JP2023130298A - Positioning adjustment mechanism and positioning adjustment system - Google Patents

Positioning adjustment mechanism and positioning adjustment system Download PDF

Info

Publication number
JP2023130298A
JP2023130298A JP2023001295A JP2023001295A JP2023130298A JP 2023130298 A JP2023130298 A JP 2023130298A JP 2023001295 A JP2023001295 A JP 2023001295A JP 2023001295 A JP2023001295 A JP 2023001295A JP 2023130298 A JP2023130298 A JP 2023130298A
Authority
JP
Japan
Prior art keywords
traveling
traveling device
pair
positioning adjustment
adjustment mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023001295A
Other languages
Japanese (ja)
Inventor
泰史 高橋
Yasushi Takahashi
拓 北原
Hiroshi Kitahara
寛 岡本
Hiroshi Okamoto
哲朗 笹本
Tetsuro Sasamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to PCT/IB2023/051795 priority Critical patent/WO2023170512A1/en
Publication of JP2023130298A publication Critical patent/JP2023130298A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

To achieve high positioning precision of a drive device.SOLUTION: A positioning adjustment mechanism 120 includes a first guide member 121 which adjusts the horizontal position and posture of a travel device 1 by abutment onto sides of a pair of travel bodies 10a, 10b during approach to a prescribed stopping position (a chargeable position C) of the travel device 1 and a second guide member 125 which adjusts the longitudinal position and posture of the travel device 1 by abutment onto front parts of a pair of travel bodies 10a, 10b when the travel device 1 reaches a stopping position.SELECTED DRAWING: Figure 8

Description

本発明は、位置決め調整機構及び位置決め調整システムに関する。 The present invention relates to a positioning adjustment mechanism and a positioning adjustment system.

近年、様々な使用環境や用途において、従来の人手で行われていた作業の支援や人が対応できない環境での作業を行うための自律移動型のロボット(走行装置)が活用されている。 BACKGROUND ART In recent years, autonomous mobile robots (traveling devices) have been used in a variety of environments and applications to support tasks that were traditionally performed manually and to perform tasks in environments that humans cannot handle.

例えば特許文献1には、このような自律移動型の走行装置の一例として、走行時の安定性を高めるため、履帯式(クローラ式)の走行体を備えた走行装置が開示されている。 For example, Patent Document 1 discloses, as an example of such an autonomous mobile type traveling device, a traveling device equipped with a crawler-type traveling body in order to improve stability during traveling.

しかしながら特許文献1には、目標位置により正確に停止するための機構が記載されておらず、改善の余地がある。 However, Patent Document 1 does not describe a mechanism for accurately stopping at a target position, and there is room for improvement.

本発明は、走行装置の位置決め精度を向上することを目的とする。 An object of the present invention is to improve the positioning accuracy of a traveling device.

上述した課題を解決するために、本発明の一観点に係る位置決め調整機構は、本体と、前記本体の両側に、走行面と接地して駆動する一対の走行体とを有する走行装置の位置決め調整機構であって、前記走行装置の所定の停止位置への接近中に、前記一対の走行体の側部と接触する第1接触部材と、前記走行装置が前記停止位置に達した際に、前記一対の走行体の前部と接触する第2接触部材と、を備える。 In order to solve the above-mentioned problems, a positioning adjustment mechanism according to one aspect of the present invention adjusts the positioning of a traveling device that has a main body and a pair of traveling bodies that are driven by being in contact with a traveling surface on both sides of the main body. The mechanism includes: a first contact member that contacts side portions of the pair of traveling bodies while the traveling device approaches a predetermined stop position; A second contact member that contacts the front portions of the pair of traveling bodies.

走行装置の位置決め精度を向上することができる。 The positioning accuracy of the traveling device can be improved.

実施形態で適用される走行装置の概略構成を示す斜視図A perspective view showing a schematic configuration of a traveling device applied in an embodiment 図1中の履帯式走行体の側面図Side view of the track type traveling body in Figure 1 走行装置のハードウェア構成の一例を示す図Diagram showing an example of the hardware configuration of the traveling device 本実施形態における充電タスクの仕組みを説明する図Diagram explaining the mechanism of the charging task in this embodiment 実施形態に係る位置決め調整システムの概略構成図Schematic configuration diagram of a positioning adjustment system according to an embodiment 充電タスクのフローチャートCharging task flowchart 本実施形態に係る位置決め調整機構の概略構成を示す斜視図A perspective view showing a schematic configuration of a positioning adjustment mechanism according to the present embodiment 走行装置が位置決め調整機構により位置決めされた状態の斜視図A perspective view of the traveling device positioned by the positioning adjustment mechanism 位置決め調整機構による調整過程の第1段階を示す平面図A plan view showing the first stage of the adjustment process by the positioning adjustment mechanism. 位置決め調整機構による調整過程の第2段階を示す側面図Side view showing the second stage of the adjustment process by the positioning adjustment mechanism 位置決め調整機構による調整過程の第3段階を示す側面図Side view showing the third stage of the adjustment process by the positioning adjustment mechanism 位置決め調整機構の第1、第2、第3変形例を示す平面図Plan views showing first, second, and third modified examples of the positioning adjustment mechanism. 位置決め調整機構の第4変形例を示す平面図A plan view showing a fourth modification of the positioning adjustment mechanism. 位置決め調整機構の第5変形例を示す平面図A plan view showing a fifth modification of the positioning adjustment mechanism 本実施形態に係る位置決め調整システムの適用例を示す図A diagram showing an application example of the positioning adjustment system according to the present embodiment

以下、添付図面を参照しながら実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Embodiments will be described below with reference to the accompanying drawings. In order to facilitate understanding of the description, the same components in each drawing are denoted by the same reference numerals as much as possible, and redundant description will be omitted.

実施形態に係る位置決め調整システム100は、走行装置1を所定の停止位置に位置決めさせるためのシステムである。本実施形態では、走行装置の一例として、履帯式(クローラ式)の走行体10a、10bを備える走行装置1を例示して説明する。また、本実施形態では、走行装置1を位置決めするタスクの一例として、充電装置110の充電可能位置Cに位置決めする充電タスクを例示して説明する。 The positioning adjustment system 100 according to the embodiment is a system for positioning the traveling device 1 at a predetermined stop position. In this embodiment, as an example of the traveling device, a traveling device 1 including track-type (crawler-type) traveling bodies 10a and 10b will be described. Moreover, in this embodiment, as an example of the task of positioning the traveling device 1, a charging task of positioning the charging device 110 at the chargeable position C will be exemplified and explained.

<走行装置の構成>
まず図1~図3を参照して、履帯式走行体10a、10bを備える走行装置1の構成について説明する。図1は、実施形態で適用される走行装置1の概略構成を示す斜視図である。図2は、図1中の履帯式走行体10の側面図である。なお、図2では、一対の履帯式走行体10a、10bは構成が同一であるため、纏めて符号10として図示している。
<Configuration of traveling device>
First, with reference to FIGS. 1 to 3, the configuration of a traveling device 1 including crawler-type traveling bodies 10a and 10b will be described. FIG. 1 is a perspective view showing a schematic configuration of a traveling device 1 applied in the embodiment. FIG. 2 is a side view of the track type traveling body 10 in FIG. 1. In FIG. 2, since the pair of crawler-type traveling bodies 10a and 10b have the same configuration, they are collectively designated by the reference numeral 10.

なお、図1、図2の説明において、x1方向、y1方向、z1方向は互いに垂直な方向である。x1方向及びy1方向は水平方向であり、z1方向は鉛直方向である。x1方向は走行装置1の前後方向である。y1方向は、走行装置1の左右方向である。また、以下では説明の便宜上、z1正方向側を上側、z1負方向側を下側とも表現する場合がある。 Note that in the description of FIGS. 1 and 2, the x1 direction, y1 direction, and z1 direction are directions perpendicular to each other. The x1 direction and the y1 direction are horizontal directions, and the z1 direction is a vertical direction. The x1 direction is the longitudinal direction of the traveling device 1. The y1 direction is the left-right direction of the traveling device 1. Furthermore, for convenience of explanation, the z1 positive direction side may also be expressed as the upper side and the z1 negative direction side may be expressed as the lower side below.

図1に示すように、走行装置1は、y1方向の中央に本体50を有し、本体50のy1方向両側に、走行面と接地して駆動する一対の走行体を有する。一対の走行体は、履帯式走行体10a、10bである。走行装置1は、一対の履帯式走行体10a、10bのそれぞれに速度差を付けることによって進行方向を変更するよう構成される。 As shown in FIG. 1, the traveling device 1 has a main body 50 at the center in the y1 direction, and has a pair of traveling bodies on both sides of the main body 50 in the y1 direction that are driven by being in contact with a running surface. The pair of running bodies are track type running bodies 10a and 10b. The traveling device 1 is configured to change the traveling direction by giving a speed difference to each of the pair of track type traveling bodies 10a and 10b.

図1、図2に示すように、走行装置1は、姿勢を安定させて走行させるために、インホイールモータを内蔵した駆動輪と二つの転輪によって形成される三角形の履帯式の走行体10を用いる。このように履帯式走行体10を有する走行装置1は、高い走行性能を持ち、凹凸のある不整地を安定して走行することができる。その一方で車輪による走行装置1に比べて細かい位置調整の難易度が高く、狙いの位置に高精度に移動することが難しい。さらに停止時に左右および上下方向に傾いた状態で停止しやすく、停止時の姿勢が安定しないという課題がある。 As shown in FIGS. 1 and 2, the traveling device 1 includes a triangular track-type traveling body 10 formed by a drive wheel with a built-in in-wheel motor and two rolling wheels in order to stabilize the posture and travel. Use. As described above, the traveling device 1 having the track-type traveling body 10 has high traveling performance and can stably travel on uneven terrain. On the other hand, compared to the traveling device 1 using wheels, it is more difficult to finely adjust the position, and it is difficult to move to a target position with high precision. Furthermore, there is a problem that when stopped, the vehicle tends to be tilted horizontally and vertically, and the posture when stopped is unstable.

この様な履帯式走行体10は、充電を行う際や、搬送物の接続/切り離しを行う際などに停止する際に、狙いの位置に対して±数十mm程度の高精度な位置決めや、±数度程度
に姿勢維持することが求められる。
Such a track-type traveling body 10 can perform highly accurate positioning within ± several tens of millimeters relative to the target position when charging or stopping when connecting/disconnecting a conveyed object. It is required to maintain the posture within ± several degrees.

走行装置1の各部の構成をさらに説明する。履帯式走行体10a、10bは、走行装置1の移動手段となるユニットである。また、履帯式走行体10a、10bは、金属またはゴム製のベルトを用いた履帯式(クローラ式)の走行体である。履帯式の走行体は、自動車のようなタイヤで走行する走行体と比較して接地面積が広く、例えば、足場の悪い環境においても、安定した走行を行うことができる。また、タイヤで走行する走行体は、回転動作を行う際に旋回スペースを必要とするのに対して、履帯式の走行体を備えた走行装置は、いわゆる超信地旋回を行うことができるため、限られたスペースでも回転動作をスムーズに行うことができる。 The configuration of each part of the traveling device 1 will be further explained. The track-type traveling bodies 10a and 10b are units that serve as moving means for the traveling device 1. The track-type traveling bodies 10a and 10b are crawler-type traveling bodies using metal or rubber belts. A track-type traveling object has a wider ground contact area than a traveling object such as a car that runs on tires, and can run stably even in an environment with poor footing, for example. In addition, a traveling body that runs on tires requires a turning space when making rotational movements, whereas a traveling device equipped with a track-type traveling body can perform so-called super pivot turns. , allows for smooth rotation even in limited space.

本体50は、履帯式走行体10a、10bを走行可能な状態で支持する支持体であるとともに、走行装置1を駆動させるための制御を行う制御装置を搭載する。また、本体50は、履帯式走行体10a、10bを駆動させるための電力を供給する、後述のバッテリ530を搭載する。 The main body 50 is a support body that supports the track-type traveling bodies 10a and 10b in a movable state, and is equipped with a control device that performs control for driving the traveling device 1. Further, the main body 50 is equipped with a battery 530, which will be described later, which supplies electric power to drive the track-type traveling bodies 10a and 10b.

図1に示すように、走行装置1の本体50は、非常停止ボタン31、状態表示ランプ33、接触充電部35を備える。非常停止ボタン31は、走行装置1の周辺にいる人が、走行中の走行装置1を停止させる際に押下する操作手段である。 As shown in FIG. 1, the main body 50 of the traveling device 1 includes an emergency stop button 31, a status display lamp 33, and a contact charging section 35. The emergency stop button 31 is an operation means that is pressed by a person near the traveling device 1 to stop the traveling device 1 while it is running.

状態表示ランプ33は、走行装置1の状態を通知するための通知手段である。状態表示ランプ33は、例えば、バッテリ残量の低下等の走行装置1の状態が変化した場合、周囲の人に、走行装置1の状態変化を知らせるために点灯する。また、状態表示ランプ33は、例えば、走行装置1の走行を妨げる障害物の存在等が検知された場合等、異常発生のおそれがある場合に点灯する。なお、図1は、走行装置1に状態表示ランプ33が二つ備えられている例を示すが、状態表示ランプ33の数は、一つであってもよく、三つ以上であってもよい。また、通知手段は、状態表示ランプ33のみならず、スピーカから発せられる警告音等によって走行装置1の状態を通知する構成であってもよい。 The status display lamp 33 is a notification means for notifying the status of the traveling device 1. For example, when the state of the traveling device 1 changes, such as when the remaining battery level decreases, the status display lamp 33 lights up to notify surrounding people of the change in the state of the traveling device 1. Further, the status display lamp 33 lights up when there is a risk of an abnormality occurring, such as when the presence of an obstacle that impedes the travel of the traveling device 1 is detected, for example. Although FIG. 1 shows an example in which the traveling device 1 is provided with two status display lamps 33, the number of status display lamps 33 may be one, or three or more. . Further, the notification means may be configured to notify the state of the traveling device 1 not only by the status display lamp 33 but also by a warning sound emitted from a speaker or the like.

接触充電部35は、充電タスクの際に充電装置110と接触することにより、充電装置110からの電力を本体50内部のバッテリへ供給する要素である。本実施形態では、本体50の外形は略直方体形状で形成され、x1方向を法線方向とする前面50Aが最も前方に配置される。接触充電部35は、この前面50Aに設置される。接触充電部35は、例えば樹脂製の矩形状の枠体35Cの前面に、2つの金属製の接触面35A、35Bが設けられる。2つの接触面35A、35Bは、y1方向を長手または長辺とする略長方形状の略同一形状で形成され、平行に配列される。 The contact charging unit 35 is an element that supplies power from the charging device 110 to the battery inside the main body 50 by contacting the charging device 110 during a charging task. In this embodiment, the outer shape of the main body 50 is formed in a substantially rectangular parallelepiped shape, and the front surface 50A with the x1 direction as the normal direction is disposed at the frontmost position. Contact charging section 35 is installed on this front surface 50A. In the contact charging unit 35, two metal contact surfaces 35A and 35B are provided on the front surface of a rectangular frame body 35C made of resin, for example. The two contact surfaces 35A and 35B are formed in substantially the same substantially rectangular shape with the length or long side in the y1 direction, and are arranged in parallel.

図2に示すように、履帯式走行体10は、駆動輪13と二つの転輪15a,15bによって形成された三角形の形状を有する。三角形の形状の履帯式走行体10は、例えば、走行体の前後のサイズに制約がある場合、前後の限られたサイズの中で接地面積を大きくすることができるので、走行時の安定性を向上させることができる。一方で、下側(転輪側)よりも上側(駆動輪側)の方が長い、いわゆる戦車タイプのクローラでは、前後のサイズの制約がある場合には全体的に接地面積が小さくなって不安定になる。このように、履帯式走行体10は、比較的に小型の走行装置1の走行性を高める場合に有効である。 As shown in FIG. 2, the track type traveling body 10 has a triangular shape formed by a drive wheel 13 and two rolling wheels 15a and 15b. For example, when the triangular-shaped track-type traveling body 10 has a restriction on the front and rear sizes of the traveling body, it is possible to increase the ground contact area within the limited size of the front and rear, thereby improving stability during running. can be improved. On the other hand, so-called tank-type crawlers, where the upper side (driving wheel side) is longer than the lower side (rolling wheel side), have a smaller overall ground contact area and are disadvantageous if there are size restrictions on the front and rear. It becomes stable. In this way, the track-type traveling body 10 is effective in improving the traveling performance of the relatively small-sized traveling device 1.

履帯式走行体10は、履帯11、駆動輪13、インホイールモータ14、転輪15a,15b、アイドラ18a,18b、リンク19、側板20a,20bおよびテンショナ25を備える。 The track type traveling body 10 includes a track 11, a drive wheel 13, an in-wheel motor 14, wheels 15a, 15b, idlers 18a, 18b, a link 19, side plates 20a, 20b, and a tensioner 25.

履帯11は、クローラとも呼ばれて、金属またはゴムで形成されている。履帯11は、駆動輪13と転輪15a,15bに掛け回される。履帯11は、駆動輪13の回転方向に従って移動しながら、転輪15a,15bを従動させることによって、履帯式走行体10を回転させる。また、履帯11の表面には、複数の突起部11a,11bが設けられている。履帯11の外側の突起部11aは、例えば、路面上の石等の小さな障害物を安定して乗り越えて走行するために設けられている。また、内側の突起部11bは、例えば、駆動輪13または転輪15a,15bからの脱輪を防止するために設けられている。 The crawler belt 11 is also called a crawler and is made of metal or rubber. The crawler belt 11 is wound around the driving wheel 13 and the rolling wheels 15a and 15b. The crawler belt 11 rotates the crawler-type traveling body 10 by moving along the rotational direction of the drive wheel 13 and causing the wheels 15a and 15b to follow. Furthermore, a plurality of protrusions 11a and 11b are provided on the surface of the crawler belt 11. The outer protrusion 11a of the crawler track 11 is provided, for example, in order to stably run over small obstacles such as stones on the road surface. Further, the inner protrusion 11b is provided, for example, to prevent the drive wheel 13 or the wheels 15a and 15b from coming off.

駆動輪13は、履帯11に対して、履帯式走行体10を回転させるための駆動力を伝達する。履帯式走行体10は、インホイールモータ14が駆動輪13に伝達した駆動力(回転力)を、履帯11を介して、転輪15a,15bに伝達する。 The drive wheels 13 transmit a driving force to the crawler belt 11 to rotate the crawler type traveling body 10 . The track-type traveling body 10 transmits the driving force (rotational force) transmitted by the in-wheel motor 14 to the drive wheels 13 to the wheels 15a and 15b via the track 11.

インホイールモータ14は、駆動輪13の内部に内蔵されており、駆動輪13に回転力を伝達する。インホイールモータ14は、駆動軸となるモータ軸141を中心にして回転駆動する。インホイールモータ14の回転軸(モータ軸141)は、駆動輪13の回転軸(駆動軸)となり、インホイールモータ14の回転力によって駆動輪13が回転する。そして、インホイールモータ14の回転力は、駆動力として履帯11に伝達される。具体的には、インホイールモータ14は、駆動輪13に対して、走行装置1を前進させる正方向の回転、または走行装置1を後退させる負方向の回転を与える。 The in-wheel motor 14 is built inside the drive wheel 13 and transmits rotational force to the drive wheel 13. The in-wheel motor 14 is driven to rotate around a motor shaft 141 serving as a drive shaft. The rotation shaft (motor shaft 141) of the in-wheel motor 14 becomes the rotation shaft (drive shaft) of the drive wheel 13, and the drive wheel 13 is rotated by the rotational force of the in-wheel motor 14. The rotational force of the in-wheel motor 14 is then transmitted to the crawler belt 11 as driving force. Specifically, the in-wheel motor 14 provides the drive wheels 13 with rotation in a positive direction to move the traveling device 1 forward, or rotation in a negative direction to move the traveling device 1 backward.

また、インホイールモータ14は、駆動輪13に内蔵されることで構造を簡略化することができ、例えば、駆動チェーンまたはギア等の部品を用いないことで、それらの部品に起因する故障等のリスクを低減することができる。さらに、インホイールモータ14は、駆動輪13に内蔵させることで、履帯式走行体10の外周付近で駆動力を出すことができるため、トルクを大きくすることができる。 Furthermore, the in-wheel motor 14 can be built into the drive wheel 13 to simplify its structure. For example, by not using parts such as a drive chain or gears, the in-wheel motor 14 is free from malfunctions caused by those parts. Risk can be reduced. Furthermore, by incorporating the in-wheel motor 14 into the drive wheel 13, the in-wheel motor 14 can generate driving force near the outer periphery of the track-type traveling body 10, so that the torque can be increased.

転輪15a,15bは、履帯式走行体10に回転自在に取り付けられている。転輪15a,15bは、履帯11を介して駆動輪13から伝達された駆動力(回転力)によって、転輪軸151a,151bを回転軸として回転する。 The wheels 15a and 15b are rotatably attached to the track type traveling body 10. The wheels 15a, 15b are rotated by the driving force (rotational force) transmitted from the drive wheel 13 via the crawler belt 11, using the wheel shafts 151a, 151b as rotation axes.

ここで、駆動輪13と転輪15aと転輪15bは、側面視において、三角形を形成する。履帯11は、駆動輪13と転輪15aと転輪15bとに掛け回されて、転輪15aと転輪15bの間の範囲が接地する。すなわち、インホイールモータ14が内蔵された駆動輪13は、路面に接地しない。よって、履帯式走行体10は、例えば、水溜まりを走行した場合であってもインホイールモータ14が浸水することはないため、インホイールモータ14に対して特別な防水機構を設置する必要はない。 Here, the driving wheel 13, the rolling wheels 15a, and the rolling wheels 15b form a triangle in a side view. The crawler belt 11 is wrapped around the driving wheel 13, the rolling wheels 15a, and the rolling wheels 15b, and the range between the rolling wheels 15a and the rolling wheels 15b is in contact with the ground. That is, the drive wheels 13 in which the in-wheel motor 14 is built-in do not touch the road surface. Therefore, the in-wheel motor 14 of the crawler-type traveling body 10 will not be submerged in water even if it runs through a puddle, for example, so there is no need to install a special waterproofing mechanism for the in-wheel motor 14.

また、駆動輪13と転輪15a,15bの径は異なる。走行体は、要求されるサイズの制限や走行性等の要因を踏まえてレイアウト設計する必要がある。一般的に、モータは径が小さいほどモータの厚み(幅)における単位幅当たりのトルクが下がる傾向にある。そのため、インホイールモータを内蔵した駆動輪は、要求されるトルク性能に対応できるようなモータ径以上の径を有する必要がある。したがって、履帯式走行体10は、走行装置1または履帯式走行体10のサイズ制限を満たすとともに、要求される走行性能を満たすようなレイアウトとして、上方に設置された駆動輪13の径を、転輪15a,15bの径よりも大きくなるように設計する。なお、サイズが制限される中で転輪の径も大きくすると、接地面積が小さくなり走行安定性が損なわれる。そのため、駆動輪13の径を踏まえて比較的小さい径の転輪15a,15bを採用する利点もある。 Further, the drive wheel 13 and the rolling wheels 15a, 15b have different diameters. It is necessary to design the layout of a running body taking into account factors such as required size restrictions and running performance. Generally, the smaller the diameter of a motor, the lower the torque per unit width of the motor. Therefore, a drive wheel with a built-in in-wheel motor needs to have a diameter equal to or larger than the diameter of the motor that can meet the required torque performance. Therefore, the track-type traveling body 10 has a layout that satisfies the size limitations of the traveling device 1 or the track-type traveling body 10 and also satisfies the required running performance by changing the diameter of the drive wheels 13 installed above. It is designed to be larger than the diameter of the rings 15a and 15b. Note that if the diameter of the wheels is increased while the size is limited, the ground contact area will become smaller and running stability will be impaired. Therefore, there is an advantage in adopting the rolling wheels 15a, 15b having a relatively small diameter in consideration of the diameter of the driving wheel 13.

アイドラ18a,18bは、二つの転輪15a,15bの間に設けられ、履帯11に従動して回転する補助輪である。アイドラ18a,18bは、アイドラ軸181a,181bを回転軸としてそれぞれ回転する。また、リンク19は、アイドラ18aおよびアイドラ18bを支持する支持体である。 The idlers 18a and 18b are auxiliary wheels that are provided between the two wheels 15a and 15b and rotate following the crawler belt 11. The idlers 18a and 18b rotate about idler shafts 181a and 181b as rotational axes, respectively. Further, the link 19 is a support that supports the idler 18a and the idler 18b.

側板20aは、履帯式走行体10において、駆動輪13、転輪15a,15b、およびアイドラ18a,18bを支持する。側板20aは、履帯式走行体10のy1正方向側の側面に設置される。また、側板20aの反対側、履帯式走行体10のy1負方向側の側面には側板20aと同一形状の側板20bが設定される。履帯式走行体10は、二つの側板20a,20bを用いて、駆動輪13および転輪15a,15b等を支持する両持ち構造になっている。側板20a,20bは、モータ軸141を用いて、駆動輪13を支持する。また、側板20a,20bは、転輪軸151a,151bを用いて、転輪15a,15bをそれぞれ支持する。さらに、側板20a,20bは、アイドラ18a,18bを支持するリンク19のリンク軸191を介して、アイドラ18a,18bを支持する。 The side plate 20a supports the drive wheel 13, the wheels 15a, 15b, and the idlers 18a, 18b in the track type traveling body 10. The side plate 20a is installed on the side surface of the track type traveling body 10 on the y1 positive direction side. Furthermore, a side plate 20b having the same shape as the side plate 20a is set on the side surface of the track type traveling body 10 on the y1 negative direction side, which is opposite to the side plate 20a. The track-type traveling body 10 has a dual-supported structure that supports the driving wheel 13, the rolling wheels 15a, 15b, etc. using two side plates 20a, 20b. The side plates 20a and 20b support the drive wheel 13 using the motor shaft 141. Further, the side plates 20a, 20b support the rolling wheels 15a, 15b, respectively, using the rolling wheel shafts 151a, 151b. Further, the side plates 20a, 20b support the idlers 18a, 18b via a link shaft 191 of the link 19 that supports the idlers 18a, 18b.

テンショナ25は、バネ等の弾性部材で形成されており、インホイールモータ14および駆動輪13の回転軸であるモータ軸141に接続される。テンショナ25は、駆動輪13が履帯11の内側に押し当たるように設置されて、履帯11にテンションを与える。テンショナ25は、走行時に、駆動輪13から履帯11に与えるテンションを調整する役割を担う。テンショナ25は、例えば、履帯式走行体10の静止時のテンションを基準として、基準となるテンションを走行時に略一定に保つための役割を担う。また、履帯式走行体10は、テンショナ25によって履帯11のたるみが調整されることによって、履帯11による正常な駆動力の伝達を維持する。また、履帯式走行体10は、テンショナ25によって履帯11にテンションを与えることで、履帯11の脱輪を防止することができる。 The tensioner 25 is formed of an elastic member such as a spring, and is connected to a motor shaft 141 that is a rotation shaft of the in-wheel motor 14 and the drive wheel 13. The tensioner 25 is installed so that the drive wheel 13 presses against the inside of the crawler belt 11, and applies tension to the crawler belt 11. The tensioner 25 plays a role in adjusting the tension applied from the drive wheels 13 to the crawler belt 11 during running. The tensioner 25 serves, for example, to maintain a reference tension substantially constant during traveling, with reference to the tension when the crawler-type traveling body 10 is at rest. In addition, the crawler belt type traveling body 10 maintains normal transmission of driving force by the crawler belt 11 by adjusting the slack of the crawler belt 11 by the tensioner 25. Furthermore, the crawler belt type traveling body 10 can prevent the crawler belt 11 from coming off the track by applying tension to the crawler belt 11 using the tensioner 25.

ここで、図1および図2に示されているように、履帯式走行体10は、駆動輪13を中心に、走行方向の前後に略対称の構造を有する。より詳細には、履帯式走行体10は、図1および図2に示されているようなy1軸方向から見た側面視において、二つの転輪15a,15bの転輪軸を結ぶ直線に対するインホイールモータ14のモータ軸141からの垂線に対しておおよそ線対称の構造である。 Here, as shown in FIGS. 1 and 2, the track-type traveling body 10 has a substantially symmetrical structure in the front and rear directions in the traveling direction with the driving wheels 13 as the center. More specifically, in a side view seen from the y1-axis direction as shown in FIGS. 1 and 2, the track type traveling body 10 has an in-wheel position relative to a straight line connecting the wheel axes of the two wheels 15a and 15b. The structure is approximately line symmetrical with respect to a perpendicular from the motor shaft 141 of the motor 14.

例えば、オフィスの廊下などの狭いスペースで走行する走行装置は、前進後進や超信地旋回を頻繁に行う必要がある。この場合、走行装置は、履帯の形状、または駆動輪、転輪もしくはテンショナ等の配置が前後に非対称だと、前進後進で駆動特性が変わったり、超信地旋回時に中心回転できなかったりする場合がある。そこで、履帯式走行体10は、レイアウト(構造)を前後に略対称にすることによって、走行装置1の走行時の安定性の向上や制御の簡略化を図ることができる。また、履帯式走行体10は、走行装置1の左右を意識せずに取り付けることができるため、部品点数の削減等を図ることができる。 For example, a traveling device that travels in a narrow space such as an office hallway must frequently move forward and backward and make sharp turns. In this case, if the shape of the track or the arrangement of drive wheels, rollers, tensioners, etc. are asymmetrical in the front and back, the driving characteristics of the traveling device may change when moving forward or backward, or the center rotation may not be possible during a corner turn. There is. Therefore, by making the layout (structure) of the track-type traveling body 10 approximately symmetrical in the front and rear, it is possible to improve the stability of the traveling device 1 during traveling and to simplify the control. Further, since the track type traveling body 10 can be attached without being conscious of the right and left sides of the traveling device 1, it is possible to reduce the number of parts.

図3は、走行装置1のハードウェア構成の一例を示す図である。走行装置1は、図1に示されているように、走行装置1の処理または動作を制御する本体50を備える。本体50は、ラジコン受信部501、CPU(Central Processing Unit)502、メモリ503、通信I/F(Interface)506、バッテリ530、走行制御用モータドライバ540、姿勢制御用モータドライバ550、および姿勢制御用モータ555a,555bを備える。また、ラジコン受信部501、CPU502、メモリ503、通信I/F506、バッテリ530、走行制御用モータドライバ540、および姿勢制御用モータドライバ550は、システムバス510を介して接続している。システムバス510は、上記各構成要素を電気的に接続するためのアドレスバスやデータバス等であり、アドレス信号、データ信号、および各種制御信号等を伝送する。 FIG. 3 is a diagram showing an example of the hardware configuration of the traveling device 1. The traveling device 1 includes a main body 50 that controls processing or operation of the traveling device 1, as shown in FIG. The main body 50 includes a radio control receiving section 501, a CPU (Central Processing Unit) 502, a memory 503, a communication I/F (Interface) 506, a battery 530, a travel control motor driver 540, an attitude control motor driver 550, and an attitude control motor driver 540. It includes motors 555a and 555b. Further, the radio control receiving section 501, the CPU 502, the memory 503, the communication I/F 506, the battery 530, the travel control motor driver 540, and the attitude control motor driver 550 are connected via a system bus 510. The system bus 510 is an address bus, a data bus, etc. for electrically connecting each of the above components, and transmits address signals, data signals, various control signals, and the like.

ラジコン受信部501は、走行装置1の操作者が使用するPC等の送信機から送信される動作指示信号を受信する。 The radio control receiving unit 501 receives an operation instruction signal transmitted from a transmitter such as a PC used by the operator of the traveling device 1.

CPU502は、走行装置1全体の制御を行う。CPU502は、メモリ503に格納された、プログラムP1または走行装置1を動作させるのに必要な各種データを読み出し、処理を実行することで、走行装置1の各機能を実現する演算装置である。 The CPU 502 controls the traveling device 1 as a whole. The CPU 502 is an arithmetic device that realizes each function of the traveling device 1 by reading out the program P1 or various data necessary for operating the traveling device 1 stored in the memory 503 and executing processing.

メモリ503は、CPU502が実行するプログラムP1をはじめ、走行装置1を動作させるのに必要な各種データを記憶する。プログラムP1は、メモリ503に予め組み込まれて提供される。 The memory 503 stores various data necessary for operating the traveling device 1, including the program P1 executed by the CPU 502. The program P1 is provided and incorporated in the memory 503 in advance.

また、プログラムP1は、インストール可能な形式、または実行可能な形式のファイルでCD-ROM、フレキシブルディスク(FD)、CD-RまたはDVD(Digital Versatile Disc)等のCPU502(コンピュータ)で読み取り可能な記録媒体に記録して提供するように構成してもよい。さらに、プログラムP1は、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由で走行装置1にダウンロードさせることにより提供されるように構成してもよい。また、プログラムP1は、インターネット等のネットワーク経由で提供または配布されるように構成してもよい。プログラムP1が外部から提供される場合、CPU502は、通信I/F506を介してプログラムP1を読み込む。なお、走行装置1は、CPU502をプログラムP1に従って動作させる代わりに、プログラムP1が実行するのと同じ演算機能および制御機能を有する専用のASIC(Application Specific Integrated Circuit)を実装することによって、ハードウェア的に動作させてもよい。 The program P1 is a file in an installable or executable format and is a record readable by the CPU 502 (computer) such as a CD-ROM, a flexible disk (FD), a CD-R, or a DVD (Digital Versatile Disc). It may be configured to be recorded on a medium and provided. Furthermore, the program P1 may be stored on a computer connected to a network such as the Internet, and may be provided by being downloaded to the traveling device 1 via the network. Further, the program P1 may be configured to be provided or distributed via a network such as the Internet. When the program P1 is provided externally, the CPU 502 reads the program P1 via the communication I/F 506. Note that instead of causing the CPU 502 to operate according to the program P1, the traveling device 1 implements a dedicated ASIC (Application Specific Integrated Circuit) that has the same arithmetic function and control function as the program P1 executes. may be operated.

通信I/F506は、通信ネットワークを経由して、他の機器または装置との通信(接続)を行う通信インターフェースである。通信I/F506は、例えば、有線または無線LAN(Local Area Network)等の通信インターフェースである。なお、通信I/F506は、3G(3rd Generation)、LTE(Long Term Evolution)、4G(4th Generation)、5G(5th Generation)、Wi-Fi(Wireless Fidelity)(登録商標)、WiMAX(Worldwide Interoperability for Microwave Access)、Zigbee(登録商標)、またはミリ波無線通信等の通信インターフェースを備えてもよい。また、走行装置1は、NFC(Near Field communication)またはBluetooth(登録商標)等の近距離無線通信を行うための通信回路を備えていてもよい。 The communication I/F 506 is a communication interface that communicates (connects) with other devices or devices via a communication network. The communication I/F 506 is, for example, a communication interface such as a wired or wireless LAN (Local Area Network). The communication I/F 506 supports 3G (3rd Generation), LTE (Long Term Evolution), 4G (4th Generation), 5G (5th Generation), Wi-Fi (Wireless Fidelity) (registered trademark), WiMAX (Worldwide Interoperability for A communication interface such as Microwave Access), Zigbee (registered trademark), or millimeter wave wireless communication may be provided. Further, the traveling device 1 may include a communication circuit for performing short-range wireless communication such as NFC (Near Field communication) or Bluetooth (registered trademark).

バッテリ530は、走行装置1の処理または動作に必要な電力を供給する電力供給ユニットである。バッテリ530は、例えば、インホイールモータ14a,14bおよび姿勢制御用モータ555a,555bに対して電力を供給する。バッテリ530は、接触充電部35と電気的に接続され、充電タスクの際には接触充電部35を介して充電装置110から電力が供給されて充電が行われる。 The battery 530 is a power supply unit that supplies power necessary for processing or operation of the traveling device 1. The battery 530 supplies power to, for example, the in-wheel motors 14a and 14b and the attitude control motors 555a and 555b. The battery 530 is electrically connected to the contact charging unit 35, and is charged by being supplied with power from the charging device 110 via the contact charging unit 35 during a charging task.

走行制御用モータドライバ540は、インホイールモータ14a,14bに対して、モータ駆動信号をそれぞれ供給することによって、インホイールモータ14a,14bを駆動させる。 The travel control motor driver 540 drives the in-wheel motors 14a, 14b by supplying motor drive signals to the in-wheel motors 14a, 14b, respectively.

インホイールモータ14a,14bは、履帯式走行体10aの駆動輪13a、履帯式走行体10bの駆動輪13bの内部にそれぞれ設置されており、駆動輪13a,13bに回転力を伝達する。インホイールモータ14a,14bは、駆動輪13a,13bに対して、走行装置1を前進させる正方向の回転、または走行装置1を後退させる負方向の回転を与える。さらに、インホイールモータ14a,14bは、一方の駆動輪13a(または13b)のみを正方向または負方向に回転させて、他方の駆動輪13b(または13a)を停止させることによって、走行装置1を信地旋回させる。また、インホイールモータ14a,14bは、一方の駆動輪13a(または13b)を正方向に回転させて、他方の駆動輪13b(または13a)を負方向に回転させることによって、走行装置1を超信地旋回させる。 The in-wheel motors 14a, 14b are installed inside the drive wheels 13a of the track type traveling body 10a and the drive wheels 13b of the track type traveling body 10b, respectively, and transmit rotational force to the drive wheels 13a, 13b. The in-wheel motors 14a, 14b provide drive wheels 13a, 13b with rotation in a positive direction to move the traveling device 1 forward, or rotation in a negative direction to move the traveling device 1 backward. Further, the in-wheel motors 14a, 14b rotate only one drive wheel 13a (or 13b) in the positive or negative direction and stop the other drive wheel 13b (or 13a), thereby rotating the traveling device 1. Make a pivot turn. Further, the in-wheel motors 14a, 14b rotate one drive wheel 13a (or 13b) in the positive direction and rotate the other drive wheel 13b (or 13a) in the negative direction, thereby causing the in-wheel motors 14a, 14b to move over the traveling device 1. Make a pivot turn.

姿勢制御用モータドライバ550は、姿勢制御用モータ555a,555bに対して、モータ駆動信号をそれぞれ供給することによって、姿勢制御用モータ555a,555bを駆動させる。姿勢制御用モータ555a,555bは、例えば、姿勢制御用モータドライバ550からの制御信号に応じて、リンク19の高さを上下に変更することで、アイドラ18a,18bの高さを調整する。また、姿勢制御用モータ555a,555bは、例えば、本体50の姿勢を制御することによって、走行装置1の転倒を防止する。 The attitude control motor driver 550 drives the attitude control motors 555a, 555b by supplying motor drive signals to the attitude control motors 555a, 555b, respectively. The attitude control motors 555a, 555b adjust the heights of the idlers 18a, 18b by, for example, changing the height of the link 19 up or down in accordance with a control signal from the attitude control motor driver 550. Further, the posture control motors 555a and 555b prevent the traveling device 1 from falling over, for example, by controlling the posture of the main body 50.

なお、走行装置1は、ラジコン受信部501に受信された動作指示に応じて走行する構成に限られず、自律走行またはライントレース等の技術を用いて走行する構成であってもよい。また、走行装置1は、通信ネットワークを介して送信された動作指示信号を通信I/F506で受信することで、遠隔地にいるユーザから遠隔操作によって走行する構成であってもよい。また、走行装置1は、操作者の手動遠隔操作の他に、サーバなどの上位システムによって自動的に走行や各種タスクなどの操作を自動的に行う構成とすることもできる。この場合、走行装置1は、ラジコン受信部501や通信I/F506を介して、上位システムからの動作指示信号を受信することができる。 Note that the traveling device 1 is not limited to a configuration in which it travels in response to an operation instruction received by the radio-controlled receiver 501, but may be configured to travel using techniques such as autonomous travel or line tracing. Further, the traveling device 1 may be configured to travel by remote control from a user in a remote location by receiving an operation instruction signal transmitted via a communication network at the communication I/F 506. Furthermore, in addition to manual remote control by an operator, the traveling device 1 can also be configured to automatically perform operations such as traveling and various tasks by a host system such as a server. In this case, the traveling device 1 can receive an operation instruction signal from the host system via the radio control receiving section 501 and the communication I/F 506.

図1~図3に例示した走行装置1の寸法は、例えば前後方向の長さ、左右方向の幅、高さ、共に1メートル程度である。 The dimensions of the traveling device 1 illustrated in FIGS. 1 to 3 are, for example, about 1 meter in length in the front-rear direction, width in the left-right direction, and height.

なお、本実施形態の位置決め調整システム100が対象とする走行装置は、図1~図3に例示した履帯式走行体10を有す走行装置1に限定されない。つまり、テンショナ25がインホイールモータ14の回転軸141上に配置される構成の履帯式走行体10には限定されない。他の構成のクローラ式の走行装置でも同様に位置決めの微調整が難しいという課題があるためである。 Note that the traveling device targeted by the positioning adjustment system 100 of this embodiment is not limited to the traveling device 1 having the track type traveling body 10 illustrated in FIGS. 1 to 3. That is, the present invention is not limited to the crawler-type traveling body 10 having a configuration in which the tensioner 25 is disposed on the rotating shaft 141 of the in-wheel motor 14. This is because crawler-type traveling devices with other configurations also have the problem of difficulty in finely adjusting positioning.

自律移動型の走行装置は、劣悪な路面環境や限られたスペースでの作業にも対応できるように、目標位置に対する高い位置決め精度が求められる。従来の自律移動型の走行装置では、このような位置決め精度の点で改善の余地がある。特に、例えば特許文献1に開示される履帯式走行体のように、一対の走行体のそれぞれに速度差を付けることによって進行方向を変更する構造では、細かい位置調整が困難であるのでこの問題が顕著である。 Autonomous mobile traveling devices are required to have high positioning accuracy with respect to target positions so that they can work in poor road environments and in limited spaces. In conventional autonomous mobile traveling devices, there is room for improvement in terms of positioning accuracy. In particular, in a structure in which the traveling direction is changed by giving a speed difference to each of a pair of traveling bodies, such as the track type traveling body disclosed in Patent Document 1, fine position adjustment is difficult. Remarkable.

<充電タスクの概要>
走行装置1を位置決めする構成の一例として、充電装置110の充電可能位置Cに位置決めする充電タスクの構成を例示して説明する。図4は、本実施形態における充電タスクの仕組みを説明する図である。
<Overview of charging task>
As an example of a configuration for positioning the traveling device 1, a configuration of a charging task for positioning the charging device 110 at a chargeable position C will be illustrated and explained. FIG. 4 is a diagram illustrating the structure of the charging task in this embodiment.

接触充電部35の一例は、樹脂状の枠体35Cがあって、その中に金属製の2つの接触面35A、35Bが設置される。2つの接触面35A,35Bは、横長の長方形状で略同一形状であり、上下に併設されている。 An example of the contact charging unit 35 includes a resin frame 35C, in which two metal contact surfaces 35A and 35B are installed. The two contact surfaces 35A and 35B are horizontally long rectangular shapes and have substantially the same shape, and are arranged one above the other.

充電装置110の端子部114は、充電装置本体111に対して伸縮可能な基部112と、基部112の先端に配置される2つの接触端子113A,113Bを有する。接触端子113A,113Bの根元にはバネなどの弾性要素が連結されており、接触充電部35に突き当たると基部112に対して接触端子113A,113Bが凹むよう構成される。充電装置110は、例えばこのような接触端子113A,113Bの動作を検知することによって、端子部114と走行装置1の接触充電部35との接触状態の有無を判定できる。2つの接触端子113A,113Bは、走行装置1の2つの接触面35A,35Bと同様に上下方向に併設される。なお、接触端子113A,113Bと、接触面35A,35Bの配列方向は、それぞれ対応する1つずつが接触可能に平行に配列される方向であればよく、例えば左右方向(幅方向、y1方向)など上下方向(z1方向)以外の方向でもよい。 The terminal portion 114 of the charging device 110 has a base portion 112 that is extendable and retractable with respect to the charging device main body 111, and two contact terminals 113A and 113B arranged at the tip of the base portion 112. An elastic element such as a spring is connected to the base of the contact terminals 113A, 113B, and the contact terminals 113A, 113B are configured to be recessed with respect to the base 112 when they abut against the contact charging section 35. The charging device 110 can determine whether there is a contact state between the terminal portion 114 and the contact charging section 35 of the traveling device 1, for example, by detecting the operation of the contact terminals 113A and 113B. The two contact terminals 113A, 113B are arranged side by side in the vertical direction similarly to the two contact surfaces 35A, 35B of the traveling device 1. Note that the arrangement direction of the contact terminals 113A, 113B and the contact surfaces 35A, 35B may be any direction in which the corresponding terminals are arranged in parallel so that they can be contacted, for example, in the left-right direction (width direction, y1 direction). A direction other than the vertical direction (z1 direction) may be used.

充電タスクでは、図4に示すように、まず、走行装置1を充電装置110に対して所定距離をとる停止位置(図5などに示す充電可能位置Cに対応)まで移動させる。この停止位置では、走行装置1の接触充電部35が、充電装置110の端子部114と正対する。次に、図4に矢印で示すように、充電装置110の端子部114の基部112が走行装置1側に伸びて、基部112の先端の接触端子113A,113Bが走行装置1の接触充電部35に接触する。その後、充電装置110から端子部114及び接触充電部35を介して走行装置1のバッテリの充電が行われる。 In the charging task, as shown in FIG. 4, first, the traveling device 1 is moved to a stop position (corresponding to the charging possible position C shown in FIG. 5, etc.) at a predetermined distance from the charging device 110. At this stop position, the contact charging section 35 of the traveling device 1 directly faces the terminal section 114 of the charging device 110. Next, as shown by the arrow in FIG. come into contact with. Thereafter, the battery of the traveling device 1 is charged from the charging device 110 via the terminal section 114 and the contact charging section 35.

上述のように、接触充電部35の各接触面35A,35Bの形状は、y1方向を長径とする略長方形状であるので、各接触端子113A,113Bとの間に水平方向の位置ずれが生じても、位置ずれ量が接触面35A,35Bの長径の範囲内であれば接触端子113A,113Bを接触面35A,35Bに接触させやすくできる。接触充電部35の各接触面35A、35Bの大きさは、例えば水平方向が60ミリ程度なので、水平方向の位置ずれは±30ミリ程度は担保できる。すなわち端子部114の接触端子113A,113Bが接触可能となる。上下方向も30ミリ程度あるので多少のずれは担保できるが、2つの接触面35A,35Bが同一平面上に配置されるので、前傾や後傾で姿勢のずれが大きいと、2つの接触端子113A,113Bの一方が接触できないような問題が起こり得る。 As described above, since the contact surfaces 35A and 35B of the contact charging section 35 have a substantially rectangular shape with the major axis in the y1 direction, a horizontal positional shift occurs between the contact surfaces 35A and 35B and the contact terminals 113A and 113B. However, if the amount of positional deviation is within the range of the long axis of the contact surfaces 35A, 35B, it is possible to easily bring the contact terminals 113A, 113B into contact with the contact surfaces 35A, 35B. Since the size of each of the contact surfaces 35A and 35B of the contact charging unit 35 is, for example, about 60 mm in the horizontal direction, the horizontal positional deviation can be guaranteed to be about ±30 mm. That is, the contact terminals 113A and 113B of the terminal portion 114 can be contacted. There is a distance of about 30 mm in the vertical direction, so a slight deviation can be guaranteed, but since the two contact surfaces 35A and 35B are arranged on the same plane, if there is a large deviation in posture due to forward or backward tilting, the two contact terminals A problem may occur in which one of 113A and 113B cannot be contacted.

なお、図4に示す充電タスクの構造は一例であって、図4に示す接触充電式に限られず、非接触充電などの他の手法を用いてもよい。いずれにしても、走行装置1が充電可能な位置まで充電装置110に接近させる必要がある。 Note that the structure of the charging task shown in FIG. 4 is an example, and the charging task is not limited to the contact charging type shown in FIG. 4, and other methods such as non-contact charging may be used. In any case, it is necessary to bring the traveling device 1 close to the charging device 110 to a position where it can be charged.

このように、充電タスクのために必要な精度は、走行装置1の進行方向に対して、左右が±数十mm程度である。またこの際に走行装置1が充電装置110に対して左右と上下に傾いた状態であっても、充電に支障が生じる。このために走行装置1は±数度程度とする必要がある。 As described above, the accuracy required for the charging task is about ±several tens of mm in the left and right directions with respect to the traveling direction of the traveling device 1. Further, at this time, even if the traveling device 1 is tilted horizontally and vertically with respect to the charging device 110, charging may be hindered. For this reason, it is necessary for the traveling device 1 to have an angle of about ± several degrees.

またこの走行装置1を運搬ロボットとして運用する場合に、省人化の観点から運搬物を自律的に接続および切り離しをすることが望ましい。この場合には前述したように充電タスク時と同レベルの停止位置精度と姿勢の安定化が求められる。 Further, when the traveling device 1 is used as a transportation robot, it is desirable to autonomously connect and disconnect objects to be transported from the viewpoint of labor saving. In this case, as described above, the same level of stopping position accuracy and posture stabilization as during the charging task is required.

<位置決め調整システム>
図5~図11を参照して本実施形態に係る位置決め調整システム100について説明する。図5は、実施形態に係る位置決め調整システム100の概略構成図である。図5では、走行装置1を位置決めする構成の一例として、充電装置110の充電可能位置Cに位置決めする充電タスクの構成を例示して説明する。
<Positioning adjustment system>
The positioning adjustment system 100 according to this embodiment will be described with reference to FIGS. 5 to 11. FIG. 5 is a schematic configuration diagram of the positioning adjustment system 100 according to the embodiment. In FIG. 5, as an example of a configuration for positioning the traveling device 1, a configuration of a charging task for positioning the charging device 110 at a chargeable position C will be illustrated and explained.

なお、図5以降の説明において、x2方向、y2方向、z2方向は互いに垂直な方向である。x2方向及びy2方向は水平方向であり、z2方向は鉛直方向である。x2方向は充電装置110と位置決め調整機構120との配列方向であり、地点A、B、Cの配列方向であり、位置決め調整機構120の奥行方向である。y2方向は、位置決め調整機構120の幅方向である。また、以下では説明の便宜上、z2正方向側を上側、z2負方向側を下側とも表現する場合がある。 In addition, in the description after FIG. 5, the x2 direction, the y2 direction, and the z2 direction are directions perpendicular to each other. The x2 direction and the y2 direction are horizontal directions, and the z2 direction is a vertical direction. The x2 direction is the direction in which the charging device 110 and the positioning adjustment mechanism 120 are arranged, the direction in which the points A, B, and C are arranged, and the depth direction of the positioning adjustment mechanism 120. The y2 direction is the width direction of the positioning adjustment mechanism 120. Furthermore, for convenience of explanation, the z2 positive direction side may also be expressed as the upper side, and the z2 negative direction side may also be expressed as the lower side.

図5に示すように、位置決め調整システム100は、走行装置1と、位置決め調整機構120とを備える。また、位置決め調整システム100は、走行装置1の動作を制御する制御装置を備えるが、本実施形態では走行装置1の本体50の内部のCPU502や走行制御用モータドライバ540などの要素がこの制御装置として機能する。すなわち制御装置は走行装置1の本体50に内蔵されている。 As shown in FIG. 5, the positioning adjustment system 100 includes a traveling device 1 and a positioning adjustment mechanism 120. Further, the positioning adjustment system 100 includes a control device that controls the operation of the traveling device 1, but in this embodiment, elements such as the CPU 502 and the driving control motor driver 540 inside the main body 50 of the traveling device 1 are connected to the control device. functions as That is, the control device is built into the main body 50 of the traveling device 1.

位置決め調整機構120は、所定の停止位置に走行装置1を誘導して、位置と姿勢を調整して停止させるための要素である。本実施形態では、「所定の停止位置」とは、走行装置1が充電装置110からの充電を可能となる充電可能位置Cである。充電可能位置Cは、走行装置1の接触充電部35が、図4に示した充電装置110の端子部114と接触可能な位置であり、充電装置110のx2負方向側の位置である。位置決め調整機構120はこの充電可能位置Cにて走行装置1が充電装置110と正対するように、充電装置110のx2負方向側に隣接して設置される。 The positioning adjustment mechanism 120 is an element for guiding the traveling device 1 to a predetermined stop position, adjusting the position and posture, and stopping the traveling device 1. In this embodiment, the "predetermined stopping position" is a charging possible position C where the traveling device 1 can be charged from the charging device 110. The charging position C is a position where the contact charging section 35 of the traveling device 1 can come into contact with the terminal section 114 of the charging device 110 shown in FIG. 4, and is a position on the x2 negative direction side of the charging device 110. The positioning adjustment mechanism 120 is installed adjacent to the x2 negative direction side of the charging device 110 so that the traveling device 1 directly faces the charging device 110 at the charging position C.

位置決め調整機構120は、例えば平面上において複数の角材を連結して形成される部材である。位置決め調整機構120の構成の詳細は図7などを参照して後述する。 The positioning adjustment mechanism 120 is, for example, a member formed by connecting a plurality of square members on a plane. Details of the configuration of the positioning adjustment mechanism 120 will be described later with reference to FIG. 7 and the like.

図5に示す充電タスクでは、走行装置1が充電装置110から離れた場所を初期位置(図中左上の位置)Pとして、走行装置1がこの初期位置Pから充電装置110との充電可能位置C(第2設定位置)まで移動する。この充電可能位置Cに、本実施形態に係る位置決め調整機構120が配置されている。 In the charging task shown in FIG. 5, a place where the traveling device 1 is away from the charging device 110 is set as an initial position (upper left position in the figure) P, and the traveling device 1 moves from this initial position P to a charging possible position C with the charging device 110. (second setting position). At this chargeable position C, the positioning adjustment mechanism 120 according to the present embodiment is arranged.

また、位置決め調整機構120のx2負方向側の端部よりさらにx2負方向側の位置に、地点B(第1設定位置)が設定される。地点Bは、例えば位置決め調整機構120のx2負方向側の端部位置から1m程度離れた位置である。さらに、地点Bよりx2負方向側の位置に、地点Aが設定される。地点Aは、例えば位置決め調整機構120のx2負方向側の端部位置から5m程度離れた位置である。つまり、地点A、地点B、及び充電可能位置Cは、x2方向に沿って一直線状に配置される。 Further, point B (first set position) is set at a position further on the x2 negative direction side from the end of the positioning adjustment mechanism 120 on the x2 negative direction side. Point B is, for example, a position approximately 1 m away from the end position of the positioning adjustment mechanism 120 on the x2 negative direction side. Furthermore, point A is set at a position on the x2 negative direction side from point B. Point A is, for example, a position approximately 5 m away from the end position of the positioning adjustment mechanism 120 on the x2 negative direction side. That is, point A, point B, and chargeable position C are arranged in a straight line along the x2 direction.

なお、図5の例では、走行装置1の初期位置Pは地点Aからy2正方向側の方向に設定されるが、初期位置Pの配置はこれに限られない。初期位置Pは、少なくとも地点Aに走行装置1を誘導可能な位置であればよい。 In the example of FIG. 5, the initial position P of the traveling device 1 is set in the positive direction of y2 from the point A, but the arrangement of the initial position P is not limited to this. The initial position P may be any position that can guide the traveling device 1 to at least the point A.

図6は、充電タスクのフローチャートである。 FIG. 6 is a flowchart of the charging task.

ステップS1では、走行装置1の制御装置によって、走行装置1が初期位置Pから地点Aまで移動し、地点Aにてx2正方向側に走行装置1の前面50Aが向くように旋回する。つまり走行装置1は、地点Aにおいて、地点B、充電可能位置Cの方向を前進方向となるように位置決めされる。 In step S1, the control device of the traveling device 1 moves the traveling device 1 from the initial position P to a point A, and turns at the point A so that the front surface 50A of the traveling device 1 faces in the x2 positive direction. That is, the traveling device 1 is positioned at point A so that the direction of point B and chargeable position C is the forward direction.

ステップS2では、走行装置1の制御装置によって、走行装置1は地点Aから地点Bまで移動する。 In step S2, the controller of the traveling device 1 moves the traveling device 1 from point A to point B.

なお、図5に矢印Aで示す、初期位置Pから地点B(第1設定位置)に達するまでの走行装置1の移動動作、すなわちステップS1、S2の処理は、例えばGPSによる自律移動を行うのが好ましい。この場合、走行装置1の制御装置は、GPS信号を利用して走行装置1の位置を検出して、走行装置1を初期位置Pから地点Aを経由して地点Bまで移動する制御を行う。これにより、初期位置Pを任意の場所にしても最終的に地点B(第1設定位置)まで許容範囲の精度で走行装置1を移動させることが可能となり、初期位置Pの設定の自由度を向上できる。 Note that the moving operation of the traveling device 1 from the initial position P to the point B (first set position) shown by the arrow A in FIG. is preferred. In this case, the control device of the traveling device 1 detects the position of the traveling device 1 using a GPS signal, and controls the traveling device 1 to move from the initial position P to the point B via the point A. This makes it possible to finally move the traveling device 1 to point B (first set position) with an acceptable range of accuracy even if the initial position P is set to an arbitrary location, increasing the degree of freedom in setting the initial position P. You can improve.

なお、ステップS1、S2の初期位置Pから地点Bまでの移動制御は、少なくとも走行装置1を許容範囲の精度で地点Bまで移動させることができればよく、例えばライダ(LiDAR:light detection and ranging)センサを用いる自己位置検出手法など、GPS信号以外の情報を利用する構成でもよい。「許容範囲の精度」とは、例えば本実施形態に係る位置決め調整機構120によって調整可能な範囲である。 Note that the movement control from the initial position P to the point B in steps S1 and S2 only needs to be able to move the traveling device 1 to the point B with at least an allowable range of accuracy, for example, using a lidar (light detection and ranging) sensor. A configuration that uses information other than GPS signals, such as a self-position detection method that uses a GPS signal, may also be used. The "accuracy within the allowable range" is, for example, the range that can be adjusted by the positioning adjustment mechanism 120 according to the present embodiment.

なお、図5の例では、地点Aから地点Bまで距離は4m程度であるが、上記の移動制御によって、この4m程度の地点Aから地点Bまでの移動によって、走行装置1が位置決め調整機構120に進入できるレベルに左右の位置と角度が制御できることが実験的にわかっている。 In the example of FIG. 5, the distance from point A to point B is about 4 m, but by the above-mentioned movement control, by moving from point A to point B by about 4 m, the traveling device 1 is moved by the positioning adjustment mechanism 120. It has been experimentally shown that the left and right positions and angles can be controlled to a level that allows entry into the area.

ステップS3では、走行装置1の制御装置によって、走行装置1は地点Bから充電可能位置Cまで移動する。ステップS3の移動制御は、ステップS1,S2とは異なり、GPS信号などを利用せずに走行装置1が自律的に直進する。例えば、ステップS2において走行装置1が地点Bに到達すると、制御装置は充電装置110と無線通信などによって通信可能な状態となるように構成される。この構成により、走行装置1の制御装置は例えば充電装置110から何らかの情報を受信したことをトリガとして、走行装置1が所定の第1設定位置(地点B)に到達したことを認識できる。この認識後に、制御装置は走行装置1を所定距離だけ前進させて、充電可能位置Cに移動させることができる。なお、ステップS3の前進距離は、位置決め調整機構120のx2方向の寸法に依存し、例えば50cm~1m程度である。 In step S3, the controller of the traveling device 1 moves the traveling device 1 from the point B to the charging position C. The movement control in step S3 is different from steps S1 and S2 in that the traveling device 1 autonomously moves straight without using a GPS signal or the like. For example, when the traveling device 1 reaches point B in step S2, the control device is configured to be able to communicate with the charging device 110 by wireless communication or the like. With this configuration, the control device of the traveling device 1 can recognize that the traveling device 1 has reached a predetermined first set position (point B), for example, by using the reception of some information from the charging device 110 as a trigger. After this recognition, the control device can move the traveling device 1 forward by a predetermined distance to the charging position C. Note that the forward distance in step S3 depends on the dimension of the positioning adjustment mechanism 120 in the x2 direction, and is, for example, about 50 cm to 1 m.

ステップS3において、走行装置1は充電可能位置Cに到達するまでに、本実施形態に係る位置決め調整機構120による位置と姿勢の調整が行われて、狙いの停止位置に達することになる。なお、ステップS3において地点Bから充電可能位置Cまで直進する際には、走行装置1を低速で移動させるのが好ましい。このときの速度の低下の度合いは、例えば地点Bまでの走行速度より低い速度を設定できる。これにより加減速による前後の揺れを抑制できる。また、このときの速度は等速であるのがさらに好ましい。これにより、加減速による前後の揺れをさらに抑制できる。 In step S3, by the time the traveling device 1 reaches the chargeable position C, the position and attitude are adjusted by the positioning adjustment mechanism 120 according to the present embodiment, and the traveling device 1 reaches the target stop position. Note that when traveling straight from point B to charging position C in step S3, it is preferable to move traveling device 1 at a low speed. The degree of speed reduction at this time can be set to a speed lower than the traveling speed to point B, for example. This makes it possible to suppress back and forth shaking due to acceleration and deceleration. Further, it is more preferable that the speed at this time is constant. Thereby, it is possible to further suppress back and forth shaking due to acceleration and deceleration.

ここで、図7~図11を参照して、ステップS3における位置決め調整機構120による走行装置1の位置と姿勢の調整の仕組みについて説明する。 Here, with reference to FIGS. 7 to 11, a mechanism for adjusting the position and attitude of the traveling device 1 by the positioning adjustment mechanism 120 in step S3 will be described.

図7は、本実施形態に係る位置決め調整機構120の概略構成を示す斜視図である。図7に示すように、位置決め調整機構120は、第1ガイド部材121(第1接触部材)と、第2ガイド部材125(第2接触部材)と、第3ガイド部材126(第3接触部材)と、壁部127A、127Bとを備える。 FIG. 7 is a perspective view showing a schematic configuration of the positioning adjustment mechanism 120 according to this embodiment. As shown in FIG. 7, the positioning adjustment mechanism 120 includes a first guide member 121 (first contact member), a second guide member 125 (second contact member), and a third guide member 126 (third contact member). and wall portions 127A and 127B.

第1ガイド部材121は、走行装置1の所定の停止位置(充電可能位置C)への接近中に、一対の履帯式走行体10a、10bの側部、本実施形態では特に履帯11の側部と接触する。第1ガイド部材121は、一対の履帯式走行体10a、10bの側部と当接することにより、走行装置1の左右方向の位置と姿勢の調整を行う。また、本実施形態では、第1ガイド部材121は、一対の履帯式走行体10a、10bのうち本体50の側(内側)の側部と当接可能に配置される。 When the traveling device 1 approaches a predetermined stop position (charging possible position C), the first guide member 121 is inserted into the side portions of the pair of track-type traveling bodies 10a and 10b, particularly the side portions of the crawler track 11 in this embodiment. come into contact with. The first guide member 121 adjusts the position and attitude of the traveling device 1 in the left-right direction by coming into contact with the side portions of the pair of track-type traveling bodies 10a and 10b. Further, in the present embodiment, the first guide member 121 is arranged so as to be able to come into contact with a side portion of the pair of track type traveling bodies 10a, 10b on the side (inside) of the main body 50.

第2ガイド部材125は、走行装置1が停止位置に達した際に、一対の履帯式走行体10a、10bの前部(転輪15aの側)、本実施形態では特に履帯11の前部と接触する
。第2ガイド部材125は、一対の履帯式走行体10a、10bの前部と突き当たることにより、走行装置1の前後方向の位置と姿勢の調整を行う。本実施形態では、第2ガイド部材125は、走行装置1の一対の履帯式走行体10a、10bの配列方向(y2方向)に沿って延在するよう形成される。
When the traveling device 1 reaches the stop position, the second guide member 125 is connected to the front portion of the pair of track-type traveling bodies 10a and 10b (the side of the rolling wheels 15a), particularly to the front portion of the crawler track 11 in this embodiment. Contact. The second guide member 125 adjusts the position and attitude of the traveling device 1 in the front-rear direction by coming into contact with the front portions of the pair of track-type traveling bodies 10a and 10b. In this embodiment, the second guide member 125 is formed to extend along the arrangement direction (y2 direction) of the pair of track type traveling bodies 10a, 10b of the traveling device 1.

第1ガイド部材121は、一対の直線部122A、122Bと、一対の傾斜部123A、123Bとを有する。一対の直線部122A、122Bは、第2ガイド部材125の延在方向と直交する方向(x2方向)に沿って平行に延在し、x2正方向側の基端部が第2ガイド部材125と連結する。一対の傾斜部123A、123Bは、一対の直線部122A、122Bのx2負方向側の先端部とそれぞれ連結し、直線部122A、122Bの延在方向に対して所定角度θの方向に延在する。一対の傾斜部123A、123Bは、直線部122A、122Bとの連結部分から離れる程、すなわちx2負方向側に進むほど、両者の幅が狭くなるよう形成される。言い換えると、傾斜部123A、123Bは、直線部122A、122Bの延在方向に対してx2、y2面内で所定角度θ傾斜している、とも表現できる。傾斜部123A、123Bと直線部122A、122Bは互いに傾斜している。また、傾斜部123A、123Bは、本実施形態では略直線状に延在している。 The first guide member 121 has a pair of straight portions 122A, 122B and a pair of inclined portions 123A, 123B. The pair of straight portions 122A and 122B extend in parallel along a direction (x2 direction) perpendicular to the extending direction of the second guide member 125, and the base end portions on the x2 positive direction side are connected to the second guide member 125. Link. The pair of inclined parts 123A, 123B are connected to the tips of the pair of straight parts 122A, 122B on the x2 negative direction side, respectively, and extend in the direction of a predetermined angle θ with respect to the extending direction of the straight parts 122A, 122B. . The pair of inclined portions 123A, 123B are formed such that the width thereof becomes narrower as the distance from the connecting portion with the straight portions 122A, 122B increases, that is, as the slope portions move toward the x2 negative direction. In other words, the inclined portions 123A, 123B can be expressed as being inclined at a predetermined angle θ in the x2, y2 plane with respect to the extending direction of the straight portions 122A, 122B. The inclined parts 123A, 123B and the straight parts 122A, 122B are inclined to each other. Further, the inclined portions 123A and 123B extend substantially linearly in this embodiment.

また、第1ガイド部材121は、一対の傾斜部123A、123Bの先端部分を連結し、走行装置1の一対の履帯式走行体10a、10bの配列方向(y2方向)に沿って延在する前端部124を有する。 Further, the first guide member 121 connects the tip portions of the pair of inclined portions 123A and 123B, and has a front end extending along the arrangement direction (y2 direction) of the pair of track type traveling bodies 10a and 10b of the traveling device 1. It has a section 124.

すなわち、第1ガイド部材121は、x2負方向側の部分が、一対の傾斜部123A、123Bと前端部124とによって略台形状に形成されている。一対の傾斜部123A、123Bのx2正方向側の基端部におけるy2方向の幅W1が、x2負方向側の先端部における幅W2、すなわち前端部124の長さより大きい。 That is, the first guide member 121 has a portion on the x2 negative direction side formed into a substantially trapezoidal shape by the pair of inclined portions 123A, 123B and the front end portion 124. The width W1 in the y2 direction at the base end portion on the x2 positive direction side of the pair of inclined portions 123A, 123B is larger than the width W2 at the tip end portion on the x2 negative direction side, that is, the length of the front end portion 124.

第3ガイド部材126は、走行装置1が停止位置(充電可能位置C)に達した際に、一対の履帯式走行体10a、10bの後部(転輪15bの側)、本実施形態では特に履帯11の後部と当接することにより、走行装置1の前後方向の位置と姿勢の調整を行う。本実施形態では、第3ガイド部材126は、第2ガイド部材125と同様の方向(y2方向)に延在し、かつ、第1ガイド部材121の直線部122A、122Bと傾斜部123A、123Bとの連結部分を通る位置に配置される。 When the traveling device 1 reaches the stop position (charging position C), the third guide member 126 is connected to the rear part (side of the roller 15b) of the pair of track-type traveling bodies 10a, 10b, especially the crawler track in this embodiment. By coming into contact with the rear part of the traveling device 11, the longitudinal position and posture of the traveling device 1 are adjusted. In this embodiment, the third guide member 126 extends in the same direction as the second guide member 125 (y2 direction), and has straight parts 122A, 122B and inclined parts 123A, 123B of the first guide member 121. It is placed at a position that passes through the connecting part of.

一対の壁部127A、127Bは、走行装置1が停止位置(充電可能位置C)にあるときに、一対の履帯式走行体10a、10bの左右方向の外側に配置される。本実施形態では、一対の壁部127A、127Bは、x2正方向側の端部がそれぞれ第2ガイド部材125の両端と連結され、x2負方向側の端部がそれぞれ第3ガイド部材126の両端と連結される。 The pair of wall portions 127A and 127B are arranged on the outer sides of the pair of track-type traveling bodies 10a and 10b in the left-right direction when the traveling device 1 is at the stop position (chargeable position C). In the present embodiment, the ends of the pair of walls 127A and 127B on the x2 positive direction are connected to both ends of the second guide member 125, and the ends on the x2 negative direction are connected to both ends of the third guide member 126, respectively. is connected with.

第1ガイド部材121と、第3ガイド部材126の高さは略同一である。これらの高さ寸法は、少なくとも履帯式走行体10の履帯11の厚みより大きく設定されるのが好ましく、例えば30mm程度で形成される。また、一対の壁部127A、127Bの高さ寸法は、第1ガイド部材121及び第3ガイド部材126の高さより大きく、例えば2倍程度に設定され、例えば60mm程度で形成される。 The heights of the first guide member 121 and the third guide member 126 are approximately the same. These height dimensions are preferably set to be at least larger than the thickness of the crawler belt 11 of the crawler type traveling body 10, and are formed to be, for example, about 30 mm. Further, the height of the pair of wall portions 127A and 127B is set to be larger, for example, about twice the height of the first guide member 121 and the third guide member 126, and is formed to be, for example, about 60 mm.

第2ガイド部材125は、一対の履帯式走行体10の前部に対して段差形状に形成される。つまり、x2正方向側に高い段125Bがあるように段差形状をとる。なお、図7の例では段差は2段であるが、3段以上でもよい。第2ガイド部材125の段差形状は、各125A、125B段のx2負方向側の角部が、走行装置1の接近時に履帯式走行体10とほぼ同時に接触するように、図11などに示す側面視において、履帯式走行体10の前方部分の転輪15aに沿った履帯11の曲線形状と対応するよう配置されるのが好ましい。 The second guide member 125 is formed in a stepped shape with respect to the front portions of the pair of track-type traveling bodies 10 . In other words, the step shape is such that there is a high step 125B on the x2 positive direction side. In the example of FIG. 7, there are two steps, but there may be three or more steps. The step shape of the second guide member 125 is such that the corners on the x2 negative direction side of each of the steps 125A and 125B come into contact with the track type traveling body 10 almost simultaneously when the traveling device 1 approaches. It is preferable that the curved shape of the crawler belt 11 corresponds to the curved shape of the crawler belt 11 along the front wheel 15a of the crawler-type traveling body 10 when viewed.

第2ガイド部材125は、図7に示す二段形状の場合には、x2負方向側の低段125Aの高さ寸法が第1ガイド部材121及び第3ガイド部材126の高さと略同一であり、x2正方向側の高段125Bの高さ寸法が一対の壁部127A、127Bの高さと略同一であるのが好ましい。 In the case of the second guide member 125 having a two-stage shape shown in FIG. , x2 It is preferable that the height dimension of the high step 125B on the positive direction side is approximately the same as the height of the pair of wall portions 127A and 127B.

これにより、第1ガイド部材121と履帯式走行体10の履帯11の側部とをより確実に接触させることができ、第2ガイド部材125と履帯式走行体10の履帯11の前部とをより確実に接触させることができ、第3ガイド部材126と履帯式走行体10の履帯11の後部とをより確実に接触させることができる。この結果、各ガイド部材121,125、126による履帯式走行体10の位置と姿勢の誘導をより確実にできる。 Thereby, the first guide member 121 and the side part of the crawler belt 11 of the track type traveling body 10 can be brought into contact more reliably, and the second guide member 125 and the front part of the crawler belt 11 of the track type traveling body 10 can be brought into contact with each other more reliably. The third guide member 126 and the rear part of the crawler belt 11 of the crawler type traveling body 10 can be brought into contact more reliably. As a result, the position and posture of the crawler-type traveling body 10 can be guided more reliably by the guide members 121, 125, and 126.

図8は、走行装置1が位置決め調整機構120により位置決めされた状態の斜視図である。図7,図8に示すように、位置決め調整機構120では、第1ガイド部材121の直線部122Aと、第2ガイド部材125と、第3ガイド部材126と、壁部127Aとによって、履帯式走行体10aが篏合する略矩形状の凹部128Aが形成される。同様に、第1ガイド部材121の直線部122Bと、第2ガイド部材125と、第3ガイド部材126と、壁部127Bとによって、履帯式走行体10bが篏合する略矩形状の凹部128Bが形成される。 FIG. 8 is a perspective view of the traveling device 1 positioned by the positioning adjustment mechanism 120. As shown in FIGS. 7 and 8, in the positioning adjustment mechanism 120, the linear portion 122A of the first guide member 121, the second guide member 125, the third guide member 126, and the wall portion 127A allow track-type traveling. A substantially rectangular recess 128A into which the body 10a fits is formed. Similarly, the linear portion 122B of the first guide member 121, the second guide member 125, the third guide member 126, and the wall portion 127B form a substantially rectangular recess 128B in which the track type traveling body 10b is fitted. It is formed.

図8に示すように、走行装置1が最終的に充電可能位置Cに到達するとき、走行装置1の一対の履帯式走行体10a、10bが、それぞれ位置決め調整機構120の凹部128A、128Bに篏合して位置決めされた状態となる。 As shown in FIG. 8, when the traveling device 1 finally reaches the charging position C, the pair of track-type traveling bodies 10a and 10b of the traveling device 1 are fitted into the recesses 128A and 128B of the positioning adjustment mechanism 120, respectively. Then, the position is set.

このとき、走行装置1の履帯11は前側を第2ガイド部材125に突き当てると同時に、後ろ側も第3ガイド部材126に接した状態となる。これにより、走行装置1全体の上下方向の傾きを規制し、角度を安定化させることができる。また、このとき、他のガイド部材より高い一対の壁部127A、127Bが履帯11の外側に配置されることにより、位置決め調整機構120の凹部128A、128Bから走行装置1が飛び出すことを抑制できる。さらに、一対の壁部127A、127Bは、ガイド時に左右方向に傾いた走行装置1を戻す機能も有する。 At this time, the front side of the crawler belt 11 of the traveling device 1 abuts against the second guide member 125, and at the same time, the rear side also comes into contact with the third guide member 126. Thereby, the vertical inclination of the entire traveling device 1 can be restricted and the angle can be stabilized. Further, at this time, by disposing the pair of wall portions 127A and 127B, which are higher than the other guide members, on the outside of the crawler belt 11, it is possible to suppress the traveling device 1 from popping out from the recesses 128A and 128B of the positioning adjustment mechanism 120. Furthermore, the pair of wall portions 127A and 127B also have a function to return the traveling device 1 that is tilted in the left-right direction during guiding.

凹部128A、128Bは、走行装置1が充電可能位置Cにあるときに、平面視において走行装置1の履帯式走行体10a、10bの下部の外形が内部に収まるように配置される(図9の二点鎖線の10a3、10b3参照)。このような凹部128A、128Bを形成するために、第2ガイド部材125の長手方向(y2方向)の長さは、走行装置1の幅方向の寸法より大きく設定される。また、第1ガイド部材121の一対の直線部122A、122Bは、両者のy2方向外側同士の距離W1が走行装置1の本体50の幅方向の寸法より小さくなるように、それぞれの第2ガイド部材125との接続位置が設定される。一対の直線部122A、122Bの長手方向(x2方向)の長さは、走行装置1の履帯式走行体10a、10bの下部の前後方向の長さと同等に設定される。 The recesses 128A and 128B are arranged such that when the traveling device 1 is in the charging position C, the outer shape of the lower part of the track-type traveling bodies 10a and 10b of the traveling device 1 is accommodated therein in a plan view (as shown in FIG. 9). (See double-dashed lines 10a3 and 10b3). In order to form such recesses 128A and 128B, the length of the second guide member 125 in the longitudinal direction (y2 direction) is set to be larger than the dimension of the traveling device 1 in the width direction. Further, the pair of straight portions 122A and 122B of the first guide member 121 are arranged in the respective second guide members such that the distance W1 between the outer sides in the y2 direction is smaller than the dimension in the width direction of the main body 50 of the traveling device 1. The connection position with 125 is set. The length of the pair of straight portions 122A, 122B in the longitudinal direction (x2 direction) is set to be equal to the length of the lower portions of the track-type traveling bodies 10a, 10b of the traveling device 1 in the front-rear direction.

図9は、位置決め調整機構120による調整過程の第1段階を示す平面図である。図9に示すように、走行装置1が位置決め調整機構120に進入したときに、第1ガイド部材121の先端の台形部分、すなわち一対の傾斜部123A、123Bと前端部124により形成される部分が、走行装置1の履帯式走行体10a、10bの間に入る。このとき、走行装置1の左右方向の位置が充電可能位置Cからy2方向にずれている場合、各走行体10a、10bの下部の内側(本体50側)の側面にこの台形部分が接触し、これにより、履帯式走行体10に横方向に力を与えることで、走行装置1が前進する際に左右方向の位置調整を行うことができる。この構成であれば、走行装置1側に部品を追加することなく履帯式走行体10をガイドすることで左右方向の位置調整が可能となる。 FIG. 9 is a plan view showing the first stage of the adjustment process by the positioning adjustment mechanism 120. As shown in FIG. 9, when the traveling device 1 enters the positioning adjustment mechanism 120, the trapezoidal portion at the tip of the first guide member 121, that is, the portion formed by the pair of inclined portions 123A, 123B and the front end portion 124. , enters between the track-type traveling bodies 10a and 10b of the traveling device 1. At this time, if the horizontal position of the traveling device 1 is shifted from the charging position C in the y2 direction, this trapezoidal portion comes into contact with the inner side (main body 50 side) of the lower part of each traveling body 10a, 10b, Thereby, by applying force to the track type traveling body 10 in the lateral direction, it is possible to adjust the position in the left and right direction when the traveling device 1 moves forward. With this configuration, it is possible to adjust the position in the left-right direction by guiding the track-type traveling body 10 without adding any parts to the traveling device 1 side.

例えば図9に点線で示すように、走行装置1が右側(y2負方向側)にずれている場合には、左側の履帯式走行体10a1が、第1ガイド部材121の左側の傾斜部123Aと接触する。この状態で走行装置1がx2方向に引き続き前進することによって、履帯式走行体10a1が傾斜部123Aを押圧し、傾斜部123Aから反力を受ける。この結果、矢印A1で示すように走行装置1は左前方に移動して、実線で示す履帯式走行体10a、10bのように、左右方向の正しい位置に調整される。その後は、矢印A3で示すように、直線部122A、122Bによって幅方向内側から履帯式走行体がガイドされつつ、x2方向に直進して最終的に図9に二点鎖線で示すように、各履帯式走行体10a3、10b3が凹部128A、128Bに篏合して停止する。 For example, as shown by the dotted line in FIG. 9, when the traveling device 1 is shifted to the right side (y2 negative direction side), the left track type traveling body 10a1 is connected to the left inclined portion 123A of the first guide member 121. Contact. When the traveling device 1 continues to move forward in the x2 direction in this state, the track type traveling body 10a1 presses the inclined portion 123A and receives a reaction force from the inclined portion 123A. As a result, the traveling device 1 moves to the left front as shown by the arrow A1, and is adjusted to the correct position in the left-right direction as shown by the solid lines of the track-type traveling bodies 10a and 10b. Thereafter, as shown by the arrow A3, the track-type traveling body is guided from the inside in the width direction by the straight parts 122A and 122B, and moves straight in the x2 direction, and finally, as shown by the two-dot chain line in FIG. The track-type traveling bodies 10a3 and 10b3 fit into the recesses 128A and 128B and stop.

同様に、図9に一点鎖線で示すように、走行装置1が左側(y2正方向側)にずれている場合には、右側の履帯式走行体10b2が、第1ガイド部材121の右側の傾斜部123Bと接触する。この状態で走行装置1がx2方向に引き続き前進することによって、履帯式走行体10b2が傾斜部123Bを押圧し、傾斜部123Bから反力を受ける。この結果、矢印A2で示すように走行装置1は右前方に移動して、実線で示す履帯式走行体10a、10bのように、左右方向の正しい位置に調整される。その後は、矢印A3で示すように、x2方向に直進して最終的に二点鎖線で示すように、各履帯式走行体10a3、10b3が凹部128A、128Bに篏合して停止する。 Similarly, as shown by the dashed line in FIG. 123B. When the traveling device 1 continues to move forward in the x2 direction in this state, the track type traveling body 10b2 presses the inclined portion 123B and receives a reaction force from the inclined portion 123B. As a result, the traveling device 1 moves forward to the right as indicated by the arrow A2, and is adjusted to the correct position in the left-right direction as shown by the solid lines of the track-type traveling bodies 10a and 10b. Thereafter, as shown by arrow A3, the track type traveling bodies 10a3 and 10b3 move straight in the x2 direction and finally stop when they fit into the recesses 128A and 128B as shown by the two-dot chain line.

なお、第1ガイド部材121の台形部分は、最終的に走行装置1が入り込む幅W1を履帯式走行体10の内側の間隔に若干の余裕分(例えば20~30mm程度)を付けて設定するのが好ましい。また、台形部分の先端の幅W2は、進入時の余裕度を高めるためにできるだけ小さいことが望ましい。一方、第1ガイド部材121の傾斜部123A、123Bの長さLは、短いほど機構全体が小型化する。この時の角度θは、W1、W2、Lによって決定されるが、一定以上になるとガイドできなくなる虞がある。今回の実験ではθが16度程度より小さければガイド可能であることを確認しており、この範囲内での運用するのが好ましい。実際の評価時はW1=360mm、W2=160mm、L=300mm、θ=15.7degにてガイドによる調整を行った。この場合であれば(W1-W2)/2=100であるため、狙いの位置から左右が±100mmの範囲であればガイド可能である。つまり、位置決め調整機構120によるガイド可能な範囲を、GPSの誤差の範囲に収めることができる。 Note that the width W1 of the trapezoidal portion of the first guide member 121 is set such that the width W1 into which the traveling device 1 finally enters is set by adding some margin (for example, about 20 to 30 mm) to the inner interval of the track type traveling body 10. is preferred. Further, it is desirable that the width W2 at the tip of the trapezoidal portion is as small as possible in order to increase the margin at the time of approach. On the other hand, the shorter the length L of the inclined portions 123A and 123B of the first guide member 121, the smaller the entire mechanism becomes. The angle θ at this time is determined by W1, W2, and L, but if it exceeds a certain value, there is a possibility that guiding will not be possible. In this experiment, it was confirmed that guiding is possible if θ is smaller than about 16 degrees, and it is preferable to operate within this range. During actual evaluation, adjustments were made using a guide at W1 = 360 mm, W2 = 160 mm, L = 300 mm, and θ = 15.7 deg. In this case, since (W1-W2)/2=100, guiding is possible within a range of ±100 mm from the target position to the left and right. In other words, the range that can be guided by the positioning adjustment mechanism 120 can be kept within the error range of GPS.

上記のθの条件を満たした上で、Lは長いほど左右調整の機能が向上する。理想的には傾斜部123A、123Bが三角形状を形成するのが好ましい。ただし、Lが長すぎると第1ガイド部材121の前後方向寸法が増えて、位置決め調整機構120の体格が大型化する。そこで、本実施形態では、調整機能と大型化抑制を両立できるように、第1ガイド部材121の前端に幅W2を持たせる台形状にして、θを担保しつつ小型化を図る。 As long as the above condition of θ is satisfied, the longer L is, the better the left-right adjustment function is. Ideally, it is preferable that the inclined portions 123A and 123B form a triangular shape. However, if L is too long, the front-back dimension of the first guide member 121 will increase, and the size of the positioning adjustment mechanism 120 will increase. Therefore, in this embodiment, the front end of the first guide member 121 is formed into a trapezoid shape having a width W2 so as to achieve both the adjustment function and the suppression of the size increase, thereby achieving miniaturization while ensuring θ.

充電タスクでは、充電装置110を屋外に設置することが想定される。この場合、充電装置110と、この充電装置110と接続する際に走行装置1が停止する充電可能位置Cの上方には、雨等が装置内へ浸入することを防ぐために屋根が設けられると考えられる。このため、例えば上述のように第1ガイド部材121の傾斜部123の寸法Lを増やすなど、位置決め調整機構120が大型化すると、充電装置110に設ける屋根も大きくする必要ある。このため、できるだけ位置決め調整機構120を小型化しつつ、ガイド機能も充分に発揮させることが望ましい。本実施形態の位置決め調整機構120の構造では、上述のように第1ガイド部材121の前部を台形状にするので、機構の小型化とガイド機能の担保を両立できる。 In the charging task, it is assumed that the charging device 110 is installed outdoors. In this case, it is thought that a roof will be provided above the charging device 110 and the charging position C where the traveling device 1 stops when connected to the charging device 110 in order to prevent rain etc. from entering the device. It will be done. For this reason, when the positioning adjustment mechanism 120 becomes larger, for example by increasing the dimension L of the inclined portion 123 of the first guide member 121 as described above, the roof provided on the charging device 110 also needs to be enlarged. For this reason, it is desirable to make the positioning adjustment mechanism 120 as small as possible while also fully demonstrating its guide function. In the structure of the positioning adjustment mechanism 120 of this embodiment, the front part of the first guide member 121 is formed into a trapezoidal shape as described above, so that the mechanism can be made smaller and the guide function can be ensured at the same time.

図10は、位置決め調整機構120による調整過程の第2段階を示す側面図である。図10では、位置決め調整機構120の一部が断面図で図示されている。図10に示すように、走行装置1は、第1ガイド部材121によって左右方向の調整が行われた後、履帯式走行体10a、10bが第3ガイド部材126を乗り越えて凹部128A、128Bに進入する。 FIG. 10 is a side view showing the second stage of the adjustment process by the positioning adjustment mechanism 120. In FIG. 10, a portion of the positioning adjustment mechanism 120 is illustrated in a cross-sectional view. As shown in FIG. 10, in the traveling device 1, after the horizontal adjustment is performed by the first guide member 121, the track type traveling bodies 10a, 10b climb over the third guide member 126 and enter the recesses 128A, 128B. do.

図11は、位置決め調整機構120による調整過程の第3段階を示す側面図である。図11でも、位置決め調整機構120の一部が断面図で図示されている。図11に示すように、走行装置1は、等速で前進を続けて、最終的に履帯式走行体10a、10bの前部が第2ガイド部材125の各段125A、125Bの角部に突き当たって、走行装置1が停止し、狙いの位置に停止させることが可能となる。さらに、このとき、履帯式走行体10a、10bの後部が第3ガイド部材126のx2正方向側の角部とも接触した状態となる。この結果、履帯式走行体10a、10bは位置決め調整機構120の凹部128A、128Bにそれぞれ篏合されて、前後方向と左右方向が位置決めされた状態となる。また、第2ガイド部材125と第3ガイド部材126と走行体10の前後とが接触することにより、走行装置1の姿勢も水平方向を向く状態となる。 FIG. 11 is a side view showing the third stage of the adjustment process by the positioning adjustment mechanism 120. Also in FIG. 11, a part of the positioning adjustment mechanism 120 is illustrated in a cross-sectional view. As shown in FIG. 11, the traveling device 1 continues to move forward at a constant speed until the front portions of the track-type traveling bodies 10a, 10b finally hit the corners of the respective stages 125A, 125B of the second guide member 125. As a result, the traveling device 1 is stopped and can be stopped at the target position. Furthermore, at this time, the rear portions of the track-type traveling bodies 10a and 10b also come into contact with the corner portion of the third guide member 126 on the x2 positive direction side. As a result, the track-type traveling bodies 10a and 10b are respectively fitted into the recesses 128A and 128B of the positioning adjustment mechanism 120, and are positioned in the front-rear direction and the left-right direction. Further, by contact between the second guide member 125, the third guide member 126, and the front and rear of the traveling body 10, the posture of the traveling device 1 also becomes a state in which it faces in the horizontal direction.

図6に戻り、ステップS4では、充電装置110の端子部114の基部112が走行装置側に伸び、接触端子113A、113Bが走行装置1の接触充電部35の接触面35A、35Bにそれぞれ接触する。すなわち、図4を参照して説明した状態となる。 Returning to FIG. 6, in step S4, the base 112 of the terminal section 114 of the charging device 110 extends toward the traveling device, and the contact terminals 113A, 113B contact the contact surfaces 35A, 35B of the contact charging section 35 of the traveling device 1, respectively. . That is, the state described with reference to FIG. 4 is reached.

ステップS5では、充電装置110が充電を実行する。充電装置110は、例えば端子部114の接触端子113A、113Bの両方が接触充電部35の接触面35A、35Bに突き当たって反力を受け、この反力を検知できたときに、接触充電部35との接続が完了したと判断して、充電制御を開始することができる。 In step S5, charging device 110 performs charging. For example, when both of the contact terminals 113A and 113B of the terminal section 114 hit the contact surfaces 35A and 35B of the contact charging section 35 and receive a reaction force, and this reaction force can be detected, the charging device 110 charges the contact charging section 35. Charging control can be started upon determining that the connection is complete.

このように、本実施形態の位置決め調整システム100では、走行装置1の制御装置は、第1に、走行装置1が第1ガイド部材121及び第2ガイド部材125と離間すると共に、第2ガイド部材と対向し、かつ、前記第1ガイド部材に沿って直進可能な方向を向く第1設定位置(地点B)まで走行装置1を移動させる(ステップS1、S2)。第2に、走行装置1の一対の履帯式走行体10a、10bが第2ガイド部材125と当接可能な第2設定位置(充電可能位置C)まで走行装置1を直進移動させる(ステップS3)。これにより、走行装置1を所定の停止位置に位置決めする。また、ステップS1,S2では、制御装置は、GPS信号を利用して走行装置1の位置を検出して、走行装置1を第1設定位置に移動する制御を行う。 In this way, in the positioning adjustment system 100 of the present embodiment, the control device for the traveling device 1 firstly controls the traveling device 1 to separate from the first guide member 121 and the second guide member 125, and the second guide member The traveling device 1 is moved to a first set position (point B) facing the first guide member and facing in a direction in which it can travel straight along the first guide member (steps S1 and S2). Second, the traveling device 1 is moved straight to a second setting position (chargeable position C) where the pair of track type traveling bodies 10a, 10b of the traveling device 1 can come into contact with the second guide member 125 (step S3). . Thereby, the traveling device 1 is positioned at a predetermined stop position. Further, in steps S1 and S2, the control device detects the position of the traveling device 1 using a GPS signal, and performs control to move the traveling device 1 to the first set position.

この構成により、GPSでおおまかな位置まで移動させて(±数十センチから1メートルくらいの精度)、あとは位置決め調整機構120を用いて、直進させるだけで簡易に精度良く位置決めさせることが可能となる。 With this configuration, it is possible to move to a rough position using GPS (accuracy from ± several tens of centimeters to about 1 meter), and then use the positioning adjustment mechanism 120 to easily and accurately position the device by simply moving straight. Become.

また、本実施形態の位置決め調整機構120は、走行装置1の所定の停止位置(充電可能位置C)への接近中に、一対の走行体10a、10bの側部と当接することにより、走行装置1の左右方向の位置と姿勢の調整を行う第1ガイド部材121と、走行装置1が停止位置に達した際に、一対の走行体10a、10bの前部と突き当たることにより走行装置1の前後方向の位置と姿勢の調整を行う第2ガイド部材125と、を備える。 Further, the positioning adjustment mechanism 120 of the present embodiment is configured so that the traveling device 1 comes into contact with the sides of the pair of traveling bodies 10a and 10b while the traveling device 1 approaches a predetermined stop position (chargeable position C). When the traveling device 1 reaches the stop position, the first guide member 121 that adjusts the horizontal position and posture of the traveling device 1 collides with the front parts of the pair of traveling bodies 10a and 10b, thereby changing the front and rear of the traveling device 1. It includes a second guide member 125 that adjusts the directional position and posture.

この構成により、走行装置1を位置決め調整機構120に進入させる動作だけで、まず第1ガイド部材121による走行装置1の充電可能位置Cに対する左右方向の位置と姿勢の調整を行い、その次に第2ガイド部材125による前後方向の位置と姿勢の調整を行う。つまり、走行装置1を位置決め調整機構120に進入させる動作だけで、走行装置1の前後方向と左右方向の位置と姿勢の調整を簡易かつ高精度に行うことができる。この結果、本実施形態の位置決め調整機構120は、走行装置1の位置決め精度を向上することができる。 With this configuration, by simply moving the traveling device 1 into the positioning adjustment mechanism 120, the first guide member 121 adjusts the position and attitude of the traveling device 1 in the horizontal direction with respect to the chargeable position C, and then the 2. The position and posture in the front-rear direction are adjusted using the guide member 125. That is, by simply moving the traveling device 1 into the positioning adjustment mechanism 120, the position and posture of the traveling device 1 in the front-rear direction and left-right direction can be adjusted easily and with high precision. As a result, the positioning adjustment mechanism 120 of this embodiment can improve the positioning accuracy of the traveling device 1.

また、本実施形態の位置決め調整機構120では、第1ガイド部材121は、一対の走行体10a、10bのうち本体50の側(内側)の側部と当接可能に配置される。この構成により、第1ガイド部材121の幅方向の寸法を短くできるので、位置決め調整機構120をコンパクトにできる。 Further, in the positioning adjustment mechanism 120 of the present embodiment, the first guide member 121 is arranged so as to be able to come into contact with a side portion of the pair of traveling bodies 10a, 10b on the side (inside) of the main body 50. With this configuration, the widthwise dimension of the first guide member 121 can be shortened, so the positioning adjustment mechanism 120 can be made compact.

また、本実施形態の位置決め調整機構120では、第2ガイド部材125は、走行装置1の一対の走行体10a、10bの配列方向(y2方向)に沿って延在するよう形成される。第1ガイド部材121は、第2ガイド部材125の延在方向と直交する方向(x2方向)に延在し、基端部が第2ガイド部材125と連結する一対の直線部122A、122Bと、一対の直線部122A、122Bの先端部とそれぞれ連結し、直線部122A、122Bの延在方向に対して所定角度θの方向に延在する一対の傾斜部123A、123Bと、を有する。一対の傾斜部123A、123Bは、直線部122A、122Bとの連結部分から離れる程、両者の幅が狭くなるよう形成される。 Furthermore, in the positioning adjustment mechanism 120 of this embodiment, the second guide member 125 is formed to extend along the arrangement direction (y2 direction) of the pair of traveling bodies 10a, 10b of the traveling device 1. The first guide member 121 includes a pair of straight portions 122A and 122B that extend in a direction (x2 direction) orthogonal to the extending direction of the second guide member 125, and whose base end portions are connected to the second guide member 125. It has a pair of inclined parts 123A, 123B connected to the tip ends of the pair of straight parts 122A, 122B, respectively, and extending in a direction at a predetermined angle θ with respect to the extending direction of the straight parts 122A, 122B. The pair of sloped portions 123A, 123B are formed such that the width thereof becomes narrower as the distance from the connection portion with the straight portions 122A, 122B increases.

この構成により、走行装置1が位置決め調整機構120に進入する際に、まず一対の傾斜部123A、123Bに沿って走行装置1を前進させることによって、走行装置1の走行体10a、10bが直線部122A、122Bの位置と合うように左右方向の位置調整を行い、その後、一対の直線部122A、122Bに沿って走行装置1を前進させることによって、走行装置1の左右方向の傾きがないように姿勢調整を行うことができる。これにより、走行装置1の充電可能位置Cに対する左右方向の位置と姿勢の調整をより確実に行うことができる。 With this configuration, when the traveling device 1 enters the positioning adjustment mechanism 120, the traveling device 1 is first advanced along the pair of inclined portions 123A, 123B, so that the traveling bodies 10a, 10b of the traveling device 1 are moved to the straight portion. 122A, 122B, and then move the traveling device 1 forward along the pair of straight portions 122A, 122B to prevent the traveling device 1 from tilting in the left-right direction. You can adjust your posture. Thereby, the horizontal position and attitude of the traveling device 1 relative to the chargeable position C can be adjusted more reliably.

また、本実施形態の位置決め調整機構120では、第1ガイド部材121は、一対の傾斜部123A、123Bの先端部分を連結し、一対の走行体10a、10bの配列方向(y2方向)に沿って延在する前端部124を有する。この構成により、一対の傾斜部123A、123Bの前後方向の寸法を短縮できるので、位置決め調整機構120をさらに小型化できる。 Furthermore, in the positioning adjustment mechanism 120 of this embodiment, the first guide member 121 connects the tip portions of the pair of inclined parts 123A and 123B, and extends along the arrangement direction (y2 direction) of the pair of traveling bodies 10a and 10b. It has an extending front end 124 . With this configuration, the dimensions of the pair of inclined portions 123A and 123B in the front-rear direction can be shortened, so that the positioning adjustment mechanism 120 can be further miniaturized.

また、本実施形態の位置決め調整機構120は、走行装置1が停止位置(充電可能位置C)に達した際に、一対の走行体10a、10bの後部と当接することにより走行装置1の前後方向の位置と姿勢の調整を行う第3ガイド部材126を備える。この構成により、第2ガイド部材125による走行体10a、10bの前方位置の位置決めに加えて、さらに第3ガイド部材126による走行体10a、10bの後方位置の位置決めも同時に行うことが可能となるので、走行装置1の位置と姿勢をさらに高精度に調整することができる。 In addition, the positioning adjustment mechanism 120 of the present embodiment is arranged so that when the traveling device 1 reaches the stop position (charging position C), the positioning adjustment mechanism 120 makes contact with the rear portions of the pair of traveling bodies 10a and 10b, thereby allowing the traveling device 1 to move in the front-rear direction. A third guide member 126 is provided to adjust the position and posture of the. With this configuration, in addition to positioning the forward positions of the traveling bodies 10a, 10b by the second guide member 125, it is also possible to simultaneously position the backward positions of the traveling bodies 10a, 10b by the third guide member 126. , the position and attitude of the traveling device 1 can be adjusted with even higher precision.

走行装置1の一対の走行体がクローラ式であると、左右方向の微調整が難しく、また、前後の細かい位置調整も難しい。クローラが障害物を乗り越える機能のため、姿勢が前傾や後傾したりして姿勢も変動しやすい。前傾や後傾の姿勢で充電位置にとまると、充電装置110の端子部114が、走行装置1の接触充電部35の充電可能な範囲に接触できない虞がある。このように、停止位置での走行装置1の姿勢の決め方も重要な要素となる。本実施形態では、第2ガイド部材125により走行体の前方を位置決めし、かつ、第3ガイド部材126により走行体の後方を位置決めする構成であるので、走行装置1の姿勢も水平に決めやすくできる。 If the pair of traveling bodies of the traveling device 1 are crawler type, it is difficult to make fine adjustments in the left and right direction, and it is also difficult to make fine adjustments in the front and rear positions. Because the crawler has the ability to overcome obstacles, its posture tends to fluctuate by leaning forward or backward. If the vehicle remains in the charging position tilted forward or backward, there is a risk that the terminal portion 114 of the charging device 110 may not be able to come into contact with the chargeable range of the contact charging portion 35 of the traveling device 1. In this way, how to determine the attitude of the traveling device 1 at the stop position is also an important factor. In this embodiment, the second guide member 125 positions the front of the traveling body, and the third guide member 126 positions the rear of the traveling body, so the attitude of the traveling device 1 can be easily determined horizontally. .

また、クローラ式の走行装置1の場合、図2の側面図では下面中央が設置しているが、これは静止時の場合であって、加速時には前端の部分が上がって若干後傾姿勢になるし、減速時や停止時には前方に慣性力がかかって若干前傾姿勢になる。したがって、所定の停止位置に加速して接近したり、走行体の減速によって停止しようとすると、走行装置1が前傾や後傾の状態で静止する虞がある。本実施形態では、ステップS3において地点Bから充電可能位置Cまで直進する際には、走行装置1を等速で移動させ、第2ガイド部材125に突き当たることによって静止させる。これにより、走行装置1が充電可能位置Cに到達したときに、姿勢が前傾したり後傾したりするのを抑制でき、停止時の姿勢を安定化することが可能となり、位置だけでなく姿勢も適切に調整できる。本実施形態の位置決め調整機構で「姿勢を位置決めする」とは、例えば図2の側面図のような静止時の姿勢となるように調整することを意味する。 In addition, in the case of the crawler-type traveling device 1, the side view in Figure 2 shows it installed at the center of the bottom surface, but this is when it is stationary, and when accelerating, the front end part rises and is slightly tilted backwards. However, when decelerating or stopping, inertia is applied to the front, causing the vehicle to lean forward slightly. Therefore, if the traveling device 1 approaches a predetermined stop position by accelerating or attempts to stop by decelerating the traveling object, there is a possibility that the traveling device 1 will stand still in a forward or backward tilted state. In this embodiment, when traveling straight from point B to chargeable position C in step S3, traveling device 1 moves at a constant speed and comes to rest by hitting second guide member 125. As a result, when the traveling device 1 reaches the charging position C, it is possible to suppress the posture from tilting forward or backward, and it is possible to stabilize the posture when stopped, and not only the position. You can also adjust your posture appropriately. In the positioning adjustment mechanism of this embodiment, "positioning the posture" means adjusting the posture so that the posture at rest is, for example, as shown in the side view of FIG.

また、本実施形態の位置決め調整機構120は、走行装置1が停止位置(充電可能位置C)にあるときに、一対の走行体10a、10bの左右方向の外側に配置される壁部127A、127Bを備える。この構成により、走行装置1が停止位置に達する際に、ガイド範囲内から左右方向外側に飛び出すことを抑制できる。 Further, the positioning adjustment mechanism 120 of the present embodiment has wall portions 127A and 127B disposed on the outer sides of the pair of traveling bodies 10a and 10b in the left-right direction when the traveling device 1 is at the stop position (charging position C). Equipped with With this configuration, when the traveling device 1 reaches the stop position, it can be suppressed from jumping outward from within the guide range in the left-right direction.

このように、本実施形態に係る位置決め調整機構120を用いる位置決め調整システム100によれば、所定の停止位置で、走行装置1を所望の位置、方向、姿勢で簡便に精度良く位置決めすることができる。そして、本実施形態では、位置決めの対象となる走行装置1が一対の履帯式走行体10a、10bを有するクローラ式の走行装置であると、上述のとおり細かな位置調整が難しく、また、加減速による姿勢の変化が大きいため、上記の効果を顕著に発揮でき、特に有効である。 As described above, according to the positioning adjustment system 100 using the positioning adjustment mechanism 120 according to the present embodiment, it is possible to easily and accurately position the traveling device 1 at a desired position, direction, and attitude at a predetermined stop position. . In this embodiment, if the traveling device 1 to be positioned is a crawler-type traveling device having a pair of track-type traveling bodies 10a and 10b, fine positional adjustment is difficult as described above, and acceleration/deceleration is difficult. Since the change in posture is large, the above effect can be clearly exhibited and is particularly effective.

<位置決め調整機構の変形例>
図12~図14を参照して、上記実施形態に係る位置決め調整機構の変形例について説明する。図12は、位置決め調整機構の第1、第2、第3変形例120A、120B、120Cを示す平面図である。
<Modified example of positioning adjustment mechanism>
Modifications of the positioning adjustment mechanism according to the above embodiment will be described with reference to FIGS. 12 to 14. FIG. 12 is a plan view showing first, second, and third modified examples 120A, 120B, and 120C of the positioning adjustment mechanism.

図12(A)に示す第1変形例120Aのように、第1ガイド部材121と第2ガイド部材125のみを有する構成でもよい。すなわち、上記実施形態の構成から、第3ガイド部材126と、一対の壁部127A、127Bとを除外した構成でもよい。 A configuration having only the first guide member 121 and the second guide member 125 may be used, as in a first modification example 120A shown in FIG. 12(A). That is, the configuration may be such that the third guide member 126 and the pair of wall portions 127A and 127B are excluded from the configuration of the above embodiment.

図12(B)に示す第2変形例120Bのように、第1ガイド部材121と、第2ガイド部材125と、一対の壁部127A、127Bと、を有する構成でもよい。すなわち、上記実施形態の構成から、第3ガイド部材126を除外した構成でもよい。 A configuration including a first guide member 121, a second guide member 125, and a pair of wall portions 127A and 127B may be used, as in a second modification example 120B shown in FIG. 12(B). That is, a configuration may be adopted in which the third guide member 126 is excluded from the configuration of the above embodiment.

図12(C)に示す第3変形例120Aのように、第1ガイド部材121と、第2ガイド部材125と、第3ガイド部材126とを有する構成でもよい。すなわち、上記実施形態の構成から、一対の壁部127A、127Bを除外した構成でもよい。 A configuration including a first guide member 121, a second guide member 125, and a third guide member 126 may be used, as in a third modification example 120A shown in FIG. 12(C). That is, the configuration may be such that the pair of wall portions 127A and 127B are excluded from the configuration of the above embodiment.

図12(A)、(B)、(C)に示す各変形例120A,120B,120Cでも、上記実施形態と同様に、第1ガイド部材121による左右方向の調整と、第2ガイド部材125による前後方向の調整とが可能であるので、上記実施形態の機構120と同様の効果を奏することができる。 In each of the modified examples 120A, 120B, and 120C shown in FIGS. Since adjustment in the front and rear directions is possible, the same effects as the mechanism 120 of the above embodiment can be achieved.

なお、第1変形例120A、第2変形例120Bのように、第3ガイド部材126を設けない構成の場合、第2ガイド部材125の高さを上記実施形態より大きく形成するのが好ましい。これにより、停止時に履帯式走行体10の後方がガイド部材と接触しない構成であっても、所定の停止位置において、より確実に適切な位置と姿勢で停止させることが可能となる。また、この場合、地点Bから充電可能位置Cまでの移動速度を上記実施形態より小さくすることによっても、適切な位置と姿勢で停止させることが可能である。 In addition, in the case of a configuration in which the third guide member 126 is not provided, as in the first modification example 120A and the second modification example 120B, it is preferable that the height of the second guide member 125 is made larger than in the above embodiment. As a result, even if the rear of the crawler-type traveling body 10 does not come into contact with the guide member when stopped, it is possible to more reliably stop the crawler-type traveling body 10 in an appropriate position and posture at a predetermined stopping position. Further, in this case, it is also possible to stop the battery at an appropriate position and posture by making the moving speed from point B to chargeable position C smaller than that in the above embodiment.

図13は、位置決め調整機構の第4変形例120Dを示す平面図である。図13に示す第4変形例120Dのように、第1ガイド部材221が履帯式走行体10の左右方向外側に配置される構成でもよい。 FIG. 13 is a plan view showing a fourth modification example 120D of the positioning adjustment mechanism. As in a fourth modification example 120D shown in FIG. 13, the first guide member 221 may be arranged outside the track type traveling body 10 in the left-right direction.

この構成では、第1ガイド部材221は、一対の直線部222A、222Bと、一対の傾斜部223A、223Bとを有する。一対の直線部222A、222Bは、それぞれの基端部が第2ガイド部材125の両端と連結する。一対の傾斜部223A、223Bは、一対の直線部222A、222Bの先端部とそれぞれ連結し、直線部222A、222Bとの連結部分から離れる程、すなわちx2負方向側に進むほど、両者の幅が大きくなるよう形成される。 In this configuration, the first guide member 221 has a pair of straight portions 222A, 222B and a pair of inclined portions 223A, 223B. The pair of straight portions 222A and 222B have base end portions connected to both ends of the second guide member 125. The pair of inclined portions 223A, 223B are connected to the tips of the pair of straight portions 222A, 222B, respectively, and the width of both increases as they move away from the connecting portions with the straight portions 222A, 222B, that is, as they move toward the x2 negative direction. formed to become larger.

図13に示すように、走行装置1が位置決め調整機構120Dに進入したときに、第1ガイド部材221の一対の傾斜部223A、223Bの間に、走行装置1の履帯式走行体10a、10bが入る。このとき、走行装置1の左右方向の位置が充電可能位置Cからy2方向にずれている場合、各走行体10a、10bの下部の外側(本体50と反対側)の側面に傾斜部223A、223Bが接触し、これにより、履帯式走行体10に横方向に力を与えることで、走行装置1が前進する際に左右方向の位置調整を行うことができる。この構成であれば、走行装置1側に部品を追加することなく履帯式走行体10をガイドすることで左右方向の位置調整が可能となる。 As shown in FIG. 13, when the traveling device 1 enters the positioning adjustment mechanism 120D, the track-type traveling bodies 10a and 10b of the traveling device 1 are placed between the pair of inclined portions 223A and 223B of the first guide member 221. enter. At this time, if the horizontal position of the traveling device 1 is shifted from the charging position C in the y2 direction, the inclined portions 223A, 223B are formed on the outer side (opposite side to the main body 50) of the lower part of each traveling body 10a, 10b. contact, thereby applying force to the track-type traveling body 10 in the lateral direction, thereby making it possible to adjust the position in the left-right direction when the traveling device 1 moves forward. With this configuration, it is possible to adjust the position in the left-right direction by guiding the track-type traveling body 10 without adding any parts to the traveling device 1 side.

例えば図13に点線で示すように、走行装置1が右側(y2負方向側)にずれている場合には、右側の履帯式走行体10b1が、第1ガイド部材221の右側の傾斜部223Bと接触する。この状態で走行装置1がx2方向に引き続き前進することによって、履帯式走行体10b1が傾斜部123Bを押圧し、傾斜部223Bから反力を受ける。この結果、矢印B1で示すように走行装置1は右前方に移動して、実線で示す履帯式走行体10a、10bのように、左右方向の正しい位置に調整される。その後は、矢印B3で示すように、直線部222A、222Bによって幅方向外側から履帯式走行体がガイドされつつ、x2方向に直進して最終的に図13に二点鎖線で示すように、各履帯式走行体10a3、10b3が第2ガイド部材125に突き当たって停止する。 For example, as shown by the dotted line in FIG. 13, when the traveling device 1 is shifted to the right side (y2 negative direction side), the right track type traveling body 10b1 is connected to the right inclined portion 223B of the first guide member 221. Contact. When the traveling device 1 continues to move forward in the x2 direction in this state, the track type traveling body 10b1 presses the inclined portion 123B and receives a reaction force from the inclined portion 223B. As a result, the traveling device 1 moves forward to the right as shown by the arrow B1, and is adjusted to the correct position in the left-right direction as shown by the solid lines of the track-type traveling bodies 10a and 10b. After that, as shown by the arrow B3, the track type traveling body is guided from the outside in the width direction by the straight parts 222A and 222B, and moves straight in the x2 direction, and finally, as shown by the two-dot chain line in FIG. The track-type traveling bodies 10a3 and 10b3 hit the second guide member 125 and stop.

同様に、図13に一点鎖線で示すように、走行装置1が左側(y2正方向側)にずれている場合には、左側の履帯式走行体10a2が、第1ガイド部材221の左側の傾斜部223Aと接触する。この状態で走行装置1がx2方向に引き続き前進することによって、履帯式走行体10a2が傾斜部223Aを押圧し、傾斜部223Aから反力を受ける。この結果、矢印B2で示すように走行装置1は左前方に移動して、実線で示す履帯式走行体10a、10bのように、左右方向の正しい位置に調整される。その後は、矢印B3で示すように、直線部222A、222Bによって幅方向外側から履帯式走行体がガイドされつつ、x2方向に直進して最終的に図13に二点鎖線で示すように、各履帯式走行体10a3、10b3が第2ガイド部材125に突き当たって停止する。 Similarly, as shown by the dashed line in FIG. 223A. When the traveling device 1 continues to move forward in the x2 direction in this state, the track type traveling body 10a2 presses the inclined portion 223A and receives a reaction force from the inclined portion 223A. As a result, the traveling device 1 moves to the left front as shown by arrow B2, and is adjusted to the correct position in the left-right direction as shown by the solid lines of the track-type traveling bodies 10a and 10b. After that, as shown by the arrow B3, the track type traveling body is guided from the outside in the width direction by the straight parts 222A and 222B, and moves straight in the x2 direction, and finally, as shown by the two-dot chain line in FIG. The track-type traveling bodies 10a3 and 10b3 hit the second guide member 125 and stop.

図13に示す第4変形例120Dでも、上記実施形態と同様に、第1ガイド部材221による左右方向の調整と、第2ガイド部材125による前後方向の調整とが可能であるので、上記実施形態の機構120と同様の効果を奏することができる。さらに、一対の傾斜部223A、223Bの先端部の幅が、一対の直線部222A、222Bの幅、すなわち走行装置1の幅より大きくとれるので、走行装置1が位置決め調整機構120Dに進入する際に、左右方向の位置がGPSの誤差(±100mm程度)より大きくずれていても、一対の傾斜部223A、223Bによる位置調整が可能となり、左右方向の位置調整の有効範囲を上記実施形態よりも広くできる。 Also in the fourth modification 120D shown in FIG. 13, the adjustment in the left-right direction by the first guide member 221 and the adjustment in the front-rear direction by the second guide member 125 are possible, similarly to the embodiment described above. The same effect as the mechanism 120 can be achieved. Furthermore, since the width of the tips of the pair of inclined parts 223A and 223B can be made larger than the width of the pair of straight parts 222A and 222B, that is, the width of the traveling device 1, when the traveling device 1 enters the positioning adjustment mechanism 120D, Even if the horizontal position deviates by more than the GPS error (approximately ±100 mm), the pair of inclined parts 223A and 223B can adjust the position, making the effective range of horizontal position adjustment wider than in the above embodiment. can.

図14は、位置決め調整機構の第5変形例120Eを示す平面図である。図14に示す第5変形例120Eのように、第1ガイド部材321の先端部分が、上記実施形態のような台形状ではなく、x2負方向側にさらに延びた三角形状であってもよい。 FIG. 14 is a plan view showing a fifth modification example 120E of the positioning adjustment mechanism. As in a fifth modification example 120E shown in FIG. 14, the tip portion of the first guide member 321 may not be trapezoidal as in the above embodiment but may be triangular in shape, further extending in the x2 negative direction.

この構成では、第1ガイド部材321は、一対の直線部122A、122Bと、一対の傾斜部323A、323Bとを有する。一対の傾斜部323A、323Bは、一対の直線部122A、122Bの先端部とそれぞれ連結し、直線部122A、122Bとの連結部分から離れる程、すなわちx2負方向側に進むほど、両者の幅が狭くなり、x2負方向側の先端部で連結するよう形成される。すなわち、第1ガイド部材321は、x2負方向側の部分が、一対の傾斜部323A、323Bによって略三角形状に形成されている。 In this configuration, the first guide member 321 has a pair of straight portions 122A, 122B and a pair of inclined portions 323A, 323B. The pair of inclined portions 323A, 323B are connected to the tips of the pair of straight portions 122A, 122B, respectively, and the width of both increases as they move away from the connecting portions with the straight portions 122A, 122B, that is, as they move toward the x2 negative direction. It is formed so as to become narrow and connect at the tip on the x2 negative direction side. That is, the first guide member 321 has a portion on the x2 negative direction side formed into a substantially triangular shape by a pair of inclined portions 323A and 323B.

なお、一対の傾斜部323A、323Bの直線部122A、122Bの延在方向に対する傾斜角度は、上記実施形態の傾斜部123A、123Bの角度θと同等であるのが好ましい。これにより、上記実施形態と比較して、一対の傾斜部323A、323Bの長さを増え、一対の直線部122A、122Bとの連結部分からx2負方向側の先端部までの長さも増える。このため、走行装置1が位置決め調整機構120Eに進入する際に、左右方向の位置がGPSの誤差(±100mm程度)より大きくずれていても、一対の傾斜部323A、323Bによる位置調整が可能となり、左右方向の位置調整の有効範囲を上記実施形態よりも広くできる。 Note that the angle of inclination of the pair of inclined parts 323A, 323B with respect to the extending direction of the straight parts 122A, 122B is preferably equal to the angle θ of the inclined parts 123A, 123B in the above embodiment. As a result, compared to the above embodiment, the length of the pair of inclined parts 323A and 323B is increased, and the length from the connecting part with the pair of straight parts 122A and 122B to the tip on the x2 negative direction side is also increased. Therefore, when the traveling device 1 enters the positioning adjustment mechanism 120E, even if the position in the left and right direction deviates by more than the GPS error (approximately ±100 mm), the position can be adjusted by the pair of inclined parts 323A and 323B. , the effective range of position adjustment in the left and right direction can be made wider than in the above embodiment.

<位置決め調整システムの適用例>
本実施形態に係る位置決め調整システム100は、上記の充電タスク以外にも適用できる。図15を参照して充電タスク以外の適用例について説明する。
<Application example of positioning adjustment system>
The positioning adjustment system 100 according to this embodiment can be applied to tasks other than the above-mentioned charging task. Application examples other than charging tasks will be described with reference to FIG. 15.

図15は、本実施形態に係る位置決め調整システム100の適用例を示す図である。図15では、対象拠点に二台のロボット1A、1Bが設置された状態を示す。これらのロボット1A,1Bは、上記実施形態の走行装置1に対応する。 FIG. 15 is a diagram showing an application example of the positioning adjustment system 100 according to this embodiment. FIG. 15 shows a state in which two robots 1A and 1B are installed at the target base. These robots 1A and 1B correspond to the traveling device 1 of the above embodiment.

図15は、例えば、対象拠点として、プラント工場等の敷地面積の広い屋外の拠点の例を示す。図15に示されている対象拠点には、日常点検または定期点検等の保守管理を必要とする複数の対象物X1、X2、X3、X4が存在する。点検対象物は、例えば、対象拠点がプラント工場である場合、貯蔵タンクの計測メータ、貯蔵タンク等に輸液作業を行うタンカー等である。 FIG. 15 shows an example of an outdoor base with a large site area, such as a plant factory, as the target base. In the target base shown in FIG. 15, there are a plurality of target objects X1, X2, X3, and X4 that require maintenance management such as daily inspection or periodic inspection. For example, when the target base is a plant factory, the inspection target is a measurement meter of a storage tank, a tanker that performs an infusion operation into the storage tank, etc.

ロボット1A、1Bは、それぞれ上位システムによって割り当てられた点検タスクを実行するために、対象拠点内を自律走行によって移動し、所定の位置で点検タスクを実行する。なお、ロボット1A、1Bは、対象拠点内をライントレース等の技術または通信端末70からの遠隔操作を用いて移動してもよい。また、対象拠点には、ロボット1A、1Bのバッテリに対する充電を行うための充電ステーションが、拠点位置P0に設けられている。この拠点位置P0の充電ステーションは、上記実施形態の充電装置110と対応する。したがって、ロボット1A、1Bが充電を行うために拠点位置P0に停止する位置に、上記実施形態に係る位置決め調整機構120を設置することができる。 The robots 1A and 1B move autonomously within the target base and execute the inspection task at a predetermined position in order to execute the inspection task assigned by the host system. Note that the robots 1A and 1B may move within the target base using techniques such as line tracing or remote control from the communication terminal 70. Further, at the target base, a charging station for charging the batteries of the robots 1A and 1B is provided at base position P0. The charging station at this base position P0 corresponds to the charging device 110 of the above embodiment. Therefore, the positioning adjustment mechanism 120 according to the above embodiment can be installed at the position where the robots 1A, 1B stop at the base position P0 for charging.

図15の例では、ロボット1A、1Bは、対象物X1に対する点検タスクを実行するために、拠点位置A1まで移動し、対象物X1に対する点検タスクを実行する。また、ロボット1A、1Bは、拠点位置A2まで移動し、対象物X2に対する点検タスクを実行する。さらに、ロボット1A、1Bは、拠点位置A3まで移動し、対象物X3に対する点検タスクを実行する。また、ロボット1A、1Bは、位置A4まで移動し、対象物X4に対する点検タスクを実行する。 In the example of FIG. 15, the robots 1A and 1B move to the base position A1 and execute the inspection task for the target object X1 in order to execute the inspection task for the target object X1. Further, the robots 1A and 1B move to the base position A2 and execute the inspection task for the target object X2. Further, the robots 1A and 1B move to the base position A3 and perform an inspection task on the object X3. Furthermore, the robots 1A and 1B move to position A4 and perform an inspection task on object X4.

ロボット1A、1Bが点検タスクを行うために拠点位置A1、A2、A3、A4に停止する位置にも、上記実施形態に係る位置決め調整機構120を設置することができる。これにより、各拠点位置A1、A2、A3、A4においてロボット1A、1Bの位置と姿勢を複数回のタスクを実行するたびに一定に保つことが可能となり、定点位置での点検タスクの信頼度を向上できる。 The positioning adjustment mechanism 120 according to the above embodiment can also be installed at the positions where the robots 1A and 1B stop at the base positions A1, A2, A3, and A4 to perform inspection tasks. This makes it possible to keep the positions and postures of robots 1A and 1B constant at each base location A1, A2, A3, and A4 every time the task is executed multiple times, increasing the reliability of inspection tasks at fixed point locations. You can improve.

ここで、ロボット1A、1Bが各拠点位置で実施する点検タスクとは、例えば、ロボットや対象物X1、X2、X3、X4の周囲の気圧、温度、光度、ガス濃度、臭気などの計測作業や、対象物X1、X2、X3、X4を撮像装置で撮像して動画や静止画などの撮像画像を取得するような撮像作業など、定点位置での定期的な作業であって、位置決め精度が求められるタスクが含まれる。 Here, the inspection tasks that the robots 1A and 1B perform at each base location include, for example, measuring the atmospheric pressure, temperature, luminous intensity, gas concentration, odor, etc. around the robots and objects X1, X2, X3, and X4. , regular work at a fixed point, such as imaging work in which objects X1, X2, Contains tasks that can be performed.

ここで、点検タスクは、ロボット1に実行させるタスクの一例であり、ロボット1に実行させるタスクは、点検作業に限られない。また、ロボット1が設置される対象拠点は、プラント工場に限られず、例えば、事業所、建設現場、変電所またはその他の屋外の施設等であってもよい。例えば、敷地面積の広い拠点における点検作業を作業者が行うとすると、全ての点検作業が終わるまでに時間が掛かったり、複数の作業者で点検作業を分担したりする必要がある。そこで、対象拠点に設置されたロボット1は、従来人手で行われていた作業(タスク)を作業者に変わって行うことで、作業効率を向上させることができる。なお、対象拠点は、屋外に限られず、屋内のオフィス、学校、工場、倉庫、商業施設またはその他の施設等であってもよく、従来人手で行われていた作業をロボット1に担わせたいニーズが存在する拠点であればよい。 Here, the inspection task is an example of a task to be executed by the robot 1, and the tasks to be executed by the robot 1 are not limited to inspection work. Further, the target base where the robot 1 is installed is not limited to a plant factory, and may be, for example, a business office, a construction site, a substation, or other outdoor facility. For example, if a worker performs inspection work at a base with a large site area, it may take time to complete all the inspection work, or it may be necessary to divide the inspection work among multiple workers. Therefore, the robot 1 installed at the target base can improve work efficiency by performing tasks (tasks) that were conventionally performed manually in place of the workers. Note that target locations are not limited to outdoors, but may also be indoor offices, schools, factories, warehouses, commercial facilities, or other facilities, and there is a need to have robots 1 perform tasks that were previously performed manually. Any base where exists is sufficient.

以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 The present embodiment has been described above with reference to specific examples. However, the present disclosure is not limited to these specific examples. Design changes made by those skilled in the art as appropriate to these specific examples are also included within the scope of the present disclosure as long as they have the characteristics of the present disclosure. The elements included in each of the specific examples described above, their arrangement, conditions, shapes, etc. are not limited to those illustrated, and can be changed as appropriate. The elements included in each of the specific examples described above can be appropriately combined as long as no technical contradiction occurs.

上記実施形態では、本実施形態の位置決め調整システム100が対象とする走行装置として、クローラ式の走行装置1を例示したが、これ以外でも、AGVなど他のタイプの走行装置やロボットも適用可能である。また、一対の走行体10a、10bのそれぞれに速度差を付けることによって進行方向を変更するタイプの走行装置1の場合、左右の微調整などの位置決めが難しいので本実施形態の位置決め調整システム100の適用が特に効果的であるが、操舵輪タイプの車両などの他のタイプの走行装置にも適用できる。 In the above embodiment, the crawler-type traveling device 1 was illustrated as the traveling device targeted by the positioning adjustment system 100 of the present embodiment, but other types of traveling devices such as AGV and robots are also applicable. be. Further, in the case of the traveling device 1 of the type that changes the traveling direction by giving a speed difference to each of the pair of traveling bodies 10a and 10b, positioning such as fine adjustment from side to side is difficult, so the positioning adjustment system 100 of this embodiment is difficult. Although the application is particularly advantageous, it can also be applied to other types of traveling equipment, such as steered wheel type vehicles.

本発明の態様は、例えば、以下のとおりである。
<1> 本体と、前記本体の両側に、走行面と接地して駆動する一対の走行体とを有する走行装置の位置決め調整機構であって、
前記走行装置の所定の停止位置への接近中に、前記一対の走行体の側部と接触する第1接触部材と、
前記走行装置が前記停止位置に達した際に、前記一対の走行体の前部と接触する第2接触部材と、
を備える、
位置決め調整機構。
<2> 前記第1接触部材は、前記一対の走行体のうち前記本体の側の側部と当接可能に配置される、
前記<1>に記載の位置決め調整機構。
<3> 前記第2接触部材は、前記走行装置の前記一対の走行体の配列方向に沿って延在するよう形成され、
前記第1接触部材は、
前記第2接触部材の延在方向と直交する方向に延在し、基端部が前記第2接触部材と連結する一対の直線部と、
前記一対の直線部の先端部とそれぞれ連結し、前記直線部の延在方向に対して所定角度の方向に延在する一対の傾斜部と、を有し、
前記一対の傾斜部は、前記直線部との連結部分から離れる程、両者の幅が狭くなるよう形成される、
前記<2>に記載の位置決め調整機構。
<4> 前記第1接触部材は、前記一対の傾斜部の先端部分を連結し、前記配列方向に沿って延在する前端部を有する、
前記<3>に記載の位置決め調整機構。
<5> 前記走行装置が前記停止位置に達した際に、前記一対の走行体の後部と当接することにより前記走行装置の前後方向の位置と姿勢の調整を行う第3接触部材を備える、
前記<1>~<4>のいずれか一項に記載の位置決め調整機構。
<6> 前記走行装置が前記停止位置にあるときに、前記一対の走行体の左右方向の外側に配置される壁部を備える、
前記<1>~<5>のいずれか一項に記載の位置決め調整機構。
<7> 前記第2接触部材は、前記一対の走行体の前部に対して段差形状に形成される、
前記<1>~<6>のいずれか一項に記載の位置決め調整機構。
<8> 前記走行装置は、前記一対の走行体のそれぞれに速度差を付けることによって進行方向を変更するよう構成される、
前記<1>~<7>のいずれか一項に記載の位置決め調整機構。
<9> 前記一対の走行体が、履帯式走行体である、
前記<8>に記載の位置決め調整機構。
<10>
前記<1>~<9>のいずれか一項に記載の位置決め調整機構と、
前記走行装置の動作を制御する制御装置と、を備え、
前記制御装置は、
第1に、前記走行装置が前記第1接触部材及び前記第2接触部材と離間すると共に、前記第2接触部材と対向し、かつ、前記第1接触部材に沿って直進可能な方向を向く第1設定位置まで前記走行装置を移動させ、
第2に、前記走行装置の前記一対の走行体が前記第2接触部材と当接可能な第2設定位置まで前記走行装置を直進移動させて、
前記走行装置を前記停止位置に位置決めする、
位置決め調整システム。
<11> 前記制御装置は、GPS信号を利用して前記走行装置の位置を検出して、前記走行装置を前記第1設定位置に移動する制御を行う、
前記<10>に記載の位置決め調整システム。
Aspects of the present invention are, for example, as follows.
<1> A positioning adjustment mechanism for a traveling device including a main body and a pair of traveling bodies that are driven in contact with a traveling surface on both sides of the main body,
a first contact member that contacts sides of the pair of traveling bodies while the traveling device approaches a predetermined stop position;
a second contact member that contacts the front portions of the pair of traveling bodies when the traveling device reaches the stop position;
Equipped with
Positioning adjustment mechanism.
<2> The first contact member is arranged so as to be able to come into contact with a side portion of the pair of traveling bodies on the side of the main body.
The positioning adjustment mechanism according to <1> above.
<3> The second contact member is formed to extend along the arrangement direction of the pair of traveling bodies of the traveling device,
The first contact member is
a pair of straight parts extending in a direction perpendicular to the extending direction of the second contact member, and having a base end connected to the second contact member;
a pair of inclined portions each connected to the tip end portions of the pair of linear portions and extending in a direction at a predetermined angle with respect to the extending direction of the linear portion;
The pair of sloped portions are formed such that the width thereof becomes narrower as the distance from the connecting portion with the straight portion increases.
The positioning adjustment mechanism according to <2> above.
<4> The first contact member has a front end portion that connects the tip portions of the pair of inclined portions and extends along the arrangement direction.
The positioning adjustment mechanism according to <3> above.
<5> A third contact member is provided that adjusts the longitudinal position and posture of the traveling device by coming into contact with the rear portions of the pair of traveling bodies when the traveling device reaches the stop position.
The positioning adjustment mechanism according to any one of <1> to <4> above.
<6> A wall portion disposed outside the pair of traveling bodies in the left-right direction when the traveling device is at the stop position;
The positioning adjustment mechanism according to any one of <1> to <5> above.
<7> The second contact member is formed in a stepped shape with respect to the front portions of the pair of traveling bodies.
The positioning adjustment mechanism according to any one of <1> to <6> above.
<8> The traveling device is configured to change the traveling direction by giving a speed difference to each of the pair of traveling bodies,
The positioning adjustment mechanism according to any one of <1> to <7>.
<9> The pair of traveling bodies are track type traveling bodies,
The positioning adjustment mechanism according to <8> above.
<10>
The positioning adjustment mechanism according to any one of <1> to <9>above;
A control device that controls the operation of the traveling device,
The control device includes:
First, the traveling device is spaced apart from the first contact member and the second contact member, and faces the second contact member and faces in a direction in which it can move straight along the first contact member. moving the traveling device to a first setting position;
Second, moving the traveling device straight to a second setting position where the pair of traveling bodies of the traveling device can come into contact with the second contact member,
positioning the traveling device at the stop position;
Positioning adjustment system.
<11> The control device detects the position of the traveling device using a GPS signal, and performs control to move the traveling device to the first set position.
The positioning adjustment system according to <10> above.

1 走行装置
50 本体
10、10a、10b 履帯式走行体(走行体)
540 走行制御用モータドライバ(制御装置)
100 位置決め調整システム
110 充電装置
120、120A、120B、120C、120D、120E 位置決め調整機構
121 第1ガイド部材 (第1接触部材)
122A、122B 直線部
123A、123B 傾斜部
124 前端部
125 第2ガイド部材(第2接触部材)
126 第3ガイド部材(第3接触部材)
127A、127B 壁部
B 地点(第1設定位置)
C 充電可能位置(第2設定位置、所定の停止位置)
1 Traveling device 50 Main body 10, 10a, 10b Track type traveling body (traveling body)
540 Travel control motor driver (control device)
100 Positioning adjustment system 110 Charging device 120, 120A, 120B, 120C, 120D, 120E Positioning adjustment mechanism 121 First guide member (first contact member)
122A, 122B Straight section 123A, 123B Inclined section 124 Front end section 125 Second guide member (second contact member)
126 Third guide member (third contact member)
127A, 127B Wall part B point (first setting position)
C Charging position (second setting position, predetermined stopping position)

特開2021-116061号公報JP 2021-116061 Publication

Claims (11)

本体と、前記本体の両側に、走行面と接地して駆動する一対の走行体とを有する走行装置の位置決め調整機構であって、
前記走行装置の所定の停止位置への接近中に、前記一対の走行体の側部と接触する第1接触部材と、
前記走行装置が前記停止位置に達した際に、前記一対の走行体の前部と接触する第2接触部材と、
を備える、
位置決め調整機構。
A positioning adjustment mechanism for a traveling device including a main body and a pair of traveling bodies that are driven by being in contact with a traveling surface on both sides of the main body,
a first contact member that contacts sides of the pair of traveling bodies while the traveling device approaches a predetermined stop position;
a second contact member that contacts the front portions of the pair of traveling bodies when the traveling device reaches the stop position;
Equipped with
Positioning adjustment mechanism.
前記第1接触部材は、前記一対の走行体のうち前記本体の側の側部と当接可能に配置される、
請求項1に記載の位置決め調整機構。
The first contact member is arranged so as to be able to come into contact with a side portion of the pair of traveling bodies on the side of the main body.
The positioning adjustment mechanism according to claim 1.
前記第2接触部材は、前記走行装置の前記一対の走行体の配列方向に沿って延在するよう形成され、
前記第1接触部材は、
前記第2接触部材の延在方向と直交する方向に延在し、基端部が前記第2接触部材と連結する一対の直線部と、
前記一対の直線部の先端部とそれぞれ連結し、前記直線部の延在方向に対して所定角度の方向に延在する一対の傾斜部と、を有し、
前記一対の傾斜部は、前記直線部との連結部分から離れる程、両者の幅が狭くなるよう形成される、
請求項2に記載の位置決め調整機構。
The second contact member is formed to extend along the arrangement direction of the pair of traveling bodies of the traveling device,
The first contact member is
a pair of straight parts extending in a direction perpendicular to the extending direction of the second contact member, and having a base end connected to the second contact member;
a pair of inclined portions each connected to the tip end portions of the pair of linear portions and extending in a direction at a predetermined angle with respect to the extending direction of the linear portion;
The pair of sloped portions are formed such that the width thereof becomes narrower as the distance from the connecting portion with the straight portion increases.
The positioning adjustment mechanism according to claim 2.
前記第1接触部材は、前記一対の傾斜部の先端部分を連結し、前記配列方向に沿って延在する前端部を有する、
請求項3に記載の位置決め調整機構。
The first contact member connects the tip portions of the pair of inclined portions and has a front end portion extending along the arrangement direction.
The positioning adjustment mechanism according to claim 3.
前記走行装置が前記停止位置に達した際に、前記一対の走行体の後部と当接することにより前記走行装置の前後方向の位置と姿勢の調整を行う第3接触部材を備える、
請求項1に記載の位置決め調整機構。
comprising a third contact member that adjusts the longitudinal position and posture of the traveling device by coming into contact with rear portions of the pair of traveling bodies when the traveling device reaches the stop position;
The positioning adjustment mechanism according to claim 1.
前記走行装置が前記停止位置にあるときに、前記一対の走行体の左右方向の外側に配置される壁部を備える、
請求項1に記載の位置決め調整機構。
a wall portion disposed outside the pair of traveling bodies in the left-right direction when the traveling device is at the stop position;
The positioning adjustment mechanism according to claim 1.
前記第2接触部材は、前記一対の走行体の前部に対して段差形状に形成される、
請求項1に記載の位置決め調整機構。
The second contact member is formed in a stepped shape with respect to the front portions of the pair of traveling bodies.
The positioning adjustment mechanism according to claim 1.
前記走行装置は、前記一対の走行体のそれぞれに速度差を付けることによって進行方向を変更するよう構成される、
請求項1に記載の位置決め調整機構。
The traveling device is configured to change the traveling direction by giving a speed difference to each of the pair of traveling bodies.
The positioning adjustment mechanism according to claim 1.
前記一対の走行体が、履帯式走行体である、
請求項8に記載の位置決め調整機構。
the pair of running bodies are track-type running bodies;
The positioning adjustment mechanism according to claim 8.
請求項1~9のいずれか一項に記載の位置決め調整機構と、
前記走行装置の動作を制御する制御装置と、を備え、
前記制御装置は、
第1に、前記走行装置が前記第1接触部材及び前記第2接触部材と離間すると共に、前記第2接触部材と対向し、かつ、前記第1接触部材に沿って直進可能な方向を向く第1設定位置まで前記走行装置を移動させ、
第2に、前記走行装置の前記一対の走行体が前記第2接触部材と当接可能な第2設定位置まで前記走行装置を直進移動させて、
前記走行装置を前記停止位置に位置決めする、
位置決め調整システム。
The positioning adjustment mechanism according to any one of claims 1 to 9,
A control device that controls the operation of the traveling device,
The control device includes:
First, the traveling device is spaced apart from the first contact member and the second contact member, and faces the second contact member and faces in a direction in which it can move straight along the first contact member. moving the traveling device to a first setting position;
Second, moving the traveling device straight to a second setting position where the pair of traveling bodies of the traveling device can come into contact with the second contact member,
positioning the traveling device at the stop position;
Positioning adjustment system.
前記制御装置は、GPS信号を利用して前記走行装置の位置を検出して、前記走行装置を前記第1設定位置に移動する制御を行う、
請求項10に記載の位置決め調整システム。
The control device detects the position of the traveling device using a GPS signal and performs control to move the traveling device to the first set position.
The positioning adjustment system according to claim 10.
JP2023001295A 2022-03-07 2023-01-06 Positioning adjustment mechanism and positioning adjustment system Pending JP2023130298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/IB2023/051795 WO2023170512A1 (en) 2022-03-07 2023-02-27 Positioning adjusting mechanism and positioning adjusting system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022034668 2022-03-07
JP2022034668 2022-03-07

Publications (1)

Publication Number Publication Date
JP2023130298A true JP2023130298A (en) 2023-09-20

Family

ID=88024981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023001295A Pending JP2023130298A (en) 2022-03-07 2023-01-06 Positioning adjustment mechanism and positioning adjustment system

Country Status (1)

Country Link
JP (1) JP2023130298A (en)

Similar Documents

Publication Publication Date Title
CN206489449U (en) AGV is carried in a kind of logistics with automatic charging stake
CN105857116B (en) The driving mechanism of homing guidance formula handling device
WO2018165907A1 (en) Self leveling autonomous guided vehicle
US11964710B2 (en) Crawler type traveling body and traveling apparatus
US11745812B2 (en) Running device
CN108928350B (en) Travel device, travel control method, travel system, and operation device
CN111716969A (en) Rail dual-purpose chassis vehicle for automatic operation of greenhouse
JP2023130298A (en) Positioning adjustment mechanism and positioning adjustment system
CN113247130B (en) Crawler-type walking body and walking device
CN113247141B (en) Driving wheel unit and running gear
WO2023113005A1 (en) Mining machine and autonomous travel system
KR101841197B1 (en) Speed-adjustable track system for moving apparatus using force sensing means
WO2023170512A1 (en) Positioning adjusting mechanism and positioning adjusting system
CN113027694B (en) Transport mechanism, blade root transfer trolley, blade tip transfer trolley and blade transfer system
CN114802445A (en) Chassis structure and omnidirectional transport vehicle
JP7365257B2 (en) Trolley and automatic transport system
US11491989B2 (en) Vehicle using eccentric wheel
CN114313038A (en) Crawler-type traveling body and traveling device
JP2022058144A (en) Crawler belt type traveling body and traveling device
WO2022071193A1 (en) Crawler-track-type travel body and travel device
CN219904559U (en) Chassis of small agricultural robot
CN211530811U (en) Guide frame for wireless charging system of inspection robot
JP7169487B2 (en) Charging device for electric transport vehicle and article transport system equipped with the same
JP2022058143A (en) Crawler belt type traveling body and traveling device
US20230399065A1 (en) Running Device