JP2023129886A - Resin composition for damping material, and damping material - Google Patents

Resin composition for damping material, and damping material Download PDF

Info

Publication number
JP2023129886A
JP2023129886A JP2022034217A JP2022034217A JP2023129886A JP 2023129886 A JP2023129886 A JP 2023129886A JP 2022034217 A JP2022034217 A JP 2022034217A JP 2022034217 A JP2022034217 A JP 2022034217A JP 2023129886 A JP2023129886 A JP 2023129886A
Authority
JP
Japan
Prior art keywords
damping material
weight
thermoplastic resin
chlorinated paraffin
vibration damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022034217A
Other languages
Japanese (ja)
Inventor
直弥 竹内
Naoya Takeuchi
ゆり子 伊藤
Yuriko Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2022034217A priority Critical patent/JP2023129886A/en
Publication of JP2023129886A publication Critical patent/JP2023129886A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide a resin composition for damping materials, designed to produce a damping material with excellent vibration absorption performance, and to provide such a damping material.SOLUTION: A resin composition for damping materials is provided, including a thermoplastic resin with 20-65 wt.% of chlorine groups present on its side chain, and liquid chlorinated paraffin with an HSP distance from the thermoplastic resin of 2.0-8.0, a viscosity (20°C) of 1.0-5000 poise, and an average carbon atom count of 10-50, and a chlorine content of 30-70 wt.%. Relative to 100 pts.wt. of the thermoplastic resin, the liquid chlorinated paraffin is 200-800 pts.wt. Also provided is a damping material that includes the resin composition.SELECTED DRAWING: None

Description

本発明は、制振材料用樹脂組成物、及び制振材料に関する。 The present invention relates to a resin composition for a vibration damping material and a vibration damping material.

従来から、住宅、マンション、オフィスビル等の住宅建造物、高速道路、高架橋、鉄道軌道等の各種構造物、自動車、鉄道車両、船舶等の各種車両、家電機器、OA機器等の機器などにおいて発生する振動及び騒音の低減のために、制振シートが使用されている。 Conventionally, it has occurred in residential structures such as houses, condominiums, and office buildings, various structures such as expressways, elevated bridges, and railway tracks, various vehicles such as automobiles, railway cars, and ships, and equipment such as home appliances and OA equipment. Vibration damping sheets are used to reduce vibration and noise.

制振性の指標として、一般に、材料の貯蔵弾性係数(E′)で損失弾性係数(E″)を除した損失正接(tanδ=E″/E′)が使用されており、損失正接が大きいほど材料は振動吸収性に優れている。この値が1を越えると優れた制振材料と言われているが、更なる制振性の向上が望まれている。優れた制振材料として、例えば特許文献1には、塩素含有熱可塑性樹脂100重量部と、平均炭素数20~50の液体状塩素化パラフィン30、50、100重量部からなる高減衰樹脂組成物が開示されている。 The loss tangent (tan δ = E''/E'), which is obtained by dividing the loss elastic modulus (E'') by the storage elastic modulus (E') of the material, is generally used as an index of damping performance, and the loss tangent is large. The material has excellent vibration absorption properties. When this value exceeds 1, it is said to be an excellent vibration damping material, but further improvement in vibration damping properties is desired. As an excellent vibration damping material, for example, Patent Document 1 describes a high damping resin composition consisting of 100 parts by weight of a chlorine-containing thermoplastic resin and 30, 50, or 100 parts by weight of liquid chlorinated paraffin having an average carbon number of 20 to 50. is disclosed.

特開平11-80562号公報Japanese Patent Application Publication No. 11-80562

近年、更なる制振性の向上が望まれており、損失正接が4を超える材料が望まれている。しかしながら、特許文献1に記載の高減衰樹脂組成物は、室温(20℃)での損失正接の値が1.6であり、4を越えるようなことのない組成物であった。 In recent years, there has been a desire for further improvement in damping properties, and materials with a loss tangent of more than 4 are desired. However, the high attenuation resin composition described in Patent Document 1 had a loss tangent value of 1.6 at room temperature (20° C.), which never exceeded 4.

本発明の課題は、上記の点に鑑み、室温(20℃)での損失正接の値が4を越えるような優れた制振吸収性を示す制振材料を得るための制振材料用樹脂組成物、及び制振材料を提供することにある。 In view of the above points, an object of the present invention is to create a resin composition for a vibration damping material to obtain a vibration damping material exhibiting excellent vibration damping and absorbing properties such that the loss tangent value exceeds 4 at room temperature (20°C). The objective is to provide products and vibration damping materials.

本発明者らは、上記課題を解決するため、鋭意検討を重ねた。その結果、特定の条件を有する熱可塑性樹脂及び液体状塩素化パラフィンを用い、且つ熱可塑性樹脂と液体状塩素化パラフィンを特定の割合で配合することにより、上記課題を解決し得ることを見出し、本発明に到達した。
すなわち、本発明は、以下の[1]~[6]を提供するものである。
[1]20~65重量%の塩素基を側鎖に有する熱可塑性樹脂と、前記熱可塑性樹脂とのHSP距離が2.0~8.0、粘度(20℃)が1.0~5000ポアズ、平均炭素数が10~50であり、塩素化量を30~70重量%含有する液体状塩素化パラフィンと、を含み、前記熱可塑性樹脂100重量部に対し、前記液体状塩素化パラフィンを200~800重量部含む制振材料用樹脂組成物。
[2]前記熱可塑性樹脂の塩素基の含量が35~50重量%である[1]に記載の制振材料用樹脂組成物。
[3]前記液体状塩素化パラフィンは、前記熱可塑性樹脂とのHSP距離が3.0~6.0、粘度(20℃)が500~3000ポアズ、平均炭素数が12~28であり、塩素化量を45~65重量%含有する[1]または[2]に記載の制振材料用樹脂組成物。
[4]前記熱可塑性樹脂100重量部に対し、前記液体状塩素化パラフィンを450~700重量部含む[1]から[3]のいずれかに記載の制振材料用樹脂組成物。
[5][1]から[4]のいずれかに記載の制振材料用樹脂組成物からなる制振材料。
[6]前記制振材料が制振シートである[5]に記載の制振材料。
The present inventors have made extensive studies to solve the above problems. As a result, we discovered that the above problems can be solved by using a thermoplastic resin and liquid chlorinated paraffin that meet specific conditions, and by blending the thermoplastic resin and liquid chlorinated paraffin in a specific ratio, We have arrived at the present invention.
That is, the present invention provides the following [1] to [6].
[1] A thermoplastic resin having 20 to 65% by weight of chlorine groups in the side chain, and an HSP distance of 2.0 to 8.0 and a viscosity (20°C) of 1.0 to 5000 poise. , a liquid chlorinated paraffin having an average carbon number of 10 to 50 and containing a chlorinated amount of 30 to 70% by weight; Resin composition for vibration damping material containing ~800 parts by weight.
[2] The resin composition for a vibration damping material according to [1], wherein the thermoplastic resin has a chlorine group content of 35 to 50% by weight.
[3] The liquid chlorinated paraffin has an HSP distance of 3.0 to 6.0 with respect to the thermoplastic resin, a viscosity (at 20°C) of 500 to 3000 poise, an average carbon number of 12 to 28, and The resin composition for vibration damping material according to [1] or [2], which contains 45 to 65% by weight of silica.
[4] The resin composition for a vibration damping material according to any one of [1] to [3], which contains 450 to 700 parts by weight of the liquid chlorinated paraffin based on 100 parts by weight of the thermoplastic resin.
[5] A vibration damping material comprising the resin composition for vibration damping materials according to any one of [1] to [4].
[6] The damping material according to [5], wherein the damping material is a damping sheet.

本発明によれば、損失正接(以下、「tanδ」ということがある。)の値が4を越えるような優れた制振吸収性を発現することが可能な制振材料を得るための制振材料用樹脂組成物、及び制振材料を提供することができる。 According to the present invention, a vibration damping material capable of exhibiting excellent vibration damping and absorbing properties with a loss tangent (hereinafter sometimes referred to as "tan δ") value exceeding 4 can be obtained. A resin composition for materials and a vibration damping material can be provided.

以下、本発明の制振材料用樹脂組成物、及び制振材料の実施の形態について詳細に説明するが、以下の説明は、本発明の実施形態の一例であり、本発明はこれらの内容に限定されない。また、本明細書において、数値範囲を表す「~」はその前後の数値を含む範囲を意味する。 Hereinafter, embodiments of the resin composition for a vibration damping material and the vibration damping material of the present invention will be described in detail. Not limited. In addition, in this specification, "~" representing a numerical range means a range that includes the numerical values before and after that range.

[制振材料用樹脂組成物]
本発明の制振材料樹脂組成物は、20~65重量%の塩素基を側鎖に有する熱可塑性樹脂と、熱可塑性樹脂とのHSP距離が2.0~8.0、粘度(20℃)が1.0~5000ポアズ、平均炭素数が10~50であり、塩素化量を30~70重量%含有する液体状塩素化パラフィンと、を含み、熱可塑性樹脂100重量部に対し、液体状塩素化パラフィンを200~800重量部含む。
[Resin composition for vibration damping material]
The damping material resin composition of the present invention has a thermoplastic resin having 20 to 65% by weight of chlorine groups in the side chain, an HSP distance of 2.0 to 8.0, and a viscosity (20°C). liquid chlorinated paraffin having an average carbon number of 1.0 to 5000 poise, an average carbon number of 10 to 50, and a chlorinated amount of 30 to 70% by weight. Contains 200 to 800 parts by weight of chlorinated paraffin.

(熱可塑性樹脂)
本発明で用いられる熱可塑性樹脂は、塩素基を側鎖に20~65重量%有する熱可塑性樹脂であれば特に限定されない。熱可塑性樹脂の塩素基の量が20重量%未満であると、熱可塑性樹脂の結晶が成長し易くなるため、貯蔵弾性係数が高くなって損失正接の値が小さくなり、制振性能が低下する。塩素基の量が65重量%を越えると、分子間力が強くなりすぎるため、貯蔵弾性係数が高くなって損失正接の値が小さくなり、制振性能が低下する。熱可塑性樹脂の塩素基の量は、好ましくは35~50重量%である。
(Thermoplastic resin)
The thermoplastic resin used in the present invention is not particularly limited as long as it is a thermoplastic resin having 20 to 65% by weight of chlorine groups in its side chains. When the amount of chlorine groups in the thermoplastic resin is less than 20% by weight, the crystals of the thermoplastic resin tend to grow, resulting in an increase in the storage modulus, a decrease in the loss tangent value, and a decrease in vibration damping performance. . If the amount of chlorine groups exceeds 65% by weight, the intermolecular force becomes too strong, the storage modulus increases, the loss tangent value decreases, and the damping performance deteriorates. The amount of chlorine groups in the thermoplastic resin is preferably 35 to 50% by weight.

また、熱可塑性樹脂には、塩素以外の置換基、例えば、シアノ基、水酸基、アセチル基、メチル基、エチル基、臭素、フッ素等が含まれていてもよい。このような塩素以外の置換基の割合は5重量%以下が好ましい。5重量%を越えると、制振性能が低下してしまう可能性がある。 Furthermore, the thermoplastic resin may contain substituents other than chlorine, such as a cyano group, a hydroxyl group, an acetyl group, a methyl group, an ethyl group, bromine, and fluorine. The proportion of such substituents other than chlorine is preferably 5% by weight or less. If it exceeds 5% by weight, vibration damping performance may deteriorate.

本発明で用いられる熱可塑性樹脂としては、例えば、塩素化ポリエチレン、ポリ塩化ビニル、塩化ビニル-酢酸ビニル共重合体等が挙げられる。好ましい熱可塑性樹脂は、貯蔵弾性係数が低いものであり、したがって損失正接の値が大きい非晶性のものであり、塩素化ポリエチレンが好ましい。 Examples of the thermoplastic resin used in the present invention include chlorinated polyethylene, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, and the like. Preferred thermoplastic resins are amorphous ones that have a low storage modulus and therefore a large value of loss tangent, and chlorinated polyethylene is preferred.

(液体状塩素化パラフィン)
本発明で用いられる液体状塩素化パラフィンは、熱可塑性樹脂とのHSP距離が2.0~8.0、粘度(20℃)が1.0~5000ポアズ、平均炭素数が10~50であり、塩素化量を30~70重量%含有する。以下、各条件について説明する。
(liquid chlorinated paraffin)
The liquid chlorinated paraffin used in the present invention has an HSP distance from the thermoplastic resin of 2.0 to 8.0, a viscosity (at 20°C) of 1.0 to 5000 poise, and an average carbon number of 10 to 50. , containing 30 to 70% by weight of chlorination. Each condition will be explained below.

本発明の液体状塩素化パラフィンの熱可塑性樹脂とのHSP距離は2.0~8.0である。液体状塩化パラフィンの熱可塑性樹脂とのHSP距離が低くなるほど、熱可塑性樹脂との相溶性が高くなり、その結果、熱可塑性樹脂の自由回転運動を緩和し、制振性能(損失正接のピーク値)は高くなる。一方、熱可塑性樹脂とのHSP距離が大きくなるほど、熱可塑性樹脂との相溶性が低くなり、その結果、熱可塑性樹脂の自由回転運動を阻害し、制振性能が低下する。従って、熱可塑性樹脂とのHSP距離は、2.0~8.0であり、3.0~6.0が好ましく、3.0~4.2がより好ましく、3.2~4.0が更に好ましい。 The liquid chlorinated paraffin of the present invention has an HSP distance of 2.0 to 8.0 with respect to the thermoplastic resin. The lower the HSP distance between the liquid chlorinated paraffin and the thermoplastic resin, the higher the compatibility with the thermoplastic resin. ) will be higher. On the other hand, as the HSP distance with the thermoplastic resin increases, the compatibility with the thermoplastic resin decreases, and as a result, the free rotational movement of the thermoplastic resin is inhibited, and the damping performance decreases. Therefore, the HSP distance with the thermoplastic resin is 2.0 to 8.0, preferably 3.0 to 6.0, more preferably 3.0 to 4.2, and 3.2 to 4.0. More preferred.

なお、HSP(ハンセン溶解度パラメータ:Hansen solubility parameters)距離とは、特定の2分子(溶媒と溶質:本発明においては、液体状塩素化パラフィンと熱可塑性樹脂)に着目し、下記数式(1)で定義され、2分子が相溶するかどうかの溶解指標となる。
HSP距離
={4(δD1-δD2)+(δP1-δP2)+(δH1-δH2)0.5・・(1)
ここで、数式(1)中、δD1、δP1、δH1、δD2、δP2、δH2は、特定の2分子のハンセン溶解度パラメータであり、溶解性を、分散項をδD、極性項をδP、水素結合項をδHの3次元空間に表したものである。分散項δDは分散力による効果、極性項δPは双極子間力による効果、水素結合項δHは水素結合力による効果を示すものである。
特定の物質のHSPは、その物質のサンプルをハンセン溶解度パラメータが確定している数多くの異なる溶媒に溶解させて溶解度を測る試験を行うことによって求めることができる。
Note that the HSP (Hansen solubility parameters) distance is calculated by the following formula (1), focusing on two specific molecules (solvent and solute: in the present invention, liquid chlorinated paraffin and thermoplastic resin). It is defined as a solubility index to determine whether two molecules are compatible.
HSP distance = {4 (δD1-δD2) 2 + (δP1-δP2) 2 + (δH1-δH2) 2 } 0.5 ...(1)
Here, in formula (1), δD1, δP1, δH1, δD2, δP2, and δH2 are Hansen solubility parameters of two specific molecules, and the solubility is expressed as δD, the polar term as δP, and the hydrogen bond term as δD. is expressed in the three-dimensional space of δH. The dispersion term δD represents the effect due to dispersion force, the polar term δP represents the effect due to dipole-dipole force, and the hydrogen bond term δH represents the effect due to hydrogen bond force.
The HSP of a particular substance can be determined by performing a solubility test in which a sample of the substance is dissolved in a number of different solvents for which Hansen solubility parameters have been established.

本発明の液体状塩素化パラフィンは、粘度(20℃)が1.0~5000ポアズである。液体状塩素化パラフィンの粘度が低すぎると、低温側に損失正接のピークシフトし、高すぎると高温側に損失正接のピークがシフトし、室温(20℃)での制振性能が低くなる。従って、粘度(20℃)は1.0~5000ポアズであり、500~3000ポアズが好ましく、1000~2500ポアズがさらに好ましい。 The liquid chlorinated paraffin of the present invention has a viscosity (20° C.) of 1.0 to 5000 poise. If the viscosity of the liquid chlorinated paraffin is too low, the peak of the loss tangent will shift to the low temperature side, and if it is too high, the peak of the loss tangent will shift to the high temperature side, resulting in poor damping performance at room temperature (20° C.). Therefore, the viscosity (at 20° C.) is 1.0 to 5000 poise, preferably 500 to 3000 poise, and more preferably 1000 to 2500 poise.

本発明の液体状塩素化パラフィンは、平均炭素数が10~50である。制振材料用樹脂組成物中の液体状塩素化パラフィンの割合が一定である場合、平均炭素数が少なくなるほど液体状塩素化パラフィンのモル量が多くなり、その結果、熱可塑性樹脂の結晶が成長しにくくなり、制振性能(損失正接のピーク値)は高くなる。しかし、平均炭素数が小さくなると液体状塩素化パラフィンがブリードアウトし易くなり、制振性能が低下する。また、平均炭素数が大きくなると十分な制振性が発現しない場合がある。従って、平均炭素数は、10~50であり、12~28であるのが好ましい。 The liquid chlorinated paraffin of the present invention has an average carbon number of 10 to 50. When the proportion of liquid chlorinated paraffin in the resin composition for vibration damping materials is constant, the lower the average carbon number, the larger the molar amount of liquid chlorinated paraffin, and as a result, the crystals of the thermoplastic resin grow. damping performance (peak value of loss tangent) becomes higher. However, as the average carbon number decreases, liquid chlorinated paraffin tends to bleed out, resulting in a decrease in vibration damping performance. Furthermore, if the average number of carbon atoms becomes large, sufficient damping properties may not be exhibited. Therefore, the average number of carbon atoms is 10 to 50, preferably 12 to 28.

本発明の液体状塩素化パラフィンは、塩素化量を30~70重量%含有するものである。液体状塩素化パラフィンの塩素化量が少なすぎると、熱可塑性樹脂の結晶が成長しやすくなる。また、塩素化量が多すぎると熱可塑性樹脂の分子間力が強くなりすぎて、制振材料の貯蔵弾性率(E′)が大きくなる。従って、少なすぎても、多すぎても、tanδの値が小さくなるので、塩素化量は、30~70重量%に限定され、45~65重量%が好ましく、48~62重量%がより好ましい。 The liquid chlorinated paraffin of the present invention has a chlorinated content of 30 to 70% by weight. If the amount of chlorination in the liquid chlorinated paraffin is too small, crystals of the thermoplastic resin will tend to grow. Furthermore, if the amount of chlorination is too large, the intermolecular force of the thermoplastic resin becomes too strong, and the storage modulus (E') of the damping material increases. Therefore, if it is too little or too much, the value of tan δ becomes small, so the amount of chlorination is limited to 30 to 70% by weight, preferably 45 to 65% by weight, and more preferably 48 to 62% by weight. .

本発明の液体状塩素化パラフィンは、熱可塑性樹脂とのHSP距離が3.0~6.0、粘度(20℃)が500~3000ポアズ、平均炭素数が12~28であり、塩素化量を45~65重量%含有することが好ましい。また、液体状塩素化パラフィンは、熱可塑性樹脂とのHSP距離が3.2~4.0、粘度(20℃)が1000~2500ポアズ、平均炭素数が12~28であり、塩素化量を48~62重量%含有することがより好ましい。 The liquid chlorinated paraffin of the present invention has an HSP distance from the thermoplastic resin of 3.0 to 6.0, a viscosity (at 20°C) of 500 to 3000 poise, an average carbon number of 12 to 28, and a chlorinated amount. It is preferable to contain 45 to 65% by weight of. In addition, liquid chlorinated paraffin has an HSP distance of 3.2 to 4.0 with the thermoplastic resin, a viscosity (20°C) of 1000 to 2500 poise, an average carbon number of 12 to 28, and a low chlorination amount. More preferably, the content is 48 to 62% by weight.

(熱可塑性樹脂と液体状塩素化パラフィンの配合比)
本発明の液体状塩素化パラフィンは、熱可塑性樹脂100重量部に対し、200~800重量部含有する。液体状塩素化パラフィンの量が、少なすぎると熱可塑性樹脂の結晶が成長しやすくなる。一方、液体状塩素化パラフィンの量が多すぎると、得られる制振材料の機械的強度が小さくなる傾向があり、形状保持が難しくなることがある。従って、液体状塩素化パラフィンの量は、熱可塑性樹脂100重量部に対して200~800重量部であり、400~800重量部であることが好ましい。
(Blending ratio of thermoplastic resin and liquid chlorinated paraffin)
The liquid chlorinated paraffin of the present invention is contained in an amount of 200 to 800 parts by weight based on 100 parts by weight of the thermoplastic resin. If the amount of liquid chlorinated paraffin is too small, crystals of the thermoplastic resin will tend to grow. On the other hand, if the amount of liquid chlorinated paraffin is too large, the mechanical strength of the resulting damping material tends to decrease, and shape retention may become difficult. Therefore, the amount of liquid chlorinated paraffin is 200 to 800 parts by weight, preferably 400 to 800 parts by weight, based on 100 parts by weight of the thermoplastic resin.

(その他添加成分)
本発明の制振材料用樹脂組成物は、本発明の目的が損なわれない範囲で、必要に応じてその他の添加成分を含有させることができる。その他の添加成分としては、制振材料に透明性が必要な場合、ロジン系化合物を含有させることができる。ロジン系化合物は、ロジン金属塩、ロジンエステル等が使用できる。
(Other additive ingredients)
The resin composition for vibration damping materials of the present invention may contain other additive components as necessary, within a range that does not impair the object of the present invention. As other additive components, when transparency is required for the vibration damping material, a rosin compound can be included. As the rosin compound, rosin metal salts, rosin esters, etc. can be used.

また、制振材料用樹脂組成物の成形の際の熱安定剤として、錫系安定剤を含有させることができる。錫系安定剤は、特に限定されず、ジアルキル錫マレート、ジアルキル錫ビス(モノアルキルマレート)、ジブチル錫マレートポリマー、ジアルキル錫ラウレート、ジアルキル錫メルカプト、ジアルキル錫ビス(メルカプト脂肪酸エステル)、ジアルキル錫サルファイド、ジオクチル錫マレートポリマー等が挙げられる。これらは単独で用いられてもよく、2種以上が併用されてもよい。 Moreover, a tin-based stabilizer can be included as a thermal stabilizer during molding of the resin composition for vibration damping material. The tin-based stabilizer is not particularly limited, and includes dialkyltin malate, dialkyltin bis(monoalkylmalate), dibutyltin maleate polymer, dialkyltin laurate, dialkyltin mercapto, dialkyltin bis(mercapto fatty acid ester), dialkyltin Examples include sulfide and dioctyltin malate polymers. These may be used alone or in combination of two or more.

また、その他必要に応じて、可塑剤、充填材、滑剤、収縮防止剤、結晶核剤、着色剤(顔料、染料等)、紫外線吸収剤、酸化防止剤、老化防止剤、補強剤、難燃助剤、帯電防止剤、界面活性剤、加硫剤、及び表面処理剤などを含有させることができる。 In addition, as necessary, plasticizers, fillers, lubricants, anti-shrinkage agents, crystal nucleating agents, colorants (pigments, dyes, etc.), ultraviolet absorbers, antioxidants, anti-aging agents, reinforcing agents, flame retardants, etc. Auxiliary agents, antistatic agents, surfactants, vulcanizing agents, surface treatment agents, and the like can be included.

[制振材料]
本発明の制振材料は、上記本発明の制振材料用樹脂組成物を賦形することにより得られる。制振材料の形状は特に限定されず、シート状、板状、棒状、ブロック状であってもよいが、シート状である制振シートが好ましい。なお、「シート」とは、厚みに基づく厳密な意味に拘泥されるものではなく、通常「フィルム」と呼ばれる薄手のものや、「プレート」と呼ばれる厚手のものも含むものとする。制振シートの厚みは特に限定されるものではないが、薄すぎると制振効果が小さくなる可能性があり、厚すぎると振動の発生源等に施工する際の取扱いが不便になる可能性があり、0.05~50mmが好ましい。
[Vibration damping material]
The vibration damping material of the present invention can be obtained by shaping the resin composition for vibration damping materials of the present invention. The shape of the damping material is not particularly limited, and may be sheet-like, plate-like, rod-like, or block-like, but a sheet-like damping sheet is preferred. Note that the term "sheet" is not limited to a strict meaning based on thickness, and includes thin sheets usually called "films" and thick sheets called "plates." The thickness of the vibration damping sheet is not particularly limited, but if it is too thin, the damping effect may be reduced, and if it is too thick, it may be inconvenient to handle when applied to the source of vibration. Yes, preferably 0.05 to 50 mm.

また、制振材料の損失正接(tanδ)は、20℃において、4以上である。この範囲とすることで、制振材料の通常の使用環境において、制振性能が優れたものとなる。 Further, the loss tangent (tan δ) of the damping material is 4 or more at 20°C. By setting it as this range, the vibration damping performance will be excellent in the normal usage environment of the vibration damping material.

(作用)
本発明の制振材料用樹脂組成物は、特定の条件を有する熱可塑性樹脂及び特定条件を有する液体状塩素化パラフィンからなり、この液体状塩素化パラフィンを塩素含有熱可塑性樹脂に特定の割合で配合してなるものであり、この制振材料用樹脂組成物から得られる制振材料は、損失正接の値が4を越えるような優れた制振吸収性を示す。
(effect)
The resin composition for vibration damping materials of the present invention consists of a thermoplastic resin having specific conditions and a liquid chlorinated paraffin having specific conditions, and the liquid chlorinated paraffin is added to the chlorine-containing thermoplastic resin in a specific ratio. The vibration damping material obtained from this resin composition for vibration damping materials exhibits excellent vibration damping and absorbing properties with a loss tangent value exceeding 4.

以下、本発明を実施例に基づいてさらに詳しく説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be explained in more detail based on Examples, but the present invention is not limited by these Examples.

[測定方法]
本明細書における各物性の測定方法は、次の通りである。
<損失正接>
シート状制振材料の損失正接を粘弾性測定器(東洋精機製作所社製「レオログラフ」)を用いて、温度-40~40℃、周波数50Hzの条件で測定した。尚、損失正接は常法により縦弾性係数(E′、E″)より算出し、20℃における損失正接、損失正接のピーク値、及びピーク値の温度を求めた。
[Measuring method]
The method for measuring each physical property in this specification is as follows.
<Loss tangent>
The loss tangent of the sheet-shaped damping material was measured using a viscoelasticity measuring instrument ("Rheolograph" manufactured by Toyo Seiki Seisakusho Co., Ltd.) at a temperature of -40 to 40°C and a frequency of 50 Hz. The loss tangent was calculated from the longitudinal elastic modulus (E', E'') by a conventional method, and the loss tangent at 20°C, the peak value of the loss tangent, and the temperature of the peak value were determined.

<相溶性評価>
実施例及び比較例で用いた塩素化ポリエチレンと液体状塩素化パラフィンを、HSP:ハンセン溶解度パラメータ(δDi、δPi、δHi)が確認されているMasterデータベースより選定した約30種類の溶媒に溶解させて溶解性を評価し、コンピュータソフトウエア Hansen Solubility Parameters in Practice(HSPiP)Ver.4.0.05を用いて、ポリエチレンと液体状塩素化パラフィンHSPを推算した。続いて、推算した各HSPを用いて、下記数式(1)により、指標となるHSP距離を算出した。
HSP距離
={4(δD1-δD2)+(δP1-δP2)+(δH1-δH2)0.5・・(1)
<Compatibility evaluation>
The chlorinated polyethylene and liquid chlorinated paraffin used in Examples and Comparative Examples were dissolved in approximately 30 types of solvents selected from the Master database whose HSP: Hansen solubility parameters (δDi, δPi, δHi) have been confirmed. Solubility was evaluated using the computer software Hansen Solubility Parameters in Practice (HSPiP) Ver. 4.0.05 was used to estimate polyethylene and liquid chlorinated paraffin HSP. Subsequently, using each of the estimated HSPs, an HSP distance serving as an index was calculated using the following formula (1).
HSP distance = {4 (δD1-δD2) 2 + (δP1-δP2) 2 + (δH1-δH2) 2 } 0.5 ...(1)

[実施例1]
(制振シートの作製)
塩素化ポリエチレン(昭和電工社製、品番「SDM―451B」、塩素含有量45重量%)100重量部と、液体状塩素化パラフィン1(東ソー社製、商品名「トヨパラックスA50」、粘度(20℃)1500ポアズ、塩素含有量50重量%、平均炭素数25)517重量部と、ロジンエステル(荒川化学工業社製、品番「KE-359」)100重量部と、錫系安定剤(日東化成社製、品番「TVS#8570」)13重量部と、をロール機で混錬し、150℃でプレスして厚さ1000μmの制振シートを得た。得られた制振シートの評価結果を表1に示す。
[Example 1]
(Preparation of vibration damping sheet)
100 parts by weight of chlorinated polyethylene (manufactured by Showa Denko Co., Ltd., product number "SDM-451B", chlorine content 45% by weight), liquid chlorinated paraffin 1 (manufactured by Tosoh Corporation, product name "Toyoparax A50", viscosity (20 ° C. ) 1500 poise, chlorine content 50% by weight, average carbon number 25) 517 parts by weight, 100 parts by weight of rosin ester (manufactured by Arakawa Chemical Co., Ltd., product number "KE-359"), and tin-based stabilizer (Nitto Kasei Co., Ltd.) (product number: TVS #8570)) were kneaded in a roll machine and pressed at 150°C to obtain a vibration damping sheet with a thickness of 1000 μm. Table 1 shows the evaluation results of the obtained damping sheet.

[実施例2]
液体状塩素化パラフィン1の量を塩素化ポリエチレン100重量部に対して670重量部とした以外は、実施例1と同様の方法で制振シートを作製した。得られた制振シートの評価結果を表1に示す。
[Example 2]
A damping sheet was produced in the same manner as in Example 1, except that the amount of liquid chlorinated paraffin 1 was 670 parts by weight based on 100 parts by weight of chlorinated polyethylene. Table 1 shows the evaluation results of the obtained damping sheet.

[実施例3]
実施例1の液体状塩素化パラフィン1の代わりに、液体状塩素化パラフィン2(東ソー社製、商品名「トヨパラックス160」、粘度(20℃)2000ポアズ、塩素含有量60重量%、平均炭素数15)を用いた以外は、実施例1と同様の方法で制振シートを作製した。得られた制振シートの評価結果を表1に示す。
[Example 3]
Instead of liquid chlorinated paraffin 1 in Example 1, liquid chlorinated paraffin 2 (manufactured by Tosoh Corporation, trade name "Toyoparax 160", viscosity (20°C) 2000 poise, chlorine content 60% by weight, average carbon number) A damping sheet was produced in the same manner as in Example 1, except that Example 15) was used. Table 1 shows the evaluation results of the obtained damping sheet.

[実施例4]
液体状塩素化パラフィン2の量を塩素化ポリエチレン100重量部に対して670重量部とした以外は、実施例3と同様の方法で制振シートを作製した。得られた制振シートの評価結果を表1に示す。
[Example 4]
A damping sheet was produced in the same manner as in Example 3, except that the amount of liquid chlorinated paraffin 2 was 670 parts by weight based on 100 parts by weight of chlorinated polyethylene. Table 1 shows the evaluation results of the obtained damping sheet.

[比較例1]
実施例1の液体状塩素化パラフィン1の代わりに、液体状塩素化パラフィン3(東ソー社製、商品名「トヨパラックス150」、粘度(20℃)20ポアズ、塩素含有量50重量%、平均炭素数15)を用いた以外は、実施例1と同様の方法により制振シートを作製した。得られた制振シートの評価結果を表1に示す。
[Comparative example 1]
Instead of liquid chlorinated paraffin 1 in Example 1, liquid chlorinated paraffin 3 (manufactured by Tosoh Corporation, trade name "Toyoparax 150", viscosity (20°C) 20 poise, chlorine content 50% by weight, average carbon number) A damping sheet was produced in the same manner as in Example 1, except that Example 15) was used. Table 1 shows the evaluation results of the obtained damping sheet.

[比較例2]
実施例1の液体状塩素化パラフィン1の代わりに、液体状塩素化パラフィン4(東ソー社製、商品名「トヨパラックス145」、粘度(20℃)4.0ポアズ、塩素含有量45重量%、平均炭素数15)を用いた以外は、実施例1と同様の方法により制振シートを作製した。得られた制振シートの評価結果を表1に示す。
[Comparative example 2]
Instead of liquid chlorinated paraffin 1 in Example 1, liquid chlorinated paraffin 4 (manufactured by Tosoh Corporation, trade name "Toyoparax 145", viscosity (20°C) 4.0 poise, chlorine content 45% by weight, average A damping sheet was produced in the same manner as in Example 1 except that a material having 15 carbon atoms was used. Table 1 shows the evaluation results of the obtained damping sheet.

表1から明らかなように、実施例1から4で作製した制振シートは、20℃での損失正接が、4を超える優れた制振吸収性を有する制振シートを得ることができた。また、実施例1から4の制振シートは、20℃又は室温付近において、損失正接のピーク値を示した。比較例1、2の制振シートは、20℃での損失正接がそれぞれ1.1、1.2であり、十分な制振吸収性を得ることができなかった。 As is clear from Table 1, the damping sheets produced in Examples 1 to 4 had excellent damping and absorbing properties with loss tangents exceeding 4 at 20°C. Furthermore, the damping sheets of Examples 1 to 4 exhibited peak values of loss tangent at around 20° C. or room temperature. The damping sheets of Comparative Examples 1 and 2 had loss tangents of 1.1 and 1.2 at 20° C., respectively, and were unable to obtain sufficient damping and absorbing properties.

Claims (6)

20~65重量%の塩素基を側鎖に有する熱可塑性樹脂と、
前記熱可塑性樹脂とのHSP距離が2.0~8.0、粘度(20℃)が1.0~5000ポアズ、平均炭素数が10~50であり、塩素化量を30~70重量%含有する液体状塩素化パラフィンと、
を含み、
前記熱可塑性樹脂100重量部に対し、前記液体状塩素化パラフィンを200~800重量部含む制振材料用樹脂組成物。
A thermoplastic resin having 20 to 65% by weight of chlorine groups in its side chains;
The HSP distance with the thermoplastic resin is 2.0 to 8.0, the viscosity (20 ° C.) is 1.0 to 5000 poise, the average carbon number is 10 to 50, and the amount of chlorination is 30 to 70% by weight. liquid chlorinated paraffin,
including;
A resin composition for a vibration damping material, comprising 200 to 800 parts by weight of the liquid chlorinated paraffin based on 100 parts by weight of the thermoplastic resin.
前記熱可塑性樹脂の塩素基の含量が35~50重量%である請求項1に記載の制振材料用樹脂組成物。 The resin composition for a vibration damping material according to claim 1, wherein the content of chlorine groups in the thermoplastic resin is 35 to 50% by weight. 前記液体状塩素化パラフィンは、前記熱可塑性樹脂とのHSP距離が3.0~6.0、粘度(20℃)が500~3000ポアズ、平均炭素数が12~28であり、塩素化量を45~65重量%含有する請求項1または2に記載の制振材料用樹脂組成物。 The liquid chlorinated paraffin has an HSP distance of 3.0 to 6.0 with respect to the thermoplastic resin, a viscosity (at 20°C) of 500 to 3000 poise, an average carbon number of 12 to 28, and a chlorinated amount of 3.0 to 6.0. The resin composition for vibration damping material according to claim 1 or 2, containing 45 to 65% by weight. 前記熱可塑性樹脂100重量部に対し、前記液体状塩素化パラフィンを450~700重量部含む請求項1から3のいずれか1項に記載の制振材料用樹脂組成物。 The resin composition for a vibration damping material according to any one of claims 1 to 3, comprising 450 to 700 parts by weight of the liquid chlorinated paraffin based on 100 parts by weight of the thermoplastic resin. 請求項1から4のいずれか1項に記載の制振材料用樹脂組成物からなる制振材料。 A vibration damping material comprising the resin composition for a vibration damping material according to any one of claims 1 to 4. 前記制振材料が制振シートである請求項5に記載の制振材料。 The damping material according to claim 5, wherein the damping material is a damping sheet.
JP2022034217A 2022-03-07 2022-03-07 Resin composition for damping material, and damping material Pending JP2023129886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022034217A JP2023129886A (en) 2022-03-07 2022-03-07 Resin composition for damping material, and damping material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022034217A JP2023129886A (en) 2022-03-07 2022-03-07 Resin composition for damping material, and damping material

Publications (1)

Publication Number Publication Date
JP2023129886A true JP2023129886A (en) 2023-09-20

Family

ID=88024674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022034217A Pending JP2023129886A (en) 2022-03-07 2022-03-07 Resin composition for damping material, and damping material

Country Status (1)

Country Link
JP (1) JP2023129886A (en)

Similar Documents

Publication Publication Date Title
US10590266B2 (en) Lightweight wall repair compounds
JP4123002B2 (en) Fluoro rubber composition
KR20020017909A (en) Organohybrid-based damping material, method for producing the same, and damping improver for damping material
JP2023129886A (en) Resin composition for damping material, and damping material
JP3952192B2 (en) Damping composition
JP3535081B2 (en) Damping sheet
JP2004250639A (en) Resin composition for vibration damping material and vibration damping material
JP3177654B2 (en) Vibration energy absorber
JP4359050B2 (en) Resin composition for damping material and damping material
JP3834291B2 (en) Resin composition for damping material and damping material
JP4490669B2 (en) Resin composition for transparent damping material and damping material
JP3206057B2 (en) Ethylene-vinyl acetate copolymer composition
JP3452545B2 (en) Damping material and resin composition for producing the same
JP3383995B2 (en) Vibration energy absorber
JP2804732B2 (en) Shock absorbing gel material
JPH1180562A (en) Highly attenuating material composition
JP2004323600A (en) Resin composition for transparent vibration-damping material and vibration-damping material
JPH01249848A (en) Vulcanizable chloorinated polyethylene composition
JP3218636B2 (en) Polyurethane composition and member comprising the same
JPH03190945A (en) Alkali-resistant rubber composition and rubber roll using the same
JP2913487B2 (en) Polyvinyl chloride resin composition
JP2023169437A (en) Polyphenylene sulfide resin composition and damping material comprising the same
JP2004285179A (en) Resin composition for vibration damping material and vibration damping material
JP2004238536A (en) Resin composition for vibration damping material and vibration damping material
JPH0322415B2 (en)