WO2023113005A1 - Mining machine and autonomous travel system - Google Patents

Mining machine and autonomous travel system Download PDF

Info

Publication number
WO2023113005A1
WO2023113005A1 PCT/JP2022/046315 JP2022046315W WO2023113005A1 WO 2023113005 A1 WO2023113005 A1 WO 2023113005A1 JP 2022046315 W JP2022046315 W JP 2022046315W WO 2023113005 A1 WO2023113005 A1 WO 2023113005A1
Authority
WO
WIPO (PCT)
Prior art keywords
mining machine
mining
external sensor
route
maximum
Prior art date
Application number
PCT/JP2022/046315
Other languages
French (fr)
Japanese (ja)
Inventor
幹雄 板東
信一 魚津
朋之 ▲濱▼田
大基 手塚
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Publication of WO2023113005A1 publication Critical patent/WO2023113005A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present invention relates to mining machines and autonomous driving systems.
  • a dump truck for example, is known as a mining machine that autonomously travels through a mine without an operator on board.
  • external sensors such as Radar, LiDAR, and cameras are used instead of the operator's eyes to drive while grasping road conditions and obstacles. Then, when a bad road surface or an obstacle is detected via an external sensor, the dump truck appropriately performs actions such as detour, avoidance, and stop to ensure safety of travel.
  • mining equipment differs greatly in terms of the objects to be detected and the detection range from general passenger cars.
  • mining equipment has a much larger body (specifically, a larger width and height) than a passenger car, so an external sensor detects a wide range of surrounding rough road surfaces or obstacles. There is a need.
  • the present invention was made to solve such technical problems, and aims to provide a mining machine and an autonomous driving system that can realize safe driving with the minimum necessary external sensors.
  • a mining machine comprises a pair of steerable front wheels arranged on both left and right sides of a vehicle body and a pair of rear wheels arranged on both left and right sides of the vehicle body, and autonomously travels in a mine.
  • the mining machine is equipped with a plurality of external sensors for detecting road surface conditions and obstacles in front, sides, and rear of the mining machine, and is obtained based on the relationship between a preset speed range and the maximum steering angle.
  • a maximum reachable area of the mining machine during maximum braking, a steady turning impenetrable area that the mining machine cannot enter when the mining machine turns at a maximum steering angle, and the maximum reachable area parallel to the direction of the vehicle body. and a line segment connecting the end point of and the steady turning inviolable area, a stoppable range of the mining machine is set, and the plurality of external sensors are arranged so that a detection range includes the stoppable range. is characterized by
  • the maximum reaching range of the mining machine at the time of maximum braking which is obtained based on the relationship between the preset speed range and the maximum steering angle, and the and a line segment parallel to the direction of the vehicle body and connecting an end point of the maximum reachable area and the steady turning impenetrable area defines a stoppable range of the mining machine.
  • the external sensors for detecting road surface conditions and obstacles in front, sides and rear of the mining machine are arranged so that the detection range includes the stop possible range. In this way, by attaching external sensors to the front, sides, and rear of the mining machine so as to cover the minimum detection range necessary for safe driving, safe driving can be achieved with the minimum necessary external sensors. can do.
  • safe driving can be achieved with the minimum number of external sensors.
  • FIG. 1 is a side view showing a schematic configuration of a mining machine according to an embodiment
  • FIG. 1 is a block configuration diagram showing a mining machine according to an embodiment
  • FIG. 4 is a table showing the relationship between the speed range of mining equipment and the maximum steering angle
  • 4 is a flow chart showing processing for determining a stoppable range of the mining machine.
  • FIG. 4 is a plan view for explaining the steering angle, center-of-gravity position, and orientation of the mining machine;
  • FIG. 4 is a plan view for explaining reaching points until the mining machine stops; It is a figure for demonstrating the maximum reachable area of a mining machine. It is a figure for demonstrating the steady-state turning inviolable area of a mining machine.
  • FIG. 4 is a table showing the relationship between the speed range of mining equipment and the maximum steering angle
  • 4 is a flow chart showing processing for determining a stoppable range of the mining machine.
  • FIG. 4 is a plan view for explaining the steering angle, center-of-gravity position
  • FIG. 4 is a diagram for explaining a stoppable range of the mining machine and mounting positions of external sensors; 4 is a flowchart showing travel processing of the mining machine; 4 is a flow chart showing collision determination processing of a mining machine; It is a figure for demonstrating a run-permitted area.
  • 1 is a block configuration diagram showing an autonomous driving system according to an embodiment; FIG. 4 is a flowchart showing travel processing of the mining machine in the autonomous travel system. It is a flowchart which shows the collision determination process of the mining machine in an autonomous driving system.
  • FIG. 1 is a side view showing a schematic configuration of the mining machine according to the embodiment
  • FIG. 2 is a block configuration diagram showing the mining machine according to the embodiment.
  • a mining machine 1 is a dump truck capable of autonomously traveling in a mine, and includes a vehicle body 2, a pair of left and right front wheels 3 arranged on the front side of the vehicle body 2, and a pair of left and right rear wheels 4 arranged on the rear side of the vehicle body 2. and a loading platform 5 supported on the vehicle body 2 so as to be able to rise and fall.
  • the vehicle body 2 is composed of, for example, a sturdy metal frame member, and is connected to the wheel axles by springs or the like.
  • the front wheels 3 are steerable driven wheels and the rear wheels 4 are non-steerable drive wheels.
  • the loading platform 5 is connected to the vehicle body 2 via an elevating cylinder 6 .
  • the mining machine 1 also has a plurality of GNSS (Global Navigation Satellite System) antennas 7 for receiving radio waves from positioning satellites such as GPS (Global Positioning System), and a GNSS antenna 7 based on the radio waves received by the GNSS antenna 7. and a GNSS receiver 8 for measuring the terrestrial position (eg latitude, longitude, altitude) of.
  • the GNSS receiver 8 is connected to a control device 20 (described later) via a CAN (Controller Area Network), and outputs measurement results to the control device 20 .
  • GNSS Global Navigation Satellite System
  • the mining machine 1 is equipped with a plurality (here, four) of external sensors for detecting road surface conditions and obstacles in front, sides, and rear of the mining machine 1 .
  • a front external sensor 9 is provided on the front surface of the mining machine 1
  • a left external sensor 10 is provided on the left side of the mining machine 1
  • a right external sensor 11 is provided on the right side of the mining machine 1
  • a rear external sensor 11 is provided on the rear of the mining machine 1.
  • a rear external sensor 12 is attached to each.
  • the front external sensor 9 detects the road surface condition and obstacles in front of the mining machine 1
  • the left external sensor 10 detects the road surface condition from the front of the front wheel 3 to the left.
  • the right side external sensor 11 detects road conditions and obstacles from the front to the right side of the front wheels 3, and the rear external sensor 12 detects road conditions and obstacles behind the rear wheels 4. .
  • These external sensors are each connected to the control device 20 via CAN, and output detection results to the control device 20 .
  • the mining machine 1 is provided with an inertial measurement sensor (IMU: Inertial Measurement Unit) 13 that measures the acceleration and angular velocity of the mining machine 1 and a control device 20 .
  • the IMU 13 is connected to the control device 20 via CAN and outputs measurement results to the control device 20 .
  • the mining machine 1 may further include a speed sensor for detecting the speed of the mining machine 1 .
  • the control device 20 performs overall vehicle control of the mining machine 1 .
  • the control device 20 includes, for example, a CPU (Central Processing Unit) that executes calculations, a ROM (Read Only Memory) as a secondary storage unit that records programs for calculations, and storage of calculation progress and temporary control variables It is composed of a microcomputer that is combined with a RAM (Random Access Memory) as a temporary storage unit that stores , and performs various controls related to the running and operation of the mining machine 1 by executing the stored program.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the control device 20 includes a position/orientation estimation unit 21, a route setting unit 22, a route following control unit 23, a road unevenness obstacle detection unit 24, a collision determination unit 25, and a storage unit 26. and
  • the position/orientation estimation unit 21 estimates the position of the mining machine 1 based on the measurement results of the GNSS receiver 8 and also estimates the orientation of the mining machine 1 based on the measurement results of the IMU 13 .
  • the position/orientation estimation unit 21 outputs the estimated results to the route setting unit 22, the route following control unit 23, the road unevenness obstacle detection unit 24, the collision determination unit 25, and the storage unit 26, respectively.
  • the route setting unit 22 sets the travel route of the mining machine 1 based on the map data stored in the map database (map DB) 27.
  • the route setting unit 22 outputs the set travel route to the route following control unit 23 and the collision determination unit 25, respectively.
  • the map DB 27 also includes information defining travel speeds and the like.
  • the route following control unit 23 controls the steering and travel speed of the mining machine 1 so that the travel route set by the route setting unit 22 can be followed. Specifically, the route follow-up control unit 23 outputs a steering angle command to the front wheels 3 and a speed command to the rear wheels 4 so that the set travel route can be followed.
  • the road surface unevenness obstacle detection unit 24 detects road surface unevenness and obstacles on the road surface around the mining machine 1 based on the detection results of the front external sensor 9, the left external sensor 10, the right external sensor 11, and the rear external sensor 12. Detect objects.
  • already well-known techniques can be used to detect road surface unevenness and obstacles.
  • the road surface irregularity obstacle detection unit 24 selects a plane that has many points that are fitted to the plane from the point group obtained from the external sensor and sets it as the road surface on which the vehicle is traveling, and the height of the road surface is equal to or higher than a certain threshold. Detect points as obstacles.
  • the detected obstacle points are grouped, and the distance of the point with the maximum distance from the road surface among the grouped points is calculated by calculating the height of the obstacle and the average position of the grouped points. Calculated as the position of an object. Also, if the obstacle is widely distributed, the radius of the circle containing all the grouped points centered on the position of the obstacle is calculated to represent the extent of the obstacle.
  • the collision determination unit 25 determines the position of the mining machine 1 estimated by the position/orientation estimation unit 21, the travel route set by the route setting unit 22, the road unevenness position and the obstacle position stored in the storage unit 26. A collision determination is performed based on and. Also, the collision determination unit 25 sets a collision determination flag based on the result of the collision determination, and outputs the flag to the route follow-up control unit 23 .
  • the storage unit 26 stores data and information related to each control process of the control device 20 as a whole.
  • the storage unit 26 stores the position and orientation of the mining machine 1 estimated by the position/orientation estimation unit 21, and the road surface unevenness and obstacles detected by the road surface unevenness obstacle detection unit 24, respectively.
  • Objects to be detected via the external sensor are obstacles around the mining machine 1 and unevenness of the road surface.
  • Typical external sensors are LiDAR (Light Detection and Ranging), which measures the distance to the target from the reflection of laser light and treats a large number of measurement points as a point group, cameras, or Radar, but here LiDAR is taken as an example.
  • LiDAR Light Detection and Ranging
  • the mining machine 1 takes an avoidance action such as a stop or a detour.
  • safety is taken into consideration, it is a minimum requirement that the mining machine can stop without colliding with an obstacle while traveling, and detection of obstacles is based on the premise that the mining machine covers a range in which it can stop.
  • the stoppable range of the mining machine (hereinafter referred to as “stoppable range”) differs depending on whether the mining machine is operated by the operator or when the mining machine is autonomously traveling. .
  • the route following control unit 23 limits the maximum value of the steering angle in each driving speed range. Note that the maximum value of the steering angle is a design value determined in advance according to the type of mining machine 1 .
  • FIG. 3 is a table showing the relationship between the speed range of the mining machine and the maximum steering angle.
  • the magnitude of the numerical value is V 0 ⁇ V m
  • the speed range has a larger value as the subscript increases
  • the maximum steering angle decreases as the speed range increases
  • the relationship S 1 >S m is satisfied. be.
  • Both numerical values are assumed to be positive values.
  • the initial speed of the mining machine is divided at regular intervals from the maximum speed (V m ) on the specification of the mining machine to the minimum speed (V 0 ) that can be controlled by the path following control unit 23 .
  • V 0 minimum speed
  • the stoppable range of the mining machine 1 can be determined by calculating the reaching range of the mining machine 1 when the mining machine 1 decelerates at the maximum deceleration in the specification from each speed range.
  • the determination processing shown in FIG. 4 is performed by the control device 20 .
  • step S101 the control device 20 selects one speed range from the table showing the relationship between the speed range and the maximum steering angle shown in FIG. Since all speed ranges are finally selected, the order of selection may be in ascending order or in ascending order.
  • step S102 the control device 20 divides the maximum steering angle corresponding to the speed range selected in step S101 by m.
  • step S103 the control device 20 selects one steering angle from the steering angles divided into m equal parts. Since all steering angles are finally selected, the order of selection may be in ascending order or in ascending order of steering angles.
  • step S104 the control device 20 calculates the position of the center of gravity and the orientation of the mining machine 1 when the mining machine 1 is stopped (that is, during maximum braking). Specifically, as shown in FIG. 5, the control device 20 sets the maximum speed V of the speed range selected in step S101 and the steering angle ⁇ The center of gravity position 601 and the azimuth of the mining machine 1 when the mining machine 1 is stopped are calculated when the mining machine 1 decelerates.
  • FIG. 5 shows the steering angle, the position of the center of gravity and the azimuth when the mining machine 1 is viewed from above.
  • the position of the center of gravity 601 is set at one point on the vehicle body 2 in advance, and that the steering angle ⁇ does not change during deceleration.
  • the calculation method differs depending on the type of mining equipment and the required accuracy, but in the case of dump trucks, for example, it can be calculated using the following formulas (1) to (4) using a calculation method based on Ackermann steering geometry.
  • V is the velocity of the mining machine 1 at time t
  • is the orientation of the mining machine 1 at time t
  • X and Y are the coordinates of the center of gravity position 601 at time t.
  • is the deceleration of the mining machine 1
  • is the steering angle
  • l is the wheelbase, that is, the distance from the center of the front wheel shaft to the center of the rear wheel shaft.
  • lr indicates the distance from the center of gravity position 601 to the center of the rear wheel axle.
  • step S105 the control device 20 determines the reaching point until the mining machine 1 stops (hereinafter referred to as " ) is calculated and stored.
  • FIG. 6 is a plan view for explaining reaching points until the mining machine stops.
  • FIG. 6 shows the reaching points to stop when the mining machine 1 turns to the left while moving forward or backward
  • 602 indicates the position of the front end of the mining machine 1 when moving forward
  • 603 when moving backward
  • 2 shows the position of the rear end of the mining machine 1 in the case of FIG. It should be noted that the same applies when the turning direction is to the right, so redundant description will be omitted.
  • a vector d f from the center of gravity position 601 to the front end 602 when the mining machine 1 moves forward (see FIG.
  • step S106 the control device 20 determines whether or not all m-divided steering angles have been selected. If it is determined that all steering angles have not been selected (in other words, steering angles remain to be selected), the determination process returns to step S103, and the processes of steps S103 to S105 are repeated. On the other hand, if it is determined that all steering angles have been selected, the determination process proceeds to step S107.
  • step S107 the control device 20 determines whether or not all speed ranges have been selected. If it is determined that all speed ranges have not been selected (in other words, some speed ranges remain to be selected), the determination process returns to step S101, and steps S101 to S106 are repeated. On the other hand, if it is determined that all speed ranges have been selected, the determination process proceeds to step S108.
  • step S108 the control device 20 obtains the maximum reachable area of the mining machine 1 based on the reaching point until the mining machine 1 stops stored in step S105.
  • FIG. 7 is a diagram for explaining the maximum reachable area of the mining machine.
  • 604 denotes the maximum front reachable area of the mining machine 1
  • 605 denotes the maximum rearward reachable area of the mining machine 1, respectively.
  • the front maximum reach 604 is a line segment obtained by connecting all the front ends of the reach points stored in the storage unit 26 where x is positive
  • the rear maximum reach 605 is stored in the storage unit 26. It is a line segment obtained by connecting all the rear ends of each reaching point where x is negative.
  • the maximum reachable area of the mining machine 1 can be obtained by a bilaterally symmetrical method with respect to the axle.
  • step S109 the control device 20 obtains a steady turning inviolable area.
  • FIG. 8 is a diagram for explaining the steady turning impenetrable area of the mining machine.
  • 604 is the front maximum reachable area obtained by the left-right symmetrical method as described above
  • 605 is the rearward maximum reachable area obtained by the left-right symmetrical method.
  • the steady turning impenetrable area means an area into which the mining machine 1 cannot enter when the mining machine 1 turns at the maximum steering angle, and is obtained as follows.
  • a dashed line 606 in FIG. 8 indicates a steady turning inviolable area of the mining machine 1, which is an area inside a circle that is a trajectory along which the mining machine 1 passes. This area is an area that can never be entered unless the mining machine 1 performs a special operation such as turning back. That is, when the mining machine 1 is intended to prevent a collision with a stationary object, this area does not need to be detected using an external sensor or the like.
  • the control device 20 excludes the detected obstacle from the target obstacles related to the process of stopping the mining machine 1. can control the running of the mining machine 1. By excluding obstacles in the intrusive area in this manner, the control processing speed can be increased.
  • the right steady turning impenetrable area 606 can also be obtained by a symmetrical method.
  • step S110 subsequent to step S109 the control device 20 connects the forward maximum reachable area 604 obtained in step S108 and the steady turning impenetrable area 606 obtained in step S109 with a line segment, and adopts a symmetrical method with respect to the axle. is used to set the stoppable range of the mining machine 1 .
  • a point 609 is a point where the line segment 608 intersects the steady turning non-aggression area 606 .
  • the stoppable range of the mining machine 1 is set by the front maximum reachable area 604 , the line segment 608 , the steady turning impenetrable area 606 and the rearward maximum reachable area 605 .
  • 610 is the end point of the rearward maximum reachable area 605, and also the intersection of the rearward maximum reachable area 605 and the steady turning impenetrable area 606. Since the line segment connecting the endpoints 609 and 610 is inside the stationary turning impenetrable region 606, the stoppable range of the mining machine 1 does not exist between the endpoints 609 and 610, and the stationary pivoting impenetrable region does not exist. A zone 606 separates the anterior and posterior sides. Therefore, between the endpoints 609 and 610, it is not necessary to detect road surface conditions and obstacles via an external sensor or the like.
  • the control device 20 allows the mining machine 1 to continue running without making it an error. In this way, the mining machine 1 can be prevented from being stopped unnecessarily, so a decrease in the work efficiency of the mining machine 1 can be suppressed.
  • the stoppable range of the mining machine 1 is set as described above, it is preferable to arrange the external sensors based on the stoppable range of the mining machine 1 . For example, by adjusting the position and attitude of the external sensor so that the detection range of the external sensor includes the stoppable range, at least when a stationary obstacle is detected, a collision can be avoided by an emergency stop.
  • the front maximum reachable area 604 is covered by the front external world sensor 9, the left side external field sensor 10, and the right side external field sensor 11, and the rear maximum reachable area 605 is covered by the rear external field sensor 12. do.
  • the front external sensor 9 is attached to the center of the front surface of the mining machine 1, and detects a plane (road surface) on which the mining machine exists, including at least the maximum distance L1 to the front maximum reach area 604 and the maximum width L2 of the front maximum reach area 604. Its placement height and depression angle are adjusted to cover.
  • the left side external sensor 10 and the right side external sensor 11 are mounted on the left and right sides of the vehicle body 2 directly above the front wheel axle or on the front side of the front wheel axle, and have a detection range including at least a line segment 608. partly overlaps with the detection range of Since the detection range of the left side external sensor 10 and the right side external sensor 11 and the detection range of the front external sensor 9 partially overlap in this way, it is possible to prevent leakage of the required detection range.
  • the rear external sensor 12 is attached to the center of the vehicle body 2 on the rear side of the rear wheel axle, and its placement height and depression angle are adjusted so as to cover the maximum rear reaching area 605 .
  • FIG. 10 is a flow chart showing travel processing of the mining machine.
  • the traveling process shown in FIG. 10 depends on the cycle of the control process of the mining machine 1, and is repeatedly executed, for example, once every 10 milliseconds.
  • step S ⁇ b>201 the position/orientation estimation unit 21 estimates the position and orientation of the mining machine 1 based on the measurement results of the GNSS receiver 8 and the measurement results of the IMU 13 .
  • step S ⁇ b>202 following step S ⁇ b>201 the route setting unit 22 sets the travel route of the mining machine 1 .
  • the route setting unit 22 sets the travel route using the map DB 27 based on the preset destination and the position of the mining machine estimated in step S201.
  • step S203 the control device 20 determines whether the mining machine 1 has started traveling along the set travel route. If it is determined that the vehicle has started traveling on the travel route, the travel process proceeds to step S206. On the other hand, when it is determined that the vehicle has not started traveling on the travel route, the travel processing proceeds to step S204.
  • step S204 since the mining machine 1 has not yet started running, the control device 20 determines whether or not the current position of the mining machine 1 is within the inspection completed area.
  • the inspection completed area is an area where the road surface condition is good and there are no obstacles.
  • This inspection completed area is set in the map DB 27, and is an area where it has been confirmed that there are no obstacles or uneven road surfaces within the inspection completed area, and that there are no moving objects such as other mining machines or people. .
  • step S205 when it is determined that the current position of the mining machine 1 is within the inspection completion area, the mining machine 1 starts traveling (see step S205). After step S205 ends, the traveling process proceeds to step S206. On the other hand, if it is determined that the current position is outside the inspection completed area, the travel process ends.
  • step S206 the road surface unevenness obstacle detection unit 24 detects road surface unevenness around the mining machine 1 and Detect obstacles.
  • step S207 the control device 20 causes the storage unit 26 to store information on road unevenness and obstacles detected in step S206.
  • the storage unit 26 assigns an ID to each of the unevenness of the road surface detected in step S206, the position and height of the obstacle, the extent of the obstacle, and the like, and stores them.
  • step S208 following step S207 the collision determination unit 25 uses the road surface unevenness and obstacle information detected by the external sensor and stored in the storage unit 26 to determine a collision. Collision determination will be described in detail below with an example of an obstacle based on FIG. 11 .
  • FIG. 11 is a flowchart showing collision determination processing for mining machines.
  • the collision determination unit 25 acquires the travel route and travel-permitted section of the mining machine 1 set in step S202.
  • a travel route 700 is composed of a plurality of nodes (eg, nodes 701) arranged at predetermined intervals and links (eg, links 702) connecting the nodes. These nodes are data indicating coordinates on the travel route 700 .
  • the travel-permitted section 705 is an area obtained by dividing the travel route 700. Only one mining machine 1 is allowed to travel in one travel-permitted section 705, and autonomous travel is realized in which the mining machines 1 do not interfere with each other.
  • a travel-permitted section 705 is formed by a start node 703 , an end node 704 , and width regulation line segments 706 on both left and right sides that determine the width of the travel route 700 .
  • the mining machine 1 autonomously travels so as not to deviate from the travel-permitted section 705 .
  • step S208-2 the collision determination unit 25 determines whether or not there is an obstacle detected by the external sensor and stored in the storage unit 26 around the aircraft. At this time, the collision determination unit 25 calculates the distance from the mining machine 1 to the obstacle based on the position of the mining machine 1 estimated in step S201 and the position of the obstacle stored in the storage unit 26, The calculated distance is compared with a preset threshold. If the calculated distance is equal to or less than the threshold, the collision determination unit 25 determines that there is an obstacle around the aircraft. Accordingly, the collision determination process proceeds to step S208-3.
  • step S208-7 the collision determination unit 25 sets the collision determination flag to "0" (meaning that there is no object with the possibility of collision).
  • step S208-3 the collision determination unit 25 determines whether or not the height of the obstacle is equal to or greater than a preset threshold. At this time, the collision determination unit 25 acquires the height of the obstacle from the storage unit 26 based on the ID of the obstacle determined to be in the vicinity of the aircraft, and uses the acquired height of the obstacle as a threshold value. compare. If it is determined that the height of the obstacle is not equal to or greater than the threshold, the collision determination process proceeds to step S208-7. On the other hand, if it is determined that the height of the obstacle is equal to or greater than the threshold, the collision determination process proceeds to step S208-4.
  • step S208-4 the collision determination unit 25 determines whether or not the position of the obstacle is within the steady turning impenetrable area.
  • the collision determination unit 25 first acquires the position and extent of the obstacle from the storage unit 26 based on the ID of the obstacle whose height is equal to or greater than the threshold.
  • the collision determination unit 25 determines whether the acquired position and extent of the obstacle are within the above-described steady turning impenetrable area 606 . If the position and extent of the obstacle is partially or wholly within the circle represented as the steady turning impenetrable area 606 , it is determined that the obstacle is within the steady turning impenetrable area 606 . Accordingly, the collision determination process proceeds to step S208-7.
  • the collision determination process proceeds to step S208-5.
  • the external sensor is soiled or partly undetectable due to dust or the like, if the undetectable range is within the steady turning impenetrable area 606, the external sensor is detected. It is possible to continue running the mining machine 1 without being judged to be out of order. Therefore, it is possible to suppress the deterioration of the working efficiency of the mining machine 1 .
  • the collision determination unit 25 determines whether or not the position of the obstacle is within the travel route and the travel-permitted section. At this time, the collision determination unit 25 determines that the position and extent of the obstacle determined to exist outside the steady turning impenetrable area 606 is the travel route 700 and the travel-permitted section obtained in step S208-1. 705 is determined. Since the travel-permitted section 705 is represented by a rectangle or a polygon, when the position of the obstacle and part or all of the extent of the obstacle are included inside it, the position of the obstacle is within the travel route and the travel-permitted section. It is determined that there is Accordingly, the collision determination process proceeds to step S208-6.
  • the collision determination process proceeds to step S208-7.
  • the collision determination unit 25 sets the collision determination flag to "1" (meaning that there is an object with the possibility of collision). This completes the collision determination process in step S208.
  • step S209 following step S208 shown in FIG. 10 the route following control unit 23 determines whether or not there is a collision.
  • the route follow-up control unit 23 receives the collision determination flag from the collision determination unit 25, and determines that there is a collision when the collision determination flag is "1". Accordingly, the traveling process proceeds to step S210.
  • the collision determination flag is "0"
  • the route following control unit 23 determines that there is no collision. Accordingly, the traveling process proceeds to step S211.
  • step S210 since the collision determination flag is "1", the route follow-up control unit 23 performs processing to stop the mining machine 1. At this time, the route following control unit 23 calculates the distance based on the position of the road unevenness or the obstacle and the position of the own aircraft, determines the deceleration, and outputs a deceleration command to the rear wheels 4 to stop the vehicle. . This initiates deceleration of the mining machine 1 .
  • step S211 the control device 20 determines whether or not the position of the own machine is positioned at the end of the travel route.
  • the travel processing returns to step S201.
  • a series of travel processing ends.
  • the mining machine 1 uses the front external sensor 9, the left external sensor 10, the right external sensor 11, and the rear external sensor 12 to avoid obstacles and the like when autonomously traveling in the mine. It is possible to avoid collisions and realize safe driving.
  • the maximum reach areas 604 and 605 of the mining machine 1 at the time of maximum braking which are obtained based on the relationship between the preset speed range and the maximum steering angle, and the A steady turning impenetrable area 606 into which the mining machine 1 cannot enter when turning at the maximum steering angle, and a line segment parallel to the direction of the vehicle body 2 and connecting an end point 607 of the front maximum reaching area 604 and the steady turning impenetrable area 606.
  • 608 sets the stoppable range of the mining machine 1, and the front external sensor 9, the left external sensor 10, the right external sensor 11, and the rear external sensor 12 are arranged so that the detection range includes the stoppable range. .
  • the front external sensor 9, the left external sensor 10, the right external sensor 11, and the rear external sensor 12 can be attached to the mining machine 1 so as to cover the minimum detection range required for safe driving. Therefore, it is possible to realize safe driving with the minimum required number of external sensors.
  • FIG. 13 is a block configuration diagram showing an autonomous driving system according to the embodiment.
  • the autonomous traveling system 100 of this embodiment includes a plurality of mining machines 1A and a control station 30 configured to be able to communicate with each mining machine 1A and to manage these mining machines 1A.
  • the mining machine 1A is different from the mining machine 1 described above in that it does not set the travel route by itself, but acquires the travel route from the control station 30 . Since other configurations are the same as those of the mining machine 1 described above, redundant description will be omitted.
  • the mining machine 1A does not include the route setting section 22 and the map DB 27, but further includes the speed sensor 14 and the communication device 15.
  • the speed sensor 14 detects the running speed of the mining machine 1 and outputs the detection result to the position/orientation estimation unit 21 .
  • the communication device 15 is, for example, a wireless device, and is connected to the storage section 26 of the control device 20 .
  • the mining machine 1A transmits and receives information to and from the control station 30 via the communication device 15.
  • the mining machine 1A transmits, for example, the position, attitude, and speed of its own machine to the control station 30, and the control station 30 receives the positions, attitudes, and speeds of other mining machines (hereinafter referred to as "other machines") existing around its own machine. Get speed. Further, the mining machine 1A requests the control station 30 for its travel route, and acquires its own travel route from the control station 30 .
  • the control station 30 includes, for example, a CPU (Central Processing Unit) that executes calculations, a ROM (Read Only Memory) as a secondary storage unit that records programs for calculations, and storage of the progress of calculations and temporary It is composed of a microcomputer combined with a RAM (random access memory) as a temporary storage unit that stores control variables, and performs each control related to management of all the mining machines 1A by executing the stored program.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • the control station 30 transmits the traveling route of the mining machine 1A that has requested the route, and also the position, posture, and position of other machines existing in the vicinity. The speed and the like are also transmitted to the mining machine 1A that requested the route.
  • the control station 30 includes a communication device 31 that communicates with the mining machines 1A, a route planning section 32 that plans and creates travel routes for each mining machine 1A, and a map DB 33.
  • Fig. 14 is a flow chart showing the traveling process of the mining machine in the autonomous traveling system.
  • the traveling process shown in FIG. 14 depends on the cycle of the control process of the mining machine 1A, and is repeatedly executed, for example, once every 10 milliseconds.
  • step S301 the position and orientation estimation unit 21 of the mining machine 1A estimates the position and orientation of the mining machine 1 based on the measurement results of the GNSS receiver 8 and the measurement results of the IMU 13, and estimates the position and orientation of the mining machine 1A. is transmitted to the control station 30 via the communication device 15 .
  • the position/orientation estimation unit 21 may also transmit the speed of its own device.
  • the control station 30 broadcasts the position and attitude transmitted from each mining machine 1A with an ID.
  • step S302 following step S301 the mining machine 1A requests the control station 30 for its own traveling route, and acquires its own traveling route from the control station 30.
  • the mining machine 1A also transmits the ID of the machine itself.
  • the control station 30 Upon receiving the route request, the control station 30 creates and transmits the travel route of the requested mining machine 1A.
  • the route planning unit 32 uses the preset destination, the map information stored in the map DB 33, and the positions of other machines in the vicinity. planning and creating the optimal driving route.
  • the route planning unit 32 transmits the created travel route via the communication device 31 to the mining machine 1A that requested the route.
  • the mining machine 1A causes the storage unit 26 to store the received travel route.
  • Steps S303 to S307 are the same as steps S203 to S207 (see FIG. 10) described above, so redundant description will be omitted.
  • step S308 following step S307 the mining machine 1A acquires other machine information and calculates the stoppable distance.
  • the other aircraft information includes the position, attitude, speed, weight, braking force, stoppable distance calculation coefficient, and the like of the other aircraft. These pieces of other aircraft information are acquired from information broadcast by the control station 30 .
  • the possible stopping distance can be calculated based on the following formula (7), as described in Japanese Patent No. 6325655, for example.
  • n is the number of the other aircraft
  • SL n is the stopping distance of the other aircraft
  • v n is the speed of the other aircraft
  • M n is the weight of the other aircraft
  • f n is the braking force of the other aircraft
  • c n indicates the stopping distance coefficient of other aircraft.
  • step S309 collision determination is performed.
  • the collision determination unit 25 determines a collision using the acquired information about the other device in addition to the information about the unevenness of the road surface and the obstacles detected by the external sensor and stored in the storage unit 26 .
  • FIG. 15 is a flowchart showing collision determination processing for mining machines in the autonomous traveling system.
  • Steps S309-1 to S309-7 shown in FIG. 15 are the same as steps S208-1 to S208-7 (see FIG. 11) described above, so redundant description will be omitted.
  • step S309-8 following steps S309-6 and S309-7, it is determined whether or not there is another aircraft in the vicinity of the own aircraft.
  • the collision determination unit 25 calculates the distance between the own aircraft and the other aircraft based on the position of the own aircraft and the positions of the other aircraft, and compares the calculated distance with a preset threshold value. If the distance between the own aircraft and the other aircraft is equal to or less than the threshold value, the collision determination unit 25 determines that the other aircraft exists around the own aircraft. As a result, the collision determination process proceeds to step S309-9.
  • the collision determination unit 25 determines that there are no other aircraft around the own aircraft. Accordingly, the collision determination process proceeds to step S309-11.
  • step S309-9 the collision determination unit 25 determines whether or not the run-permitted section of the own aircraft contacts the travel area of the other aircraft for all the other aircraft determined to be present in the vicinity of the own aircraft. .
  • the travel area of the other aircraft is represented by a rectangle having a predetermined width given to the possible stop distance SLn of the other aircraft calculated in step S308. Then, when there is a portion where the rectangle that is the travel-permitted section of the own aircraft and the rectangle of the travel area of the other aircraft overlap, the collision determination unit 25 determines that the travel-permitted section of the own aircraft comes in contact with the travel area of the other aircraft. do. Accordingly, the collision determination process proceeds to step S309-10. At step S309-10, the collision determination unit 25 sets the collision determination flag to "1".
  • the collision determination unit 25 determines that the travel-permitted section of the own aircraft does not contact the travel area of the other aircraft. do. Accordingly, the collision determination process proceeds to step S309-11.
  • the collision determination unit 25 maintains the already set collision determination flag. That is, for example, when the collision determination flag is set to "1" in step S309-6, the collision determination unit 25 leaves the collision determination flag "1". If the collision determination flag is set to "0" in step S309-7, the collision determination unit 25 leaves the collision determination flag "0".
  • step S309 ends.
  • Steps S310 to S312 subsequent to step S309 shown in FIG. 14 are the same as steps S209 to S211 (see FIG. 10) described above, so redundant description will be omitted.
  • the minimum necessary sensors such as the front external sensor 9, the left external sensor 10, the right external sensor 11, and the rear external sensor 12 are used.
  • the external sensor By using the external sensor, it is possible to avoid collisions with obstacles and other machines moving in the mine, and to realize safe driving.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

A front external sensor 9, a left side external sensor 10, a right side external sensor 11, and a rear external sensor 12 are attached to a mining machine 1 that travels autonomously in a mine. A stopping-possible range of the mining machine 1 is configured using maximum reachable regions 604, 605 of the mining machine 1 at the time of maximum braking that are calculated on the basis of the relationship between a preset speed range and maximum steering angle, static unenterable-by-turning regions 606 that the mining machine 1 cannot enter when the mining machine 1 has turned at the maximum steering angle, and line segments 608 that are parallel to the direction of a vehicle body 2 and connect the static unenterable-by-turning regions 606 and endpoints 607 of the maximum reachable region 604. The front external sensor 9, the left side external sensor 10, the right side external sensor 11, and the rear external sensor 12 are positioned such that the detection ranges thereof include the stopping-possible range.

Description

鉱山機械及び自律走行システムMining equipment and autonomous driving systems
 本発明は、鉱山機械及び自律走行システムに関する。 The present invention relates to mining machines and autonomous driving systems.
 オペレータが搭乗することなく鉱山を自律走行する鉱山機械として、例えばダンプトラックが知られている。このようなダンプトラックでは、オペレータの目の代わりにRadar、LiDAR、カメラなどの外界センサを用いて路面状態及び障害物を把握しながら走行する。そして、外界センサを介して悪路面又は障害物が検出されると、ダンプトラックは迂回、回避、停止などの動作を適宜実施することにより走行の安全性を図っている。 A dump truck, for example, is known as a mining machine that autonomously travels through a mine without an operator on board. In such a dump truck, external sensors such as Radar, LiDAR, and cameras are used instead of the operator's eyes to drive while grasping road conditions and obstacles. Then, when a bad road surface or an obstacle is detected via an external sensor, the dump truck appropriately performs actions such as detour, avoidance, and stop to ensure safety of travel.
 また、鉱山機械は、一般的な乗用車とは検出すべき対象や検出範囲が大きく異なっている。特に鉱山機械は、乗用車と比べて格段に大きな車体(具体的には、大きな車幅及び車高)を有するため、周囲の悪路面又は障害物を検出するためには外界センサで広範囲を検出する必要がある。 In addition, mining equipment differs greatly in terms of the objects to be detected and the detection range from general passenger cars. In particular, mining equipment has a much larger body (specifically, a larger width and height) than a passenger car, so an external sensor detects a wide range of surrounding rough road surfaces or obstacles. There is a need.
 外界センサは取付点数が限られるため、検出範囲の大きさと解像度は相反する関係にある。従って、大きな車体を有する鉱山機械では、解像度を確保しつつ検出範囲を広げるために、例えば下記特許文献1に開示されるように、複数の外界センサを用いて車両の周囲を検出している。 Since the number of attachment points for external sensors is limited, the size of the detection range and resolution are in conflict with each other. Therefore, in a mining machine having a large vehicle body, a plurality of external sensors are used to detect the surroundings of the vehicle, as disclosed in Patent Document 1 below, for example, in order to widen the detection range while ensuring resolution.
特許第5667594号明細書Patent No. 5667594
 しかしながら、多くの外界センサを用いることで、外界センサ自体の故障のみならず、砂埃や汚れなどが外界センサに付着することにより、外界センサの正常な機能に影響し、システムとしての故障率が上昇してしまう。これに対し、オペレータが搭乗して操縦する鉱山機械では大きな問題とならないが、無人で自律走行する鉱山機械では、外界センサが使えなくなると自律走行の停止を余儀なくされるため、生産性の低下を招いてしまう。このため、外界センサの数を必要最小限に絞ることが望ましい。しかし、外界センサの数を減らすと、未検出の障害物等と衝突する可能性があり、外界センサを単純に減らすことはできない。 However, by using many external sensors, not only the external sensors themselves fail, but also dust and dirt adhere to the external sensors, affecting the normal functioning of the external sensors and increasing the failure rate of the system. Resulting in. On the other hand, this is not a big problem for mining machines that are operated by an operator, but for unmanned mining machines that run autonomously, if the external sensor becomes unusable, autonomous running will be forced to stop, which will reduce productivity. I invite you. Therefore, it is desirable to minimize the number of external sensors. However, if the number of external sensors is reduced, there is a possibility of collision with an undetected obstacle or the like, and the number of external sensors cannot be simply reduced.
 本発明は、このような技術課題を解決するためになされたものであって、必要最小限の外界センサで安全走行を実現できる鉱山機械及び自律走行システムを提供することを目的とする。 The present invention was made to solve such technical problems, and aims to provide a mining machine and an autonomous driving system that can realize safe driving with the minimum necessary external sensors.
 本発明に係る鉱山機械は、車体の左右両側に配置されて操舵される一対の前輪と前記車体の左右両側に配置される一対の後輪とを備え、鉱山内を自律走行する鉱山機械において、前記鉱山機械には、前記鉱山機械の前方、側方及び後方の路面状態及び障害物を検出する外界センサが複数取り付けられ、予め設定された速度域と最大操舵角との関係に基づいて求められる最大制動時の前記鉱山機械の最大到達域と、前記鉱山機械が最大操舵角で旋回した際に前記鉱山機械が侵入できない定常旋回不可侵域と、前記車体の方向と平行するとともに前記最大到達域の端点と前記定常旋回不可侵域とを結ぶ線分とで前記鉱山機械の停止可能範囲が設定され、複数の前記外界センサは、検出範囲が前記停止可能範囲を含むように配置されていることを特徴としている。 A mining machine according to the present invention comprises a pair of steerable front wheels arranged on both left and right sides of a vehicle body and a pair of rear wheels arranged on both left and right sides of the vehicle body, and autonomously travels in a mine. The mining machine is equipped with a plurality of external sensors for detecting road surface conditions and obstacles in front, sides, and rear of the mining machine, and is obtained based on the relationship between a preset speed range and the maximum steering angle. A maximum reachable area of the mining machine during maximum braking, a steady turning impenetrable area that the mining machine cannot enter when the mining machine turns at a maximum steering angle, and the maximum reachable area parallel to the direction of the vehicle body. and a line segment connecting the end point of and the steady turning inviolable area, a stoppable range of the mining machine is set, and the plurality of external sensors are arranged so that a detection range includes the stoppable range. is characterized by
 本発明に係る鉱山機械では、予め設定された速度域と最大操舵角との関係に基づいて求められる最大制動時の前記鉱山機械の最大到達域と、前記鉱山機械が最大操舵角で旋回した際に前記鉱山機械が侵入できない定常旋回不可侵域と、前記車体の方向と平行するとともに前記最大到達域の端点と前記定常旋回不可侵域とを結ぶ線分とで前記鉱山機械の停止可能範囲が設定され、鉱山機械の前方、側方及び後方の路面状態及び障害物を検出する外界センサは検出範囲が停止可能範囲を含むように配置されている。このようにすれば、例えば安全走行に必要最小限の検出範囲をカバーするように、鉱山機械の前方、側方及び後方に外界センサを取り付けることで、必要最小限の外界センサで安全走行を実現することができる。 In the mining machine according to the present invention, the maximum reaching range of the mining machine at the time of maximum braking, which is obtained based on the relationship between the preset speed range and the maximum steering angle, and the and a line segment parallel to the direction of the vehicle body and connecting an end point of the maximum reachable area and the steady turning impenetrable area defines a stoppable range of the mining machine. The external sensors for detecting road surface conditions and obstacles in front, sides and rear of the mining machine are arranged so that the detection range includes the stop possible range. In this way, by attaching external sensors to the front, sides, and rear of the mining machine so as to cover the minimum detection range necessary for safe driving, safe driving can be achieved with the minimum necessary external sensors. can do.
 本発明によれば、必要最小限の外界センサで安全走行を実現することができる。 According to the present invention, safe driving can be achieved with the minimum number of external sensors.
実施形態に係る鉱山機械の概略構成を示す側面図である。1 is a side view showing a schematic configuration of a mining machine according to an embodiment; FIG. 実施形態に係る鉱山機械を示すブロック構成図である。1 is a block configuration diagram showing a mining machine according to an embodiment; FIG. 鉱山機械の速度域と最大操舵角との関係を示すテーブルである。4 is a table showing the relationship between the speed range of mining equipment and the maximum steering angle; 鉱山機械の停止可能範囲の決定処理を示すフローチャートである。4 is a flow chart showing processing for determining a stoppable range of the mining machine. 鉱山機械の操舵角、重心位置及び方位を説明するための平面図である。FIG. 4 is a plan view for explaining the steering angle, center-of-gravity position, and orientation of the mining machine; 鉱山機械が停止するまでの到達点を説明するための平面図である。FIG. 4 is a plan view for explaining reaching points until the mining machine stops; 鉱山機械の最大到達域を説明するための図である。It is a figure for demonstrating the maximum reachable area of a mining machine. 鉱山機械の定常旋回不可侵域を説明するための図である。It is a figure for demonstrating the steady-state turning inviolable area of a mining machine. 鉱山機械の停止可能範囲と外界センサの取付位置を説明するための図である。FIG. 4 is a diagram for explaining a stoppable range of the mining machine and mounting positions of external sensors; 鉱山機械の走行処理を示すフローチャートである。4 is a flowchart showing travel processing of the mining machine; 鉱山機械の衝突判定処理を示すフローチャートである。4 is a flow chart showing collision determination processing of a mining machine; 走行許可区間を説明するための図である。It is a figure for demonstrating a run-permitted area. 実施形態に係る自律走行システムを示すブロック構成図である。1 is a block configuration diagram showing an autonomous driving system according to an embodiment; FIG. 自律走行システムにおける鉱山機械の走行処理を示すフローチャートである。4 is a flowchart showing travel processing of the mining machine in the autonomous travel system. 自律走行システムにおける鉱山機械の衝突判定処理を示すフローチャートである。It is a flowchart which shows the collision determination process of the mining machine in an autonomous driving system.
 以下、図面を参照して本発明に係る鉱山機械及び自律走行システムの実施形態について説明する。図面の説明において同一の要素には同一符号を付し、その重複説明を省略する。また、以下の説明では、上下、左右、前後の方向及び位置は、鉱山機械を基準とする。更に、以下の説明において、鉱山機械としてオペレータが搭乗しないダンプトラックの例を挙げて説明するが、本発明はダンプトラックに限定されない。 An embodiment of a mining machine and an autonomous traveling system according to the present invention will be described below with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description thereof will be omitted. Also, in the following description, the vertical, horizontal, front and rear directions and positions are based on the mining machine. Furthermore, in the following description, an example of a dump truck in which an operator does not board is given as a mining machine, but the present invention is not limited to a dump truck.
[鉱山機械について]
 図1は実施形態に係る鉱山機械の概略構成を示す側面図であり、図2は実施形態に係る鉱山機械を示すブロック構成図である。鉱山機械1は、鉱山を自律走行可能なダンプトラックであり、車体2と、車体2の前側に配置された左右一対の前輪3と、車体2の後側に配置された左右一対の後輪4と、車体2に起伏可能に支持された荷台5とを備えている。車体2は、例えば頑丈な金属フレーム部材により構成されており、ばね等によって車輪軸と連結されている。前輪3は操舵可能な従動輪であり、後輪4は操舵不可能な駆動輪である。荷台5は、昇降シリンダ6を介して車体2と連結されている。
[About mining equipment]
FIG. 1 is a side view showing a schematic configuration of the mining machine according to the embodiment, and FIG. 2 is a block configuration diagram showing the mining machine according to the embodiment. A mining machine 1 is a dump truck capable of autonomously traveling in a mine, and includes a vehicle body 2, a pair of left and right front wheels 3 arranged on the front side of the vehicle body 2, and a pair of left and right rear wheels 4 arranged on the rear side of the vehicle body 2. and a loading platform 5 supported on the vehicle body 2 so as to be able to rise and fall. The vehicle body 2 is composed of, for example, a sturdy metal frame member, and is connected to the wheel axles by springs or the like. The front wheels 3 are steerable driven wheels and the rear wheels 4 are non-steerable drive wheels. The loading platform 5 is connected to the vehicle body 2 via an elevating cylinder 6 .
 また、鉱山機械1には、GPS(Global Positioning System)等の測位衛星からの電波を受信する複数のGNSS(Global Navigation Satellite System)アンテナ7と、GNSSアンテナ7で受信した電波を基にGNSSアンテナ7の地球上の位置(例えば緯度、経度、標高)を計測するGNSS受信機8とが配置されている。GNSS受信機8は、CAN(Controller Area Network)を介して制御装置20(後述する)と接続されており、計測した結果を制御装置20に出力する。 The mining machine 1 also has a plurality of GNSS (Global Navigation Satellite System) antennas 7 for receiving radio waves from positioning satellites such as GPS (Global Positioning System), and a GNSS antenna 7 based on the radio waves received by the GNSS antenna 7. and a GNSS receiver 8 for measuring the terrestrial position (eg latitude, longitude, altitude) of. The GNSS receiver 8 is connected to a control device 20 (described later) via a CAN (Controller Area Network), and outputs measurement results to the control device 20 .
 また、鉱山機械1には、鉱山機械1の前方、側方及び後方の路面状態及び障害物を検出する外界センサが複数(ここでは、4つ)取り付けられている。具体的には、鉱山機械1の前面には前方外界センサ9、鉱山機械1の左側には左側方外界センサ10、鉱山機械1の右側には右側方外界センサ11、鉱山機械1の後方には後方外界センサ12がそれぞれ取り付けられている。 In addition, the mining machine 1 is equipped with a plurality (here, four) of external sensors for detecting road surface conditions and obstacles in front, sides, and rear of the mining machine 1 . Specifically, a front external sensor 9 is provided on the front surface of the mining machine 1, a left external sensor 10 is provided on the left side of the mining machine 1, a right external sensor 11 is provided on the right side of the mining machine 1, and a rear external sensor 11 is provided on the rear of the mining machine 1. A rear external sensor 12 is attached to each.
 図1及び後述の図9に示すように、前方外界センサ9は、鉱山機械1の前方の路面状態及び障害物を検出し、左側方外界センサ10は前輪3の前方から左側方にかけての路面状態及び障害物を検出し、右側方外界センサ11は前輪3の前方から右側方にかけての路面状態及び障害物を検出し、後方外界センサ12は後輪4より後方の路面状態及び障害物を検出する。これらの外界センサは、それぞれCANを介して制御装置20と接続されており、検出した結果を制御装置20に出力する。 As shown in FIG. 1 and later-described FIG. 9, the front external sensor 9 detects the road surface condition and obstacles in front of the mining machine 1, and the left external sensor 10 detects the road surface condition from the front of the front wheel 3 to the left. The right side external sensor 11 detects road conditions and obstacles from the front to the right side of the front wheels 3, and the rear external sensor 12 detects road conditions and obstacles behind the rear wheels 4. . These external sensors are each connected to the control device 20 via CAN, and output detection results to the control device 20 .
 更に、鉱山機械1には、鉱山機械1の加速度及び角速度を計測する慣性計測センサ(IMU:Inertial Measurement Unit)13と制御装置20とが配置されている。IMU13は、CANを介して制御装置20と接続されており、計測した結果を制御装置20に出力する。また、図示しないが、鉱山機械1には鉱山機械1の速度を検出する速度センサが更に配置されてもよい。 Furthermore, the mining machine 1 is provided with an inertial measurement sensor (IMU: Inertial Measurement Unit) 13 that measures the acceleration and angular velocity of the mining machine 1 and a control device 20 . The IMU 13 is connected to the control device 20 via CAN and outputs measurement results to the control device 20 . Moreover, although not shown, the mining machine 1 may further include a speed sensor for detecting the speed of the mining machine 1 .
 制御装置20は、鉱山機械1の車両全体制御を行うものである。制御装置20は、例えば演算を実行するCPU(Central Processing Unit)と、演算のためのプログラムを記録した二次記憶部としてのROM(Read Only Memory)と、演算経過の保存や一時的な制御変数を保存する一時記憶部としてのRAM(Random Access Memory)とを組み合わせてなるマイクロコンピュータにより構成されており、記憶されたプログラムの実行によって鉱山機械1の走行や操作等に関する各制御を行う。 The control device 20 performs overall vehicle control of the mining machine 1 . The control device 20 includes, for example, a CPU (Central Processing Unit) that executes calculations, a ROM (Read Only Memory) as a secondary storage unit that records programs for calculations, and storage of calculation progress and temporary control variables It is composed of a microcomputer that is combined with a RAM (Random Access Memory) as a temporary storage unit that stores , and performs various controls related to the running and operation of the mining machine 1 by executing the stored program.
 図2に示すように、制御装置20は、位置姿勢推定部21と、経路設定部22と、経路追従制御部23と、路面凹凸障害物検出部24と、衝突判定部25と、記憶部26とを備えている。 As shown in FIG. 2 , the control device 20 includes a position/orientation estimation unit 21, a route setting unit 22, a route following control unit 23, a road unevenness obstacle detection unit 24, a collision determination unit 25, and a storage unit 26. and
 位置姿勢推定部21は、GNSS受信機8の計測結果に基づいて鉱山機械1の位置を推定するとともに、IMU13の計測結果に基づいて鉱山機械1の姿勢を推定する。位置姿勢推定部21は、推定した結果を経路設定部22、経路追従制御部23、路面凹凸障害物検出部24、衝突判定部25、及び記憶部26にそれぞれ出力する。 The position/orientation estimation unit 21 estimates the position of the mining machine 1 based on the measurement results of the GNSS receiver 8 and also estimates the orientation of the mining machine 1 based on the measurement results of the IMU 13 . The position/orientation estimation unit 21 outputs the estimated results to the route setting unit 22, the route following control unit 23, the road unevenness obstacle detection unit 24, the collision determination unit 25, and the storage unit 26, respectively.
 経路設定部22は、地図データベース(地図DB)27に保存されている地図データに基づいて、鉱山機械1の走行経路を設定する。経路設定部22は、設定した走行経路を経路追従制御部23及び衝突判定部25にそれぞれ出力する。地図DB27には、地図情報のほかに、走行速度が規定された情報等も含まれている。 The route setting unit 22 sets the travel route of the mining machine 1 based on the map data stored in the map database (map DB) 27. The route setting unit 22 outputs the set travel route to the route following control unit 23 and the collision determination unit 25, respectively. In addition to map information, the map DB 27 also includes information defining travel speeds and the like.
 経路追従制御部23は、経路設定部22によって設定された走行経路を追従できるように鉱山機械1の操舵及び走行速度を制御する。具体的には、経路追従制御部23は、設定された走行経路を追従できるように、前輪3に操舵角指令と、後輪4に速度指令とをそれぞれ出力する。 The route following control unit 23 controls the steering and travel speed of the mining machine 1 so that the travel route set by the route setting unit 22 can be followed. Specifically, the route follow-up control unit 23 outputs a steering angle command to the front wheels 3 and a speed command to the rear wheels 4 so that the set travel route can be followed.
 路面凹凸障害物検出部24は、前方外界センサ9、左側方外界センサ10、右側方外界センサ11及び後方外界センサ12の検出結果に基づいて、鉱山機械1周囲の路面の凹凸及び路面上の障害物を検出する。路面凹凸及び障害物の検出には既に周知された技術を用いることができる。例えば、路面凹凸障害物検出部24は、外界センサから得られる点群の中から平面にフィッティングされる点が多い平面を選び出して走行中の路面とし、その路面からある閾値以上の高さがある点を障害物として検出する。検出された障害物の点はグルーピングされ、グルーピングされた点の中から路面との距離が最大となる点の距離をその障害物の高さ、グルーピングされた点群の位置の平均を計算し障害物の位置として算出する。また、障害物が広く分散した場合、障害物の広がりを表すため、障害物の位置を中心に全てのグルーピングされた点を含む円の半径を算出する。 The road surface unevenness obstacle detection unit 24 detects road surface unevenness and obstacles on the road surface around the mining machine 1 based on the detection results of the front external sensor 9, the left external sensor 10, the right external sensor 11, and the rear external sensor 12. Detect objects. Already well-known techniques can be used to detect road surface unevenness and obstacles. For example, the road surface irregularity obstacle detection unit 24 selects a plane that has many points that are fitted to the plane from the point group obtained from the external sensor and sets it as the road surface on which the vehicle is traveling, and the height of the road surface is equal to or higher than a certain threshold. Detect points as obstacles. The detected obstacle points are grouped, and the distance of the point with the maximum distance from the road surface among the grouped points is calculated by calculating the height of the obstacle and the average position of the grouped points. Calculated as the position of an object. Also, if the obstacle is widely distributed, the radius of the circle containing all the grouped points centered on the position of the obstacle is calculated to represent the extent of the obstacle.
 衝突判定部25は、位置姿勢推定部21により推定された鉱山機械1の位置と、経路設定部22により設定された走行経路と、記憶部26に記憶された路面凹凸の位置及び障害物の位置とに基づいて、衝突判定を行う。また、衝突判定部25は、衝突判定の結果に基づいて、衝突判定フラグを設定し経路追従制御部23に出力する。 The collision determination unit 25 determines the position of the mining machine 1 estimated by the position/orientation estimation unit 21, the travel route set by the route setting unit 22, the road unevenness position and the obstacle position stored in the storage unit 26. A collision determination is performed based on and. Also, the collision determination unit 25 sets a collision determination flag based on the result of the collision determination, and outputs the flag to the route follow-up control unit 23 .
 記憶部26は、制御装置20全体の各制御処理に関するデータや情報等を記憶する。例えば、記憶部26は、位置姿勢推定部21により推定された鉱山機械1の位置及び姿勢、路面凹凸障害物検出部24により検出された路面の凹凸及び障害物をそれぞれ記憶する。 The storage unit 26 stores data and information related to each control process of the control device 20 as a whole. For example, the storage unit 26 stores the position and orientation of the mining machine 1 estimated by the position/orientation estimation unit 21, and the road surface unevenness and obstacles detected by the road surface unevenness obstacle detection unit 24, respectively.
 ここで、鉱山機械1に取り付けられた外界センサの取付位置を説明する。 Here, the mounting positions of the external sensors attached to the mining machine 1 will be explained.
 外界センサを介して検出したい対象は、鉱山機械1の周辺の障害物及び路面の凹凸である。外界センサはレーザー光の反射から対象までの距離を計測し大量の計測点を点群として扱うLiDAR(Light Detection and Ranging)、カメラ又はRadarなどが代表的であるが、ここではLiDARを例に挙げる。そして、外界センサで鉱山機械1の周辺の障害物及び路面凹凸が検出されると、停止や迂回などの回避行動をとる。特に安全を考えた場合、走行中に障害物に衝突せずに停止できることは最低限必要であり、障害物の検出には鉱山機械が停止可能な範囲をカバーしていることが前提となる。 Objects to be detected via the external sensor are obstacles around the mining machine 1 and unevenness of the road surface. Typical external sensors are LiDAR (Light Detection and Ranging), which measures the distance to the target from the reflection of laser light and treats a large number of measurement points as a point group, cameras, or Radar, but here LiDAR is taken as an example. . When an external sensor detects an obstacle and unevenness of the road surface around the mining machine 1, the mining machine 1 takes an avoidance action such as a stop or a detour. In particular, when safety is taken into consideration, it is a minimum requirement that the mining machine can stop without colliding with an obstacle while traveling, and detection of obstacles is based on the premise that the mining machine covers a range in which it can stop.
 鉱山機械の停止可能な範囲(以下、「停止可能範囲」という)は、オペレータの操縦と自律走行とでは異なり、自律走行する鉱山機械では経路追従制御部23によって操舵と走行速度とが制御される。そして、経路追従制御部23は、安全走行を実現するために、各走行の速度域において操舵角の最大値を制限している。なお、操舵角の最大値は鉱山機械1の種類によって予め決められている設計値である。 The stoppable range of the mining machine (hereinafter referred to as "stoppable range") differs depending on whether the mining machine is operated by the operator or when the mining machine is autonomously traveling. . In order to realize safe driving, the route following control unit 23 limits the maximum value of the steering angle in each driving speed range. Note that the maximum value of the steering angle is a design value determined in advance according to the type of mining machine 1 .
 図3は鉱山機械の速度域と最大操舵角との関係を示すテーブルである。図3において、数値の大きさとしてV<Vであり、速度域は添え字が大きくなるほど大きな値であり、速度域が大きくなるほど最大操舵角は減少し、S>Sの関係にある。いずれの数値も正の値とする。このようなテーブルは、鉱山機械の初期速度を鉱山機械のスペック上の最大速度(V)から経路追従制御部23が制御可能な最小速度(V)まで一定間隔で分割されており、図3ではm分割した例である。このテーブルを用い、各速度域から鉱山機械がスペック上の最大減速度で減速した場合における鉱山機械1の到達範囲を計算することで、鉱山機械1の停止可能範囲を決定することができる。 FIG. 3 is a table showing the relationship between the speed range of the mining machine and the maximum steering angle. In FIG. 3, the magnitude of the numerical value is V 0 <V m , the speed range has a larger value as the subscript increases, and the maximum steering angle decreases as the speed range increases, and the relationship S 1 >S m is satisfied. be. Both numerical values are assumed to be positive values. In such a table, the initial speed of the mining machine is divided at regular intervals from the maximum speed (V m ) on the specification of the mining machine to the minimum speed (V 0 ) that can be controlled by the path following control unit 23 . 3 is an example of division into m. Using this table, the stoppable range of the mining machine 1 can be determined by calculating the reaching range of the mining machine 1 when the mining machine 1 decelerates at the maximum deceleration in the specification from each speed range.
 次に、図4を用いて鉱山機械の停止可能範囲の決定処理を説明する。図4に示す決定処理は制御装置20によって行われる。 Next, the processing for determining the stoppable range of the mining machine will be explained using FIG. The determination processing shown in FIG. 4 is performed by the control device 20 .
 まず、ステップS101では、制御装置20は、図3に示す速度域と最大操舵角の関係を示すテーブルから一つの速度域を選択する。最終的には全ての速度域を選択するため、選択順序は速度の小さい順でも大きい順でもよい。ステップS101に続くステップS102では、制御装置20は、ステップS101で選択した速度域に対応する最大操舵角をm等分する。ステップS102に続くステップS103では、制御装置20は、m等分した操舵角から一つの操舵角を選択する。最終的には全ての操舵角を選択するため、選択順序は操舵角の小さい順でも大きい順でもよい。 First, in step S101, the control device 20 selects one speed range from the table showing the relationship between the speed range and the maximum steering angle shown in FIG. Since all speed ranges are finally selected, the order of selection may be in ascending order or in ascending order. In step S102 following step S101, the control device 20 divides the maximum steering angle corresponding to the speed range selected in step S101 by m. In step S103 following step S102, the control device 20 selects one steering angle from the steering angles divided into m equal parts. Since all steering angles are finally selected, the order of selection may be in ascending order or in ascending order of steering angles.
 ステップS103に続くステップS104では、制御装置20は、鉱山機械1停止時(すなわち、最大制動時)の重心位置と、鉱山機械1の方位を計算する。具体的には、図5に示すように、制御装置20は、ステップS101で選択した速度域の最大速度VとステップS103で選択した操舵角δを初期値としつつ、鉱山機械1が転舵しながら減速した場合において鉱山機械停止時の重心位置601と鉱山機械1の方位を計算する。なお、図5は鉱山機械1を上方から見た際の操舵角、重心位置及び方位を示すものである。ここでは、重心位置601は予め車体2の一つの点に定められており、また、減速中に操舵角δは変化しないこととする。 In step S104 following step S103, the control device 20 calculates the position of the center of gravity and the orientation of the mining machine 1 when the mining machine 1 is stopped (that is, during maximum braking). Specifically, as shown in FIG. 5, the control device 20 sets the maximum speed V of the speed range selected in step S101 and the steering angle δ The center of gravity position 601 and the azimuth of the mining machine 1 when the mining machine 1 is stopped are calculated when the mining machine 1 decelerates. FIG. 5 shows the steering angle, the position of the center of gravity and the azimuth when the mining machine 1 is viewed from above. Here, it is assumed that the position of the center of gravity 601 is set at one point on the vehicle body 2 in advance, and that the steering angle δ does not change during deceleration.
 計算方法は鉱山機械の種類や求められる精度によって異なるが、ダンプトラックの場合、例えばアッカーマンステアリングジオメトリを基にした計算方法で、下記式(1)~式(4)で求めることができる。 The calculation method differs depending on the type of mining equipment and the required accuracy, but in the case of dump trucks, for example, it can be calculated using the following formulas (1) to (4) using a calculation method based on Ackermann steering geometry.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)~(4)において、Vはある時刻tにおける鉱山機械1の速度、θはある時刻tにおける鉱山機械1の方位、X及びYはある時刻tにおける重心位置601の座標を示す。また、αは鉱山機械1の減速度、δは操舵角、lはホイールベース、すなわち前輪軸中心から後輪軸中心までの距離である。lは重心位置601からの後輪軸中心までの距離を示す。そして、式(1)~(4)による計算は、鉱山機械1の速度が0になるまで(すなわち、停止するまで)繰り返し実施される。 In equations (1) to (4), V is the velocity of the mining machine 1 at time t, θ is the orientation of the mining machine 1 at time t, and X and Y are the coordinates of the center of gravity position 601 at time t. Also, α is the deceleration of the mining machine 1, δ is the steering angle, and l is the wheelbase, that is, the distance from the center of the front wheel shaft to the center of the rear wheel shaft. lr indicates the distance from the center of gravity position 601 to the center of the rear wheel axle. Calculations based on formulas (1) to (4) are repeated until the speed of the mining machine 1 becomes 0 (that is, until it stops).
 ステップS104に続くステップS105おいて、制御装置20は、ステップS104で計算した停止時の重心位置601及び鉱山機械1の方位に基づいて、鉱山機械1が停止するまでの到達点(以下では、「停止までの到達点」という)を計算し、記憶する。図6は鉱山機械が停止するまでの到達点を説明するための平面図である。図6では、鉱山機械1が前進又は後進しながら左に旋回した場合における停止までの到達点を示しており、602は前進した場合における鉱山機械1の前方端の位置を示し、603は後進した場合における鉱山機械1の後方端の位置を示す。なお、旋回方向が右である場合は同様であるので、重複説明を省略する。そして、鉱山機械1が前進した場合における重心位置601から前方端602へのベクトルd(図5参照)と、後進した場合における重心位置601から後方端603へのベクトルd(図5参照)は、下記式(5)及び式(6)により計算することができる。なお、式(5)及び式(6)中の「*」は前進の場合はf、後進の場合はrとなる。 In step S105 following step S104, the control device 20 determines the reaching point until the mining machine 1 stops (hereinafter referred to as " ) is calculated and stored. FIG. 6 is a plan view for explaining reaching points until the mining machine stops. FIG. 6 shows the reaching points to stop when the mining machine 1 turns to the left while moving forward or backward, 602 indicates the position of the front end of the mining machine 1 when moving forward, and 603 when moving backward. 2 shows the position of the rear end of the mining machine 1 in the case of FIG. It should be noted that the same applies when the turning direction is to the right, so redundant description will be omitted. A vector d f from the center of gravity position 601 to the front end 602 when the mining machine 1 moves forward (see FIG. 5), and a vector dr from the center of gravity position 601 to the rear end 603 when the mining machine 1 moves backward (see FIG. 5). can be calculated by the following formulas (5) and (6). Note that "*" in equations (5) and (6) is f for forward travel and r for backward travel.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(5)及び(6)を用いて鉱山機械1の停止までの到達点の位置の座標(x,y)が計算されると、鉱山機械1の停止までの到達点の位置を得られる。そして、制御装置20は、得られた鉱山機械1の停止までの到達点の位置を記憶部26に記憶させる。 When the coordinates (x, y) of the position of the reaching point until the mining machine 1 stops are calculated using equations (5) and (6), the position of the reaching point until the mining machine 1 stops is obtained. Then, the control device 20 causes the storage unit 26 to store the obtained position of the reaching point until the mining machine 1 stops.
 ステップS105に続くステップS106では、制御装置20は、m分割された全ての操舵角を選択したか否かを判定する。全ての操舵角を選択していない(言い換えれば、操舵角の選択が残っている)と判定された場合、決定処理はステップS103に戻り、上記ステップS103~S105の処理が繰り返し実行される。一方、全ての操舵角を選択したと判定された場合、決定処理はステップS107に進む。 In step S106 following step S105, the control device 20 determines whether or not all m-divided steering angles have been selected. If it is determined that all steering angles have not been selected (in other words, steering angles remain to be selected), the determination process returns to step S103, and the processes of steps S103 to S105 are repeated. On the other hand, if it is determined that all steering angles have been selected, the determination process proceeds to step S107.
 ステップS107では、制御装置20は、全ての速度域を選択したか否かを判定する。全ての速度域を選択していない(言い換えれば、速度域の選択が残っている)と判定された場合、決定処理はステップS101に戻り、上記ステップS101~S106の処理が繰り返し実行される。一方、全ての速度域を選択したと判定された場合、決定処理はステップS108に進む。 In step S107, the control device 20 determines whether or not all speed ranges have been selected. If it is determined that all speed ranges have not been selected (in other words, some speed ranges remain to be selected), the determination process returns to step S101, and steps S101 to S106 are repeated. On the other hand, if it is determined that all speed ranges have been selected, the determination process proceeds to step S108.
 ステップS108では、制御装置20は、ステップS105で記憶された鉱山機械1の停止までの到達点に基づいて、鉱山機械1の最大到達域を求める。図7は、鉱山機械の最大到達域を説明するための図である。図7において、604は鉱山機械1の前方最大到達域、605は鉱山機械1の後方最大到達域をそれぞれ示す。前方最大到達域604は記憶部26に記憶された各到達点のxが正となる全ての前方端を結んで得られた線分であり、後方最大到達域605は記憶部26に記憶された各到達点のxが負となる全ての後方端を結んで得られた線分である。本実施形態では、操舵角が正の値で限定されているため、車軸に対し左右対称の方法で鉱山機械1の最大到達域を求めることができる。 In step S108, the control device 20 obtains the maximum reachable area of the mining machine 1 based on the reaching point until the mining machine 1 stops stored in step S105. FIG. 7 is a diagram for explaining the maximum reachable area of the mining machine. In FIG. 7, 604 denotes the maximum front reachable area of the mining machine 1, and 605 denotes the maximum rearward reachable area of the mining machine 1, respectively. The front maximum reach 604 is a line segment obtained by connecting all the front ends of the reach points stored in the storage unit 26 where x is positive, and the rear maximum reach 605 is stored in the storage unit 26. It is a line segment obtained by connecting all the rear ends of each reaching point where x is negative. In this embodiment, since the steering angle is limited to a positive value, the maximum reachable area of the mining machine 1 can be obtained by a bilaterally symmetrical method with respect to the axle.
 ステップS108に続くステップS109では、制御装置20は、定常旋回不可侵域を求める。図8は鉱山機械の定常旋回不可侵域を説明するための図である。図8において、604は上述したように左右対称の方法で求められた前方最大到達域であり、605は左右対称の方法で求められた後方最大到達域である。本実施形態において、定常旋回不可侵域とは、鉱山機械1が最大操舵角で旋回した際に鉱山機械1が侵入できない領域を意味し、次のように求められる。  In step S109 following step S108, the control device 20 obtains a steady turning inviolable area. FIG. 8 is a diagram for explaining the steady turning impenetrable area of the mining machine. In FIG. 8, 604 is the front maximum reachable area obtained by the left-right symmetrical method as described above, and 605 is the rearward maximum reachable area obtained by the left-right symmetrical method. In the present embodiment, the steady turning impenetrable area means an area into which the mining machine 1 cannot enter when the mining machine 1 turns at the maximum steering angle, and is obtained as follows.
 まず、鉱山機械1の定常旋回時において、鉱山機械1の種類に応じたスペック上の最小旋回半径に基づき、最大操舵角で旋回した場合の鉱山機械1が通過する軌跡を計算することが可能である。図8において破線で示す606は、鉱山機械1の定常旋回不可侵域を示しており、鉱山機械1が通過する軌跡である円の内側の領域である。この領域は鉱山機械1が切り返しなどの特殊な動作を行わない限り、決して侵入できない領域である。すなわち、この領域内は鉱山機械1が静止物との衝突防止を目的としている場合には、外界センサ等を用いて検出する必要がない範囲である。従って、例えば左側方外界センサ10により検出された障害物が定常旋回不可侵域内に存在する場合、制御装置20は、検出された該障害物を鉱山機械1の停止処理に関する対象障害物から除外して鉱山機械1の走行を制御できる。このように侵入できない領域内の障害物を除外することで、制御処理速度を高めることができる。 First, when the mining machine 1 makes a steady turn, it is possible to calculate the trajectory that the mining machine 1 passes when turning at the maximum steering angle, based on the minimum turning radius in the specification according to the type of the mining machine 1. be. A dashed line 606 in FIG. 8 indicates a steady turning inviolable area of the mining machine 1, which is an area inside a circle that is a trajectory along which the mining machine 1 passes. This area is an area that can never be entered unless the mining machine 1 performs a special operation such as turning back. That is, when the mining machine 1 is intended to prevent a collision with a stationary object, this area does not need to be detected using an external sensor or the like. Therefore, for example, when an obstacle detected by the left-side external sensor 10 exists within the steady turning impenetrable area, the control device 20 excludes the detected obstacle from the target obstacles related to the process of stopping the mining machine 1. can control the running of the mining machine 1. By excluding obstacles in the intrusive area in this manner, the control processing speed can be increased.
 そして、左側の定常旋回不可侵域606が求められると、左右対称の方法で右側の定常旋回不可侵域606も求めることができる。 Then, when the left steady turning impenetrable area 606 is obtained, the right steady turning impenetrable area 606 can also be obtained by a symmetrical method.
 ステップS109に続くステップS110では、制御装置20は、ステップS108で求めた前方最大到達域604と、ステップS109で求めた定常旋回不可侵域606を線分で結び、車軸に対し左右対称の方法を用いて鉱山機械1の停止可能範囲を設定する。 In step S110 subsequent to step S109, the control device 20 connects the forward maximum reachable area 604 obtained in step S108 and the steady turning impenetrable area 606 obtained in step S109 with a line segment, and adopts a symmetrical method with respect to the axle. is used to set the stoppable range of the mining machine 1 .
 具体的には、図9に示すように、前方最大到達域604の端点607を起点とし、車体2の方向と平行するとともに端点607と定常旋回不可侵域606とを結ぶ線分608を引き、線分608が定常旋回不可侵域606と交わる点を609とする。そして、前方最大到達域604、線分608、定常旋回不可侵域606、及び後方最大到達域605により、鉱山機械1の停止可能範囲は設定される。 Specifically, as shown in FIG. 9 , starting from an end point 607 of the front maximum reach area 604, a line segment 608 parallel to the direction of the vehicle body 2 and connecting the end point 607 and the steady turning impenetrable area 606 is drawn, A point 609 is a point where the line segment 608 intersects the steady turning non-aggression area 606 . The stoppable range of the mining machine 1 is set by the front maximum reachable area 604 , the line segment 608 , the steady turning impenetrable area 606 and the rearward maximum reachable area 605 .
 なお、図9において、610は後方最大到達域605の端点であり、後方最大到達域605と定常旋回不可侵域606との交点でもある。そして、端点609と端点610を結ぶ線分は定常旋回不可侵域606の内部にあるため、鉱山機械1の停止可能範囲は、端点609と端点610との間に存在せず、定常旋回不可侵域606によって前側と後側で分かれている。従って、端点609と端点610との間は外界センサ等を介して路面状態及び障害物の検出は不要となる。 In addition, in FIG. 9, 610 is the end point of the rearward maximum reachable area 605, and also the intersection of the rearward maximum reachable area 605 and the steady turning impenetrable area 606. Since the line segment connecting the endpoints 609 and 610 is inside the stationary turning impenetrable region 606, the stoppable range of the mining machine 1 does not exist between the endpoints 609 and 610, and the stationary pivoting impenetrable region does not exist. A zone 606 separates the anterior and posterior sides. Therefore, between the endpoints 609 and 610, it is not necessary to detect road surface conditions and obstacles via an external sensor or the like.
 従って、例えば鉱山機械1の側方に配置された左側方外界センサ10と右側方外界センサ11に検出不可範囲があり、該検出不可範囲が定常旋回不可侵域606内である場合、制御装置20は、それをエラーとせずに鉱山機械1の走行を継続させることができる。このようにすれば、無駄な鉱山機械1の停止を防止できるので、鉱山機械1の作業効率の低下を抑制することができる。 Therefore, for example, when the left side external sensor 10 and the right side external sensor 11 arranged on the side of the mining machine 1 have an undetectable range, and the undetectable range is within the steady turning unaggressive area 606, the control device 20 allows the mining machine 1 to continue running without making it an error. In this way, the mining machine 1 can be prevented from being stopped unnecessarily, so a decrease in the work efficiency of the mining machine 1 can be suppressed.
 上述したように鉱山機械1の停止可能範囲が設定されると、鉱山機械1の停止可能範囲に基づいて外界センサを配置することが好ましい。例えば外界センサの検出範囲が該停止可能範囲を含むように外界センサの位置及び姿勢を調整することで、少なくとも静止する障害物を検知した場合に緊急停止により衝突を回避することができる。 When the stoppable range of the mining machine 1 is set as described above, it is preferable to arrange the external sensors based on the stoppable range of the mining machine 1 . For example, by adjusting the position and attitude of the external sensor so that the detection range of the external sensor includes the stoppable range, at least when a stationary obstacle is detected, a collision can be avoided by an emergency stop.
 具体的には、図9に示すように、前方最大到達域604は前方外界センサ9、左側方外界センサ10及び右側方外界センサ11でカバーし、後方最大到達域605は後方外界センサ12でカバーする。前方外界センサ9は、鉱山機械1の前面中央に取り付けられ、少なくとも前方最大到達域604までの最大距離L1と、前方最大到達域604の最大幅L2を含む鉱山機械が存在する平面(路面)をカバーするように、その配置高さと俯角が調整される。 Specifically, as shown in FIG. 9, the front maximum reachable area 604 is covered by the front external world sensor 9, the left side external field sensor 10, and the right side external field sensor 11, and the rear maximum reachable area 605 is covered by the rear external field sensor 12. do. The front external sensor 9 is attached to the center of the front surface of the mining machine 1, and detects a plane (road surface) on which the mining machine exists, including at least the maximum distance L1 to the front maximum reach area 604 and the maximum width L2 of the front maximum reach area 604. Its placement height and depression angle are adjusted to cover.
 また、左側方外界センサ10及び右側方外界センサ11は、前輪軸の直上もしくは前輪軸よりも前側の車体2の左右両側に取り付けられ、少なくとも線分608を含む検出範囲を持ち、前方外界センサ9の検出範囲と一部重なるようになっている。このように左側方外界センサ10及び右側方外界センサ11の検出範囲と前方外界センサ9の検出範囲とが一部重なるので、必要となる検出範囲の漏れを防止することができる。 Further, the left side external sensor 10 and the right side external sensor 11 are mounted on the left and right sides of the vehicle body 2 directly above the front wheel axle or on the front side of the front wheel axle, and have a detection range including at least a line segment 608. partly overlaps with the detection range of Since the detection range of the left side external sensor 10 and the right side external sensor 11 and the detection range of the front external sensor 9 partially overlap in this way, it is possible to prevent leakage of the required detection range.
 後方外界センサ12は、後輪軸よりも後側の車体2の中央に取り付けられ、後方最大到達域605をカバーするように、その配置高さと俯角が調整される。 The rear external sensor 12 is attached to the center of the vehicle body 2 on the rear side of the rear wheel axle, and its placement height and depression angle are adjusted so as to cover the maximum rear reaching area 605 .
 以下、図10を参照し、上述のように配置された外界センサを備えた鉱山機械1の走行処理を説明する。図10は鉱山機械の走行処理を示すフローチャートである。図10に示す走行処理は鉱山機械1の制御処理の周期に依存しており、例えば10ミリ秒に1回の周期で繰り返し実行される。 The traveling process of the mining machine 1 equipped with the external sensors arranged as described above will be described below with reference to FIG. FIG. 10 is a flow chart showing travel processing of the mining machine. The traveling process shown in FIG. 10 depends on the cycle of the control process of the mining machine 1, and is repeatedly executed, for example, once every 10 milliseconds.
 まずステップS201では、位置姿勢推定部21は、GNSS受信機8の計測結果とIMU13の計測結果に基づいて鉱山機械1の位置及び姿勢を推定する。ステップS201に続くステップS202では、経路設定部22は、鉱山機械1の走行経路を設定する。このとき、経路設定部22は、予め設定された目的地とステップS201で推定した鉱山機械の位置に基づき、地図DB27を用いて走行経路を設定する。 First, in step S<b>201 , the position/orientation estimation unit 21 estimates the position and orientation of the mining machine 1 based on the measurement results of the GNSS receiver 8 and the measurement results of the IMU 13 . In step S<b>202 following step S<b>201 , the route setting unit 22 sets the travel route of the mining machine 1 . At this time, the route setting unit 22 sets the travel route using the map DB 27 based on the preset destination and the position of the mining machine estimated in step S201.
 ステップS202に続くステップS203では、制御装置20は、鉱山機械1が設定された走行経路を走行開始しているかを判定する。走行経路を走行開始していると判定された場合、走行処理はステップS206に進む。一方、走行経路を走行開始していないと判定された場合、走行処理はステップS204に進む。 In step S203 following step S202, the control device 20 determines whether the mining machine 1 has started traveling along the set travel route. If it is determined that the vehicle has started traveling on the travel route, the travel process proceeds to step S206. On the other hand, when it is determined that the vehicle has not started traveling on the travel route, the travel processing proceeds to step S204.
 ステップS204では、鉱山機械1が走行未開始状態であるので、制御装置20は、鉱山機械1の現在位置がインスペクション完了エリア内であるか否かを判定する。インスペクション完了エリアは、路面状態が良好で且つ障害物がないエリアのことである。このインスペクション完了エリアは、地図DB27に設定されており、インスペクション完了エリア内に障害物及び路面凹凸の箇所がないこと、他の鉱山機械や人などの移動体もないことが確認されたエリアである。 In step S204, since the mining machine 1 has not yet started running, the control device 20 determines whether or not the current position of the mining machine 1 is within the inspection completed area. The inspection completed area is an area where the road surface condition is good and there are no obstacles. This inspection completed area is set in the map DB 27, and is an area where it has been confirmed that there are no obstacles or uneven road surfaces within the inspection completed area, and that there are no moving objects such as other mining machines or people. .
 そして、鉱山機械1の現在位置がインスペクション完了エリア内であると判定された場合、鉱山機械1は走行を開始し(ステップS205参照)。ステップS205が終わると、走行処理はステップS206に進む。一方、現在位置がインスペクション完了エリア外であると判定された場合、走行処理は終了する。 Then, when it is determined that the current position of the mining machine 1 is within the inspection completion area, the mining machine 1 starts traveling (see step S205). After step S205 ends, the traveling process proceeds to step S206. On the other hand, if it is determined that the current position is outside the inspection completed area, the travel process ends.
 ステップS206では、路面凹凸障害物検出部24は、前方外界センサ9、左側方外界センサ10、右側方外界センサ11及び後方外界センサ12の検出結果に基づいて、鉱山機械1の周囲の路面凹凸及び障害物を検出する。 In step S206, the road surface unevenness obstacle detection unit 24 detects road surface unevenness around the mining machine 1 and Detect obstacles.
 ステップS206に続くステップS207では、制御装置20は、ステップS206で検出した路面の凹凸及び障害物の情報を記憶部26に記憶させる。このとき、記憶部26は、ステップS206で検出した路面の凹凸及び障害物の位置と高さ、障害物の広がり等にIDをそれぞれ付与して記憶する。 In step S207 following step S206, the control device 20 causes the storage unit 26 to store information on road unevenness and obstacles detected in step S206. At this time, the storage unit 26 assigns an ID to each of the unevenness of the road surface detected in step S206, the position and height of the obstacle, the extent of the obstacle, and the like, and stores them.
 ステップS207に続くステップS208では、衝突判定部25は、外界センサにより検出され且つ記憶部26に記憶された路面の凹凸及び障害物の情報を用いて衝突の判定を行う。以下では、図11を基に障害物の例を挙げて衝突判定を詳細に説明する。 In step S208 following step S207, the collision determination unit 25 uses the road surface unevenness and obstacle information detected by the external sensor and stored in the storage unit 26 to determine a collision. Collision determination will be described in detail below with an example of an obstacle based on FIG. 11 .
 図11は鉱山機械の衝突判定処理を示すフローチャートである。初めに、ステップS208-1では、衝突判定部25は、ステップS202で設定した鉱山機械1の走行経路と走行許可区間とを取得する。図12に示すように、走行経路700は、所定の間隔で配置された複数のノード(例えば、ノード701)とノード同士をつなぐリンク(例えば、リンク702)とで構成されている。これらのノードは、走行経路700上の座標を示すデータである。 FIG. 11 is a flowchart showing collision determination processing for mining machines. First, in step S208-1, the collision determination unit 25 acquires the travel route and travel-permitted section of the mining machine 1 set in step S202. As shown in FIG. 12, a travel route 700 is composed of a plurality of nodes (eg, nodes 701) arranged at predetermined intervals and links (eg, links 702) connecting the nodes. These nodes are data indicating coordinates on the travel route 700 .
 走行許可区間705は、走行経路700を分割した領域であり、1個の走行許可区間705に1台の鉱山機械1のみを走行させ、鉱山機械1同士で干渉をしない自律走行を実現する。走行許可区間705は、始点ノード703と終点ノード704、及び、走行経路700の幅を決める左右両側の幅規制線分706によって形成されている。鉱山機械1はこの走行許可区間705から逸脱しないように自律走行する。 The travel-permitted section 705 is an area obtained by dividing the travel route 700. Only one mining machine 1 is allowed to travel in one travel-permitted section 705, and autonomous travel is realized in which the mining machines 1 do not interfere with each other. A travel-permitted section 705 is formed by a start node 703 , an end node 704 , and width regulation line segments 706 on both left and right sides that determine the width of the travel route 700 . The mining machine 1 autonomously travels so as not to deviate from the travel-permitted section 705 .
 ステップS208-1に続くステップS208-2では、衝突判定部25は自機周辺に、外界センサにより検出され且つ記憶部26に記憶された障害物があるか否かを判定する。このとき、衝突判定部25は、上記ステップS201で推定した鉱山機械1の位置と、記憶部26に記憶された障害物の位置とに基づいて鉱山機械1から障害物までの距離を算出し、算出した距離が予め設定された閾値と比較する。算出した距離が閾値以下の場合、衝突判定部25は、自機周辺に障害物があると判定する。これによって、衝突判定処理はステップS208-3に進む。 In step S208-2 following step S208-1, the collision determination unit 25 determines whether or not there is an obstacle detected by the external sensor and stored in the storage unit 26 around the aircraft. At this time, the collision determination unit 25 calculates the distance from the mining machine 1 to the obstacle based on the position of the mining machine 1 estimated in step S201 and the position of the obstacle stored in the storage unit 26, The calculated distance is compared with a preset threshold. If the calculated distance is equal to or less than the threshold, the collision determination unit 25 determines that there is an obstacle around the aircraft. Accordingly, the collision determination process proceeds to step S208-3.
 一方、算出した距離が閾値よりも大きい場合、衝突判定部25は自機周辺に障害物がないと判定する。これによって、衝突判定処理はステップS208-7に進む。ステップS208-7では、衝突判定部25は、衝突判定フラグを「0」(すなわち、衝突可能性のある物体無しの意味)に設定する。 On the other hand, if the calculated distance is greater than the threshold, the collision determination unit 25 determines that there are no obstacles around the aircraft. Accordingly, the collision determination process proceeds to step S208-7. In step S208-7, the collision determination unit 25 sets the collision determination flag to "0" (meaning that there is no object with the possibility of collision).
 ステップS208-3では、衝突判定部25は、障害物の高さが予め設定された閾値以上であるか否かを判定する。このとき、衝突判定部25は、自機周辺にあると判定された障害物のIDに基づいて、その障害物の高さを記憶部26から取得し、取得した障害物の高さを閾値と比較する。障害物の高さが閾値以上でないと判定された場合、衝突判定処理はステップS208-7に進む。一方、障害物の高さが閾値以上であると判定された場合、衝突判定処理はステップS208-4に進む。 In step S208-3, the collision determination unit 25 determines whether or not the height of the obstacle is equal to or greater than a preset threshold. At this time, the collision determination unit 25 acquires the height of the obstacle from the storage unit 26 based on the ID of the obstacle determined to be in the vicinity of the aircraft, and uses the acquired height of the obstacle as a threshold value. compare. If it is determined that the height of the obstacle is not equal to or greater than the threshold, the collision determination process proceeds to step S208-7. On the other hand, if it is determined that the height of the obstacle is equal to or greater than the threshold, the collision determination process proceeds to step S208-4.
 ステップS208-4では、衝突判定部25は、障害物の位置が定常旋回不可侵域内にあるか否かを判定する。このとき、衝突判定部25は、まず、高さが閾値以上である障害物のIDに基づいて、該障害物の位置及び広がりを記憶部26から取得する。次に、衝突判定部25は、取得した障害物の位置及び広がりが上述の定常旋回不可侵域606内にあるかを判定する。そして、定常旋回不可侵域606として表される円の内部に障害物の位置及び広がりの一部もしくは全部が収まる場合は、定常旋回不可侵域606内にあると判定される。これによって、衝突判定処理はステップS208-7に進む。 In step S208-4, the collision determination unit 25 determines whether or not the position of the obstacle is within the steady turning impenetrable area. At this time, the collision determination unit 25 first acquires the position and extent of the obstacle from the storage unit 26 based on the ID of the obstacle whose height is equal to or greater than the threshold. Next, the collision determination unit 25 determines whether the acquired position and extent of the obstacle are within the above-described steady turning impenetrable area 606 . If the position and extent of the obstacle is partially or wholly within the circle represented as the steady turning impenetrable area 606 , it is determined that the obstacle is within the steady turning impenetrable area 606 . Accordingly, the collision determination process proceeds to step S208-7.
 一方、定常旋回不可侵域606として表される円の内部に障害物の位置もしくはその広がりが収まらない場合は、障害物が定常旋回不可侵域606内にない(言い換えれば、定常旋回不可侵域606の外にある)と判定される。これによって、衝突判定処理はステップS208-5に進む。この処理により、外界センサに土などが付いた場合或いは土埃などで、一部が検出不可となった場合であっても、その検出不可範囲が定常旋回不可侵域606内であれば外界センサの故障と判定されずに鉱山機械1を走行し続けることが可能になる。従って、鉱山機械1の作業効率の低下を抑制することができる。 On the other hand, if the position or extent of the obstacle does not fall within the circle represented by the steady turning impenetrable area 606, the obstacle is not within the steady turning impenetrable area 606 (in other words, the steady turning impenetrable area 606). Accordingly, the collision determination process proceeds to step S208-5. With this processing, even if the external sensor is soiled or partly undetectable due to dust or the like, if the undetectable range is within the steady turning impenetrable area 606, the external sensor is detected. It is possible to continue running the mining machine 1 without being judged to be out of order. Therefore, it is possible to suppress the deterioration of the working efficiency of the mining machine 1 .
 ステップS208-5では、衝突判定部25は、障害物の位置が走行経路及び走行許可区間内にあるか否かを判定する。このとき、衝突判定部25は、定常旋回不可侵域606の外に存在すると判定された障害物に対し、その障害物の位置及び広がりがステップS208-1で取得した走行経路700及び走行許可区間705内にあるか否かを判定する。走行許可区間705は矩形もしくは多角形で表されるので、その内側に障害物の位置及び広がりの一部もしくは全部が含まれている場合は、障害物の位置が走行経路及び走行許可区間内にあると判定される。これによって、衝突判定処理はステップS208-6に進む。 At step S208-5, the collision determination unit 25 determines whether or not the position of the obstacle is within the travel route and the travel-permitted section. At this time, the collision determination unit 25 determines that the position and extent of the obstacle determined to exist outside the steady turning impenetrable area 606 is the travel route 700 and the travel-permitted section obtained in step S208-1. 705 is determined. Since the travel-permitted section 705 is represented by a rectangle or a polygon, when the position of the obstacle and part or all of the extent of the obstacle are included inside it, the position of the obstacle is within the travel route and the travel-permitted section. It is determined that there is Accordingly, the collision determination process proceeds to step S208-6.
 一方、走行許可区間705内に障害物の位置及び広がりの一部もしくは全部が含まれていない場合は、障害物の位置が走行経路及び走行許可区間内にないと判定される。これによって、衝突判定処理はステップS208-7に進む。 On the other hand, if the position of the obstacle and part or all of the extent of the obstacle are not included in the travel-permitted section 705, it is determined that the position of the obstacle is not within the travel route and the travel-permitted section. Accordingly, the collision determination process proceeds to step S208-7.
 ステップS208-6では、衝突判定部25は、衝突判定フラグを「1」(すなわち、衝突可能性のある物体有りの意味)に設定する。これによって、ステップS208の衝突判定処理が終了する。 At step S208-6, the collision determination unit 25 sets the collision determination flag to "1" (meaning that there is an object with the possibility of collision). This completes the collision determination process in step S208.
 そして、図10に示すステップS208に続くステップS209では、経路追従制御部23は、衝突の有無を判定する。このとき、経路追従制御部23は、衝突判定部25から衝突判定フラグを受け取り、衝突判定フラグが「1」の場合に衝突ありと判定する。これによって、走行処理はステップS210に進む。一方、衝突判定フラグが「0」の場合、経路追従制御部23は衝突なしと判定する。これによって、走行処理はステップS211に進む。 Then, in step S209 following step S208 shown in FIG. 10, the route following control unit 23 determines whether or not there is a collision. At this time, the route follow-up control unit 23 receives the collision determination flag from the collision determination unit 25, and determines that there is a collision when the collision determination flag is "1". Accordingly, the traveling process proceeds to step S210. On the other hand, when the collision determination flag is "0", the route following control unit 23 determines that there is no collision. Accordingly, the traveling process proceeds to step S211.
 ステップS210では、衝突判定フラグが「1」であることから、経路追従制御部23は鉱山機械1の停止処理を行う。このとき、経路追従制御部23は、路面凹凸又は障害物の位置と自機の位置とに基づいて距離を算出し、減速度を決定し、後輪4に停止するための減速指令を出力する。これによって鉱山機械1の減速が始まる。 In step S210, since the collision determination flag is "1", the route follow-up control unit 23 performs processing to stop the mining machine 1. At this time, the route following control unit 23 calculates the distance based on the position of the road unevenness or the obstacle and the position of the own aircraft, determines the deceleration, and outputs a deceleration command to the rear wheels 4 to stop the vehicle. . This initiates deceleration of the mining machine 1 .
 ステップS210に続くステップS211では、制御装置20は、自機の位置が走行経路の終端に位置しているか否かを判定する。自機が走行経路の終端に位置していないと判定された場合、走行処理はステップS201に戻る。一方、自機が走行経路の終端に位置していると判定された場合、一連の走行処理が終了する。 At step S211 following step S210, the control device 20 determines whether or not the position of the own machine is positioned at the end of the travel route. When it is determined that the own aircraft is not positioned at the end of the travel route, the travel processing returns to step S201. On the other hand, when it is determined that the vehicle is positioned at the end of the travel route, a series of travel processing ends.
 このような一連の走行処理により、鉱山機械1は鉱山を自律走行する際に、前方外界センサ9、左側方外界センサ10、右側方外界センサ11及び後方外界センサ12を用いて障害物等との衝突を回避でき、安全走行を実現することが可能である。 Through this series of traveling processes, the mining machine 1 uses the front external sensor 9, the left external sensor 10, the right external sensor 11, and the rear external sensor 12 to avoid obstacles and the like when autonomously traveling in the mine. It is possible to avoid collisions and realize safe driving.
 以上のように構成された鉱山機械1では、予め設定された速度域と最大操舵角との関係に基づいて求められる最大制動時の鉱山機械1の最大到達域604,605と、鉱山機械1が最大操舵角で旋回した際に鉱山機械1が侵入できない定常旋回不可侵域606と、車体2の方向と平行するとともに前方最大到達域604の端点607と定常旋回不可侵域606とを結ぶ線分608とで鉱山機械1の停止可能範囲が設定され、前方外界センサ9、左側方外界センサ10、右側方外界センサ11及び後方外界センサ12は検出範囲が停止可能範囲を含むように配置されている。このようにすれば、例えば安全走行に必要最小限の検出範囲をカバーするように、前方外界センサ9、左側方外界センサ10、右側方外界センサ11及び後方外界センサ12を鉱山機械1に取り付けることで、必要最小限の外界センサで安全走行を実現することができる。 In the mining machine 1 configured as described above, the maximum reach areas 604 and 605 of the mining machine 1 at the time of maximum braking, which are obtained based on the relationship between the preset speed range and the maximum steering angle, and the A steady turning impenetrable area 606 into which the mining machine 1 cannot enter when turning at the maximum steering angle, and a line segment parallel to the direction of the vehicle body 2 and connecting an end point 607 of the front maximum reaching area 604 and the steady turning impenetrable area 606. 608 sets the stoppable range of the mining machine 1, and the front external sensor 9, the left external sensor 10, the right external sensor 11, and the rear external sensor 12 are arranged so that the detection range includes the stoppable range. . In this way, the front external sensor 9, the left external sensor 10, the right external sensor 11, and the rear external sensor 12 can be attached to the mining machine 1 so as to cover the minimum detection range required for safe driving. Therefore, it is possible to realize safe driving with the minimum required number of external sensors.
[自律走行システムについて]
 以下、図13~図15を参照して自律走行システムを説明する。
[About Autonomous Driving System]
The autonomous driving system will be described below with reference to FIGS. 13 to 15. FIG.
 図13は実施形態に係る自律走行システムを示すブロック構成図である。本実施形態の自律走行システム100は、鉱山機械1Aを複数台と、各鉱山機械1Aと通信可能に構成されるとともにこれらの鉱山機械1Aを管理する管制局30とを備えている。 FIG. 13 is a block configuration diagram showing an autonomous driving system according to the embodiment. The autonomous traveling system 100 of this embodiment includes a plurality of mining machines 1A and a control station 30 configured to be able to communicate with each mining machine 1A and to manage these mining machines 1A.
 そして、鉱山機械1Aは、自ら走行経路を設定せず、管制局30から走行経路を取得する点において、上述の鉱山機械1と相違している。その他の構成について上述の鉱山機械1と同様であるので、重複説明を省略する。 The mining machine 1A is different from the mining machine 1 described above in that it does not set the travel route by itself, but acquires the travel route from the control station 30 . Since other configurations are the same as those of the mining machine 1 described above, redundant description will be omitted.
 このため、鉱山機械1Aは、経路設定部22及び地図DB27を備えておらず、速度センサ14及び通信装置15を更に備えている。速度センサ14は、鉱山機械1の走行速度を検出し、検出した結果を位置姿勢推定部21に出力する。通信装置15は、例えば無線機であり、制御装置20の記憶部26と接続されている。 Therefore, the mining machine 1A does not include the route setting section 22 and the map DB 27, but further includes the speed sensor 14 and the communication device 15. The speed sensor 14 detects the running speed of the mining machine 1 and outputs the detection result to the position/orientation estimation unit 21 . The communication device 15 is, for example, a wireless device, and is connected to the storage section 26 of the control device 20 .
 鉱山機械1Aは、通信装置15を介して管制局30との間で情報の送受信を行う。鉱山機械1Aは、例えば自機の位置、姿勢及び速度を管制局30に送信し、管制局30から自機周辺に存在する他の鉱山機械(以下、「他機」という)の位置、姿勢及び速度を取得する。また、鉱山機械1Aは、自機の走行経路を管制局30に要求し、管制局30から自機の走行経路を取得する。 The mining machine 1A transmits and receives information to and from the control station 30 via the communication device 15. The mining machine 1A transmits, for example, the position, attitude, and speed of its own machine to the control station 30, and the control station 30 receives the positions, attitudes, and speeds of other mining machines (hereinafter referred to as "other machines") existing around its own machine. Get speed. Further, the mining machine 1A requests the control station 30 for its travel route, and acquires its own travel route from the control station 30 .
 一方、管制局30は、例えば演算を実行するCPU(Central Processing Unit)と、演算のためのプログラムを記録した二次記憶部としてのROM(Read Only Memory)と、演算経過の保存や一時的な制御変数を保存する一時記憶部としてのRAM(Random Access Memory)とを組み合わせてなるマイクロコンピュータにより構成されており、記憶されたプログラムの実行によって全ての鉱山機械1Aの管理等に関する各制御を行う。例えば管制局30は、鉱山内の任意の鉱山機械1Aからの経路要求に応じて、経路要求のあった鉱山機械1Aの走行経路を送信するとともに、その周辺に存在する他械の位置、姿勢及び速度等も経路要求のあった鉱山機械1Aに送信する。 On the other hand, the control station 30 includes, for example, a CPU (Central Processing Unit) that executes calculations, a ROM (Read Only Memory) as a secondary storage unit that records programs for calculations, and storage of the progress of calculations and temporary It is composed of a microcomputer combined with a RAM (random access memory) as a temporary storage unit that stores control variables, and performs each control related to management of all the mining machines 1A by executing the stored program. For example, in response to a route request from an arbitrary mining machine 1A in the mine, the control station 30 transmits the traveling route of the mining machine 1A that has requested the route, and also the position, posture, and position of other machines existing in the vicinity. The speed and the like are also transmitted to the mining machine 1A that requested the route.
 管制局30は、鉱山機械1Aと通信する通信装置31と、各鉱山機械1Aの走行経路を計画して作成する経路計画部32と、地図DB33とを備えている。 The control station 30 includes a communication device 31 that communicates with the mining machines 1A, a route planning section 32 that plans and creates travel routes for each mining machine 1A, and a map DB 33.
 図14は自律走行システムにおける鉱山機械の走行処理を示すフローチャートである。図14に示す走行処理は鉱山機械1Aの制御処理の周期に依存しており、例えば10ミリ秒に1回の周期で繰り返し実行される。  Fig. 14 is a flow chart showing the traveling process of the mining machine in the autonomous traveling system. The traveling process shown in FIG. 14 depends on the cycle of the control process of the mining machine 1A, and is repeatedly executed, for example, once every 10 milliseconds.
 まずステップS301では、鉱山機械1Aの位置姿勢推定部21は、GNSS受信機8の計測結果とIMU13の計測結果に基づいて鉱山機械1の位置及び姿勢を推定し、推定した自機の位置及び姿勢を通信装置15を介して管制局30に送信する。このとき、位置姿勢推定部21は、自機の速度も一緒に送信してもよい。管制局30では、各鉱山機械1Aから送信された位置及び姿勢をIDを付してブロードキャストする。 First, in step S301, the position and orientation estimation unit 21 of the mining machine 1A estimates the position and orientation of the mining machine 1 based on the measurement results of the GNSS receiver 8 and the measurement results of the IMU 13, and estimates the position and orientation of the mining machine 1A. is transmitted to the control station 30 via the communication device 15 . At this time, the position/orientation estimation unit 21 may also transmit the speed of its own device. The control station 30 broadcasts the position and attitude transmitted from each mining machine 1A with an ID.
 ステップS301に続くステップS302では、鉱山機械1Aは、管制局30に対して自機の走行経路を要求し、管制局30から自機の走行経路を取得する。管制局30に対して自機の走行経路を要求する際に、鉱山機械1Aは自機のIDも一緒に送信する。経路の要求を受信すると、管制局30は、経路要求のあった鉱山機械1Aの走行経路を作成し送信する。 In step S302 following step S301, the mining machine 1A requests the control station 30 for its own traveling route, and acquires its own traveling route from the control station 30. When requesting the travel route of the mining machine 1A to the control station 30, the mining machine 1A also transmits the ID of the machine itself. Upon receiving the route request, the control station 30 creates and transmits the travel route of the requested mining machine 1A.
 具体的には、経路計画部32は、経路要求の鉱山機械1AのIDに基づいて、予め設定された目的地と、地図DB33に保存された地図情報と、周辺の他機の位置とを用いて最適となる走行経路を計画して作成する。経路計画部32は、作成した走行経路を通信装置31を介して、経路要求のあった鉱山機械1Aに送信する。走行経路が受信すると、鉱山機械1Aは、受信した走行経路を記憶部26に記憶させる。 Specifically, based on the ID of the mining machine 1A in the route request, the route planning unit 32 uses the preset destination, the map information stored in the map DB 33, and the positions of other machines in the vicinity. planning and creating the optimal driving route. The route planning unit 32 transmits the created travel route via the communication device 31 to the mining machine 1A that requested the route. When the travel route is received, the mining machine 1A causes the storage unit 26 to store the received travel route.
 ステップS303~ステップS307は、上述したステップS203~ステップS207(図10参照)と同様であるので、重複説明を省略する。 Steps S303 to S307 are the same as steps S203 to S207 (see FIG. 10) described above, so redundant description will be omitted.
 ステップS307に続くステップS308では、鉱山機械1Aは、他機情報を取得し停止可能距離を計算する。他機情報には、他機の位置、姿勢、速度、重量、制動力、停止可能距離計算係数等が含まれている。これらの他機情報は、管制局30がブロードキャストする情報から取得される。 In step S308 following step S307, the mining machine 1A acquires other machine information and calculates the stoppable distance. The other aircraft information includes the position, attitude, speed, weight, braking force, stoppable distance calculation coefficient, and the like of the other aircraft. These pieces of other aircraft information are acquired from information broadcast by the control station 30 .
 停止可能距離は、例えば特許第6325655号明細書に記載されるように、下記式(7)に基づいて計算することができる。 The possible stopping distance can be calculated based on the following formula (7), as described in Japanese Patent No. 6325655, for example.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(7)において、nは他機の番号、SLは他機の停止可能距離、vは他機の速度、Mは他機の重量、fは他機の制動力、cは他機の停止可能距離係数を示す。 In equation (7), n is the number of the other aircraft, SL n is the stopping distance of the other aircraft, v n is the speed of the other aircraft, M n is the weight of the other aircraft, f n is the braking force of the other aircraft, and c n indicates the stopping distance coefficient of other aircraft.
 ステップS308に続くステップS309では、衝突判定が行われる。このとき、衝突判定部25は、外界センサにより検出され且つ記憶部26に記憶された路面の凹凸及び障害物の情報に加えて、更に取得した他機情報を用いて、衝突の判定を行う。図15は自律走行システムにおける鉱山機械の衝突判定処理を示すフローチャートである。 In step S309 following step S308, collision determination is performed. At this time, the collision determination unit 25 determines a collision using the acquired information about the other device in addition to the information about the unevenness of the road surface and the obstacles detected by the external sensor and stored in the storage unit 26 . FIG. 15 is a flowchart showing collision determination processing for mining machines in the autonomous traveling system.
 図15に示すステップS309-1~S309-7は、上述したステップS208-1~S208-7(図11参照)と同様であるため、重複説明を省略する。 Steps S309-1 to S309-7 shown in FIG. 15 are the same as steps S208-1 to S208-7 (see FIG. 11) described above, so redundant description will be omitted.
 ステップS309-6及びS309-7に続くステップS309-8では、自機周辺に他機が存在するか否かが判定される。このとき、衝突判定部25は、自機の位置及び他機の位置に基づいて自機と他機との距離を計算し、計算した距離を予め設定された閾値と比較する。自機と他機との距離が閾値以下であれば、衝突判定部25は自機周辺に他機が存在すると判定する。これによって、衝突判定処理はステップS309-9に進む。 At step S309-8 following steps S309-6 and S309-7, it is determined whether or not there is another aircraft in the vicinity of the own aircraft. At this time, the collision determination unit 25 calculates the distance between the own aircraft and the other aircraft based on the position of the own aircraft and the positions of the other aircraft, and compares the calculated distance with a preset threshold value. If the distance between the own aircraft and the other aircraft is equal to or less than the threshold value, the collision determination unit 25 determines that the other aircraft exists around the own aircraft. As a result, the collision determination process proceeds to step S309-9.
 一方、自機と他機との距離が閾値よりも大きい場合、衝突判定部25は自機周辺に他機が存在しないと判定する。これによって、衝突判定処理はステップS309-11に進む。 On the other hand, if the distance between the own aircraft and the other aircraft is greater than the threshold, the collision determination unit 25 determines that there are no other aircraft around the own aircraft. Accordingly, the collision determination process proceeds to step S309-11.
 ステップS309-9では、衝突判定部25は、自機周辺に存在すると判定された全ての他機に対して、自機の走行許可区間が他機の走行領域と接触するか否かを判定する。他機の走行領域は、ステップS308で計算した他機の停止可能距離SLに予め定められた幅を与えた矩形で表される。そして、自機の走行許可区間である矩形と他機の走行領域の矩形とが重なる部分があった場合、衝突判定部25は、自機の走行許可区間が他機の走行領域と接触すると判定する。これによって、衝突判定処理はステップS309-10に進む。ステップS309-10では、衝突判定部25は、衝突判定フラグを「1」に設定する。 In step S309-9, the collision determination unit 25 determines whether or not the run-permitted section of the own aircraft contacts the travel area of the other aircraft for all the other aircraft determined to be present in the vicinity of the own aircraft. . The travel area of the other aircraft is represented by a rectangle having a predetermined width given to the possible stop distance SLn of the other aircraft calculated in step S308. Then, when there is a portion where the rectangle that is the travel-permitted section of the own aircraft and the rectangle of the travel area of the other aircraft overlap, the collision determination unit 25 determines that the travel-permitted section of the own aircraft comes in contact with the travel area of the other aircraft. do. Accordingly, the collision determination process proceeds to step S309-10. At step S309-10, the collision determination unit 25 sets the collision determination flag to "1".
 一方、自機の走行許可区間である矩形と他機の走行領域の矩形とが重なる部分がない場合、衝突判定部25は、自機の走行許可区間が他機の走行領域と接触しないと判定する。これによって、衝突判定処理はステップS309-11に進む。ステップS309-11では、衝突判定部25は、既に設定された衝突判定フラグを維持する。すなわち、例えばステップS309-6において衝突判定フラグが「1」に設定された場合、衝突判定部25は、衝突判定フラグを「1」のままとする。ステップS309-7において衝突判定フラグが「0」に設定された場合、衝突判定部25は、衝突判定フラグを「0」のままとする。 On the other hand, if there is no overlap between the rectangle of the travel-permitted section of the own aircraft and the rectangle of the travel area of the other aircraft, the collision determination unit 25 determines that the travel-permitted section of the own aircraft does not contact the travel area of the other aircraft. do. Accordingly, the collision determination process proceeds to step S309-11. At step S309-11, the collision determination unit 25 maintains the already set collision determination flag. That is, for example, when the collision determination flag is set to "1" in step S309-6, the collision determination unit 25 leaves the collision determination flag "1". If the collision determination flag is set to "0" in step S309-7, the collision determination unit 25 leaves the collision determination flag "0".
 以上より、ステップS309の衝突判定処理が終了する。 Thus, the collision determination process in step S309 ends.
 そして、図14に示すステップS309に続くステップS310~S312は、上述したステップS209~ステップS211(図10参照)と同様であるので、重複説明を省略する。 Steps S310 to S312 subsequent to step S309 shown in FIG. 14 are the same as steps S209 to S211 (see FIG. 10) described above, so redundant description will be omitted.
 本実施形態に係る自律走行システム100によれば、鉱山機械1Aは鉱山を自律走行する際に、前方外界センサ9、左側方外界センサ10、右側方外界センサ11及び後方外界センサ12といった必要最小限の外界センサを用いて、障害物及び鉱山内を移動する他機との衝突を回避でき、安全走行を実現することが可能である。 According to the autonomous traveling system 100 according to the present embodiment, when the mining machine 1A autonomously travels in the mine, the minimum necessary sensors such as the front external sensor 9, the left external sensor 10, the right external sensor 11, and the rear external sensor 12 are used. By using the external sensor, it is possible to avoid collisions with obstacles and other machines moving in the mine, and to realize safe driving.
 以上、本発明の実施形態について詳述したが、本発明は、上述の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the invention described in the claims. Changes can be made.
1,1A:鉱山機械、2:車体、3:前輪、4:後輪、5:荷台、6:昇降シリンダ、7:GNSSアンテナ、8:GNSS受信機、9:前方外界センサ、10:左側方外界センサ、11:右側方外界センサ、12:後方外界センサ、13:IMU、14:速度センサ、15:通信装置、20:制御装置、21:位置姿勢推定部、22:経路設定部、23:経路追従制御部、24:路面凹凸障害物検出部、25:衝突判定部、26:記憶部、27:地図DB、30:管制局、31:通信装置、32:経路計画部、33:地図DB、100:自律走行システム、604:前方最大到達域、605:後方最大到達域、606:定常旋回不可侵域、607,609,610:端点、608:線分 1, 1A: mining machine, 2: vehicle body, 3: front wheels, 4: rear wheels, 5: carrier, 6: lifting cylinder, 7: GNSS antenna, 8: GNSS receiver, 9: front external sensor, 10: left side External sensor 11: Right external sensor 12: Rear external sensor 13: IMU 14: Velocity sensor 15: Communication device 20: Control device 21: Position/orientation estimator 22: Route setting unit 23: Route follow-up control unit 24: road unevenness obstacle detection unit 25: collision determination unit 26: storage unit 27: map DB 30: control station 31: communication device 32: route planning unit 33: map DB , 100: autonomous driving system, 604: front maximum reach, 605: rear maximum reach, 606: steady turning impenetrable area, 607, 609, 610: end point, 608: line segment

Claims (7)

  1.  車体の左右両側に配置されて操舵される一対の前輪と前記車体の左右両側に配置される一対の後輪とを備え、鉱山内を自律走行する鉱山機械において、
     前記鉱山機械には、前記鉱山機械の前方、側方及び後方の路面状態及び障害物を検出する外界センサが複数取り付けられ、
     予め設定された速度域と最大操舵角との関係に基づいて求められる最大制動時の前記鉱山機械の最大到達域と、前記鉱山機械が最大操舵角で旋回した際に前記鉱山機械が侵入できない定常旋回不可侵域と、前記車体の方向と平行するとともに前記最大到達域の端点と前記定常旋回不可侵域とを結ぶ線分とで前記鉱山機械の停止可能範囲が設定され、
     複数の前記外界センサは、検出範囲が前記停止可能範囲を含むように配置されていることを特徴とする鉱山機械。
    A mining machine that autonomously travels in a mine, comprising a pair of steered front wheels arranged on both left and right sides of a vehicle body and a pair of rear wheels arranged on both left and right sides of the vehicle body,
    The mining machine is equipped with a plurality of external sensors for detecting road surface conditions and obstacles in front, sides and rear of the mining machine,
    A maximum reaching range of the mining machine at maximum braking, which is obtained based on the relationship between a preset speed range and a maximum steering angle, and a steady state in which the mining machine cannot enter when the mining machine turns at the maximum steering angle. A stoppable range of the mining machine is set by a turning impenetrable area and a line segment parallel to the direction of the vehicle body and connecting an end point of the maximum reachable area and the steady turning impenetrable area,
    The mining machine, wherein the plurality of external sensors are arranged such that a detection range includes the stoppable range.
  2.  前記最大到達域は、予め設定された速度域と最大操舵角との関係と、前記鉱山機械の重心位置及び方位とに基づいて求められる請求項1に記載の鉱山機械。 The mining machine according to claim 1, wherein the maximum reaching range is obtained based on a preset relationship between a speed range and a maximum steering angle, and the position and orientation of the center of gravity of the mining machine.
  3.  前記鉱山機械の前方に配置された外界センサの検出範囲と、前記鉱山機械の側方に配置された外界センサの検出範囲とは、一部が重なっている請求項1又は2に記載の鉱山機械。 3. The mining machine according to claim 1, wherein the detection range of the external sensor arranged in front of the mining machine and the detection range of the external sensor arranged to the side of the mining machine partially overlap. .
  4.  前記外界センサの検出結果に基づいて前記鉱山機械の走行制御を少なくとも行う制御装置を更に備え、
     前記外界センサにより検出された障害物が前記定常旋回不可侵域内に存在する場合、
     前記制御装置は、前記外界センサにより検出された障害物を前記鉱山機械の停止処理に関する対象障害物から除外して、前記鉱山機械の走行を制御する請求項1~3のいずれか一項に記載の鉱山機械。
    further comprising a control device that performs at least travel control of the mining machine based on the detection result of the external sensor;
    When the obstacle detected by the external sensor exists within the steady turning impenetrable area,
    4. The control device according to any one of claims 1 to 3, wherein the control device excludes obstacles detected by the external sensor from target obstacles for stop processing of the mining machine, and controls travel of the mining machine. mining equipment.
  5.  前記鉱山機械の側方に配置された外界センサに検出不可範囲があり、該検出不可範囲が前記定常旋回不可侵域内である場合、
     前記制御装置は、前記鉱山機械の走行を継続させる請求項4に記載の鉱山機械。
    When the external sensor disposed on the side of the mining machine has a non-detectable range, and the non-detectable range is within the steady turning non-aggression zone,
    5. The mining machine according to claim 4, wherein the control device allows the mining machine to continue running.
  6.  前記制御装置は、
     前記鉱山機械の位置及び姿勢を推定する位置姿勢推定部と、
     地図情報に基づいて経路を設定する経路設定部と、
     設定された経路に追従するように前記鉱山機械の操舵及び速度を制御する経路追従制御部と、
    を有する請求項4又は5に記載の鉱山機械。
    The control device is
    a position and orientation estimation unit that estimates the position and orientation of the mining machine;
    a route setting unit that sets a route based on map information;
    a route following control unit that controls the steering and speed of the mining machine so as to follow the set route;
    The mining machine according to claim 4 or 5, comprising:
  7.  請求項4~6のいずれか一項に記載される鉱山機械を複数台と、各鉱山機械と通信可能に構成されるとともに複数の前記鉱山機械を管理する管制局とを備える自律走行システムであって、
     前記管制局は、任意の前記鉱山機械からの経路要求に応じて、経路要求のあった前記鉱山機械の走行経路及びその周辺に存在する他の鉱山機械の位置を経路要求のあった前記鉱山機械に送信し、
     経路要求のあった前記鉱山機械の前記制御装置は、前記管制局から送信された走行経路及び他の鉱山機械の位置に基づいて、自機の走行制御を行うことを特徴とする自律走行システム。
    An autonomous traveling system comprising a plurality of mining machines according to any one of claims 4 to 6, and a control station configured to be able to communicate with each mining machine and managing the plurality of mining machines. hand,
    In response to a route request from any of the mining machines, the control station determines the traveling route of the mining machine that requested the route and the positions of other mining machines that exist around it. send to
    The autonomous traveling system, wherein the control device of the mining machine that has received the route request performs traveling control of the own machine based on the traveling route and the positions of the other mining machines transmitted from the control station.
PCT/JP2022/046315 2021-12-17 2022-12-16 Mining machine and autonomous travel system WO2023113005A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-205217 2021-12-17
JP2021205217A JP2023090308A (en) 2021-12-17 2021-12-17 Mining machine and autonomous traveling system

Publications (1)

Publication Number Publication Date
WO2023113005A1 true WO2023113005A1 (en) 2023-06-22

Family

ID=86774438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046315 WO2023113005A1 (en) 2021-12-17 2022-12-16 Mining machine and autonomous travel system

Country Status (2)

Country Link
JP (1) JP2023090308A (en)
WO (1) WO2023113005A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116803814A (en) * 2023-08-22 2023-09-26 湖南斯福迈智能科技有限责任公司 Unmanned control method and system for ore-carrying truck

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060293856A1 (en) * 2005-06-24 2006-12-28 Deere & Company System and method for providing a safety zone associated with a vehicle
JP2009301401A (en) * 2008-06-16 2009-12-24 Panasonic Electric Works Co Ltd Autonomous mobile device
JP2011152909A (en) * 2010-01-28 2011-08-11 Equos Research Co Ltd Device and method for controlling travel
JP2013195084A (en) * 2012-03-15 2013-09-30 Komatsu Ltd Dump truck with obstacle detection mechanism and obstacle detection method for the same
WO2015068249A1 (en) * 2013-11-08 2015-05-14 株式会社日立製作所 Autonomous driving vehicle and autonomous driving system
JP2020147175A (en) * 2019-03-13 2020-09-17 日立建機株式会社 Work vehicle
JP2020165834A (en) * 2019-03-29 2020-10-08 日立建機株式会社 Work vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060293856A1 (en) * 2005-06-24 2006-12-28 Deere & Company System and method for providing a safety zone associated with a vehicle
JP2009301401A (en) * 2008-06-16 2009-12-24 Panasonic Electric Works Co Ltd Autonomous mobile device
JP2011152909A (en) * 2010-01-28 2011-08-11 Equos Research Co Ltd Device and method for controlling travel
JP2013195084A (en) * 2012-03-15 2013-09-30 Komatsu Ltd Dump truck with obstacle detection mechanism and obstacle detection method for the same
WO2015068249A1 (en) * 2013-11-08 2015-05-14 株式会社日立製作所 Autonomous driving vehicle and autonomous driving system
JP2020147175A (en) * 2019-03-13 2020-09-17 日立建機株式会社 Work vehicle
JP2020165834A (en) * 2019-03-29 2020-10-08 日立建機株式会社 Work vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116803814A (en) * 2023-08-22 2023-09-26 湖南斯福迈智能科技有限责任公司 Unmanned control method and system for ore-carrying truck
CN116803814B (en) * 2023-08-22 2023-11-21 湖南斯福迈智能科技有限责任公司 Unmanned control method and system for ore-carrying truck

Also Published As

Publication number Publication date
JP2023090308A (en) 2023-06-29

Similar Documents

Publication Publication Date Title
US11203337B2 (en) Vehicle with autonomous driving capability
US10549780B2 (en) Driving assistance device for a vehicle
EP3870490B1 (en) Detecting general road weather conditions
JP4807728B2 (en) Vehicle travel control device
US10940851B2 (en) Determining wheel slippage on self driving vehicle
US9811092B2 (en) Vehicle traveling control device
US20170313304A1 (en) Travel control device for vehicle
US20200070818A1 (en) Collision avoidance apparatus
US20200238980A1 (en) Vehicle control device
US11708069B2 (en) Obstacle avoidance apparatus and obstacle avoidance route generating apparatus
CN111605537B (en) Vehicle and method for autonomously maneuvering a vehicle
CN110949390B (en) Vehicle control device, vehicle control method, and storage medium
JP3594498B2 (en) Automatic following system
CN112414421B (en) Multi-rebound target mitigation
CN109814550B (en) A unmanned transport vechicle for sealing garden
JP6949771B2 (en) Travel area shape identification device
WO2023113005A1 (en) Mining machine and autonomous travel system
US11059480B2 (en) Collision avoidance system with elevation compensation
JP5476887B2 (en) Group traveling control device and group traveling control method
JP2021095078A (en) Lane change determination device
AU2022244599B2 (en) Vehicle management system
JP2022061387A (en) Vehicle travel control device
KR20210135526A (en) How to estimate the motion state of a vehicle during vehicle maneuvering
US20240321095A1 (en) Operation management system
WO2023032092A1 (en) Vehicle control method and vehicle control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE