JP2913487B2 - Polyvinyl chloride resin composition - Google Patents

Polyvinyl chloride resin composition

Info

Publication number
JP2913487B2
JP2913487B2 JP11881790A JP11881790A JP2913487B2 JP 2913487 B2 JP2913487 B2 JP 2913487B2 JP 11881790 A JP11881790 A JP 11881790A JP 11881790 A JP11881790 A JP 11881790A JP 2913487 B2 JP2913487 B2 JP 2913487B2
Authority
JP
Japan
Prior art keywords
weight
parts
polyvinyl chloride
chloride resin
manufactured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11881790A
Other languages
Japanese (ja)
Other versions
JPH0415245A (en
Inventor
健太郎 岩永
保巳 田中
博章 古川
理 薄木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP11881790A priority Critical patent/JP2913487B2/en
Priority to DE69131434T priority patent/DE69131434T2/en
Priority to EP91304127A priority patent/EP0456473B1/en
Priority to US07/697,365 priority patent/US5264473A/en
Publication of JPH0415245A publication Critical patent/JPH0415245A/en
Application granted granted Critical
Publication of JP2913487B2 publication Critical patent/JP2913487B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は各種輸送機器,精密電子機器,音響機器など
の分野において振動を制御することにより、動作反応速
度や測定精度を向上させたり、音質を改良させる目的で
使用される振動エネルギー吸収性能のすぐれたポリ塩化
ビニル系樹脂組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention controls the vibration in the fields of various transportation equipment, precision electronic equipment, audio equipment, etc., thereby improving the operation response speed and measurement accuracy, and improving the sound quality. The present invention relates to a polyvinyl chloride resin composition having excellent vibration energy absorption performance used for the purpose of improving the viscosity.

[従来の技術] 従来、振動エネルギー吸収材としてはブチルゴムが最
もよく使用されている。また、最近ではポリノルボルネ
ンや特殊なウレタン系エラストマーなどがより高性能で
あることが見い出され注目されている。これら振動エネ
ルギー吸収材の1次評価はその材料の粘弾性測定により
求められる貯蔵弾性率(E′)と損失係数(tanδ=損
失弾性率(E″)/貯蔵弾性率(E′))でなされる。
[Prior Art] Conventionally, butyl rubber is most often used as a vibration energy absorbing material. Also, recently, polynorbornene and special urethane-based elastomers have been found to have higher performance and have attracted attention. The primary evaluation of these vibration energy absorbing materials is made by the storage modulus (E ') and the loss coefficient (tan δ = loss modulus (E ") / storage modulus (E')) obtained by measuring the viscoelasticity of the material. You.

振動エネルギー吸収材として設計するためには損失係
数は大きければ大きいほど、また貯蔵弾性率は使用され
る形態によって最適値が存在する。これら2つの因子は
通常温度依存性が大きい。すなわち貯蔵弾性率は温度が
高くなるにつれて徐々に低下し、通常ガラス転移点を超
えた温度域から急激に低下する。また、損失係数はガラ
ス転移点を超えた温度域で最も高い値を示すがその前後
の温度域では低下する傾向が一般的である。
In order to design as a vibration energy absorbing material, the larger the loss coefficient is, the more the storage elastic modulus has an optimum value depending on the used form. These two factors are usually highly temperature dependent. That is, the storage elastic modulus gradually decreases as the temperature increases, and sharply decreases from a temperature range usually exceeding the glass transition point. Further, the loss coefficient shows the highest value in a temperature range exceeding the glass transition point, but generally tends to decrease in a temperature range around the glass transition point.

従って、従来よりこのような振動エネルギー吸収材に
求められる基準としては、まず材料が用いられる温度域
で高い損失係数を有することであった。一方、貯蔵弾性
率については無機、金属の充填材や軟化剤あるいはゴム
等を添加することによりかなりの幅でその値を調整する
ことができるため最適値に合わせることが可能であっ
た。それゆえ、ブチルゴムやポリノルボルネン,特殊ウ
レタン系エラストマー等は損失係数の値がそれぞれ最大
でtanδ=1.4,2.8,1.3という優れた値を示している。と
ころがこれらの素材は加工性,成形性に難があり使用範
囲が限られていた。
Therefore, as a standard conventionally required for such a vibration energy absorbing material, first, a material having a high loss coefficient in a temperature range in which the material is used has been used. On the other hand, the storage elastic modulus can be adjusted to an optimum value because the value can be adjusted within a considerable range by adding an inorganic or metal filler, a softening agent, rubber, or the like. Therefore, butyl rubber, polynorbornene, special urethane-based elastomers and the like have excellent values of loss coefficients of tan δ = 1.4, 2.8, 1.3 at maximum. However, these materials have difficulties in workability and formability, and their use range is limited.

一方、ポリ塩化ビニル樹脂は5大汎用樹脂の1角とし
て長い歴史があり経済性はもとりほとんどの成形加工法
が確立している。しかも非晶性樹脂であること、無機・
金属充填剤や軟化剤との複合化が容易であることなどの
長所を有している。
On the other hand, polyvinyl chloride resin has a long history as one of the five major general-purpose resins, and most molding methods have been established with economic efficiency. Moreover, it is an amorphous resin,
It has advantages such as easy compounding with metal fillers and softeners.

ポリ塩化ビニル単独の損失係数は90℃前後で約1.1の
ピーク値を有する。しかし、これに代表的な可塑剤であ
るDOPを樹脂100重量部に対して100重量部加えると損失
係数のピーク温度は約5℃となり、またピーク値も約0.
7程度に低下してしまう。この現象は、ポリ塩化ビニル
単独分子鎖の中に異種分子が混入した結果緩和時間の分
布が広がると理解されていた。ところが最近の我々の検
討の結果、ジシクロヘキシルフタレートに代表されるご
く限られた種類の可塑剤をポリ塩化ビニルに添加すると
損失係数のピーク温度が下がりしかも、ピーク値が1.6
程度にまで上昇することが見い出された。しかし、この
ジシクロヘキシルフタレートをポリ塩化ビニルに単独で
70wt%以上添加したり30wt%以下の添加量でもDOPなど
と混合するとブリードするという致命的欠点を有してい
た。
The loss coefficient of polyvinyl chloride alone has a peak value of about 1.1 around 90 ° C. However, when 100 parts by weight of DOP, which is a typical plasticizer, is added to 100 parts by weight of the resin, the peak temperature of the loss coefficient is about 5 ° C., and the peak value is about 0.4%.
It drops to about 7. It was understood that this phenomenon would result in a broader distribution of relaxation times as a result of the incorporation of heterogeneous molecules into the single molecular chain of polyvinyl chloride. However, as a result of our recent studies, the addition of a very limited type of plasticizer, such as dicyclohexyl phthalate, to polyvinyl chloride lowers the peak temperature of the loss coefficient and increases the peak value by 1.6%.
To the extent that it has been found. However, this dicyclohexyl phthalate is used alone in polyvinyl chloride.
Even if it is added in an amount of 70 wt% or more or 30 wt% or less, there is a fatal defect that bleeding occurs when mixed with DOP or the like.

[発明が解決しようとする課題] 本発明は、ポリ塩化ビニル樹脂の有する特徴を生かし
ながら、ジシクロヘキシルフタレートを添加してもブリ
ード現象のない、優れた振動エネルギー吸収性能を有す
るポリ塩化ビニル樹脂組成物を提供することを目的とす
る。
[Problems to be Solved by the Invention] The present invention provides a polyvinyl chloride resin composition having excellent vibration energy absorption performance, which does not cause a bleed phenomenon even when dicyclohexyl phthalate is added, while taking advantage of the features of the polyvinyl chloride resin. The purpose is to provide.

[課題を解決するための手段] 本発明の要旨とするところはポリ塩化ビニル系樹脂と
下記(i)の構造を有するフタル酸エステルと下記(i
i)の構造を有するリン酸エステルからなるポリ塩化ビ
ニル系樹脂組成物、さらには本組成物からなる振動エネ
ルギー吸収材に関する。
[Means for Solving the Problems] The gist of the present invention is to provide a polyvinyl chloride resin and a phthalic ester having the following structure (i) and the following (i)
The present invention relates to a polyvinyl chloride resin composition comprising a phosphate ester having the structure of i), and a vibration energy absorbing material comprising the present composition.

R1,R2:単環式炭化水素 R2〜R5:芳香族単環式炭化水素 以下詳細について説明する。 R 1 , R 2 : monocyclic hydrocarbon R 2 to R 5 : aromatic monocyclic hydrocarbon The details will be described below.

本発明に用いられるポリ塩化ビニル系樹脂とは塩化ビ
ニル単独重合体の他に酢酸ビニル,エチレンとの共重合
体、あるいはエチレン・酢酸ビニル共重合体やポリウレ
タンとのグラフト重合体等一般にポリ塩化ビニル系樹脂
として認識され得るものを示す。
The polyvinyl chloride resin used in the present invention is generally a polyvinyl chloride homopolymer, a copolymer with vinyl acetate, ethylene, a graft copolymer with ethylene / vinyl acetate copolymer or polyurethane, etc. What can be recognized as a system resin is shown.

一般式(i)の構造を有するフタル酸エステルとは、
R1,R2がC3〜C8の単環式炭化水素からなる化合物であ
る。R1,R2は同一でも異なっていてもよく、環上の水素
は他の置換基に置換されていてもよい。
The phthalate having a structure of the general formula (i) is
R 1 and R 2 are compounds comprising C 3 to C 8 monocyclic hydrocarbons. R 1 and R 2 may be the same or different, and hydrogen on the ring may be substituted with another substituent.

具体的にはジシクロヘキシルフタレート(DCHP),ジ
メチルシクロヘキシルフタレート,ジフェニルフタレー
ト(DPP)等が挙げられ、好ましくはジシクロヘキシル
フタレートである。添加量としては加工性,経済性の点
からポリ塩化ビニル樹脂100重量部に対して5重量部以
上200重量部以下さらには10重量部以上100重量部以下が
望ましい。ポリ塩化ビニル単独の場合周波数10Hzで動的
粘弾性を測定すると約90℃でtanδの最大値は1.1を示す
ものが、この範囲の添加量に応じて温度約30℃〜80℃の
範囲でtanδの最大値は1.4から1.8程度を示す。この現
象は緩和現象論の教えるところでは材料内部の状態の均
一化が進み緩和時間の分布が狭まった理解されるが、な
ぜこのような特定のフタル酸エステルが特異的に優れて
いるのかは不明である。
Specific examples include dicyclohexyl phthalate (DCHP), dimethylcyclohexyl phthalate, diphenyl phthalate (DPP) and the like, with dicyclohexyl phthalate being preferred. The addition amount is desirably from 5 to 200 parts by weight, preferably from 10 to 100 parts by weight, based on 100 parts by weight of the polyvinyl chloride resin from the viewpoint of processability and economy. In the case of polyvinyl chloride alone, when the dynamic viscoelasticity is measured at a frequency of 10 Hz, the maximum value of tanδ at about 90 ° C. shows 1.1, but depending on the amount of addition in this range, tanδ at a temperature of about 30 ° C. to 80 ° C. Indicates a maximum value of about 1.4 to 1.8. According to the theory of relaxation phenomena, it is understood that the uniformity of the state inside the material has progressed and the distribution of the relaxation time has narrowed, but it is unknown why such a specific phthalate ester is specifically superior It is.

一般式(ii)の構造を有するリン酸エステルとして
は、R2がC6〜C9の芳香族単環式炭化水素からなる化合物
である。R3〜R5は同一または異なっていてもよく、環上
の水素は他の置換基に置換されていてもよい。
The phosphate having the structure represented by the general formula (ii) is a compound in which R 2 is a C 6 to C 9 aromatic monocyclic hydrocarbon. R 3 to R 5 may be the same or different, and hydrogen on the ring may be substituted with another substituent.

具体的にはトリクレジルホスフェート(TCP),トリ
キシレニルホスフェート(TXP)などが挙げられる。特
にトリキシレニルホスフェートは単独でポリ塩化ビニル
樹脂に添加した場合でもtanδの最大値は約1.1程度を保
持するという優れた特徴も兼ね備えている。
Specifically, tricresyl phosphate (TCP), trixylenyl phosphate (TXP) and the like can be mentioned. In particular, trixylenyl phosphate also has an excellent feature that the maximum value of tan δ is maintained at about 1.1 even when added alone to the polyvinyl chloride resin.

リン酸エステルの添加量としては、加工性,経済性の
点からポリ塩化ビニル樹脂100重量部に対して5重量部
から200重量部さらには10重量部から100重量部が望まし
い。フタル酸エステルのブリード現象は、リン酸エステ
ル5重量部以上加えることで顕著に抑制することができ
る。
The addition amount of the phosphate ester is preferably 5 to 200 parts by weight, more preferably 10 to 100 parts by weight, based on 100 parts by weight of the polyvinyl chloride resin from the viewpoint of processability and economy. The bleeding phenomenon of the phthalic acid ester can be significantly suppressed by adding 5 parts by weight or more of the phosphoric acid ester.

本組成物は、フタル酸エステルとリン酸エステルの配
合量を調整することでtanδが最大値を示す温度を室温
から80℃程度まで広範囲に設定することができ、その値
も1.2以上を保持することができるため振動エネルギー
吸収材料として極めて有用といえる。
By adjusting the amount of the phthalic acid ester and the phosphoric acid ester, the present composition can set the temperature at which tan δ shows the maximum value in a wide range from room temperature to about 80 ° C., and the value also keeps 1.2 or more. Therefore, it can be said that it is extremely useful as a vibration energy absorbing material.

また、リン酸エステルの効果によりフタル酸エステル
のブリード現象を抑制することができるうえ、ポリ塩化
ビニル樹脂のすぐれた特徴を維持している。従って本組
成物はポリ塩化ビニル樹脂が通常用いられるカレンダー
加工,圧縮成形,射出成形法等の加工方法により任意の
形状の成形品を得ることができる。
Further, the bleeding phenomenon of the phthalic acid ester can be suppressed by the effect of the phosphoric acid ester, and the excellent characteristics of the polyvinyl chloride resin are maintained. Accordingly, the composition of the present invention can be used to obtain a molded article having an arbitrary shape by a processing method such as calendering, compression molding, injection molding or the like in which polyvinyl chloride resin is usually used.

また、本発明による樹脂組成物には通常のポリ塩化ビ
ニルに用いられる炭酸カルシウム,タルク,マイカグラ
ファイト等の充填材や三酸化アンチモンなどの難燃剤、
更には可塑剤等を添加することができる。さらに、ポリ
酢酸ビニルやエチレン−酢酸ビニル共重合体やアクリロ
ニトリル−ブタジエンゴム等ポリ塩化ビニル樹脂の一般
的改質によく用いられる高分子材料、あるいはクマロン
樹脂,キシレン樹脂など従来から振動エネルギー吸収に
効果があるとされている高分子材料とのブレンドも可能
である。
Further, the resin composition according to the present invention includes a filler such as calcium carbonate, talc, mica graphite and the like, and a flame retardant such as antimony trioxide, which are used in ordinary polyvinyl chloride;
Further, a plasticizer or the like can be added. In addition, polymer materials such as polyvinyl acetate, ethylene-vinyl acetate copolymer, and acrylonitrile-butadiene rubber, which are commonly used for general modification of polyvinyl chloride resin, or coumarone resin, xylene resin, etc. It is also possible to blend with a polymer material which is supposed to be present.

本発明による振動吸収材料は、自動車や産業機器など
の振動の激しい部位に直接貼りつけて振動を抑制した
り、精密機器の脚部に用いて床からの振動の伝播を防止
する目的で使用される。
The vibration-absorbing material according to the present invention is used for the purpose of suppressing vibration by directly affixing it to a severely vibrating part such as an automobile or industrial equipment, or for preventing the propagation of vibration from the floor by using the leg of precision equipment. You.

[実施例] 以下、本発明を実施例をあげて説明する。EXAMPLES Hereinafter, the present invention will be described with reference to examples.

実施例1 エチレン・塩ビ共重合樹脂(リューロンE-2200)[東
ソ−(株)社製]100重量部、TXP(トリキシレニルホス
フェート)[(株)大八化学工業所製]40重量部、DCHP
(ジシクロヘキシルフタレート)[大阪有機化学(株)
製]35重量部及び熱安定剤としてステアリン酸バリウム
2重量部、ステアリン酸亜鉛1重量部を混合しロール成
形機にてシート状とした。このロールシートをプレス成
形機にて厚さ1mmのフラットシートとし、動的粘弾性測
定装置(オリエンテック(株)製レオバイブロン)にて
動的粘弾性を評価した。
Example 1 100 parts by weight of an ethylene / vinyl chloride copolymer resin (Ryuron E-2200) [manufactured by Tosoh Corporation] and 40 parts by weight of TXP (trixylenyl phosphate) [manufactured by Daihachi Chemical Industry Co., Ltd.] , DCHP
(Dicyclohexyl phthalate) [Osaka Organic Chemical Co., Ltd.
Manufactured), 2 parts by weight of barium stearate as a heat stabilizer, and 1 part by weight of zinc stearate were mixed and formed into a sheet by a roll forming machine. The roll sheet was formed into a flat sheet having a thickness of 1 mm by a press molding machine, and the dynamic viscoelasticity was evaluated by a dynamic viscoelasticity measuring device (Ryovibron manufactured by Orientec Co., Ltd.).

実施例2 塩化ビニル樹脂(リューロンペーストR-725)[東ソ
ー(株)社製]100重量部、TXP(トリキシレニルホスフ
ェート)[(株)大八化学工業所製]100重量部、DCHP
(ジシクロヘキシルフタレート)[大阪有機化学(株)
製]60重量部及び熱安定剤としてAC-113[アデカ・アー
ガス化学(株)社製]2重量部、難燃剤として三酸化ア
ンチモン(アトックス−S)[日本精鉱(株)社製]2
重量部を混合し、プレス成形機により厚さ1mmのフラッ
トシートとし、実施例1と同一条件で動的粘弾性を測定
した。
Example 2 100 parts by weight of vinyl chloride resin (Ryuron paste R-725) [manufactured by Tosoh Corporation], 100 parts by weight of TXP (trixylenyl phosphate) [manufactured by Daihachi Chemical Industry Co., Ltd.], DCHP
(Dicyclohexyl phthalate) [Osaka Organic Chemical Co., Ltd.
60 parts by weight and 2 parts by weight of AC-113 [made by Adeka Argus Chemical Co., Ltd.] as a heat stabilizer, and antimony trioxide (Atox-S) [made by Nippon Seimitsu Co., Ltd.] 2 as a flame retardant
The parts by weight were mixed, a flat sheet having a thickness of 1 mm was formed by a press molding machine, and the dynamic viscoelasticity was measured under the same conditions as in Example 1.

実施例3 実施例1の組成のうちTXP(トリキシレニルホスフェ
ート)[(株)大八化学工業所製]35重量部、DCHP(ジ
シクロヘキシルフタレート)[大阪有機化学(株)製]
15重量部に変更し、ポリエステル系可塑剤(アデカ・サ
イザーPN-77)[アデカ・アーガス化学(株)社製]15
重量部を加え実施例1に従ってシートを作成し動的粘弾
性を測定した。
Example 3 Of the composition of Example 1, 35 parts by weight of TXP (trixylenyl phosphate) [manufactured by Daihachi Chemical Industry Co., Ltd.], DCHP (dicyclohexyl phthalate) [manufactured by Osaka Organic Chemical Co., Ltd.]
Changed to 15 parts by weight, polyester-based plasticizer (ADEKA SIZER PN-77) [Adeka Argus Chemical Co., Ltd.] 15
A sheet was prepared according to Example 1 by adding parts by weight, and dynamic viscoelasticity was measured.

実施例4 塩化ビニル−ウレタングラフト重合樹脂(ドミナスK-
800F[東ソー(株)社製]100重量部、TXP(トリキシレ
ニルホスフェート)[(株)大八化学工業所製]10重量
部、DCHP(ジシクロヘキシルフタレート)[大阪有機化
学(株)製]20重量部及び熱安定剤として液状のバリウ
ムジンク系安定剤(6227)[昭島化学(株)社製]1.0
重量部,粒状のバリウムジンク系安定剤(6226)[昭島
化学(株)社製]2.6重量部,亜燐酸エステル系安定剤
(4342)[昭島化学(株)社製]0.6重量部を混合し実
施例1に従ってシートを特製し、動的粘弾性を測定し
た。
Example 4 Vinyl chloride-urethane graft polymer resin (Dominus K-
800F [manufactured by Tosoh Corporation] 100 parts by weight, TXP (trixylenyl phosphate) [manufactured by Daihachi Chemical Industry Co., Ltd.] 10 parts by weight, DCHP (dicyclohexyl phthalate) [manufactured by Osaka Organic Chemicals] 20 A liquid barium zinc-based stabilizer (6227) [manufactured by Akishima Chemical Co., Ltd.]
Parts by weight, 2.6 parts by weight of granular barium zinc-based stabilizer (6226) [Akishima Chemical Co., Ltd.] and 0.6 parts by weight of phosphite ester-based stabilizer (4342) [Akishima Chemical Co., Ltd.] are mixed. A sheet was specially prepared according to Example 1, and the dynamic viscoelasticity was measured.

比較例1 実施例1の組成のうちTXP(トリキシレニルホスフェ
ート)[(株)大八化学工業所製]0重量部、DCHP(ジ
シクロヘキシルフタレート)[大阪有機化学(株)社
製]20重量部に変更し、ポリエステル系可塑剤(アデカ
・サイザーPN-77)[アデカ・アーガス化学(株)社
製]30重量部を加え実施例1にしたがってシートを作製
し動的粘弾性を測定した。
Comparative Example 1 Of the composition of Example 1, TXP (trixylenyl phosphate) [manufactured by Daihachi Chemical Industry Co., Ltd.] 0 parts by weight, DCHP (dicyclohexyl phthalate) [manufactured by Osaka Organic Chemical Co., Ltd.] 20 parts by weight Then, 30 parts by weight of a polyester plasticizer (ADEKA SIZER PN-77) (manufactured by Adeka Argus Chemical Co., Ltd.) was added, and a sheet was prepared according to Example 1, and the dynamic viscoelasticity was measured.

比較例2 実施例1の組成のうちTXP(トリキシレニルホスフェ
ート)[(株)大八化学工業所製]0重量部、DCHP(ジ
シクロヘキシルフタレート)[大阪有機化学(株)社
製]20重量部に変更し、DOP(ジ−2−エチルヘキシル
フタレート)[(株)花王社製]30重量部を加え実施例
1に従ってシートを作製し動的粘弾性を測定した。
Comparative Example 2 Of the composition of Example 1, 0 parts by weight of TXP (trixylenyl phosphate) [manufactured by Daihachi Chemical Industry Co., Ltd.] and 20 parts by weight of DCHP (dicyclohexyl phthalate) [manufactured by Osaka Organic Chemical Co., Ltd.] Was added, and 30 parts by weight of DOP (di-2-ethylhexyl phthalate) [manufactured by Kao Corporation] was added. A sheet was prepared according to Example 1, and the dynamic viscoelasticity was measured.

比較例3 実施例1の組成のうちTXP(トリキシレニルホスフェ
ート)[(株)大八化学工業所製]0重量部、DCHP(ジ
シクロヘキシルフタレート)[大阪有機化学(株)社
製]20重量部に変更し、DOA(ジオクチルアジペート)
[黒金化成(株)社製]30重量部を加え実施例1に従っ
てシートを作製し動的粘弾性を測定した。
Comparative Example 3 Of the composition in Example 1, 0 parts by weight of TXP (tricilenyl phosphate) [manufactured by Daihachi Chemical Industry Co., Ltd.] and 20 parts by weight of DCHP (dicyclohexyl phthalate) [manufactured by Osaka Organic Chemical Co., Ltd.] Change to DOA (dioctyl adipate)
[Kurokin Chemical Co., Ltd.] 30 parts by weight were added to prepare a sheet according to Example 1, and the dynamic viscoelasticity was measured.

(損失係数の評価) 実施例1,2,3,4及び比較例1,2,3で得られたシートを動
的粘弾性測定装置(オリエンテック(株)社製レオバイ
ブロン)にて損失係数(tanδ)を測定した。測定条件
は測定周波数110Hz、昇温速度1℃/min.にて行った。表
1にtanδの最大値とその時の温度を示す。
(Evaluation of Loss Factor) The sheets obtained in Examples 1, 2, 3, 4 and Comparative Examples 1, 2, 3 were subjected to a dynamic viscoelasticity measurement apparatus (Orientec Co., Ltd., Leo Vibron) to obtain a loss factor ( tan δ) was measured. The measurement was performed at a measurement frequency of 110 Hz and a heating rate of 1 ° C./min. Table 1 shows the maximum value of tan δ and the temperature at that time.

(ブリード現象の評価) 実施例1,2,3,4及び比較例1,2,3で得られたシートを温
度23℃、湿度50%の恒温室に放置し目視によりブリード
現象を調べた。表1にブリードした例はブリード現象が
見い出されるまでの期間、6ヶ月経過後もブリード現象
が見い出されない例は“無”とした。
(Evaluation of Bleeding Phenomenon) The sheets obtained in Examples 1, 2, 3, and 4 and Comparative Examples 1, 2, and 3 were left in a constant temperature room at a temperature of 23 ° C. and a humidity of 50%, and the bleeding phenomenon was visually examined. In Table 1, the example in which bleeding was observed was regarded as the period until the bleeding phenomenon was found, and the example in which the bleeding phenomenon was not found even after 6 months was evaluated as "absent".

[発明の効果] 以上の説明から明らかな様に、特定のリン酸エステル
と特定のフタル酸エステルを共に添加することにより、
ブリード現象を抑制しかつ損失係数の高いポリ塩化ビニ
ル系樹脂組成物を得ることができる。
[Effects of the Invention] As is clear from the above description, by adding a specific phosphate ester and a specific phthalate ester together,
The bleeding phenomenon can be suppressed and a polyvinyl chloride resin composition having a high loss coefficient can be obtained.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−163244(JP,A) 特開 平1−198200(JP,A) 特開 平3−70758(JP,A) 特開 平3−59055(JP,A) 特開 昭61−37834(JP,A) 特開 昭49−90335(JP,A) (58)調査した分野(Int.Cl.6,DB名) C08L 27/06 C08L 51/00 C08K 5/12 C08K 5/52 - 5/521 ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-1-163244 (JP, A) JP-A-1-198200 (JP, A) JP-A-3-70758 (JP, A) JP-A-3-163 59055 (JP, A) JP-A-61-37834 (JP, A) JP-A-49-90335 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C08L 27/06 C08L 51 / 00 C08K 5/12 C08K 5/52-5/521

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ポリ塩化ビニル系樹脂100重量部に対して
下記の(i)の構造を有するフタル酸エステル5〜200
重量部及び下記(ii)の構造を有するリン酸エステル5
〜200重量部からなるポリ塩化ビニル系樹脂組成物。 R1,R2:単環式炭化水素 R3〜R5:芳香族単環式炭化水素
A phthalic acid ester having a structure of the following (i) based on 100 parts by weight of a polyvinyl chloride resin:
Phosphate ester 5 having parts by weight and the following structure (ii):
A polyvinyl chloride resin composition comprising up to 200 parts by weight. R 1 , R 2 : monocyclic hydrocarbon R 3 to R 5 : aromatic monocyclic hydrocarbon
【請求項2】第(1)項記載の組成物からなる振動エネ
ルギー吸収材。
2. A vibration energy absorbing material comprising the composition according to item (1).
JP11881790A 1990-05-10 1990-05-10 Polyvinyl chloride resin composition Expired - Fee Related JP2913487B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP11881790A JP2913487B2 (en) 1990-05-10 1990-05-10 Polyvinyl chloride resin composition
DE69131434T DE69131434T2 (en) 1990-05-10 1991-05-08 Polyvinyl chloride composition
EP91304127A EP0456473B1 (en) 1990-05-10 1991-05-08 Polyvinyl chloride based resin composition
US07/697,365 US5264473A (en) 1990-05-10 1991-05-09 Polyvinyl chloride based resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11881790A JP2913487B2 (en) 1990-05-10 1990-05-10 Polyvinyl chloride resin composition

Publications (2)

Publication Number Publication Date
JPH0415245A JPH0415245A (en) 1992-01-20
JP2913487B2 true JP2913487B2 (en) 1999-06-28

Family

ID=14745876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11881790A Expired - Fee Related JP2913487B2 (en) 1990-05-10 1990-05-10 Polyvinyl chloride resin composition

Country Status (1)

Country Link
JP (1) JP2913487B2 (en)

Also Published As

Publication number Publication date
JPH0415245A (en) 1992-01-20

Similar Documents

Publication Publication Date Title
JP6476118B2 (en) Flame retardant synthetic resin composition
JP2000281838A (en) High damping material composition
JP2010090372A (en) Antistatic thermoplastic resin composition and molded article
JP2003226788A (en) Plasticizer composition and vinyl chloride resin composition
JP3177654B2 (en) Vibration energy absorber
JP2913487B2 (en) Polyvinyl chloride resin composition
JP2000044818A (en) Highly damping material composition
JPH03296565A (en) Antistatic resin composition
JP3952192B2 (en) Damping composition
EP0400936A1 (en) Flame-retardant polyester resin compositions
EP0456473B1 (en) Polyvinyl chloride based resin composition
JP3044753B2 (en) Vibration shock absorption foam
JPH0565382A (en) Polyvinyl chloride resin composition
JP3910958B2 (en) Damping material
JP2876751B2 (en) Polyvinyl chloride resin composition
JP3077299B2 (en) Vibration energy absorber
JP3664209B2 (en) High damping material composition
JP2987849B2 (en) Vibration energy absorber
JP2006206705A (en) Antistatic agent for polyolefin-based resin
JP3339487B2 (en) Polyvinyl chloride resin composition and vibration energy absorbing material comprising the same
US20040157964A1 (en) Vibration-damping composition and process for producing vibration-damping composition
KR102161374B1 (en) Thermoplastic resin composition and resin article using the same
JP3316921B2 (en) Vibration energy absorber
JP4511137B2 (en) Copolymer polyamide resin composition for calendar molding
JP3536404B2 (en) Polyvinyl chloride resin composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees