測したデータ(検出値)とをAI学習部55に入力する。AI学習部55の学習データ抽出部56は、例えばばね上加速度センサ8からのばね上加速度からばね上速度を取得する。学習データ抽出部56は、センサからの検出値に対応したばね上速度を用いて、取得済みのデータをAI学習用のデータとして抽出するかを判断する。具体的には、物理量としてのばね上速度に基づいて、AI学習用のデータとして抽出するか否かを判断する。 Next, the AI learning unit uses the wheel speed and steering angle data acquired from the CAN 53 and the data (detected values) measured by the sprung acceleration sensor 8, vehicle height sensor 9, and road surface measurement sensor 10 during a vehicle running test, etc. 55. The learning data extraction unit 56 of the AI learning unit 55 acquires the sprung speed from the sprung acceleration from the sprung acceleration sensor 8, for example. The learning data extraction unit 56 uses the sprung speed corresponding to the detected value from the sensor to determine whether to extract the acquired data as data for AI learning. Specifically, based on the sprung speed as a physical quantity, it is determined whether to extract it as data for AI learning.

学習データ抽出部56は、第1の実施形態による学習データ抽出部25と同様に、ばね上速度の絶対値として、ばね上速度の振幅の大きさが予め決定した一定値(閾値)以上である場合に、データを抽出して学習に用いると判断する。DNN24と車両状態量学習部54の学習には、ばね上速度の絶対値が一定値(閾値)以上である場合のデータが使用される。一方、DNN24と車両状態量学習部54の学習には、ばね上速度の絶対値が一定値よりも小さい場合のデータは使用されない。 Similar to the learning data extraction unit 25 according to the first embodiment, the learning data extraction unit 56 is configured such that, as an absolute value of the sprung mass velocity, the magnitude of the amplitude of the sprung mass velocity is equal to or greater than a predetermined constant value (threshold value). In this case, it is determined that the data should be extracted and used for learning. For learning by the DNN 24 and the vehicle state quantity learning unit 54, data when the absolute value of the sprung mass speed is equal to or greater than a certain value (threshold value) is used. On the other hand, data when the absolute value of the sprung mass speed is smaller than a certain value is not used for learning by the DNN 24 and the vehicle state quantity learning unit 54.

DNN24は、学習データ抽出部56によって抽出されたデータ(路面入力の時系列データ、車両状態量の時系列データ、最適指令値の時系列データ)を用いて、路面入力、車両状態量と制御量との相関関係を学習する。また、車両状態量学習部54は、学習データ抽出部56によって抽出されたデータ(車輪速および操舵角の時系列データ、路面入力の時系列データ、車両状態量の時系列データ)を用いて、車輪速および操舵角、路面入力と車両状態量との相関関係を学習する。 The DNN 24 uses the data extracted by the learning data extraction unit 56 (time series data of road surface input, time series data of vehicle state quantities, and time series data of optimal command values) to calculate road surface inputs, vehicle state quantities, and control variables. Learn the correlation between In addition, the vehicle state quantity learning unit 54 uses the data extracted by the learning data extraction unit 56 (time series data of wheel speed and steering angle, time series data of road surface input, time series data of vehicle state quantities), Learn the correlation between wheel speed, steering angle, road surface input, and vehicle state quantities.

かくして、第4の実施形態でも、第1の実施形態とほぼ同様の作用効果を得ることができる。第4の実施形態では、AI学習部55は、可変ダンパ6(力発生機構)の動作要否と相関が高い状態量(ばね上速度)の絶対値に基づいて、この絶対値が閾値を超えないデータを除去する学習データ抽出部56を有している。これに加えて、車両状態量学習部54は、AI学習部55の学習データ抽出部56による除去後のデータを用いて、車両の動作に関する物理量(車輪速、操舵角等)に基づいて車両の状態量(ばね上加速度、車体の高さ、相対速度、ばね上速度等)を学習する。 In this way, the fourth embodiment can also achieve substantially the same effects as the first embodiment. In the fourth embodiment, the AI learning unit 55 determines whether this absolute value exceeds a threshold value based on the absolute value of a state quantity (spring mass speed) that has a high correlation with whether or not the variable damper 6 (force generation mechanism) needs to operate. It has a learning data extraction unit 56 that removes data that does not exist. In addition, the vehicle state quantity learning unit 54 uses the data removed by the learning data extraction unit 56 of the AI learning unit 55 to determine the state of the vehicle based on physical quantities related to vehicle operation (wheel speed, steering angle, etc.). Learn state quantities (sprung acceleration, vehicle height, relative speed, sprung speed, etc.).

学習データ抽出部56は、走行中にセンサ等で計測が可能な物理量に着目して抽出の閾値を設け、学習用のデータからサスペンション装置4を積極的に制御する必要がないパターンを除外する。この結果、最適制御指令の制御量に対して相関が低いデータを除去して車両状態量学習部54のDNNを学習することができる。この結果、車両状態量学習部54の学習用データを効果的に抽出し、車両状態量学習部54の学習結果に基づく車両状態量の推定精度を向上させることができる。 The learning data extraction unit 56 sets an extraction threshold by focusing on a physical quantity that can be measured by a sensor or the like during driving, and excludes patterns that do not require active control of the suspension device 4 from the learning data. As a result, the DNN of the vehicle state quantity learning unit 54 can be learned by removing data that has a low correlation with the control amount of the optimal control command. As a result, the learning data of the vehicle state quantity learning unit 54 can be effectively extracted, and the accuracy of estimating the vehicle state quantity based on the learning result of the vehicle state quantity learning unit 54 can be improved.

なお、第4の実施形態では、車両の動作に関する物理量(車輪速、操舵角等)はCAN53から取得するものとした。本発明はこれに限らず、例えば車両の動作に関する物理量は、センサ等によって検出してもよい。 Note that in the fourth embodiment, physical quantities related to the operation of the vehicle (wheel speed, steering angle, etc.) are acquired from the CAN 53. The present invention is not limited to this, and for example, physical quantities related to the operation of the vehicle may be detected by a sensor or the like.

また、学習データ抽出部56は、第1の実施形態による学習データ抽出部25と同様に構成されるものとしたが、第2,第3の実施形態による学習データ抽出部32,42と同様に構成されるものとしてもよい。 Further, the learning data extraction unit 56 is configured in the same manner as the learning data extraction unit 25 according to the first embodiment, but is configured similarly to the learning data extraction units 32 and 42 according to the second and third embodiments. It may be configured.

前記各実施形態では、路面プロフィール取得部は、路面計測センサ10によって路面のプロフィールを検出した。本発明はこれに限らず、路面プロフィール取得部は、例えばGPSデータを基にしてサーバから情報を取得するものでもよく、車車間通信により他車から情報を取得するものでもよい。また、路面プロフィール取得部は、ばね上加速度センサ8による上下方向の振動加速度の検出値と、車高センサ9による車高の検出値とに基づき、路面のプロフィールを推定してもよい。この場合、路面プロフィール取得部は、各種のセンサに加えて、ECU11内の演算部分によって構成される。 In each of the embodiments described above, the road surface profile acquisition unit detects the road surface profile using the road surface measurement sensor 10. The present invention is not limited to this, and the road surface profile acquisition unit may acquire information from a server based on GPS data, for example, or may acquire information from another vehicle through vehicle-to-vehicle communication. Further, the road surface profile acquisition unit may estimate the road surface profile based on the detected value of the vibration acceleration in the vertical direction by the sprung mass acceleration sensor 8 and the detected value of the vehicle height by the vehicle height sensor 9. In this case, the road surface profile acquisition section is configured by a calculation section within the ECU 11 in addition to various sensors.

前記各実施形態では、サスペンション制御装置は、車両状態量取得部または車両状態量学習部を有するのに加えて、路面プロフィール取得部を有するものとした。本発明はこれに限らず、サスペンション制御装置は、路面プロフィール取得部を有さなくてもよい。この場合、サスペンション制御装置のコントローラは、車両状態量取得部または車両状態量学習部のみの取得結果に基づいて力発生機構の発生力を調整する。コントローラは、車両状態量取得部または車両状態量学習部の取得結果に基づいて力発生機構に対する指令値を学習するAI学習部を有する。コントローラのAI学習部は、事前にある評価関数を最小となるように最適化手法によって求められた指令値と車両状態量取得部または車両状態量学習部の取得結果を学習している。 In each of the embodiments described above, the suspension control device has a road surface profile acquisition section in addition to the vehicle state quantity acquisition section or the vehicle state quantity learning section. The present invention is not limited to this, and the suspension control device may not include the road surface profile acquisition section. In this case, the controller of the suspension control device adjusts the force generated by the force generating mechanism based on the acquisition result of only the vehicle state quantity acquisition unit or the vehicle state quantity learning unit. The controller includes an AI learning section that learns a command value for the force generation mechanism based on the acquisition result of the vehicle state quantity acquisition section or the vehicle state quantity learning section. The AI learning section of the controller learns the command value obtained in advance by an optimization method so as to minimize a certain evaluation function and the acquisition result of the vehicle state quantity acquisition section or the vehicle state quantity learning section.

前記各実施形態では、力発生機構としてセミアクティブダンパからなる可変ダンパ6である場合を例に説明した。本発明はこれに限らず、力発生機構としてアクティブダンパ(電気アクチュエータ、油圧アクチュエータのいずれか)を用いるようにしてもよい。前記各実施形態では、車体1側と車輪2側との間で調整可能な力を発生する力発生機構を、減衰力調整式の油圧緩衝器からなる可変ダンパ6により構成する場合を例に挙げて説明した。本発明はこれに限らず、例えば力発生機構を液圧緩衝器の他に、エアサスペンション、スタビライザ(キネサス)、電磁サスペンション等により構成してもよい。 In each of the embodiments described above, the case where the force generating mechanism is the variable damper 6 made of a semi-active damper has been described as an example. The present invention is not limited to this, and an active damper (either an electric actuator or a hydraulic actuator) may be used as the force generation mechanism. In each of the above embodiments, an example is given in which the force generation mechanism that generates an adjustable force between the vehicle body 1 side and the wheel 2 side is configured by the variable damper 6 consisting of a hydraulic shock absorber with adjustable damping force. I explained. The present invention is not limited to this, and for example, the force generation mechanism may be configured with an air suspension, a stabilizer (Kinesas), an electromagnetic suspension, etc. in addition to a hydraulic shock absorber.

前記各実施形態では、4輪自動車に用いる車両挙動装置を例に挙げて説明した。しかし、本発明はこれに限るものではなく、例えば2輪、3輪自動車、または作業車両、運搬車両であるトラック、バス等にも適用できるものである。 In each of the embodiments described above, a vehicle behavior device used for a four-wheeled vehicle has been described as an example. However, the present invention is not limited to this, and can also be applied to, for example, two-wheeled or three-wheeled vehicles, work vehicles, and transportation vehicles such as trucks and buses.

前記各実施形態は例示であり、異なる実施の形態で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。 It goes without saying that each of the embodiments described above is merely an example, and that parts of the configurations shown in the different embodiments can be partially replaced or combined.

1:車体、2:車輪、3:タイヤ、4:サスペンション装置、5:懸架ばね(スプリング)、6:可変ダンパ(力発生機構)、7:減衰力可変アクチュエータ、8:ばね上加速度センサ(車両状態量取得部)、9:車高センサ(車両状態量取得部)、10:路面計測センサ、11,51:ECU、12,52:コントローラ、13,24:DNN、20:解析モデル(車両状態量取得部)、21:車両モデル、22:直接最適制御部、23,31,41,55:AI学習部、25,32,42,56:学習データ抽出部、33,43:バンドパスフィルタ、54:車両状態量学習部 1: Vehicle body, 2: Wheels, 3: Tires, 4: Suspension device, 5: Suspension spring, 6: Variable damper (force generation mechanism), 7: Variable damping force actuator, 8: Sprung acceleration sensor (vehicle 9: Vehicle height sensor (vehicle state quantity acquisition unit), 10: Road surface measurement sensor, 11, 51: ECU, 12, 52: Controller, 13, 24: DNN, 20: Analysis model (vehicle state quantity acquisition unit), 21: Vehicle model, 22: Direct optimal control unit, 23, 31, 41, 55: AI learning unit, 25, 32, 42, 56: Learning data extraction unit, 33, 43: Band pass filter, 54: Vehicle state quantity learning section

Claims (5)

車両の車体と車輪との間に介装して設けられ、前記車体と前記車輪との間の力を調整可能な力発生機構を制御するサスペンション制御装置であって、
前記車両の状態量を検出または推定する車両状態量取得部と、
前記車両状態量取得部の取得結果に基づいて前記力発生機構に対する指令値を学習するAI学習部と、を有し、
前記AI学習部は、前記力発生機構の動作要否と相関が高い物理量の絶対値に基づいて、前記絶対値が閾値を超えないデータを除去する機能を有するサスペンション制御装置。
A suspension control device that is installed between a vehicle body and a wheel and controls a force generation mechanism that can adjust the force between the vehicle body and the wheel,
a vehicle state quantity acquisition unit that detects or estimates a state quantity of the vehicle;
an AI learning unit that learns a command value for the force generation mechanism based on the acquisition result of the vehicle state quantity acquisition unit;
The AI learning section is a suspension control device having a function of removing data whose absolute value does not exceed a threshold value, based on the absolute value of a physical quantity that is highly correlated with whether or not the force generation mechanism needs to operate.
前記物理量はばね上速度であり、前記絶対値は前記ばね上速度の振幅の大きさである請求項1に記載のサスペンション制御装置。 The suspension control device according to claim 1, wherein the physical quantity is a sprung mass speed, and the absolute value is an amplitude of the sprung mass speed. 前記AI学習部は、前記物理量の変化速度が所定条件を満たすときの前記物理量の前記絶対値が前記閾値を超えたデータを用いて学習を行い、それ以外のデータを除去するものであり、
前記物理量はばね上とばね下の相対速度であり、
前記AI学習部は、前記変化速度である前記相対速度の周波数が所定範囲内であり、かつ前記絶対値である前記相対速度の振幅の大きさが前記閾値である所定値を超えたデータを抽出する請求項1に記載のサスペンション制御装置。
The AI learning unit performs learning using data in which the absolute value of the physical quantity exceeds the threshold when the rate of change of the physical quantity satisfies a predetermined condition, and removes other data,
The physical quantity is the relative velocity of the sprung mass and the sprung mass,
The AI learning unit extracts data in which the frequency of the relative velocity, which is the rate of change, is within a predetermined range, and the magnitude of the amplitude of the relative velocity, which is the absolute value, exceeds a predetermined value, which is the threshold. The suspension control device according to claim 1.
前記AI学習部は、前記物理量の変化速度が所定条件を満たすときの前記物理量の前記絶対値が前記閾値を超えたデータを抽出して学習を行い、それ以外のデータを除去するものであり、
前記物理量はばね上加速度であり、
前記AI学習部は、前記変化速度である前記ばね上加速度の周波数が所定範囲内であり、かつ前記絶対値である前記ばね上加速度の振幅の大きさが前記閾値である所定値を超えたデータを抽出する請求項1に記載のサスペンション制御装置。
The AI learning unit performs learning by extracting data in which the absolute value of the physical quantity exceeds the threshold when the rate of change of the physical quantity satisfies a predetermined condition, and removes other data;
The physical quantity is sprung acceleration,
The AI learning unit acquires data in which the frequency of the sprung mass acceleration, which is the rate of change, is within a predetermined range, and the magnitude of the amplitude of the sprung mass acceleration, which is the absolute value, exceeds a predetermined value, which is the threshold value. The suspension control device according to claim 1, which extracts the following.
車両の車体と車輪との間に介装して設けられ、前記車体と前記車輪との間の力を調整可能な力発生機構を制御するサスペンション制御装置であって、
前記車両の状態量を推定する車両状態量学習部と、
前記車両状態量学習部の推定結果に基づいて前記力発生機構に対する指令値を学習するAI学習部と、を有し、
前記AI学習部は、前記力発生機構の動作要否と相関が高い前記状態量の絶対値に基づいて、前記絶対値が閾値を超えないデータを除去する機能を有し、
前記車両状態量学習部は、前記AI学習部による除去後のデータを用いて、前記車両の動作に関する物理量に基づいて前記状態量を学習するサスペンション制御装置。
A suspension control device that is installed between a vehicle body and a wheel and controls a force generation mechanism that can adjust the force between the vehicle body and the wheel,
a vehicle state quantity learning unit that estimates the state quantity of the vehicle;
an AI learning unit that learns a command value for the force generation mechanism based on the estimation result of the vehicle state quantity learning unit,
The AI learning unit has a function of removing data whose absolute value does not exceed a threshold based on the absolute value of the state quantity that has a high correlation with the necessity of operation of the force generation mechanism,
The vehicle state quantity learning unit is a suspension control device that uses data removed by the AI learning unit to learn the state quantity based on physical quantities related to the operation of the vehicle.
JP2022040129A 2022-03-15 2022-03-15 suspension control device Pending JP2023135097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022040129A JP2023135097A (en) 2022-03-15 2022-03-15 suspension control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022040129A JP2023135097A (en) 2022-03-15 2022-03-15 suspension control device

Publications (1)

Publication Number Publication Date
JP2023135097A true JP2023135097A (en) 2023-09-28

Family

ID=88144132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022040129A Pending JP2023135097A (en) 2022-03-15 2022-03-15 suspension control device

Country Status (1)

Country Link
JP (1) JP2023135097A (en)

Similar Documents

Publication Publication Date Title
US6701235B2 (en) Suspension control system
US20040153227A1 (en) Fuzzy controller with a reduced number of sensors
JP2009508751A (en) SUSPENSION CONTROL DEVICE, VEHICLE EQUIPPED WITH SAME DEVICE, IMPLEMENTATION METHOD AND PROGRAM
WO2020158314A1 (en) Vehicle behavior device
KR20190038925A (en) Suspension control device
CN110267832A (en) Vehicle alteration control device
US6202011B1 (en) Electronic controlled suspension system using wheel speed
JP2009508750A (en) SUSPENSION CONTROL DEVICE, VEHICLE EQUIPPED WITH SAME DEVICE, IMPLEMENTATION METHOD AND PROGRAM
JP2009508752A (en) SUSPENSION CONTROL DEVICE, VEHICLE EQUIPPED WITH SAME DEVICE, IMPLEMENTATION METHOD AND PROGRAM
JP2009508754A (en) Suspension control device, vehicle equipped with the device, manufacturing method, and program
WO2022024919A1 (en) Suspension control device and method for controlling suspension device
JP7393520B2 (en) Vehicle control device
US20220155783A1 (en) Use of neural networks in control systems
US11772446B2 (en) System and method for controlling the stability of a vehicle provided with a semi-active suspension
US8108102B2 (en) Sprung mass velocity estimating apparatus
JP2023135097A (en) suspension control device
CN115023355A (en) Look-ahead control of vehicle systems
JP7312707B2 (en) suspension controller
JP2019189228A (en) Suspension control device
WO2020195295A1 (en) Suspension control device
WO2022239619A1 (en) Suspension control device and suspension control method
Roh et al. Observer-based wheelbase preview control of active vehicle suspensions
GB2282784A (en) Vehicle suspension system
JP2023079384A (en) Vibration information estimation device and suspension device
WO2023091104A1 (en) A method for energy efficient control of active and semi-active suspension systems