JP4359050B2 - Resin composition for damping material and damping material - Google Patents

Resin composition for damping material and damping material Download PDF

Info

Publication number
JP4359050B2
JP4359050B2 JP2003034184A JP2003034184A JP4359050B2 JP 4359050 B2 JP4359050 B2 JP 4359050B2 JP 2003034184 A JP2003034184 A JP 2003034184A JP 2003034184 A JP2003034184 A JP 2003034184A JP 4359050 B2 JP4359050 B2 JP 4359050B2
Authority
JP
Japan
Prior art keywords
damping material
weight
chlorine
vibration damping
chlorinated paraffin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003034184A
Other languages
Japanese (ja)
Other versions
JP2004244481A (en
Inventor
岳生 森川
貴士 小口
健夫 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2003034184A priority Critical patent/JP4359050B2/en
Publication of JP2004244481A publication Critical patent/JP2004244481A/en
Application granted granted Critical
Publication of JP4359050B2 publication Critical patent/JP4359050B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Vibration Prevention Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、住宅、マンション、オフィスビル等の住宅建造物、高速道路、高架橋、鉄道軌道等の各種構造物や、自動車、鉄道車両、船舶等の各種車両、更には家庭電気機器、OA機器等において発生する振動や騒音を低減するために好適に使用される制振材料用樹脂組成物及び制振材料に関する。
【0002】
【従来の技術】
従来、制振性の指標として、材料の貯蔵弾性係数(E’)で損失弾性係数(E”)を除した損失正接(tanδ=E”/E’)が使用されており、損失正接が大きいほど材料は振動吸収性に優れているといえる。一般にこの損失正接の値が1を越えると優れた制振材料とされるが、更なる制振性の向上が望まれており、より高い損失正接を発現する材料が望まれている。
【0003】
上記に関し、例えば特許文献1には、極性側鎖を有するポリマーに塩素化パラフィンや液状ゴムなどを配合してなる減衰材料が開示されている。しかし、上記の減衰材料の損失正接(tanδ)は、1.3〜2.8程度のものであり、必ずしも充分な制振性を発揮できるものではなかった。
【0004】
また、本発明者の検討によれば、上記のような減衰材料においては、高温域で流動しやすくなるという問題があり、例えば直射日光照射下での屋外用途や、熱源が近くにあるような家電製品や産業機器など、使用温度条件が高い用途に対しては使用することが困難となることがあった。
【0005】
【特許文献1】
特開平11−80562号公報
【0006】
【発明が解決しようとする課題】
本発明の目的は、上記従来の制振材料の問題点に鑑み、優れた制振性を示すだけでなく、使用温度が高い条件下においても流動を起こしにくく好適に利用できる制振材料用樹脂組成物及び制振材料を提供することにある。
【0007】
【課題を解決するための手段】
請求項1記載の発明は、20〜70重量%の塩素基を側鎖に有し、DSC法によって測定された結晶化度が5J/g以上である熱可塑性樹脂と、塩素を30〜75重量%含有し、炭素数が12〜50である塩素化パラフィンとからなる制振材料用樹脂組成物を用いてなる制振材料を鋼板に貼合わせた拘束型制振材料である
請求項2記載の発明は、前記塩素化パラフィン中に、塩素含有量70重量%以上の塩素化パラフィンが10〜70重量%含有されてなることを特徴とする請求項1記載の拘束型制振材料である
【0008】
以下、本発明を詳細に説明する。
本発明においては、20〜70重量%の塩素基を側鎖に有する熱可塑性樹脂が用いられる。上記熱可塑性樹脂の種類としては特に限定されず、例えば塩素化ポリエチレン、ポリ塩化ビニル、塩素化ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体などの塩素含有熱可塑性樹脂が挙げられる。
【0009】
上記熱可塑性樹脂の有する塩素基が20重量%未満であると、樹脂の結晶が成長し易くなるため、貯蔵弾性係数(E’)が大きくなり損失正接(tanδ)が小さくなりすぎて制振性が低下し易くなる。また、塩素基が70重量%を越えると、分子間力が強くなりすぎることで、貯蔵弾性係数(E’)が大きくなり制振性が低下することがある。
【0010】
上記熱可塑性樹脂は、塩素基の他に、塩素基以外の置換基が含まれたものであってもよい。塩素基以外の置換基としては、例えば、シアノ基、水酸基、アセチル基、メチル基、エチル基、臭素基、フッ素基等が挙げられる。なお、これら塩素基以外の置換基の含有量は、多すぎると制振性が不充分になることがあるので5重量%以下であることが好ましい。
【0011】
本発明における上記熱可塑性樹脂のDSC法によって測定された結晶化度は5J/g以上とされる。結晶化度が5J/g未満であると、高い使用温度において樹脂組成物が流動を起こしやすくなるためである。上記結晶化度の上限は特に認められないが、結晶化度が高くなりすぎると貯蔵弾性率が高くなり損失正接の値が小さくなって制振性能が低下する恐れがあるため50J/g以下であることが好ましい。
【0012】
尚、上記DSC法とはディファレンシャル・スキャニング・カロリメトリーの略称であり、一般に「示差走査熱量測定法」と呼ばれる方法をいう。
【0013】
本発明における塩素化パラフィンの塩素含有量は30〜75重量%とされる。塩素含有量が上記範囲外であると熱可塑性樹脂との相溶性が悪くなり過ぎて制振性が発現しにくくなることがある。
【0014】
また、上記塩素化パラフィンの炭素数は12〜50とされる。炭素数が12未満の場合はブリードアウトによって制振性が経時的に低下し易くなり、炭素数が50を越える場合は粘度が高くなりすぎて取り扱いが困難になることがある。
【0015】
上記塩素化パラフィンは、単独で用いられてもよく、また、上記の範囲内で塩素含有量又は炭素数が異なる2種以上の塩素化パラフィンが併用されてもよい。
【0016】
上記塩素化パラフィンの全量中に、塩素含有量70重量%以上の塩素化パラフィンが10〜70重量%含有される場合には、得られる制振材料の粘着性が向上する点で好適である。粘着性が向上すると、制振材料を対象物に貼り合わせて使用する際に好適である。
【0017】
塩素含有量70重量%以上の塩素化パラフィンの含有量が10重量%未満であると長期間使用するのに必要な粘着性が不充分になることがあり、含有量が70重量%を超えると粘着性が強くなりすぎて、取り扱いが困難になることがある。
【0018】
上記塩素化パラフィンの含有量としては、特に限定されないが、制振性と強度のバランスの点で、上記熱可塑性樹脂100重量部に対して100〜1000重量部であることが好ましい。含有量が100重量部未満だと制振性能が不十分になることがあり、1000重量部を超えると制振材としての形状や強度を保持できなくなることがある。より好ましくは200〜600重量部である。
【0019】
また本発明において、上記熱可塑性樹脂の有する塩素基の含有量と塩素化パラフィンの塩素含有量との差の絶対値[|(熱可塑性樹脂の塩素基の含有量)−(塩素化パラフィンの塩素含有量)|]は20重量%以下であることが好ましく、より好ましくは15重量%以下である。差の絶対値が大きすぎる場合は熱可塑性樹脂と塩素化パラフィンとの相溶性が不充分になることがある。
【0020】
本発明の制振材料用樹脂組成物は、本発明の効果を損なわない限り、成形性、安定性、制振性などを向上させる目的で、他の添加剤が配合されたものであってもよい。他の添加剤としては、例えば、有機錫化合物や金属石鹸などの熱安定剤、炭酸カルシウムやマイカなどの無機充填材、ベンゾフェノン系やトリアゾール系などの紫外線吸収剤などが挙げられる。
【0021】
本発明の制振材料は上記制振材料用樹脂組成物を用いてなるものであり、例えば押出成形法、プレス成型法、ロール成型法、射出成型法などを用いて、シート状、テープ状、フィルム状、若しくはその他の適宜の形状に成型されて用いられる。これらの制振材料は単層のみならず複層構成、若しくは本発明の効果を損なわない限り部分的に用いられた構成であってもよい。
【0022】
(作用)
本発明の制振材料用樹脂組成物は、特定量の塩素基を側鎖に有し、特定の結晶化度を有する熱可塑性樹脂と、塩素を特定量含有し、特定の炭素数を有する塩素化パラフィンからなることを特徴とするので、熱可塑性樹脂の塩素基と結晶化度、及び塩素化パラフィンの塩素含有量のバランスが良好になることから、高温域においても流動しにくい性能が発現するものと推定される。
【0023】
【実施例】
以下に実施例および比較例を示すことにより、本発明を具体的に説明する。
尚、本発明は下記実施例のみに限定されるものではない。
(実施例1)
塩素化ポリエチレン(昭和電工社製「エラスレン404B」、塩素基の含量量40重量%、結晶化度29J/g、以下「CPE1」とする)100重量部と、塩素化パラフィン[味の素ファインケミカル社製「エンパラK50」、塩素含有量50重量%、平均炭素数=14(炭素数12〜50のものを99%以上含む)、以下「塩パラ1」とする]200重量部とをロール練り機を用いて100℃で混練し、得られた樹脂組成物を120℃でプレスして厚さ1000μmのシート状制振材料を作製した。
【0024】
(実施例2)
CPE1を100重量部、塩パラ1を200重量部、及び塩素化パラフィン[味の素ファインケミカル社製「エンパラ70」、塩素化度70重量%、平均炭素数=26(炭素数12〜50のものを99%以上含む)、以下「塩パラ2」とする]100重量部を、ロール練り機を使用して100℃で混練し、得られた樹脂組成物を120℃でプレスして厚さ1000μmのシート状制振材料を作製した。
【0025】
(実施例3)
高密度ポリエチレンを水懸濁法にて後塩素化して試作した塩素化ポリエチレン(塩素基の含量量40重量%、結晶化度10J/g、以下「CPE2」とする)100重量部に、塩パラ1を200重量部配合して、ロール練り機を使用して100℃で混練し、得られた樹脂組成物を120℃でプレスして厚さ1000μmのシート状制振材料を作製した。
【0026】
(実施例4)
CPE2を100重量部、塩パラ1を200重量部、及び塩パラ2を100重量部配合して、ロール練り機を使用して100℃で混練し、得られた樹脂組成物を120℃でプレスして厚さ1000μmのシート状制振材料を作製した。
【0027】
(比較例1)
塩素化ポリエチレン(昭和電工社製「エラスレン401A」、塩素基の含量量40重量%、結晶化度2J/g未満、以下「CPE3」とする)100重量部と、塩素化パラフィン[東ソー社製「トヨパラックス」、塩素含有量40重量%、平均炭素数=26(炭素数12〜50のものを99%以上含む)、以下「塩パラ3」とする]100重量部とを、ロール練り機を使用して100℃で混練し、得られた樹脂組成物を120℃でプレスして厚さ1000μmのシート状制振材料を作製した。
【0028】
(比較例2)
塩素化ポリエチレン(昭和電工社製「エラスレン401」、塩素基の含量量40重量%、結晶化度2J/g未満、以下「CPE4」とする)100重量部と、塩パラ1を200重量部配合して、ロール練り機を使用して100℃で混練し、得られた樹脂組成物を120℃でプレスして厚さ1000μmのシート状制振材料を作製した。
【0029】
実施例及び比較例1で得られた制振材料について損失正接(tanδ)のピーク値とピーク温度、及びずり落ち時間を以下の方法で評価した。評価結果は表1に示した。
【0030】
(損失正接)
作製したシート状制振材料について、粘弾性スペクトロメータ(岩本製作所社製)を用いて、測定周波数50Hz、試料長15mm、歪み量20μmの条件で、測定温度−50〜50℃の範囲で昇温速度3℃/分にて測定を行った。得られた損失引張弾性率(E”)を貯蔵引張弾性率(E’)で除することによって損失正接(tanδ)を算出し、そのピーク値とピーク温度を求めた。
【0031】
(ずり落ち時間)
作成したシート状制振材料をステンレス鋼板(0.5mm厚)の片面に積層して貼合し、拘束型制振材料を得た。得られた拘束型制振材料を10cm角に切断し、石膏ボード(15mm厚)に上記シート状制振材料の側が接するように貼合した。拘束型制振材料が貼合された石膏ボードを鉛直に支持した状態で、60℃の恒温オーブン中に静置し、拘束型制振材料のステンレス鋼板の部分が初期の位置から5mmずり落ちるまでの時間を測定して「ずり落ち時間」とし、高温使用条件下での安定性を評価した。
【0032】
【表1】

Figure 0004359050
【0033】
表1から明らかなように本発明の実施例においては、損失正接(tanδ)が高い値を示すと共に、ずり落ち時間が長く、高温使用に適することが確認された。
【0034】
【発明の効果】
本発明の制振材料用樹脂組成物は、20〜70重量%の塩素基を側鎖に有し、DSC法によって測定された結晶化度が5J/g以上である熱可塑性樹脂と、塩素を30〜75重量%含有し、炭素数が12〜50である塩素化パラフィンからなることを特徴とするので、高い制振性能を有し、かつ使用温度が高い条件下でも流動やずり落ちを起こさず好適に利用可能な制振材料用樹脂組成物を提供することができる。このため、特に直射日光照射下での屋外用途や、熱源が近くにあるような家電製品や産業機器などの用途において好適に利用できる。
【0035】
上記塩素化パラフィン中に、塩素含有量70重量%以上の塩素化パラフィンが10〜70重量%含有されるものであると、上記効果は更になると共に粘着性が向上し、制振材料を対象物に貼り合わせて使用する際に好適である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to various structures such as houses, condominiums, office buildings and the like, various structures such as highways, viaducts, railway tracks, automobiles, railway vehicles, ships and other vehicles, home electrical equipment, OA equipment, etc. The present invention relates to a vibration-damping material resin composition and a vibration-damping material that are preferably used to reduce vibrations and noise generated in the above.
[0002]
[Prior art]
Conventionally, the loss tangent (tan δ = E ″ / E ′) obtained by dividing the loss elastic modulus (E ″) by the storage elastic modulus (E ′) of the material has been used as a vibration damping index, and the loss tangent is large. It can be said that the material is excellent in vibration absorption. Generally, when the value of the loss tangent exceeds 1, it is considered as an excellent vibration damping material. However, further improvement of the vibration damping property is desired, and a material that expresses a higher loss tangent is desired.
[0003]
In relation to the above, for example, Patent Document 1 discloses a damping material obtained by blending a polymer having a polar side chain with chlorinated paraffin, liquid rubber, or the like. However, the loss tangent (tan δ) of the above-described damping material is about 1.3 to 2.8, and does not necessarily exhibit sufficient vibration damping properties.
[0004]
Further, according to the study of the present inventor, the damping material as described above has a problem that it tends to flow in a high temperature range, for example, outdoor use under direct sunlight irradiation, or a heat source is nearby. It may be difficult to use for applications with high operating temperature conditions such as home appliances and industrial equipment.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-80562
[Problems to be solved by the invention]
An object of the present invention is to provide a resin for a damping material that not only exhibits excellent vibration damping properties but also does not easily flow even under a high operating temperature, in view of the problems of the conventional damping material. It is to provide a composition and a damping material.
[0007]
[Means for Solving the Problems]
The invention according to claim 1 is a thermoplastic resin having 20 to 70% by weight of chlorine groups in the side chain and a crystallinity measured by DSC method of 5 J / g or more, and 30 to 75% by weight of chlorine. % Is a constrained vibration damping material in which a vibration damping material using a resin composition for a vibration damping material composed of chlorinated paraffin having 12 to 50 carbon atoms is bonded to a steel plate .
According to a second aspect of the invention, in the chlorinated paraffin, constrained vibration damping according to claim 1 wherein the chlorinated paraffin of the chlorine content 70% by weight or more, characterized by comprising the content 10 to 70 wt% Material .
[0008]
Hereinafter, the present invention will be described in detail.
In the present invention, a thermoplastic resin having 20 to 70% by weight of chlorine groups in the side chain is used. The kind of the thermoplastic resin is not particularly limited, and examples thereof include chlorine-containing thermoplastic resins such as chlorinated polyethylene, polyvinyl chloride, chlorinated polyvinyl chloride, and vinyl chloride-vinyl acetate copolymer.
[0009]
When the chlorine group of the thermoplastic resin is less than 20% by weight, the crystal of the resin is likely to grow, so that the storage elastic modulus (E ′) increases and the loss tangent (tan δ) decreases too much, resulting in vibration damping properties. Tends to decrease. On the other hand, when the chlorine group exceeds 70% by weight, the intermolecular force becomes too strong, and thus the storage elastic modulus (E ′) increases and the vibration damping property may decrease.
[0010]
The thermoplastic resin may contain a substituent other than a chlorine group in addition to a chlorine group. Examples of the substituent other than the chlorine group include a cyano group, a hydroxyl group, an acetyl group, a methyl group, an ethyl group, a bromine group, and a fluorine group. The content of substituents other than chlorine groups is preferably 5% by weight or less because if the content is too large, vibration damping properties may be insufficient.
[0011]
The crystallinity measured by the DSC method of the thermoplastic resin in the present invention is 5 J / g or more. This is because if the crystallinity is less than 5 J / g, the resin composition tends to flow at a high use temperature. The upper limit of the crystallinity is not particularly recognized. However, if the crystallinity is excessively high, the storage elastic modulus increases, the loss tangent value decreases, and the vibration damping performance may decrease. Preferably there is.
[0012]
The DSC method is an abbreviation for differential scanning calorimetry, and generally refers to a method called “differential scanning calorimetry”.
[0013]
The chlorine content of the chlorinated paraffin in the present invention is 30 to 75% by weight. If the chlorine content is outside the above range, the compatibility with the thermoplastic resin may be too poor, and vibration damping may be difficult to be exhibited.
[0014]
Moreover, the carbon number of the said chlorinated paraffin shall be 12-50. When the number of carbon atoms is less than 12, vibration damping tends to decrease with time due to bleed-out, and when the number of carbon atoms exceeds 50, the viscosity becomes too high and handling may be difficult.
[0015]
The chlorinated paraffin may be used alone, or two or more chlorinated paraffins having different chlorine contents or different carbon numbers within the above range may be used in combination.
[0016]
When 10 to 70% by weight of chlorinated paraffin having a chlorine content of 70% by weight or more is contained in the total amount of the chlorinated paraffin, it is preferable in terms of improving the adhesiveness of the vibration damping material to be obtained. When the adhesiveness is improved, it is suitable when the vibration damping material is used while being bonded to an object.
[0017]
If the content of chlorinated paraffin having a chlorine content of 70% by weight or more is less than 10% by weight, the tackiness required for long-term use may be insufficient, and if the content exceeds 70% by weight. The tackiness may become too strong and difficult to handle.
[0018]
Although it does not specifically limit as content of the said chlorinated paraffin, It is preferable that it is 100-1000 weight part with respect to 100 weight part of said thermoplastic resins from the point of the balance of damping property and intensity | strength. If the content is less than 100 parts by weight, the vibration damping performance may be insufficient, and if it exceeds 1000 parts by weight, the shape and strength as a vibration damping material may not be maintained. More preferably, it is 200-600 weight part.
[0019]
In the present invention, the absolute value of the difference between the chlorine group content of the thermoplastic resin and the chlorine content of the chlorinated paraffin [| (chlorine group content of the thermoplastic resin) − (chlorine of the chlorinated paraffin] Content) |] is preferably 20% by weight or less, more preferably 15% by weight or less. If the absolute value of the difference is too large, the compatibility between the thermoplastic resin and the chlorinated paraffin may be insufficient.
[0020]
The resin composition for vibration damping material of the present invention may be blended with other additives for the purpose of improving moldability, stability, vibration damping, etc., as long as the effects of the present invention are not impaired. Good. Examples of other additives include heat stabilizers such as organic tin compounds and metal soaps, inorganic fillers such as calcium carbonate and mica, and ultraviolet absorbers such as benzophenone and triazole.
[0021]
The vibration damping material of the present invention is formed using the above resin composition for a vibration damping material. For example, using an extrusion molding method, a press molding method, a roll molding method, an injection molding method, etc., a sheet shape, a tape shape, It is used after being formed into a film or other appropriate shape. These damping materials may be not only a single layer but also a multilayer structure, or a structure partially used as long as the effects of the present invention are not impaired.
[0022]
(Function)
The resin composition for vibration damping material of the present invention comprises a thermoplastic resin having a specific amount of chlorine groups in the side chain, having a specific crystallinity, and containing a specific amount of chlorine and having a specific number of carbon atoms. Because it is made of chlorinated paraffin, the balance between the chlorine group and crystallinity of the thermoplastic resin and the chlorine content of the chlorinated paraffin is improved. Estimated.
[0023]
【Example】
The present invention will be specifically described below by showing examples and comparative examples.
In addition, this invention is not limited only to the following Example.
(Example 1)
100 parts by weight of chlorinated polyethylene (“Elaslene 404B” manufactured by Showa Denko KK, chlorine group content 40% by weight, crystallinity 29 J / g, hereinafter referred to as “CPE1”) and chlorinated paraffin [manufactured by Ajinomoto Fine Chemical Co., Ltd. Using a roll kneader, 200 parts by weight of “Empara K50”, chlorine content of 50% by weight, average carbon number = 14 (including 99% or more of those having 12 to 50 carbon atoms), hereinafter referred to as “salt para 1” The resulting resin composition was pressed at 120 ° C. to produce a sheet-shaped damping material having a thickness of 1000 μm.
[0024]
(Example 2)
100 parts by weight of CPE1 and 200 parts by weight of salt para 1 and chlorinated paraffin [“Empara 70” manufactured by Ajinomoto Fine Chemical Co., Ltd., chlorination degree 70% by weight, average carbon number = 26 (99 having a carbon number of 12-50) 100 weight parts is kneaded at 100 ° C. using a roll kneader, and the resulting resin composition is pressed at 120 ° C. to give a sheet having a thickness of 1000 μm. A state damping material was prepared.
[0025]
(Example 3)
To 100 parts by weight of chlorinated polyethylene (40% by weight of chlorine group, crystallinity of 10 J / g, hereinafter referred to as “CPE2”) produced by chlorination of high-density polyethylene after water chlorination, 200 parts by weight of No. 1 was blended and kneaded at 100 ° C. using a roll kneader, and the resulting resin composition was pressed at 120 ° C. to prepare a sheet-like vibration damping material having a thickness of 1000 μm.
[0026]
(Example 4)
100 parts by weight of CPE2, 200 parts by weight of Para Para 1 and 100 parts by weight of Para Para 2 are blended and kneaded at 100 ° C. using a roll kneader, and the resulting resin composition is pressed at 120 ° C. Thus, a sheet-like vibration damping material having a thickness of 1000 μm was produced.
[0027]
(Comparative Example 1)
100 parts by weight of chlorinated polyethylene (“Elaslene 401A” manufactured by Showa Denko KK, chlorine group content of 40% by weight, crystallinity of less than 2 J / g, hereinafter referred to as “CPE3”) and chlorinated paraffin [manufactured by Tosoh Corporation Using a roll kneader, 100 parts by weight of “Toyoparax”, chlorine content 40% by weight, average carbon number = 26 (including 99% or more of those having 12 to 50 carbon atoms), hereinafter referred to as “salt para 3” The resulting resin composition was pressed at 120 ° C. to produce a sheet-shaped damping material having a thickness of 1000 μm.
[0028]
(Comparative Example 2)
100 parts by weight of chlorinated polyethylene (“Elaslene 401” manufactured by Showa Denko KK, chlorine group content 40% by weight, crystallinity less than 2 J / g, hereinafter referred to as “CPE4”) and 200 parts by weight of Para Para 1 Then, using a roll kneader, kneading was performed at 100 ° C., and the obtained resin composition was pressed at 120 ° C. to prepare a sheet-shaped damping material having a thickness of 1000 μm.
[0029]
About the damping material obtained in the example and the comparative example 1, the peak value and peak temperature of the loss tangent (tan δ) and the sliding time were evaluated by the following methods. The evaluation results are shown in Table 1.
[0030]
(Loss tangent)
About the produced sheet-like damping material, using a viscoelastic spectrometer (manufactured by Iwamoto Seisakusho Co., Ltd.), the temperature was raised in the measurement temperature range of −50 to 50 ° C. under the conditions of a measurement frequency of 50 Hz, a sample length of 15 mm, and a strain amount of 20 μm. Measurements were made at a rate of 3 ° C./min. The loss tangent (tan δ) was calculated by dividing the obtained loss tensile modulus (E ″) by the storage tensile modulus (E ′), and the peak value and peak temperature were determined.
[0031]
(Slip time)
The produced sheet-like vibration damping material was laminated on one side of a stainless steel plate (0.5 mm thick) and bonded to obtain a constrained vibration damping material. The obtained constrained vibration damping material was cut into a 10 cm square and bonded so that the sheet-like vibration damping material side was in contact with a gypsum board (15 mm thick). Standing in a constant temperature oven at 60 ° C with the gypsum board with the restraint type damping material bonded vertically, until the stainless steel plate part of the restraint type damping material slips 5mm from the initial position. The time was measured as the “slip-off time”, and the stability under high temperature use conditions was evaluated.
[0032]
[Table 1]
Figure 0004359050
[0033]
As is apparent from Table 1, in the examples of the present invention, the loss tangent (tan δ) showed a high value, and the sliding time was long and it was confirmed that it was suitable for high temperature use.
[0034]
【The invention's effect】
The resin composition for a vibration damping material of the present invention has a thermoplastic resin having 20 to 70% by weight of chlorine groups in the side chain and a crystallinity measured by DSC method of 5 J / g or more, and chlorine. 30 to 75% by weight and chlorinated paraffin having 12 to 50 carbon atoms, so it has high vibration damping performance and causes flow and slipping even under high operating temperatures. Therefore, it is possible to provide a resin composition for a vibration damping material that can be suitably used. For this reason, it can be suitably used particularly in outdoor applications under direct sunlight irradiation, and in applications such as home appliances and industrial equipment in which a heat source is nearby.
[0035]
If the chlorinated paraffin contains 10 to 70% by weight of chlorinated paraffin having a chlorine content of 70% by weight or more, the above-described effect is further improved and the adhesiveness is improved, and the vibration damping material is an object. It is suitable when it is used by being attached to.

Claims (2)

20〜70重量%の塩素基を側鎖に有し、DSC法によって測定された結晶化度が5J/g以上である熱可塑性樹脂と、塩素を30〜75重量%含有し、炭素数が12〜50である塩素化パラフィンとからなる制振材料用樹脂組成物を用いてなる制振材料を鋼板に貼合わせた拘束型制振材料A thermoplastic resin having 20 to 70% by weight of chlorine groups in the side chain and a crystallinity measured by DSC method of 5 J / g or more, 30 to 75% by weight of chlorine, and 12 carbon atoms A restraint type damping material obtained by bonding a damping material made of a resin composition for a damping material composed of -50 chlorinated paraffin to a steel plate . 前記塩素化パラフィン中に、塩素含有量70重量%以上の塩素化パラフィンが10〜70重量%含有されてなることを特徴とする請求項1記載の拘束型制振材料2. The constrained vibration damping material according to claim 1, wherein the chlorinated paraffin contains 10 to 70 wt% of chlorinated paraffin having a chlorine content of 70 wt% or more.
JP2003034184A 2003-02-12 2003-02-12 Resin composition for damping material and damping material Expired - Lifetime JP4359050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003034184A JP4359050B2 (en) 2003-02-12 2003-02-12 Resin composition for damping material and damping material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003034184A JP4359050B2 (en) 2003-02-12 2003-02-12 Resin composition for damping material and damping material

Publications (2)

Publication Number Publication Date
JP2004244481A JP2004244481A (en) 2004-09-02
JP4359050B2 true JP4359050B2 (en) 2009-11-04

Family

ID=33019946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003034184A Expired - Lifetime JP4359050B2 (en) 2003-02-12 2003-02-12 Resin composition for damping material and damping material

Country Status (1)

Country Link
JP (1) JP4359050B2 (en)

Also Published As

Publication number Publication date
JP2004244481A (en) 2004-09-02

Similar Documents

Publication Publication Date Title
JP2010513677A5 (en)
JP3675216B2 (en) High damping material composition
JP4359050B2 (en) Resin composition for damping material and damping material
JP5130198B2 (en) High damping rubber composition
JP3834291B2 (en) Resin composition for damping material and damping material
JP2005179525A (en) Rubber composition for vibration isolation
JP3952192B2 (en) Damping composition
JP2004250639A (en) Resin composition for vibration damping material and vibration damping material
JP3535081B2 (en) Damping sheet
JP3177654B2 (en) Vibration energy absorber
JP2023129886A (en) Resin composition for damping material, and damping material
JP2004238536A (en) Resin composition for vibration damping material and vibration damping material
JP2002105411A (en) Adhesive tape
JP5113575B2 (en) Damping composition
JP4490669B2 (en) Resin composition for transparent damping material and damping material
JP3452545B2 (en) Damping material and resin composition for producing the same
JP2009173906A (en) High-damping rubber composition
JP3206057B2 (en) Ethylene-vinyl acetate copolymer composition
JPH1180562A (en) Highly attenuating material composition
JP3661179B2 (en) High damping material composition
JP3610613B2 (en) Composition for vibration impact energy absorbing material and vibration shock energy absorbing foam obtained therefrom
JP3306415B2 (en) Damping material and resin composition for producing the same
JP2613207B2 (en) Flame retardant resin composition
JP2004323600A (en) Resin composition for transparent vibration-damping material and vibration-damping material
JP3664210B2 (en) High damping material composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4359050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

EXPY Cancellation because of completion of term